ALYREF mainly binds to the 5′ and the 3′ regions of the mRNA in vivo
The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consist...
Saved in:
Published in | Nucleic acids research Vol. 45; no. 16; pp. 9640 - 9653 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
19.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5' end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3' end of the mRNA. Furthermore, the 3' processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5' and the 3' regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3' processing. |
---|---|
AbstractList | The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5' end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3' end of the mRNA. Furthermore, the 3' processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5' and the 3' regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3' processing. The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5' end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3' end of the mRNA. Furthermore, the 3' processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5' and the 3' regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3' processing.The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5' end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3' end of the mRNA. Furthermore, the 3' processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5' and the 3' regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3' processing. The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5′ end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3′ end of the mRNA. Furthermore, the 3′ processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5′ and the 3′ regions of the mRNA in vivo , identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3′ processing. |
Author | Wang, Lantian Wu, Xudong Cheng, Hong He, Zhisong Shi, Min Li, Guohui Yin, Shanye Tian, Bin Zhang, Heng |
AuthorAffiliation | 1 State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 5 Departartment of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA 3 CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 4 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA 2 Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China |
AuthorAffiliation_xml | – name: 2 Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – name: 4 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA – name: 3 CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – name: 1 State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China – name: 5 Departartment of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA |
Author_xml | – sequence: 1 givenname: Min surname: Shi fullname: Shi, Min – sequence: 2 givenname: Heng surname: Zhang fullname: Zhang, Heng – sequence: 3 givenname: Xudong surname: Wu fullname: Wu, Xudong – sequence: 4 givenname: Zhisong surname: He fullname: He, Zhisong – sequence: 5 givenname: Lantian surname: Wang fullname: Wang, Lantian – sequence: 6 givenname: Shanye surname: Yin fullname: Yin, Shanye – sequence: 7 givenname: Bin surname: Tian fullname: Tian, Bin – sequence: 8 givenname: Guohui surname: Li fullname: Li, Guohui – sequence: 9 givenname: Hong surname: Cheng fullname: Cheng, Hong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28934468$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1KAzEUhYMotv5sfADJUoTR_HeyEYpYFYqC6MJVyMwkbXQm0cm02J3P5CP5JEarouIquTdfzrncswFWffAGgB2MDjCS9NDr9nBy_8TlYAX0MRUkY1KQVdBHFPEMI5b3wEaMdwhhhjlbBz2SS8qYyPvgbDi-vToZwUY7Xy9g4XwVYRdgNzWQvz6_QO2rj4K-F62ZuOAjDPaj11xdDKHzcO7mYQusWV1Hs_15boKb0cn18Vk2vjw9Px6Os5Ix1mUaEWJFKXOSc64HSEikaV4OsC2stBWqhM1tgQpaFibdScWtKCghlSS40JLQTXC01H2YFY2pSuO7VtfqoXWNbhcqaKd-v3g3VZMwV3wgBOYiCex9CrThcWZipxoXS1PX2pswiwpLRkRiEUvo7k-vb5Ov9SVgfwmUbYixNfYbwUi9Z6NSNmqZTYLRH7h0ne7SQtOcrv7vyxt2WJRc |
CitedBy_id | crossref_primary_10_1093_gpbjnl_qzae063 crossref_primary_10_52586_5016 crossref_primary_10_1093_nar_gkab774 crossref_primary_10_1038_s41598_022_05457_8 crossref_primary_10_1016_j_critrevonc_2024_104599 crossref_primary_10_1016_j_prp_2024_155392 crossref_primary_10_3389_fimmu_2023_1182525 crossref_primary_10_1016_j_semcdb_2017_08_054 crossref_primary_10_3390_ncrna4010008 crossref_primary_10_1098_rstb_2018_0169 crossref_primary_10_1186_s40478_019_0710_x crossref_primary_10_1038_s41576_024_00712_2 crossref_primary_10_1038_s41467_023_36345_y crossref_primary_10_3389_fonc_2023_1145766 crossref_primary_10_1093_nar_gkaf060 crossref_primary_10_1002_bies_202300145 crossref_primary_10_1098_rsob_190183 crossref_primary_10_3390_biom14070881 crossref_primary_10_1016_j_lfs_2023_122372 crossref_primary_10_1093_g3journal_jkaa046 crossref_primary_10_3389_fcell_2021_767668 crossref_primary_10_1016_j_molcel_2019_04_034 crossref_primary_10_1038_s41392_022_01003_0 crossref_primary_10_3389_fncel_2022_1058083 crossref_primary_10_3390_brainsci11111543 crossref_primary_10_3390_biom10091310 crossref_primary_10_1007_s00018_019_03029_0 crossref_primary_10_1146_annurev_biochem_052521_035949 crossref_primary_10_1073_pnas_2216799120 crossref_primary_10_3390_biom10060866 crossref_primary_10_2217_epi_2020_0399 crossref_primary_10_7554_eLife_61503 crossref_primary_10_1038_s41586_021_04234_3 crossref_primary_10_15252_embr_202357128 crossref_primary_10_1002_wrna_1572 crossref_primary_10_1080_07391102_2023_2204376 crossref_primary_10_1038_s41467_021_22143_x crossref_primary_10_1002_bies_202000197 crossref_primary_10_3390_vetsci11090445 crossref_primary_10_3389_fcell_2021_633259 crossref_primary_10_1017_S0031182021000068 crossref_primary_10_1016_j_tibs_2023_11_003 crossref_primary_10_1016_j_redox_2025_103565 crossref_primary_10_3390_cancers13246185 crossref_primary_10_1007_s10571_022_01241_4 crossref_primary_10_3389_fcimb_2021_648055 crossref_primary_10_1042_BCJ20190132 crossref_primary_10_1007_s00018_022_04402_2 crossref_primary_10_3390_v12091024 crossref_primary_10_2147_OTT_S286408 crossref_primary_10_1016_j_celrep_2018_04_061 crossref_primary_10_1016_j_molcel_2024_01_026 crossref_primary_10_1111_imr_13018 crossref_primary_10_1111_gtc_12672 crossref_primary_10_1080_19491034_2024_2360196 crossref_primary_10_1186_s40364_020_00225_0 crossref_primary_10_1080_21541264_2019_1658557 crossref_primary_10_1002_cyto_a_24735 crossref_primary_10_1007_s11357_022_00526_2 crossref_primary_10_1074_jbc_REV118_005594 crossref_primary_10_1038_s41576_018_0013_2 crossref_primary_10_1128_mbio_00291_25 crossref_primary_10_3389_fgene_2018_00440 crossref_primary_10_1111_nph_19773 crossref_primary_10_3390_cancers13010042 crossref_primary_10_3724_abbs_2024145 crossref_primary_10_1016_j_molcel_2024_09_032 crossref_primary_10_1042_EBC20200005 crossref_primary_10_1093_nar_gkz1238 crossref_primary_10_1093_nar_gkab445 crossref_primary_10_15252_embj_201899910 crossref_primary_10_3389_fonc_2025_1534948 crossref_primary_10_1016_j_cellsig_2024_111529 crossref_primary_10_1186_s13059_020_01982_9 crossref_primary_10_3389_fpls_2021_721558 crossref_primary_10_1002_wrna_1755 crossref_primary_10_1016_j_ajhg_2021_08_011 crossref_primary_10_1083_jcb_201801184 crossref_primary_10_1016_j_molcel_2019_01_026 crossref_primary_10_1038_s41598_018_32310_8 crossref_primary_10_1038_s41598_024_52110_7 crossref_primary_10_3389_fonc_2021_633415 crossref_primary_10_1038_s41586_023_05904_0 crossref_primary_10_1016_j_heliyon_2024_e37749 crossref_primary_10_1038_s41418_023_01223_z crossref_primary_10_1038_s41420_024_01862_2 crossref_primary_10_1038_s41598_024_61951_1 |
Cites_doi | 10.1016/j.stem.2013.10.008 10.1128/MCB.22.23.8241-8253.2002 10.1073/pnas.96.26.14937 10.1038/celldisc.2015.1 10.4161/rna.27991 10.1371/journal.pgen.1003914 10.1093/nar/gku350 10.1261/rna.042317.113 10.1093/nar/gkq033 10.1371/journal.pone.0122743 10.1093/nar/gkt414 10.1073/pnas.94.22.11893 10.1016/j.molcel.2014.04.033 10.1016/j.cell.2012.12.023 10.1093/nar/gku911 10.1016/j.cell.2006.10.044 10.1016/j.molcel.2014.08.005 10.1038/ncomms2005 10.1371/journal.pbio.0050322 10.1038/nature746 10.1074/jbc.M608745200 10.1073/pnas.0800250105 10.1038/416499a 10.1261/rna.051987.115 10.1074/jbc.M700629200 10.1016/j.molcel.2008.12.007 10.1093/nar/gkw009 10.1261/rna.212106 10.1016/S1097-2765(03)00089-3 10.1007/s00018-017-2503-3 10.1093/nar/gks1314 10.1128/MCB.02163-05 10.1038/nature14974 10.1093/emboj/18.7.1953 10.1038/sj.emboj.7600261 10.1126/science.1136235 10.1016/j.ajhg.2015.05.021 10.1091/mbc.E09-05-0389 10.1093/bioinformatics/btu638 10.1101/gad.1302205 10.1038/nsmb.1838 10.1016/j.cell.2015.07.059 10.1038/nsmb759 10.1016/S1097-2765(00)80065-9 10.1093/nar/gks1188 10.1186/1471-2407-11-77 10.1073/pnas.1113076108 10.1042/BCJ20160010 |
ContentType | Journal Article |
Copyright | Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/). Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 ( ). 2017 |
Copyright_xml | – notice: Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/). – notice: Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 ( ). 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkx597 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 9653 |
ExternalDocumentID | PMC5766156 28934468 10_1093_nar_gkx597 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM084089 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAPPN ADIXU AFULF BTTYL CGR CUY CVF ECM EIF M49 M~E NPM ROX 7X8 5PM |
ID | FETCH-LOGICAL-c444t-a022f6c982855a70690a38c71fbf9fd0d6f8fb0b3cbed6f2d5f6b322d921ba923 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:11:32 EDT 2025 Thu Jul 10 22:32:48 EDT 2025 Wed Feb 19 02:43:32 EST 2025 Tue Jul 01 02:07:09 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-a022f6c982855a70690a38c71fbf9fd0d6f8fb0b3cbed6f2d5f6b322d921ba923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkx597 |
PMID | 28934468 |
PQID | 1942676604 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5766156 proquest_miscellaneous_1942676604 pubmed_primary_28934468 crossref_primary_10_1093_nar_gkx597 crossref_citationtrail_10_1093_nar_gkx597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-19 |
PublicationDateYYYYMMDD | 2017-09-19 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | ( key 20180112133243_B34) 2015; 1 ( key 20180112133243_B48) 2007; 5 ( key 20180112133243_B47) 2006; 281 ( key 20180112133243_B2) 2002; 417 ( key 20180112133243_B16) 2013; 41 ( key 20180112133243_B4) 2003; 11 ( key 20180112133243_B37) 2010; 17 ( key 20180112133243_B50) 2013; 41 ( key 20180112133243_B32) 2006; 12 ( key 20180112133243_B27) 2014; 42 ( key 20180112133243_B1) 1999; 96 ( key 20180112133243_B44) 2015; 21 ( key 20180112133243_B12) 2015; 87 ( key 20180112133243_B30) 2012; 3 ( key 20180112133243_B23) 2013; 41 ( key 20180112133243_B36) 2014; 11 ( key 20180112133243_B14) 2017; 74 ( key 20180112133243_B31) 2010; 38 ( key 20180112133243_B42) 2015; 10 ( key 20180112133243_B40) 2015; 31 ( key 20180112133243_B21) 2007; 282 ( key 20180112133243_B41) 2013; 19 ( key 20180112133243_B19) 2014; 55 ( key 20180112133243_B17) 2004; 23 ( key 20180112133243_B26) 2013; 13 ( key 20180112133243_B18) 2008; 105 ( key 20180112133243_B3) 2002; 22 ( key 20180112133243_B28) 2015; 525 ( key 20180112133243_B35) 2011 ( key 20180112133243_B6) 2009; 33 ( key 20180112133243_B15) 2004; 11 ( key 20180112133243_B49) 2011; 108 ( key 20180112133243_B11) 2014; 54 ( key 20180112133243_B8) 2009; 20 ( key 20180112133243_B29) 2015; 97 ( key 20180112133243_B45) 1998; 1 ( key 20180112133243_B20) 2006; 127 ( key 20180112133243_B39) 2007; 315 ( key 20180112133243_B7) 2015; 162 ( key 20180112133243_B10) 2002; 416 ( key 20180112133243_B5) 2005; 19 ( key 20180112133243_B38) 2013; 152 ( key 20180112133243_B43) 1997; 94 ( key 20180112133243_B33) 2016; 44 ( key 20180112133243_B24) 2006; 26 ( key 20180112133243_B22) 2014; 42 ( key 20180112133243_B13) 2016; 473 ( key 20180112133243_B9) 2013; 9 ( key 20180112133243_B25) 2011; 11 ( key 20180112133243_B46) 1999; 18 12667464 - Mol Cell. 2003 Mar;11(3):837-43 24315442 - Cell Stem Cell. 2013 Dec 5;13(6):676-90 26773052 - Nucleic Acids Res. 2016 Mar 18;44(5):2348-61 9342333 - Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11893-8 10611316 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14937-42 15192704 - EMBO J. 2004 Jul 7;23(13):2620-31 10202158 - EMBO J. 1999 Apr 1;18(7):1953-65 26491543 - Cell Discov. 2015;1:null 16705185 - Mol Cell Biol. 2006 Jun;26(11):4362-7 22010220 - Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17985-90 25274738 - Nucleic Acids Res. 2014 Oct 29;42(19):12249-60 27679854 - Biochem J. 2016 Oct 1;473(19):2911-35 23374342 - Cell. 2013 Jan 31;152(3):453-66 15133499 - Nat Struct Mol Biol. 2004 Jun;11(6):558-66 17204650 - Science. 2007 Jan 5;315(5808):97-100 21559008 - J Vis Exp. 2011 Apr 30;(50):null 15998806 - Genes Dev. 2005 Jul 1;19(13):1512-7 11979277 - Nature. 2002 May 16;417(6886):304-8 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 18052610 - PLoS Biol. 2007 Dec;5(12):e322 17190602 - Cell. 2006 Dec 29;127(7):1389-400 17000901 - RNA. 2006 Nov;12(11):1933-48 26317468 - Cell. 2015 Aug 27;162(5):1016-28 28314893 - Cell Mol Life Sci. 2017 Aug;74(16):2875-2897 26166480 - Am J Hum Genet. 2015 Aug 6;97(2):302-10 24526010 - RNA Biol. 2014;11(2):146-55 11932736 - Nature. 2002 Apr 4;416(6880):499-506 23275560 - Nucleic Acids Res. 2013 Feb 1;41(4):2517-25 24782531 - Nucleic Acids Res. 2014 Jun;42(11):7305-18 24149845 - RNA. 2013 Dec;19(12):1781-90 12417727 - Mol Cell Biol. 2002 Dec;22(23):8241-53 20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15 17363367 - J Biol Chem. 2007 May 25;282(21):15645-51 24856220 - Mol Cell. 2014 May 22;54(4):547-58 24244187 - PLoS Genet. 2013 Nov;9(11):e1003914 26362019 - RNA. 2015 Nov;21(11):1908-20 23222130 - Nucleic Acids Res. 2013 Jan;41(2):1294-306 21329510 - BMC Cancer. 2011 Feb 17;11:77 22893130 - Nat Commun. 2012;3:1006 25826302 - PLoS One. 2015 Mar 31;10(3):e0122743 18287003 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3386-91 20129943 - Nucleic Acids Res. 2010 Jun;38(10 ):3351-61 26571559 - Seikagaku. 2015 Feb;87(1):75-81 23685434 - Nucleic Acids Res. 2013 Aug;41(14):7060-72 19110458 - Mol Cell. 2009 Jan 30;33(2):215-26 9660949 - Mol Cell. 1998 Apr;1(5):649-59 26308899 - Nature. 2015 Sep 3;525(7567):129-33 17001072 - J Biol Chem. 2006 Dec 1;281(48):36915-28 19864460 - Mol Biol Cell. 2009 Dec;20(24):5211-23 25192364 - Mol Cell. 2014 Sep 4;55(5):745-57 |
References_xml | – volume: 13 start-page: 676 year: 2013 ident: key 20180112133243_B26 article-title: The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.10.008 – volume: 22 start-page: 8241 year: 2002 ident: key 20180112133243_B3 article-title: Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.23.8241-8253.2002 – volume: 96 start-page: 14937 year: 1999 ident: key 20180112133243_B1 article-title: Splicing is required for rapid and efficient mRNA export in metazoans publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.26.14937 – volume: 1 start-page: 15001 year: 2015 ident: key 20180112133243_B34 article-title: Premature termination codons are recognized in the nucleus in A reading-frame dependent manner publication-title: Cell Discov doi: 10.1038/celldisc.2015.1 – volume: 11 start-page: 146 year: 2014 ident: key 20180112133243_B36 article-title: Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L publication-title: RNA Biol. doi: 10.4161/rna.27991 – volume: 9 start-page: e1003914 year: 2013 ident: key 20180112133243_B9 article-title: Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003914 – volume: 42 start-page: 7305 year: 2014 ident: key 20180112133243_B27 article-title: A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku350 – volume: 19 start-page: 1781 year: 2013 ident: key 20180112133243_B41 article-title: Overlapping and distinct functions of CstF64 and CstF64tau in mammalian mRNA 3′ processing publication-title: RNA doi: 10.1261/rna.042317.113 – volume: 38 start-page: 3351 year: 2010 ident: key 20180112133243_B31 article-title: Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq033 – volume: 10 start-page: e0122743 year: 2015 ident: key 20180112133243_B42 article-title: The consensus 5′ splice site motif inhibits mRNA nuclear export publication-title: PLoS One doi: 10.1371/journal.pone.0122743 – volume: 41 start-page: 7060 year: 2013 ident: key 20180112133243_B23 article-title: Human TREX component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian cleavage factor I publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt414 – volume: 94 start-page: 11893 year: 1997 ident: key 20180112133243_B43 article-title: Participation of the nuclear cap binding complex in pre-mRNA 3′ processing publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.22.11893 – volume: 54 start-page: 547 year: 2014 ident: key 20180112133243_B11 article-title: Principles and properties of eukaryotic mRNPs publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.04.033 – volume: 152 start-page: 453 year: 2013 ident: key 20180112133243_B38 article-title: Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements publication-title: Cell doi: 10.1016/j.cell.2012.12.023 – volume: 42 start-page: 12249 year: 2014 ident: key 20180112133243_B22 article-title: THOC5 controls 3′end-processing of immediate early genes via interaction with polyadenylation specific factor 100 (CPSF100) publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku911 – volume: 127 start-page: 1389 year: 2006 ident: key 20180112133243_B20 article-title: Human mRNA export machinery recruited to the 5′ end of mRNA publication-title: Cell doi: 10.1016/j.cell.2006.10.044 – volume: 55 start-page: 745 year: 2014 ident: key 20180112133243_B19 article-title: Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.08.005 – volume: 3 start-page: 1006 year: 2012 ident: key 20180112133243_B30 article-title: TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export publication-title: Nat. Commun. doi: 10.1038/ncomms2005 – volume: 5 start-page: e322 year: 2007 ident: key 20180112133243_B48 article-title: The signal sequence coding region promotes nuclear export of mRNA publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050322 – volume: 417 start-page: 304 year: 2002 ident: key 20180112133243_B2 article-title: TREX is a conserved complex coupling transcription with messenger RNA export publication-title: Nature doi: 10.1038/nature746 – volume: 281 start-page: 36915 year: 2006 ident: key 20180112133243_B47 article-title: RNA-binding motif protein 15 binds to the RNA transport element RTE and provides a direct link to the NXF1 export pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M608745200 – volume: 105 start-page: 3386 year: 2008 ident: key 20180112133243_B18 article-title: Splicing promotes rapid and efficient mRNA export in mammalian cells publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0800250105 – volume: 416 start-page: 499 year: 2002 ident: key 20180112133243_B10 article-title: An extensive network of coupling among gene expression machines publication-title: Nature doi: 10.1038/416499a – volume: 21 start-page: 1908 year: 2015 ident: key 20180112133243_B44 article-title: Splicing promotes the nuclear export of beta-globin mRNA by overcoming nuclear retention elements publication-title: RNA doi: 10.1261/rna.051987.115 – volume: 282 start-page: 15645 year: 2007 ident: key 20180112133243_B21 article-title: The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export publication-title: J. Biol. Chem. doi: 10.1074/jbc.M700629200 – volume: 33 start-page: 215 year: 2009 ident: key 20180112133243_B6 article-title: Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3′ end processing factor Pcf11 publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.12.007 – volume: 44 start-page: 2348 year: 2016 ident: key 20180112133243_B33 article-title: A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw009 – volume: 12 start-page: 1933 year: 2006 ident: key 20180112133243_B32 article-title: The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA publication-title: RNA doi: 10.1261/rna.212106 – volume: 11 start-page: 837 year: 2003 ident: key 20180112133243_B4 article-title: SR splicing factors serve as adapter proteins for TAP-dependent mRNA export publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00089-3 – volume: 74 start-page: 2875 year: 2017 ident: key 20180112133243_B14 article-title: Integration of mRNP formation and export publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-017-2503-3 – volume: 41 start-page: 2517 year: 2013 ident: key 20180112133243_B50 article-title: Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1314 – volume: 26 start-page: 4362 year: 2006 ident: key 20180112133243_B24 article-title: Thoc1/Hpr1/p84 is essential for early embryonic development in the mouse publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02163-05 – volume: 525 start-page: 129 year: 2015 ident: key 20180112133243_B28 article-title: GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport publication-title: Nature doi: 10.1038/nature14974 – volume: 18 start-page: 1953 year: 1999 ident: key 20180112133243_B46 article-title: TAP binds to the constitutive transport element (CTE) through a novel RNA-binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus publication-title: EMBO J. doi: 10.1093/emboj/18.7.1953 – volume: 23 start-page: 2620 year: 2004 ident: key 20180112133243_B17 article-title: Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes publication-title: EMBO J. doi: 10.1038/sj.emboj.7600261 – volume: 315 start-page: 97 year: 2007 ident: key 20180112133243_B39 article-title: A hexanucleotide element directs microRNA nuclear import publication-title: Science doi: 10.1126/science.1136235 – volume: 87 start-page: 75 year: 2015 ident: key 20180112133243_B12 article-title: [Formation and nuclear export of messenger ribonucleoprotein complexes] publication-title: Seikagaku – volume: 97 start-page: 302 year: 2015 ident: key 20180112133243_B29 article-title: THOC2 mutations implicate mRNA-export pathway in X-linked intellectual disability publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.05.021 – volume: 20 start-page: 5211 year: 2009 ident: key 20180112133243_B8 article-title: Mammalian pre-mRNA 3′ end processing factor CF I m 68 functions in mRNA export publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E09-05-0389 – volume: 31 start-page: 166 year: 2015 ident: key 20180112133243_B40 article-title: HTSeq–a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 19 start-page: 1512 year: 2005 ident: key 20180112133243_B5 article-title: Recruitment of the human TREX complex to mRNA during splicing publication-title: Genes Dev. doi: 10.1101/gad.1302205 – volume: 17 start-page: 909 year: 2010 ident: key 20180112133243_B37 article-title: iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1838 – volume: 162 start-page: 1016 year: 2015 ident: key 20180112133243_B7 article-title: The nuclear pore-associated TREX-2 complex employs mediator to regulate gene expression publication-title: Cell doi: 10.1016/j.cell.2015.07.059 – volume: 11 start-page: 558 year: 2004 ident: key 20180112133243_B15 article-title: Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb759 – volume: 1 start-page: 649 year: 1998 ident: key 20180112133243_B45 article-title: TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80065-9 – volume: 41 start-page: 1294 year: 2013 ident: key 20180112133243_B16 article-title: Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1188 – start-page: 2638 year: 2011 ident: key 20180112133243_B35 article-title: iCLIP–transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution publication-title: J. Vis. Exp. – volume: 11 start-page: 77 year: 2011 ident: key 20180112133243_B25 article-title: Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers publication-title: BMC Cancer doi: 10.1186/1471-2407-11-77 – volume: 108 start-page: 17985 year: 2011 ident: key 20180112133243_B49 article-title: Export and stability of naturally intronless mRNAs require specific coding region sequences and the TREX mRNA export complex publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1113076108 – volume: 473 start-page: 2911 year: 2016 ident: key 20180112133243_B13 article-title: The role of TREX in gene expression and disease publication-title: Biochem. J. doi: 10.1042/BCJ20160010 – reference: 26491543 - Cell Discov. 2015;1:null – reference: 28314893 - Cell Mol Life Sci. 2017 Aug;74(16):2875-2897 – reference: 25274738 - Nucleic Acids Res. 2014 Oct 29;42(19):12249-60 – reference: 25826302 - PLoS One. 2015 Mar 31;10(3):e0122743 – reference: 20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15 – reference: 22893130 - Nat Commun. 2012;3:1006 – reference: 26362019 - RNA. 2015 Nov;21(11):1908-20 – reference: 23685434 - Nucleic Acids Res. 2013 Aug;41(14):7060-72 – reference: 25192364 - Mol Cell. 2014 Sep 4;55(5):745-57 – reference: 17204650 - Science. 2007 Jan 5;315(5808):97-100 – reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 – reference: 11979277 - Nature. 2002 May 16;417(6886):304-8 – reference: 26571559 - Seikagaku. 2015 Feb;87(1):75-81 – reference: 17363367 - J Biol Chem. 2007 May 25;282(21):15645-51 – reference: 21559008 - J Vis Exp. 2011 Apr 30;(50):null – reference: 24315442 - Cell Stem Cell. 2013 Dec 5;13(6):676-90 – reference: 20129943 - Nucleic Acids Res. 2010 Jun;38(10 ):3351-61 – reference: 24244187 - PLoS Genet. 2013 Nov;9(11):e1003914 – reference: 26308899 - Nature. 2015 Sep 3;525(7567):129-33 – reference: 17190602 - Cell. 2006 Dec 29;127(7):1389-400 – reference: 19864460 - Mol Biol Cell. 2009 Dec;20(24):5211-23 – reference: 26773052 - Nucleic Acids Res. 2016 Mar 18;44(5):2348-61 – reference: 24782531 - Nucleic Acids Res. 2014 Jun;42(11):7305-18 – reference: 23275560 - Nucleic Acids Res. 2013 Feb 1;41(4):2517-25 – reference: 12417727 - Mol Cell Biol. 2002 Dec;22(23):8241-53 – reference: 21329510 - BMC Cancer. 2011 Feb 17;11:77 – reference: 12667464 - Mol Cell. 2003 Mar;11(3):837-43 – reference: 10202158 - EMBO J. 1999 Apr 1;18(7):1953-65 – reference: 9660949 - Mol Cell. 1998 Apr;1(5):649-59 – reference: 23374342 - Cell. 2013 Jan 31;152(3):453-66 – reference: 18052610 - PLoS Biol. 2007 Dec;5(12):e322 – reference: 26317468 - Cell. 2015 Aug 27;162(5):1016-28 – reference: 18287003 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3386-91 – reference: 16705185 - Mol Cell Biol. 2006 Jun;26(11):4362-7 – reference: 24526010 - RNA Biol. 2014;11(2):146-55 – reference: 15998806 - Genes Dev. 2005 Jul 1;19(13):1512-7 – reference: 27679854 - Biochem J. 2016 Oct 1;473(19):2911-35 – reference: 17000901 - RNA. 2006 Nov;12(11):1933-48 – reference: 15192704 - EMBO J. 2004 Jul 7;23(13):2620-31 – reference: 22010220 - Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17985-90 – reference: 23222130 - Nucleic Acids Res. 2013 Jan;41(2):1294-306 – reference: 15133499 - Nat Struct Mol Biol. 2004 Jun;11(6):558-66 – reference: 10611316 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14937-42 – reference: 17001072 - J Biol Chem. 2006 Dec 1;281(48):36915-28 – reference: 11932736 - Nature. 2002 Apr 4;416(6880):499-506 – reference: 9342333 - Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11893-8 – reference: 26166480 - Am J Hum Genet. 2015 Aug 6;97(2):302-10 – reference: 24149845 - RNA. 2013 Dec;19(12):1781-90 – reference: 19110458 - Mol Cell. 2009 Jan 30;33(2):215-26 – reference: 24856220 - Mol Cell. 2014 May 22;54(4):547-58 |
SSID | ssj0014154 |
Score | 2.541766 |
Snippet | The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9640 |
SubjectTerms | Binding Sites Cleavage Stimulation Factor - genetics Cleavage Stimulation Factor - metabolism HeLa Cells Humans Nuclear Cap-Binding Protein Complex - metabolism Nuclear Proteins - genetics Nuclear Proteins - metabolism Poly(A)-Binding Protein I - metabolism RNA and RNA-protein complexes RNA Transport RNA, Messenger - chemistry RNA, Messenger - metabolism RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Transcription Factors - genetics Transcription Factors - metabolism |
Title | ALYREF mainly binds to the 5′ and the 3′ regions of the mRNA in vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28934468 https://www.proquest.com/docview/1942676604 https://pubmed.ncbi.nlm.nih.gov/PMC5766156 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgPMALgo2P8jEZgZjQlC1NHCd-rEarClVFmlqpPEVx7GwVa4JYOjH-eu5sJ0tZHwYvkXu1nMi_y-XOPv-OkA88kZLnQnsqCiKPhb7vwUdBACB9lmuVcKUN2-eUj-fsyyJaNDXb3emSWh7lv7eeK_kfVEEGuOIp2X9Ath0UBNAGfOEKCMP1ThgPJt9Oh6PDFUT3F9eHEOOqy8aXjDA5osmODPEHlmBwSW8oW51OB7jYcbW8qroe6hQJjpHENV8q3FLorHYZJselTbZvdapdcR5r9xFEE79GyWKtqhvZ2G6EnGP60ll3sQE-YFgsQXTsozlkJZwB1VtkzqhajshGebomUnDLz3TLdlteqxLzykdn339FNm93kyJ7-jUdzSeTdDZczO6TBwHEBli2IvaH7dYReCS2krF7qoaTVoTHMPaxHXnTC7kVWvydIdtxOWZPyGMXK9CBBf4puafLXbI3KLO6Wl3Tj9Rk75ptkV3y8KSp3LdHPlu9oFYvqNELWlcUYKfRAQWtMM3wgDqdoFVhJKgTdFlS1IlnZD4azk7GnquW4eWMsdrLwBsr4LVDSsIoi5GBOguTPO4XshCF8hUvkkL6MsylhnagooJLMOdKBH2ZgZ__nOyUValfEgoupRB5VvBIayZlkCU6lJFgDOkAM8165FMze2nuqOSxoslFalMawhRmOrUz3SPv274_LIHK1l7vGhBSmCzctMpKXa0v074AHzLm3Ie7vrCgtOME4GwzxpMeiTfgajsgd_rmP-Xy3HCoQ5gNvjx_dYf7viaPbl6FN2Sn_rnWb8ETreW-0bx9s47zB4VWiOo |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALYREF+mainly+binds+to+the+5%27+and+the+3%27+regions+of+the+mRNA+in+vivo&rft.jtitle=Nucleic+acids+research&rft.au=Shi%2C+Min&rft.au=Zhang%2C+Heng&rft.au=Wu%2C+Xudong&rft.au=He%2C+Zhisong&rft.date=2017-09-19&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=45&rft.issue=16&rft.spage=9640&rft_id=info:doi/10.1093%2Fnar%2Fgkx597&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |