Extending the QCR method to general mixed-integer programs
Let ( MQP ) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of ( MQP ), i.e. we reformulate ( MQP ) into an equivalent program, with a convex objective function. Such a refor...
Saved in:
Published in | Mathematical programming Vol. 131; no. 1-2; pp. 381 - 401 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.02.2012
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0025-5610 1436-4646 |
DOI | 10.1007/s10107-010-0381-7 |
Cover
Loading…
Abstract | Let (
MQP
) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of (
MQP
), i.e. we reformulate (
MQP
) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of (
MQP
). Computational experiences are carried out with instances of (
MQP
) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1 h of CPU time by a standard solver. |
---|---|
AbstractList | Let (MQP) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of (MQP), i.e. we reformulate (MQP) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of (MQP). Computational experiences are carried out with instances of (MQP) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1 h of CPU time by a standard solver.[PUBLICATION ABSTRACT] Let (MQP) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of (MQP), i.e. we reformulate (MQP) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of (MQP). Computational experiences are carried out with instances of (MQP) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1 h of CPU time by a standard solver. Let ( MQP ) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of ( MQP ), i.e. we reformulate ( MQP ) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of ( MQP ). Computational experiences are carried out with instances of ( MQP ) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1 h of CPU time by a standard solver. |
Author | Elloumi, Sourour Lambert, Amélie Billionnet, Alain |
Author_xml | – sequence: 1 givenname: Alain surname: Billionnet fullname: Billionnet, Alain organization: CEDRIC-ENSIIE – sequence: 2 givenname: Sourour surname: Elloumi fullname: Elloumi, Sourour organization: CEDRIC-CNAM – sequence: 3 givenname: Amélie surname: Lambert fullname: Lambert, Amélie email: amelie.lambert@cnam.fr organization: CEDRIC-CNAM |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25600104$$DView record in Pascal Francis |
BookMark | eNp9kF1LBCEUhiUK2q1-QHdDEHRjHUdHZ7qLpS9YiKKuxZwzuy4zTqkL9e8zNgqCujkiPK_n9ZmSbT96JOSQwSkDUGeRAQNF86DAa0bVFpkwwSUVUshtMgEoK1pJBrtkGuMKABiv6wk5v3xL6FvnF0VaYnE_eygGTMuxLdJYLNBjMH0xuDdsqfMJFxiKlzAughniPtnpTB_x4OvcI09Xl4-zGzq_u76dXcypFUIk2lQoOIKFUjW24VyVVdMZIVRdd3XFZQNgsbLi-TnX7Urs8l1Y0SK2pmUS-R452bybF7-uMSY9uGix743HcR11_nkjuQKQGT36ha7GdfC5nW6Y5Izzps7Q8RdkojV9F4y3LuqX4AYT3nVZySwHRObYhrNhjDFg940w0J_S9Ua6zkN_StcqZ9SvjHXJJDf6FIzr_02Wm2TMW3z2_FP979AHpiqVOQ |
CODEN | MHPGA4 |
CitedBy_id | crossref_primary_10_1007_s10589_014_9660_1 crossref_primary_10_1007_s10898_020_00972_2 crossref_primary_10_1007_s12532_021_00206_w crossref_primary_10_1287_ijoc_2016_0731 crossref_primary_10_1007_s10898_018_0717_z crossref_primary_10_1007_s10589_012_9474_y crossref_primary_10_1007_s10852_012_9193_5 crossref_primary_10_1007_s10589_015_9766_0 crossref_primary_10_1007_s11590_015_0988_y crossref_primary_10_1016_j_ijpe_2022_108456 crossref_primary_10_1287_opre_2022_2267 crossref_primary_10_1016_j_engappai_2023_106802 crossref_primary_10_1080_10556788_2022_2157002 crossref_primary_10_1016_j_orl_2018_08_005 crossref_primary_10_1109_LSP_2016_2576640 crossref_primary_10_1016_j_disopt_2021_100661 crossref_primary_10_1007_s10107_015_0921_2 crossref_primary_10_1007_s10898_017_0591_0 crossref_primary_10_1137_15M1012232 crossref_primary_10_1007_s11590_013_0676_8 crossref_primary_10_1016_j_ejor_2018_09_028 crossref_primary_10_1080_10556788_2017_1350675 crossref_primary_10_1007_s10107_015_0866_5 crossref_primary_10_1016_j_sorms_2012_08_001 crossref_primary_10_1007_s10589_023_00543_7 crossref_primary_10_1007_s10589_025_00672_1 crossref_primary_10_1007_s10957_013_0340_6 crossref_primary_10_1287_moor_2018_0969 crossref_primary_10_1142_S1469026821500243 crossref_primary_10_1021_acs_iecr_7b01270 crossref_primary_10_1137_130909597 crossref_primary_10_1007_s11590_018_1283_5 crossref_primary_10_3934_jimo_2020071 crossref_primary_10_1007_s00158_016_1406_5 crossref_primary_10_1016_j_cor_2024_106626 crossref_primary_10_1016_j_ejor_2019_08_027 crossref_primary_10_1155_2020_5974820 crossref_primary_10_1007_s10898_022_01138_y crossref_primary_10_1007_s10878_012_9560_1 crossref_primary_10_1007_s40305_015_0082_2 crossref_primary_10_1007_s10898_022_01184_6 crossref_primary_10_1137_130929187 crossref_primary_10_1007_s10898_016_0443_3 crossref_primary_10_1016_j_cor_2014_09_008 crossref_primary_10_1016_j_ejor_2013_03_025 crossref_primary_10_1016_j_disopt_2014_08_002 |
Cites_doi | 10.1080/00207540050031841 10.1016/j.ejor.2006.09.028 10.1287/mnsc.32.10.1274 10.1007/978-1-4757-4949-6 10.1007/s10288-006-0011-7 10.1051/ro/197004V300671 10.1007/b135610 10.1007/BF01580665 10.1016/j.dam.2007.12.007 10.1007/s10107-005-0594-3 10.1007/s10107-005-0637-9 10.1016/j.disopt.2006.10.011 10.1007/0-387-30528-9 10.1023/A:1017584227417 10.1007/978-1-4757-3532-1 10.1007/BF02253896 10.1016/j.apm.2005.02.007 10.1287/opre.22.1.180 10.1287/mnsc.22.4.455 10.1080/02331938608843180 10.1080/10556789908805765 10.1007/s10107-003-0467-6 |
ContentType | Journal Article |
Copyright | Springer and Mathematical Programming Society 2010 2015 INIST-CNRS Springer and Mathematical Optimization Society 2012 |
Copyright_xml | – notice: Springer and Mathematical Programming Society 2010 – notice: 2015 INIST-CNRS – notice: Springer and Mathematical Optimization Society 2012 |
DBID | AAYXX CITATION IQODW 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s10107-010-0381-7 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Applied Sciences |
EISSN | 1436-4646 |
EndPage | 401 |
ExternalDocumentID | 2562173451 25600104 10_1007_s10107_010_0381_7 |
Genre | Feature |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ IQODW PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c444t-95e43e0c0279c9337259fa44788f8536900ce5c4bb436f2ef00c4c4deedad16e3 |
IEDL.DBID | BENPR |
ISSN | 0025-5610 |
IngestDate | Fri Jul 11 01:22:15 EDT 2025 Fri Jul 25 19:47:15 EDT 2025 Mon Jul 21 09:15:10 EDT 2025 Tue Jul 01 03:42:28 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Fri Feb 21 02:32:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | General integer programming 90C22 Semidefinite programming 90C11 Mixed integer programming 90C20 Quadratic programming Mixed-integer programming Convex reformulation Quadratic programming Experiments Semi-definite programming 90C26 Nonconvex programming Non convex programming Semi definite programming Convex programming Relaxation Inequality constraint Relaxation method Mathematical programming Branch and bound method Minimization Mixed integer programming Mixed method Standards Integer programming Computation time Implicit enumeration method Equality constraint Objective function Quadratic function |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-95e43e0c0279c9337259fa44788f8536900ce5c4bb436f2ef00c4c4deedad16e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 916313398 |
PQPubID | 25307 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1019637006 proquest_journals_916313398 pascalfrancis_primary_25600104 crossref_primary_10_1007_s10107_010_0381_7 crossref_citationtrail_10_1007_s10107_010_0381_7 springer_journals_10_1007_s10107_010_0381_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-01 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2012 |
Publisher | Springer-Verlag Springer Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
References | HammerP.L.RubinA.A.Some remarks on quadratic programming with 0–1 variablesRevue Française d’Informatique et de Recherche Opérationnelle.1970436779274033 BillionnetA.ElloumiS.Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problemMath. Program.2007109556822940340513105910.1007/s10107-005-0637-9 ILOG. ILOG CPLEX 11.0 Reference Manual. ILOG CPLEX Division, Gentilly (2008) McCormickG.P.Computability of global solutions to factorable non-convex programs: part I—convex underestimating problemsMath. Program.19761011471754692810349.9010010.1007/BF01580665 LibertiL.MaculanN.Global Optimization: From Theory to Implementation, Chapter: Nonconvex Optimization and Its Applications2006New YorkSpringer TawarmalaniM.SahinidisN.V.Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming2002DordrechtKluwer1031.90022 GloverF.Improved linear integer programming formulations of nonlinear integer problemsManag. Sci.19752245546040113810.1287/mnsc.22.4.455 HelmbergC.RendlF.Solving quadratic (0,1)-problems by semidefinite programs and cutting planesMath. Program.19988229131516396220919.90112 GloverF.WoolseyR.E.Converting the 0–1 polynomial programming problem to a 0–1 linear programOper. Res.1974221801820272.9004910.1287/opre.22.1.180 KörnerF.A new bound for the quadratic knapsack problem and its use in a branch and bound algorithmOptimization.1986176436488583110617.9006710.1080/02331938608843180 HuaZ.S.BanerjeeP.Aggregate line capacity design for PWB assembly systemsInt. J. Prod. Res.20003811241724410973.9050710.1080/00207540050031841 FrangioniA.GentileC.Perspective cuts for a class of convex 0–1 mixed integer programsMath. Program.200610622523622080821134.9044710.1007/s10107-005-0594-3 BillionnetA.ElloumiS.PlateauM.-C.Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR methodDiscrete Appl. Math.200915761185119725024371169.9040510.1016/j.dam.2007.12.007 FayeA.RoupinF.Partial lagrangian relaxation for general quadratic programming, 4’ ORQ. J. Oper. Res.200751758823055091142.9002510.1007/s10288-006-0011-7 FuH.L.ShiueL.ChengX.DuD.Z.KimJ.M.Quadratic integer programming with application in the chaotic mappings of complete multipartite graphsJ. Optim. Theory Appl.2001110354555618540151064.9002810.1023/A:1017584227417 TawarmalaniM.SahinidisN.V.Global optimization of mixed-integer nonlinear programs: a theoretical and computational studyMath. Program.200499356359120517121062.9004110.1007/s10107-003-0467-6 CapraraA.Constrained 0–1 quadratic programming: basic approaches and extensionsEur. J. Oper. Res.200818731494150323783461138.9045510.1016/j.ejor.2006.09.028 CuiY.Dynamic programming algorithms for the optimal cutting of equal rectanglesAppl.Math. Model.200529104010531163.9077910.1016/j.apm.2005.02.007 BorchersB.CSDP, A C library for semidefinite programmingOptim. Methods Softw.1999111613623177843210.1080/10556789908805765 BonamiP.BieglerL.ConnA.CornuéjolsG.GrossmannI.LairdC.LeeJ.LodiA.MargotF.SawayaN.WaechterA.An algorithmic framework for convex mixed integer nonlinear programmingDiscrete Optim.2005518620410.1016/j.disopt.2006.10.011 AudetC.HansenP.SavardG.Essays and Surveys in Global Optimization2005New YorkGERAD 25th Anniversary Series, Springer1071.9000110.1007/b135610 KörnerF.An efficient branch and bound algorithm to solve the quadratic integer programming problemComputing.1983302532607037730494.6503510.1007/BF02253896 GareyM.R.JohnsonD.S.Computers and Intractability: a guide to the theory of NP-Completness1979San FranciscoW.H. Freeman SheraliH.D.AdamsW.P.A tight linearization and an algorithm for zero-one quadratic programming problemsManage. Sci.19863210127412908617110623.9005410.1287/mnsc.32.10.1274 FloudasC.A.Deterministic Global Optimization2000DordrechtKluwer Saxena A., Bonami P., Lee J.: Disjunctive Cuts for Non-Convex Mixed Integer Quadratically Constrained Programs. IPCO, Bologna (2008) Z.S. Hua (381_CR17) 2000; 38 F. Körner (381_CR19) 1986; 17 F. Glover (381_CR14) 1975; 22 A. Frangioni (381_CR10) 2006; 106 L. Liberti (381_CR21) 2006 A. Billionnet (381_CR2) 2007; 109 381_CR23 H.D. Sherali (381_CR24) 1986; 32 G.P. McCormick (381_CR22) 1976; 10 C. Audet (381_CR1) 2005 F. Körner (381_CR20) 1983; 30 A. Billionnet (381_CR3) 2009; 157 A. Caprara (381_CR6) 2008; 187 F. Glover (381_CR13) 1974; 22 B. Borchers (381_CR5) 1999; 11 A. Faye (381_CR9) 2007; 5 Y. Cui (381_CR7) 2005; 29 M. Tawarmalani (381_CR25) 2004; 99 C.A. Floudas (381_CR8) 2000 M.R. Garey (381_CR12) 1979 C. Helmberg (381_CR16) 1998; 82 M. Tawarmalani (381_CR26) 2002 381_CR18 H.L. Fu (381_CR11) 2001; 110 P.L. Hammer (381_CR15) 1970; 4 P. Bonami (381_CR4) 2005; 5 |
References_xml | – reference: BillionnetA.ElloumiS.PlateauM.-C.Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR methodDiscrete Appl. Math.200915761185119725024371169.9040510.1016/j.dam.2007.12.007 – reference: FayeA.RoupinF.Partial lagrangian relaxation for general quadratic programming, 4’ ORQ. J. Oper. Res.200751758823055091142.9002510.1007/s10288-006-0011-7 – reference: GloverF.Improved linear integer programming formulations of nonlinear integer problemsManag. Sci.19752245546040113810.1287/mnsc.22.4.455 – reference: HammerP.L.RubinA.A.Some remarks on quadratic programming with 0–1 variablesRevue Française d’Informatique et de Recherche Opérationnelle.1970436779274033 – reference: FrangioniA.GentileC.Perspective cuts for a class of convex 0–1 mixed integer programsMath. Program.200610622523622080821134.9044710.1007/s10107-005-0594-3 – reference: TawarmalaniM.SahinidisN.V.Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming2002DordrechtKluwer1031.90022 – reference: HelmbergC.RendlF.Solving quadratic (0,1)-problems by semidefinite programs and cutting planesMath. Program.19988229131516396220919.90112 – reference: TawarmalaniM.SahinidisN.V.Global optimization of mixed-integer nonlinear programs: a theoretical and computational studyMath. Program.200499356359120517121062.9004110.1007/s10107-003-0467-6 – reference: FloudasC.A.Deterministic Global Optimization2000DordrechtKluwer – reference: KörnerF.An efficient branch and bound algorithm to solve the quadratic integer programming problemComputing.1983302532607037730494.6503510.1007/BF02253896 – reference: BorchersB.CSDP, A C library for semidefinite programmingOptim. Methods Softw.1999111613623177843210.1080/10556789908805765 – reference: McCormickG.P.Computability of global solutions to factorable non-convex programs: part I—convex underestimating problemsMath. Program.19761011471754692810349.9010010.1007/BF01580665 – reference: KörnerF.A new bound for the quadratic knapsack problem and its use in a branch and bound algorithmOptimization.1986176436488583110617.9006710.1080/02331938608843180 – reference: AudetC.HansenP.SavardG.Essays and Surveys in Global Optimization2005New YorkGERAD 25th Anniversary Series, Springer1071.9000110.1007/b135610 – reference: ILOG. ILOG CPLEX 11.0 Reference Manual. ILOG CPLEX Division, Gentilly (2008) – reference: CapraraA.Constrained 0–1 quadratic programming: basic approaches and extensionsEur. J. Oper. Res.200818731494150323783461138.9045510.1016/j.ejor.2006.09.028 – reference: HuaZ.S.BanerjeeP.Aggregate line capacity design for PWB assembly systemsInt. J. Prod. Res.20003811241724410973.9050710.1080/00207540050031841 – reference: GloverF.WoolseyR.E.Converting the 0–1 polynomial programming problem to a 0–1 linear programOper. Res.1974221801820272.9004910.1287/opre.22.1.180 – reference: SheraliH.D.AdamsW.P.A tight linearization and an algorithm for zero-one quadratic programming problemsManage. Sci.19863210127412908617110623.9005410.1287/mnsc.32.10.1274 – reference: LibertiL.MaculanN.Global Optimization: From Theory to Implementation, Chapter: Nonconvex Optimization and Its Applications2006New YorkSpringer – reference: BillionnetA.ElloumiS.Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problemMath. Program.2007109556822940340513105910.1007/s10107-005-0637-9 – reference: FuH.L.ShiueL.ChengX.DuD.Z.KimJ.M.Quadratic integer programming with application in the chaotic mappings of complete multipartite graphsJ. Optim. Theory Appl.2001110354555618540151064.9002810.1023/A:1017584227417 – reference: CuiY.Dynamic programming algorithms for the optimal cutting of equal rectanglesAppl.Math. Model.200529104010531163.9077910.1016/j.apm.2005.02.007 – reference: Saxena A., Bonami P., Lee J.: Disjunctive Cuts for Non-Convex Mixed Integer Quadratically Constrained Programs. IPCO, Bologna (2008) – reference: GareyM.R.JohnsonD.S.Computers and Intractability: a guide to the theory of NP-Completness1979San FranciscoW.H. Freeman – reference: BonamiP.BieglerL.ConnA.CornuéjolsG.GrossmannI.LairdC.LeeJ.LodiA.MargotF.SawayaN.WaechterA.An algorithmic framework for convex mixed integer nonlinear programmingDiscrete Optim.2005518620410.1016/j.disopt.2006.10.011 – volume: 38 start-page: 2417 issue: 11 year: 2000 ident: 381_CR17 publication-title: Int. J. Prod. Res. doi: 10.1080/00207540050031841 – ident: 381_CR18 – volume: 187 start-page: 1494 issue: 3 year: 2008 ident: 381_CR6 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.09.028 – volume: 32 start-page: 1274 issue: 10 year: 1986 ident: 381_CR24 publication-title: Manage. Sci. doi: 10.1287/mnsc.32.10.1274 – volume-title: Computers and Intractability: a guide to the theory of NP-Completness year: 1979 ident: 381_CR12 – volume: 82 start-page: 291 year: 1998 ident: 381_CR16 publication-title: Math. Program. – volume-title: Deterministic Global Optimization year: 2000 ident: 381_CR8 doi: 10.1007/978-1-4757-4949-6 – volume: 5 start-page: 75 issue: 1 year: 2007 ident: 381_CR9 publication-title: Q. J. Oper. Res. doi: 10.1007/s10288-006-0011-7 – volume: 4 start-page: 67 issue: 3 year: 1970 ident: 381_CR15 publication-title: Revue Française d’Informatique et de Recherche Opérationnelle. doi: 10.1051/ro/197004V300671 – volume-title: Essays and Surveys in Global Optimization year: 2005 ident: 381_CR1 doi: 10.1007/b135610 – volume: 10 start-page: 147 issue: 1 year: 1976 ident: 381_CR22 publication-title: Math. Program. doi: 10.1007/BF01580665 – volume: 157 start-page: 1185 issue: 6 year: 2009 ident: 381_CR3 publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2007.12.007 – volume: 106 start-page: 225 year: 2006 ident: 381_CR10 publication-title: Math. Program. doi: 10.1007/s10107-005-0594-3 – volume: 109 start-page: 55 year: 2007 ident: 381_CR2 publication-title: Math. Program. doi: 10.1007/s10107-005-0637-9 – volume: 5 start-page: 186 year: 2005 ident: 381_CR4 publication-title: Discrete Optim. doi: 10.1016/j.disopt.2006.10.011 – volume-title: Global Optimization: From Theory to Implementation, Chapter: Nonconvex Optimization and Its Applications year: 2006 ident: 381_CR21 doi: 10.1007/0-387-30528-9 – volume: 110 start-page: 545 issue: 3 year: 2001 ident: 381_CR11 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1017584227417 – volume-title: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming year: 2002 ident: 381_CR26 doi: 10.1007/978-1-4757-3532-1 – volume: 30 start-page: 253 year: 1983 ident: 381_CR20 publication-title: Computing. doi: 10.1007/BF02253896 – ident: 381_CR23 – volume: 29 start-page: 1040 year: 2005 ident: 381_CR7 publication-title: Appl.Math. Model. doi: 10.1016/j.apm.2005.02.007 – volume: 22 start-page: 180 year: 1974 ident: 381_CR13 publication-title: Oper. Res. doi: 10.1287/opre.22.1.180 – volume: 22 start-page: 455 year: 1975 ident: 381_CR14 publication-title: Manag. Sci. doi: 10.1287/mnsc.22.4.455 – volume: 17 start-page: 643 year: 1986 ident: 381_CR19 publication-title: Optimization. doi: 10.1080/02331938608843180 – volume: 11 start-page: 613 issue: 1 year: 1999 ident: 381_CR5 publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805765 – volume: 99 start-page: 563 issue: 3 year: 2004 ident: 381_CR25 publication-title: Math. Program. doi: 10.1007/s10107-003-0467-6 |
SSID | ssj0001388 |
Score | 2.290052 |
Snippet | Let (
MQP
) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we... Let (MQP) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we... |
SourceID | proquest pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 381 |
SubjectTerms | Algorithms Applied sciences Calculus of Variations and Optimal Control; Optimization Combinatorics Eigenvalues Equivalence Exact sciences and technology Full Length Paper Inequalities Inequality Integer programming Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Mixed integer Numerical Analysis Operational research and scientific management Operational research. Management science Optimization techniques Quadratic programming Semidefinite programming Solvers Studies Theoretical |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vigifmKdjgg-KYG2SZvWtzE2hjBBcbC3kqapCLqNtQP_fC_92iYq-FJIk5Ryl9xH7vI7gBtbMiadQOFGEi7lUgsaB35KnTgU0vGEENocDYwe_eGYP0y8SXWPO6uz3euQZCGp1y67OUWapE1NdIuKbdjx0HU3y3rsdhvx67AgqOu0GuOgDmX-9IkNZbQ_lxnSJS0LWmxYnN-CpIXuGRzCQWU0km7J5SPY0tNj2FuDEsTWqMFfzU7gvl-cbWMPwbfkqfdMylLRJJ-R1xJpmny8feqEFngRekGqRK3sFMaD_ktvSKsqCVRxznMaepozbSv0L0MVMibQoUklN7D4Kepi9H5tpT3F45gzP3V1im2ueILKUSaOr9kZtKazqT4HEifKVJ4P3TQobuRKJpkXe8y2pdCJLy2wa3JFqoIQN5Us3qMV-LGhcISPyFA4EhbcNlPmJX7GX4M7GzxoZpR2mc0taNdMiaq9lkVo4DL0tMPAguumFzeJiXzIqZ4tM5PHhoJGoISx4K7m5eoLv_7Qxb9Gt2EXzSm3zOm-hFa-WOorNFnyuFMs0S-9c98Z priority: 102 providerName: Springer Nature |
Title | Extending the QCR method to general mixed-integer programs |
URI | https://link.springer.com/article/10.1007/s10107-010-0381-7 https://www.proquest.com/docview/916313398 https://www.proquest.com/docview/1019637006 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_UvSgifmL9GBF8UoJtkzatLzJlUxRFxYE-lTRNRdBtrhP88720aXWCvhTSNG25S-4jd7kfwL4rGZNepHAhCZ9yqQVNozCnXhoL6QVCCG22Bq5vwos-v3wMHm1uTmHTKmuZWArqbKjMHvkRmjEM_ak4Ohm9UwMaZYKrFkFjFloogSOc4K3T7s3tfSOKPRZFNWarMRTqsGZ1ds4rsy5daoJlVEwppsWRLJBGeQVuMWV9_gqYlnqotwxL1oAknYrjKzCjB6uw8KOsILaum1qsxRocd8t9buwheJfcnd2TCjaaTIbkuao6Td5ePnVGy9oRekxs0laxDv1e9-HsglrEBKo45xMaB5oz7Sr0NWMVMybQucklNyXyc9TL6Am7SgeKpylnYe7rHNtc8QwVpcy8ULMNmBsMB3oTSJopg0If-3lUns6VTLIgDZjrSqGzUDrg1uRKlC0nblAtXpPvQsiGwgleEkPhRDhw0AwZVbU0_nu4PcWDZkRlo7ncge2aKYldd0XSzBIH9ppeXDAmCiIHevhRmJw2FDoCpY0DhzUvv9_w5w9t_fu9bZhHU8qv8rl3YG4y_tC7aK5M0jbMRr3zNrQ6509X3badoni373e-AFIw5xk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dS-QwcFj1QUVE7xSrnhfhfFGCbZM2rXAcsrq3nq7goeBbTdNUBN1d7Yr6o_yPN2naentwvvlSSNOkYb4yk5nMAHxzJWPSixQykvApl1rQNApz6qWxkF4ghNDmaKB3GnYv-K_L4LIFr_VdGBNWWcvEUlBnA2XOyHdRjWFoT8XRj-E9NUWjjHO1rqBhqeJYvzyhxVZ8PzpA9G75fufwvN2lVVEBqjjnIxoHmjPtKjTHYoXWvED9P5fcZJHPcetCY9FVOlA8TTkLc1_n2OaKZ7iXyMwLNcN5J2CK41JMBGHU-dkIfo9FUV0h1qgltRPV3tTzyhhPlxrXHBVj2-DcUBaIkdyW0hjTdf9xz5a7XmcB5it1lexb-lqElu5_gtm_khhiq9dkfi0-w95heaqOPQTfkrP2b2KLVJPRgFzbHNfk7uZZZ7TMVKEfSBUiVizBxYeAchkm-4O-XgGSZsrUvI_9PCrvAksmWZAGzHWl0FkoHXBrcCWqSl5uamjcJm9plw2EE3wkBsKJcGC7GTK0mTve-3hjDAfNCKsRutyBtRopScXlRdLQpAObTS-yp_G5yL4ePBYmgg5FnEDZ5sBOjcu3Gf67oNV3__cVprvnvZPk5Oj0eA1mUInzbST5OkyOHh71F1SURulGSZ4Erj6aH_4AVAwfIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48QBQRT6zrEcEnJdg2adP6tqiLNyou-FbSNBVBu8u2gj_fSS9dUcGXQpqDMtPMkZl8A7BnS8akEyjcSMKlXGpB48BPqROHQjqeEEKbo4HrG_-szy8evce6zmneZLs3IcnqToNBacqKw2GSHn65-OaUKZM2NZEuKiZhGqWxY3K6-m63FcUOC4KmZqsxFJqw5k9LjCmm-aHMkUZpVdxizPr8FjAt9VBvERZqA5J0K44vwYTOlmHuC6wgtq5bLNZ8BY5Oy3Nu7CH4ltwd35OqbDQpBuSpQp0mr8_vOqEldoQekTppK1-Ffu_04fiM1hUTqOKcFzT0NGfaVuhrhipkTKBzk0puIPJT1MvoCdtKe4rHMWd-6uoU21zxBBWlTBxfszWYygaZXgcSJ8pUoQ_dNChv50ommRd7zLal0IkvLbAbckWqhhM3VS1eok8gZEPhCB-RoXAkLNhvpwwrLI2_Bm-P8aCdUdloNreg0zAlqvddHqGxy9DrDgMLdtte3DAmCiIzPXjLTU4bCh2B0saCg4aXnyv8-kEb_xq9AzO3J73o6vzmsgOzaGW5Var3JkwVoze9hZZMEW-Xf-sHs2PmSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+the+QCR+method+to+general+mixed-integer+programs&rft.jtitle=Mathematical+programming&rft.au=Billionnet%2C+Alain&rft.au=Elloumi%2C+Sourour&rft.au=Lambert%2C+Am%C3%A9lie&rft.date=2012-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=131&rft.issue=1-2&rft.spage=381&rft_id=info:doi/10.1007%2Fs10107-010-0381-7&rft.externalDocID=2562173451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |