ALYREF mainly binds to the 5′ and the 3′ regions of the mRNA in vivo

The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consist...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 45; no. 16; pp. 9640 - 9653
Main Authors Shi, Min, Zhang, Heng, Wu, Xudong, He, Zhisong, Wang, Lantian, Yin, Shanye, Tian, Bin, Li, Guohui, Cheng, Hong
Format Journal Article
LanguageEnglish
Published England Oxford University Press 19.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5' end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3' end of the mRNA. Furthermore, the 3' processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5' and the 3' regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3' processing.
AbstractList The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5' end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3' end of the mRNA. Furthermore, the 3' processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5' and the 3' regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3' processing.
The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5' end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3' end of the mRNA. Furthermore, the 3' processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5' and the 3' regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3' processing.The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5' end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3' end of the mRNA. Furthermore, the 3' processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5' and the 3' regions of the mRNA in vivo, identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3' processing.
The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual cross-linking and immunoprecipitation (iCLIP) to identify the binding sites of ALYREF, an mRNA export adaptor in TREX, in human cells. Consistent with previous in vitro studies, ALYREF binds to a region near the 5′ end of the mRNA in a CBP80-dependent manner. Unexpectedly, we identified PABPN1-dependent ALYREF binding near the 3′ end of the mRNA. Furthermore, the 3′ processing factor CstF64 directly interacts with ALYREF and is required for the overall binding of ALYREF on the mRNA. In addition, we found that numerous middle exons harbor ALYREF binding sites and identified ALYREF-binding motifs that promote nuclear export of intronless mRNAs. Together, our study defines enrichment of ALYREF binding sites at the 5′ and the 3′ regions of the mRNA in vivo , identifies export-promoting ALYREF-binding motifs, and reveals CstF64- and PABPN1-mediated coupling of mRNA nuclear export to 3′ processing.
Author Wang, Lantian
Wu, Xudong
Cheng, Hong
He, Zhisong
Shi, Min
Li, Guohui
Yin, Shanye
Tian, Bin
Zhang, Heng
AuthorAffiliation 1 State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
5 Departartment of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
3 CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
4 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
2 Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
AuthorAffiliation_xml – name: 2 Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– name: 4 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
– name: 3 CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– name: 1 State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
– name: 5 Departartment of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
Author_xml – sequence: 1
  givenname: Min
  surname: Shi
  fullname: Shi, Min
– sequence: 2
  givenname: Heng
  surname: Zhang
  fullname: Zhang, Heng
– sequence: 3
  givenname: Xudong
  surname: Wu
  fullname: Wu, Xudong
– sequence: 4
  givenname: Zhisong
  surname: He
  fullname: He, Zhisong
– sequence: 5
  givenname: Lantian
  surname: Wang
  fullname: Wang, Lantian
– sequence: 6
  givenname: Shanye
  surname: Yin
  fullname: Yin, Shanye
– sequence: 7
  givenname: Bin
  surname: Tian
  fullname: Tian, Bin
– sequence: 8
  givenname: Guohui
  surname: Li
  fullname: Li, Guohui
– sequence: 9
  givenname: Hong
  surname: Cheng
  fullname: Cheng, Hong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28934468$$D View this record in MEDLINE/PubMed
BookMark eNptkc1KAzEUhYMotv5sfADJUoTR_HeyEYpYFYqC6MJVyMwkbXQm0cm02J3P5CP5JEarouIquTdfzrncswFWffAGgB2MDjCS9NDr9nBy_8TlYAX0MRUkY1KQVdBHFPEMI5b3wEaMdwhhhjlbBz2SS8qYyPvgbDi-vToZwUY7Xy9g4XwVYRdgNzWQvz6_QO2rj4K-F62ZuOAjDPaj11xdDKHzcO7mYQusWV1Hs_15boKb0cn18Vk2vjw9Px6Os5Ix1mUaEWJFKXOSc64HSEikaV4OsC2stBWqhM1tgQpaFibdScWtKCghlSS40JLQTXC01H2YFY2pSuO7VtfqoXWNbhcqaKd-v3g3VZMwV3wgBOYiCex9CrThcWZipxoXS1PX2pswiwpLRkRiEUvo7k-vb5Ov9SVgfwmUbYixNfYbwUi9Z6NSNmqZTYLRH7h0ne7SQtOcrv7vyxt2WJRc
CitedBy_id crossref_primary_10_1093_gpbjnl_qzae063
crossref_primary_10_52586_5016
crossref_primary_10_1093_nar_gkab774
crossref_primary_10_1038_s41598_022_05457_8
crossref_primary_10_1016_j_critrevonc_2024_104599
crossref_primary_10_1016_j_prp_2024_155392
crossref_primary_10_3389_fimmu_2023_1182525
crossref_primary_10_1016_j_semcdb_2017_08_054
crossref_primary_10_3390_ncrna4010008
crossref_primary_10_1098_rstb_2018_0169
crossref_primary_10_1186_s40478_019_0710_x
crossref_primary_10_1038_s41576_024_00712_2
crossref_primary_10_1038_s41467_023_36345_y
crossref_primary_10_3389_fonc_2023_1145766
crossref_primary_10_1093_nar_gkaf060
crossref_primary_10_1002_bies_202300145
crossref_primary_10_1098_rsob_190183
crossref_primary_10_3390_biom14070881
crossref_primary_10_1016_j_lfs_2023_122372
crossref_primary_10_1093_g3journal_jkaa046
crossref_primary_10_3389_fcell_2021_767668
crossref_primary_10_1016_j_molcel_2019_04_034
crossref_primary_10_1038_s41392_022_01003_0
crossref_primary_10_3389_fncel_2022_1058083
crossref_primary_10_3390_brainsci11111543
crossref_primary_10_3390_biom10091310
crossref_primary_10_1007_s00018_019_03029_0
crossref_primary_10_1146_annurev_biochem_052521_035949
crossref_primary_10_1073_pnas_2216799120
crossref_primary_10_3390_biom10060866
crossref_primary_10_2217_epi_2020_0399
crossref_primary_10_7554_eLife_61503
crossref_primary_10_1038_s41586_021_04234_3
crossref_primary_10_15252_embr_202357128
crossref_primary_10_1002_wrna_1572
crossref_primary_10_1080_07391102_2023_2204376
crossref_primary_10_1038_s41467_021_22143_x
crossref_primary_10_1002_bies_202000197
crossref_primary_10_3390_vetsci11090445
crossref_primary_10_3389_fcell_2021_633259
crossref_primary_10_1017_S0031182021000068
crossref_primary_10_1016_j_tibs_2023_11_003
crossref_primary_10_1016_j_redox_2025_103565
crossref_primary_10_3390_cancers13246185
crossref_primary_10_1007_s10571_022_01241_4
crossref_primary_10_3389_fcimb_2021_648055
crossref_primary_10_1042_BCJ20190132
crossref_primary_10_1007_s00018_022_04402_2
crossref_primary_10_3390_v12091024
crossref_primary_10_2147_OTT_S286408
crossref_primary_10_1016_j_celrep_2018_04_061
crossref_primary_10_1016_j_molcel_2024_01_026
crossref_primary_10_1111_imr_13018
crossref_primary_10_1111_gtc_12672
crossref_primary_10_1080_19491034_2024_2360196
crossref_primary_10_1186_s40364_020_00225_0
crossref_primary_10_1080_21541264_2019_1658557
crossref_primary_10_1002_cyto_a_24735
crossref_primary_10_1007_s11357_022_00526_2
crossref_primary_10_1074_jbc_REV118_005594
crossref_primary_10_1038_s41576_018_0013_2
crossref_primary_10_1128_mbio_00291_25
crossref_primary_10_3389_fgene_2018_00440
crossref_primary_10_1111_nph_19773
crossref_primary_10_3390_cancers13010042
crossref_primary_10_3724_abbs_2024145
crossref_primary_10_1016_j_molcel_2024_09_032
crossref_primary_10_1042_EBC20200005
crossref_primary_10_1093_nar_gkz1238
crossref_primary_10_1093_nar_gkab445
crossref_primary_10_15252_embj_201899910
crossref_primary_10_3389_fonc_2025_1534948
crossref_primary_10_1016_j_cellsig_2024_111529
crossref_primary_10_1186_s13059_020_01982_9
crossref_primary_10_3389_fpls_2021_721558
crossref_primary_10_1002_wrna_1755
crossref_primary_10_1016_j_ajhg_2021_08_011
crossref_primary_10_1083_jcb_201801184
crossref_primary_10_1016_j_molcel_2019_01_026
crossref_primary_10_1038_s41598_018_32310_8
crossref_primary_10_1038_s41598_024_52110_7
crossref_primary_10_3389_fonc_2021_633415
crossref_primary_10_1038_s41586_023_05904_0
crossref_primary_10_1016_j_heliyon_2024_e37749
crossref_primary_10_1038_s41418_023_01223_z
crossref_primary_10_1038_s41420_024_01862_2
crossref_primary_10_1038_s41598_024_61951_1
Cites_doi 10.1016/j.stem.2013.10.008
10.1128/MCB.22.23.8241-8253.2002
10.1073/pnas.96.26.14937
10.1038/celldisc.2015.1
10.4161/rna.27991
10.1371/journal.pgen.1003914
10.1093/nar/gku350
10.1261/rna.042317.113
10.1093/nar/gkq033
10.1371/journal.pone.0122743
10.1093/nar/gkt414
10.1073/pnas.94.22.11893
10.1016/j.molcel.2014.04.033
10.1016/j.cell.2012.12.023
10.1093/nar/gku911
10.1016/j.cell.2006.10.044
10.1016/j.molcel.2014.08.005
10.1038/ncomms2005
10.1371/journal.pbio.0050322
10.1038/nature746
10.1074/jbc.M608745200
10.1073/pnas.0800250105
10.1038/416499a
10.1261/rna.051987.115
10.1074/jbc.M700629200
10.1016/j.molcel.2008.12.007
10.1093/nar/gkw009
10.1261/rna.212106
10.1016/S1097-2765(03)00089-3
10.1007/s00018-017-2503-3
10.1093/nar/gks1314
10.1128/MCB.02163-05
10.1038/nature14974
10.1093/emboj/18.7.1953
10.1038/sj.emboj.7600261
10.1126/science.1136235
10.1016/j.ajhg.2015.05.021
10.1091/mbc.E09-05-0389
10.1093/bioinformatics/btu638
10.1101/gad.1302205
10.1038/nsmb.1838
10.1016/j.cell.2015.07.059
10.1038/nsmb759
10.1016/S1097-2765(00)80065-9
10.1093/nar/gks1188
10.1186/1471-2407-11-77
10.1073/pnas.1113076108
10.1042/BCJ20160010
ContentType Journal Article
Copyright Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/).
Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 ( ). 2017
Copyright_xml – notice: Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/).
– notice: Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 ( ). 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkx597
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 9653
ExternalDocumentID PMC5766156
28934468
10_1093_nar_gkx597
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM084089
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAPPN
ADIXU
AFULF
BTTYL
CGR
CUY
CVF
ECM
EIF
M49
M~E
NPM
ROX
7X8
5PM
ID FETCH-LOGICAL-c444t-a022f6c982855a70690a38c71fbf9fd0d6f8fb0b3cbed6f2d5f6b322d921ba923
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:11:32 EDT 2025
Thu Jul 10 22:32:48 EDT 2025
Wed Feb 19 02:43:32 EST 2025
Tue Jul 01 02:07:09 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Crown copyright 2017. This article contains public sector information licensed under the Open Government Licence v3.0 (http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-a022f6c982855a70690a38c71fbf9fd0d6f8fb0b3cbed6f2d5f6b322d921ba923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/nar/gkx597
PMID 28934468
PQID 1942676604
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5766156
proquest_miscellaneous_1942676604
pubmed_primary_28934468
crossref_primary_10_1093_nar_gkx597
crossref_citationtrail_10_1093_nar_gkx597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-19
PublicationDateYYYYMMDD 2017-09-19
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References ( key 20180112133243_B34) 2015; 1
( key 20180112133243_B48) 2007; 5
( key 20180112133243_B47) 2006; 281
( key 20180112133243_B2) 2002; 417
( key 20180112133243_B16) 2013; 41
( key 20180112133243_B4) 2003; 11
( key 20180112133243_B37) 2010; 17
( key 20180112133243_B50) 2013; 41
( key 20180112133243_B32) 2006; 12
( key 20180112133243_B27) 2014; 42
( key 20180112133243_B1) 1999; 96
( key 20180112133243_B44) 2015; 21
( key 20180112133243_B12) 2015; 87
( key 20180112133243_B30) 2012; 3
( key 20180112133243_B23) 2013; 41
( key 20180112133243_B36) 2014; 11
( key 20180112133243_B14) 2017; 74
( key 20180112133243_B31) 2010; 38
( key 20180112133243_B42) 2015; 10
( key 20180112133243_B40) 2015; 31
( key 20180112133243_B21) 2007; 282
( key 20180112133243_B41) 2013; 19
( key 20180112133243_B19) 2014; 55
( key 20180112133243_B17) 2004; 23
( key 20180112133243_B26) 2013; 13
( key 20180112133243_B18) 2008; 105
( key 20180112133243_B3) 2002; 22
( key 20180112133243_B28) 2015; 525
( key 20180112133243_B35) 2011
( key 20180112133243_B6) 2009; 33
( key 20180112133243_B15) 2004; 11
( key 20180112133243_B49) 2011; 108
( key 20180112133243_B11) 2014; 54
( key 20180112133243_B8) 2009; 20
( key 20180112133243_B29) 2015; 97
( key 20180112133243_B45) 1998; 1
( key 20180112133243_B20) 2006; 127
( key 20180112133243_B39) 2007; 315
( key 20180112133243_B7) 2015; 162
( key 20180112133243_B10) 2002; 416
( key 20180112133243_B5) 2005; 19
( key 20180112133243_B38) 2013; 152
( key 20180112133243_B43) 1997; 94
( key 20180112133243_B33) 2016; 44
( key 20180112133243_B24) 2006; 26
( key 20180112133243_B22) 2014; 42
( key 20180112133243_B13) 2016; 473
( key 20180112133243_B9) 2013; 9
( key 20180112133243_B25) 2011; 11
( key 20180112133243_B46) 1999; 18
12667464 - Mol Cell. 2003 Mar;11(3):837-43
24315442 - Cell Stem Cell. 2013 Dec 5;13(6):676-90
26773052 - Nucleic Acids Res. 2016 Mar 18;44(5):2348-61
9342333 - Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11893-8
10611316 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14937-42
15192704 - EMBO J. 2004 Jul 7;23(13):2620-31
10202158 - EMBO J. 1999 Apr 1;18(7):1953-65
26491543 - Cell Discov. 2015;1:null
16705185 - Mol Cell Biol. 2006 Jun;26(11):4362-7
22010220 - Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17985-90
25274738 - Nucleic Acids Res. 2014 Oct 29;42(19):12249-60
27679854 - Biochem J. 2016 Oct 1;473(19):2911-35
23374342 - Cell. 2013 Jan 31;152(3):453-66
15133499 - Nat Struct Mol Biol. 2004 Jun;11(6):558-66
17204650 - Science. 2007 Jan 5;315(5808):97-100
21559008 - J Vis Exp. 2011 Apr 30;(50):null
15998806 - Genes Dev. 2005 Jul 1;19(13):1512-7
11979277 - Nature. 2002 May 16;417(6886):304-8
25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
18052610 - PLoS Biol. 2007 Dec;5(12):e322
17190602 - Cell. 2006 Dec 29;127(7):1389-400
17000901 - RNA. 2006 Nov;12(11):1933-48
26317468 - Cell. 2015 Aug 27;162(5):1016-28
28314893 - Cell Mol Life Sci. 2017 Aug;74(16):2875-2897
26166480 - Am J Hum Genet. 2015 Aug 6;97(2):302-10
24526010 - RNA Biol. 2014;11(2):146-55
11932736 - Nature. 2002 Apr 4;416(6880):499-506
23275560 - Nucleic Acids Res. 2013 Feb 1;41(4):2517-25
24782531 - Nucleic Acids Res. 2014 Jun;42(11):7305-18
24149845 - RNA. 2013 Dec;19(12):1781-90
12417727 - Mol Cell Biol. 2002 Dec;22(23):8241-53
20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15
17363367 - J Biol Chem. 2007 May 25;282(21):15645-51
24856220 - Mol Cell. 2014 May 22;54(4):547-58
24244187 - PLoS Genet. 2013 Nov;9(11):e1003914
26362019 - RNA. 2015 Nov;21(11):1908-20
23222130 - Nucleic Acids Res. 2013 Jan;41(2):1294-306
21329510 - BMC Cancer. 2011 Feb 17;11:77
22893130 - Nat Commun. 2012;3:1006
25826302 - PLoS One. 2015 Mar 31;10(3):e0122743
18287003 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3386-91
20129943 - Nucleic Acids Res. 2010 Jun;38(10 ):3351-61
26571559 - Seikagaku. 2015 Feb;87(1):75-81
23685434 - Nucleic Acids Res. 2013 Aug;41(14):7060-72
19110458 - Mol Cell. 2009 Jan 30;33(2):215-26
9660949 - Mol Cell. 1998 Apr;1(5):649-59
26308899 - Nature. 2015 Sep 3;525(7567):129-33
17001072 - J Biol Chem. 2006 Dec 1;281(48):36915-28
19864460 - Mol Biol Cell. 2009 Dec;20(24):5211-23
25192364 - Mol Cell. 2014 Sep 4;55(5):745-57
References_xml – volume: 13
  start-page: 676
  year: 2013
  ident: key 20180112133243_B26
  article-title: The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.10.008
– volume: 22
  start-page: 8241
  year: 2002
  ident: key 20180112133243_B3
  article-title: Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.23.8241-8253.2002
– volume: 96
  start-page: 14937
  year: 1999
  ident: key 20180112133243_B1
  article-title: Splicing is required for rapid and efficient mRNA export in metazoans
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.26.14937
– volume: 1
  start-page: 15001
  year: 2015
  ident: key 20180112133243_B34
  article-title: Premature termination codons are recognized in the nucleus in A reading-frame dependent manner
  publication-title: Cell Discov
  doi: 10.1038/celldisc.2015.1
– volume: 11
  start-page: 146
  year: 2014
  ident: key 20180112133243_B36
  article-title: Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L
  publication-title: RNA Biol.
  doi: 10.4161/rna.27991
– volume: 9
  start-page: e1003914
  year: 2013
  ident: key 20180112133243_B9
  article-title: Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003914
– volume: 42
  start-page: 7305
  year: 2014
  ident: key 20180112133243_B27
  article-title: A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku350
– volume: 19
  start-page: 1781
  year: 2013
  ident: key 20180112133243_B41
  article-title: Overlapping and distinct functions of CstF64 and CstF64tau in mammalian mRNA 3′ processing
  publication-title: RNA
  doi: 10.1261/rna.042317.113
– volume: 38
  start-page: 3351
  year: 2010
  ident: key 20180112133243_B31
  article-title: Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq033
– volume: 10
  start-page: e0122743
  year: 2015
  ident: key 20180112133243_B42
  article-title: The consensus 5′ splice site motif inhibits mRNA nuclear export
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0122743
– volume: 41
  start-page: 7060
  year: 2013
  ident: key 20180112133243_B23
  article-title: Human TREX component Thoc5 affects alternative polyadenylation site choice by recruiting mammalian cleavage factor I
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt414
– volume: 94
  start-page: 11893
  year: 1997
  ident: key 20180112133243_B43
  article-title: Participation of the nuclear cap binding complex in pre-mRNA 3′ processing
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.22.11893
– volume: 54
  start-page: 547
  year: 2014
  ident: key 20180112133243_B11
  article-title: Principles and properties of eukaryotic mRNPs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.04.033
– volume: 152
  start-page: 453
  year: 2013
  ident: key 20180112133243_B38
  article-title: Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements
  publication-title: Cell
  doi: 10.1016/j.cell.2012.12.023
– volume: 42
  start-page: 12249
  year: 2014
  ident: key 20180112133243_B22
  article-title: THOC5 controls 3′end-processing of immediate early genes via interaction with polyadenylation specific factor 100 (CPSF100)
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku911
– volume: 127
  start-page: 1389
  year: 2006
  ident: key 20180112133243_B20
  article-title: Human mRNA export machinery recruited to the 5′ end of mRNA
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.044
– volume: 55
  start-page: 745
  year: 2014
  ident: key 20180112133243_B19
  article-title: Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.08.005
– volume: 3
  start-page: 1006
  year: 2012
  ident: key 20180112133243_B30
  article-title: TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2005
– volume: 5
  start-page: e322
  year: 2007
  ident: key 20180112133243_B48
  article-title: The signal sequence coding region promotes nuclear export of mRNA
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050322
– volume: 417
  start-page: 304
  year: 2002
  ident: key 20180112133243_B2
  article-title: TREX is a conserved complex coupling transcription with messenger RNA export
  publication-title: Nature
  doi: 10.1038/nature746
– volume: 281
  start-page: 36915
  year: 2006
  ident: key 20180112133243_B47
  article-title: RNA-binding motif protein 15 binds to the RNA transport element RTE and provides a direct link to the NXF1 export pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608745200
– volume: 105
  start-page: 3386
  year: 2008
  ident: key 20180112133243_B18
  article-title: Splicing promotes rapid and efficient mRNA export in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0800250105
– volume: 416
  start-page: 499
  year: 2002
  ident: key 20180112133243_B10
  article-title: An extensive network of coupling among gene expression machines
  publication-title: Nature
  doi: 10.1038/416499a
– volume: 21
  start-page: 1908
  year: 2015
  ident: key 20180112133243_B44
  article-title: Splicing promotes the nuclear export of beta-globin mRNA by overcoming nuclear retention elements
  publication-title: RNA
  doi: 10.1261/rna.051987.115
– volume: 282
  start-page: 15645
  year: 2007
  ident: key 20180112133243_B21
  article-title: The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M700629200
– volume: 33
  start-page: 215
  year: 2009
  ident: key 20180112133243_B6
  article-title: Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3′ end processing factor Pcf11
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.12.007
– volume: 44
  start-page: 2348
  year: 2016
  ident: key 20180112133243_B33
  article-title: A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw009
– volume: 12
  start-page: 1933
  year: 2006
  ident: key 20180112133243_B32
  article-title: The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA
  publication-title: RNA
  doi: 10.1261/rna.212106
– volume: 11
  start-page: 837
  year: 2003
  ident: key 20180112133243_B4
  article-title: SR splicing factors serve as adapter proteins for TAP-dependent mRNA export
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00089-3
– volume: 74
  start-page: 2875
  year: 2017
  ident: key 20180112133243_B14
  article-title: Integration of mRNP formation and export
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-017-2503-3
– volume: 41
  start-page: 2517
  year: 2013
  ident: key 20180112133243_B50
  article-title: Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1314
– volume: 26
  start-page: 4362
  year: 2006
  ident: key 20180112133243_B24
  article-title: Thoc1/Hpr1/p84 is essential for early embryonic development in the mouse
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02163-05
– volume: 525
  start-page: 129
  year: 2015
  ident: key 20180112133243_B28
  article-title: GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport
  publication-title: Nature
  doi: 10.1038/nature14974
– volume: 18
  start-page: 1953
  year: 1999
  ident: key 20180112133243_B46
  article-title: TAP binds to the constitutive transport element (CTE) through a novel RNA-binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.7.1953
– volume: 23
  start-page: 2620
  year: 2004
  ident: key 20180112133243_B17
  article-title: Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600261
– volume: 315
  start-page: 97
  year: 2007
  ident: key 20180112133243_B39
  article-title: A hexanucleotide element directs microRNA nuclear import
  publication-title: Science
  doi: 10.1126/science.1136235
– volume: 87
  start-page: 75
  year: 2015
  ident: key 20180112133243_B12
  article-title: [Formation and nuclear export of messenger ribonucleoprotein complexes]
  publication-title: Seikagaku
– volume: 97
  start-page: 302
  year: 2015
  ident: key 20180112133243_B29
  article-title: THOC2 mutations implicate mRNA-export pathway in X-linked intellectual disability
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.05.021
– volume: 20
  start-page: 5211
  year: 2009
  ident: key 20180112133243_B8
  article-title: Mammalian pre-mRNA 3′ end processing factor CF I m 68 functions in mRNA export
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E09-05-0389
– volume: 31
  start-page: 166
  year: 2015
  ident: key 20180112133243_B40
  article-title: HTSeq–a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 19
  start-page: 1512
  year: 2005
  ident: key 20180112133243_B5
  article-title: Recruitment of the human TREX complex to mRNA during splicing
  publication-title: Genes Dev.
  doi: 10.1101/gad.1302205
– volume: 17
  start-page: 909
  year: 2010
  ident: key 20180112133243_B37
  article-title: iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1838
– volume: 162
  start-page: 1016
  year: 2015
  ident: key 20180112133243_B7
  article-title: The nuclear pore-associated TREX-2 complex employs mediator to regulate gene expression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.059
– volume: 11
  start-page: 558
  year: 2004
  ident: key 20180112133243_B15
  article-title: Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb759
– volume: 1
  start-page: 649
  year: 1998
  ident: key 20180112133243_B45
  article-title: TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80065-9
– volume: 41
  start-page: 1294
  year: 2013
  ident: key 20180112133243_B16
  article-title: Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1188
– start-page: 2638
  year: 2011
  ident: key 20180112133243_B35
  article-title: iCLIP–transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution
  publication-title: J. Vis. Exp.
– volume: 11
  start-page: 77
  year: 2011
  ident: key 20180112133243_B25
  article-title: Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-11-77
– volume: 108
  start-page: 17985
  year: 2011
  ident: key 20180112133243_B49
  article-title: Export and stability of naturally intronless mRNAs require specific coding region sequences and the TREX mRNA export complex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1113076108
– volume: 473
  start-page: 2911
  year: 2016
  ident: key 20180112133243_B13
  article-title: The role of TREX in gene expression and disease
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20160010
– reference: 26491543 - Cell Discov. 2015;1:null
– reference: 28314893 - Cell Mol Life Sci. 2017 Aug;74(16):2875-2897
– reference: 25274738 - Nucleic Acids Res. 2014 Oct 29;42(19):12249-60
– reference: 25826302 - PLoS One. 2015 Mar 31;10(3):e0122743
– reference: 20601959 - Nat Struct Mol Biol. 2010 Jul;17(7):909-15
– reference: 22893130 - Nat Commun. 2012;3:1006
– reference: 26362019 - RNA. 2015 Nov;21(11):1908-20
– reference: 23685434 - Nucleic Acids Res. 2013 Aug;41(14):7060-72
– reference: 25192364 - Mol Cell. 2014 Sep 4;55(5):745-57
– reference: 17204650 - Science. 2007 Jan 5;315(5808):97-100
– reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9
– reference: 11979277 - Nature. 2002 May 16;417(6886):304-8
– reference: 26571559 - Seikagaku. 2015 Feb;87(1):75-81
– reference: 17363367 - J Biol Chem. 2007 May 25;282(21):15645-51
– reference: 21559008 - J Vis Exp. 2011 Apr 30;(50):null
– reference: 24315442 - Cell Stem Cell. 2013 Dec 5;13(6):676-90
– reference: 20129943 - Nucleic Acids Res. 2010 Jun;38(10 ):3351-61
– reference: 24244187 - PLoS Genet. 2013 Nov;9(11):e1003914
– reference: 26308899 - Nature. 2015 Sep 3;525(7567):129-33
– reference: 17190602 - Cell. 2006 Dec 29;127(7):1389-400
– reference: 19864460 - Mol Biol Cell. 2009 Dec;20(24):5211-23
– reference: 26773052 - Nucleic Acids Res. 2016 Mar 18;44(5):2348-61
– reference: 24782531 - Nucleic Acids Res. 2014 Jun;42(11):7305-18
– reference: 23275560 - Nucleic Acids Res. 2013 Feb 1;41(4):2517-25
– reference: 12417727 - Mol Cell Biol. 2002 Dec;22(23):8241-53
– reference: 21329510 - BMC Cancer. 2011 Feb 17;11:77
– reference: 12667464 - Mol Cell. 2003 Mar;11(3):837-43
– reference: 10202158 - EMBO J. 1999 Apr 1;18(7):1953-65
– reference: 9660949 - Mol Cell. 1998 Apr;1(5):649-59
– reference: 23374342 - Cell. 2013 Jan 31;152(3):453-66
– reference: 18052610 - PLoS Biol. 2007 Dec;5(12):e322
– reference: 26317468 - Cell. 2015 Aug 27;162(5):1016-28
– reference: 18287003 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3386-91
– reference: 16705185 - Mol Cell Biol. 2006 Jun;26(11):4362-7
– reference: 24526010 - RNA Biol. 2014;11(2):146-55
– reference: 15998806 - Genes Dev. 2005 Jul 1;19(13):1512-7
– reference: 27679854 - Biochem J. 2016 Oct 1;473(19):2911-35
– reference: 17000901 - RNA. 2006 Nov;12(11):1933-48
– reference: 15192704 - EMBO J. 2004 Jul 7;23(13):2620-31
– reference: 22010220 - Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17985-90
– reference: 23222130 - Nucleic Acids Res. 2013 Jan;41(2):1294-306
– reference: 15133499 - Nat Struct Mol Biol. 2004 Jun;11(6):558-66
– reference: 10611316 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14937-42
– reference: 17001072 - J Biol Chem. 2006 Dec 1;281(48):36915-28
– reference: 11932736 - Nature. 2002 Apr 4;416(6880):499-506
– reference: 9342333 - Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11893-8
– reference: 26166480 - Am J Hum Genet. 2015 Aug 6;97(2):302-10
– reference: 24149845 - RNA. 2013 Dec;19(12):1781-90
– reference: 19110458 - Mol Cell. 2009 Jan 30;33(2):215-26
– reference: 24856220 - Mol Cell. 2014 May 22;54(4):547-58
SSID ssj0014154
Score 2.541766
Snippet The TREX complex (TREX) plays key roles in nuclear export of mRNAs. However, little is known about its transcriptome-wide binding targets. We used individual...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9640
SubjectTerms Binding Sites
Cleavage Stimulation Factor - genetics
Cleavage Stimulation Factor - metabolism
HeLa Cells
Humans
Nuclear Cap-Binding Protein Complex - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Poly(A)-Binding Protein I - metabolism
RNA and RNA-protein complexes
RNA Transport
RNA, Messenger - chemistry
RNA, Messenger - metabolism
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Title ALYREF mainly binds to the 5′ and the 3′ regions of the mRNA in vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/28934468
https://www.proquest.com/docview/1942676604
https://pubmed.ncbi.nlm.nih.gov/PMC5766156
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgPMALgo2P8jEZgZjQlC1NHCd-rEarClVFmlqpPEVx7GwVa4JYOjH-eu5sJ0tZHwYvkXu1nMi_y-XOPv-OkA88kZLnQnsqCiKPhb7vwUdBACB9lmuVcKUN2-eUj-fsyyJaNDXb3emSWh7lv7eeK_kfVEEGuOIp2X9Ath0UBNAGfOEKCMP1ThgPJt9Oh6PDFUT3F9eHEOOqy8aXjDA5osmODPEHlmBwSW8oW51OB7jYcbW8qroe6hQJjpHENV8q3FLorHYZJselTbZvdapdcR5r9xFEE79GyWKtqhvZ2G6EnGP60ll3sQE-YFgsQXTsozlkJZwB1VtkzqhajshGebomUnDLz3TLdlteqxLzykdn339FNm93kyJ7-jUdzSeTdDZczO6TBwHEBli2IvaH7dYReCS2krF7qoaTVoTHMPaxHXnTC7kVWvydIdtxOWZPyGMXK9CBBf4puafLXbI3KLO6Wl3Tj9Rk75ptkV3y8KSp3LdHPlu9oFYvqNELWlcUYKfRAQWtMM3wgDqdoFVhJKgTdFlS1IlnZD4azk7GnquW4eWMsdrLwBsr4LVDSsIoi5GBOguTPO4XshCF8hUvkkL6MsylhnagooJLMOdKBH2ZgZ__nOyUValfEgoupRB5VvBIayZlkCU6lJFgDOkAM8165FMze2nuqOSxoslFalMawhRmOrUz3SPv274_LIHK1l7vGhBSmCzctMpKXa0v074AHzLm3Ie7vrCgtOME4GwzxpMeiTfgajsgd_rmP-Xy3HCoQ5gNvjx_dYf7viaPbl6FN2Sn_rnWb8ETreW-0bx9s47zB4VWiOo
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALYREF+mainly+binds+to+the+5%27+and+the+3%27+regions+of+the+mRNA+in+vivo&rft.jtitle=Nucleic+acids+research&rft.au=Shi%2C+Min&rft.au=Zhang%2C+Heng&rft.au=Wu%2C+Xudong&rft.au=He%2C+Zhisong&rft.date=2017-09-19&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=45&rft.issue=16&rft.spage=9640&rft_id=info:doi/10.1093%2Fnar%2Fgkx597&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon