Extending the QCR method to general mixed-integer programs

Let ( MQP ) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of ( MQP ), i.e. we reformulate ( MQP ) into an equivalent program, with a convex objective function. Such a refor...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 131; no. 1-2; pp. 381 - 401
Main Authors Billionnet, Alain, Elloumi, Sourour, Lambert, Amélie
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.02.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-010-0381-7

Cover

Loading…
Abstract Let ( MQP ) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of ( MQP ), i.e. we reformulate ( MQP ) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of ( MQP ). Computational experiences are carried out with instances of ( MQP ) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1 h of CPU time by a standard solver.
AbstractList Let (MQP) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of (MQP), i.e. we reformulate (MQP) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of (MQP). Computational experiences are carried out with instances of (MQP) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1 h of CPU time by a standard solver.[PUBLICATION ABSTRACT]
Let (MQP) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of (MQP), i.e. we reformulate (MQP) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of (MQP). Computational experiences are carried out with instances of (MQP) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1 h of CPU time by a standard solver.
Let ( MQP ) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we present a convex reformulation of ( MQP ), i.e. we reformulate ( MQP ) into an equivalent program, with a convex objective function. Such a reformulation can be solved by a standard solver that uses a branch and bound algorithm. We prove that our reformulation is the best one within a convex reformulation scheme, from the continuous relaxation point of view. This reformulation, that we call MIQCR (Mixed Integer Quadratic Convex Reformulation), is based on the solution of an SDP relaxation of ( MQP ). Computational experiences are carried out with instances of ( MQP ) including one equality constraint or one inequality constraint. The results show that most of the considered instances with up to 40 variables can be solved in 1 h of CPU time by a standard solver.
Author Elloumi, Sourour
Lambert, Amélie
Billionnet, Alain
Author_xml – sequence: 1
  givenname: Alain
  surname: Billionnet
  fullname: Billionnet, Alain
  organization: CEDRIC-ENSIIE
– sequence: 2
  givenname: Sourour
  surname: Elloumi
  fullname: Elloumi, Sourour
  organization: CEDRIC-CNAM
– sequence: 3
  givenname: Amélie
  surname: Lambert
  fullname: Lambert, Amélie
  email: amelie.lambert@cnam.fr
  organization: CEDRIC-CNAM
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25600104$$DView record in Pascal Francis
BookMark eNp9kF1LBCEUhiUK2q1-QHdDEHRjHUdHZ7qLpS9YiKKuxZwzuy4zTqkL9e8zNgqCujkiPK_n9ZmSbT96JOSQwSkDUGeRAQNF86DAa0bVFpkwwSUVUshtMgEoK1pJBrtkGuMKABiv6wk5v3xL6FvnF0VaYnE_eygGTMuxLdJYLNBjMH0xuDdsqfMJFxiKlzAughniPtnpTB_x4OvcI09Xl4-zGzq_u76dXcypFUIk2lQoOIKFUjW24VyVVdMZIVRdd3XFZQNgsbLi-TnX7Urs8l1Y0SK2pmUS-R452bybF7-uMSY9uGix743HcR11_nkjuQKQGT36ha7GdfC5nW6Y5Izzps7Q8RdkojV9F4y3LuqX4AYT3nVZySwHRObYhrNhjDFg940w0J_S9Ua6zkN_StcqZ9SvjHXJJDf6FIzr_02Wm2TMW3z2_FP979AHpiqVOQ
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s10589_014_9660_1
crossref_primary_10_1007_s10898_020_00972_2
crossref_primary_10_1007_s12532_021_00206_w
crossref_primary_10_1287_ijoc_2016_0731
crossref_primary_10_1007_s10898_018_0717_z
crossref_primary_10_1007_s10589_012_9474_y
crossref_primary_10_1007_s10852_012_9193_5
crossref_primary_10_1007_s10589_015_9766_0
crossref_primary_10_1007_s11590_015_0988_y
crossref_primary_10_1016_j_ijpe_2022_108456
crossref_primary_10_1287_opre_2022_2267
crossref_primary_10_1016_j_engappai_2023_106802
crossref_primary_10_1080_10556788_2022_2157002
crossref_primary_10_1016_j_orl_2018_08_005
crossref_primary_10_1109_LSP_2016_2576640
crossref_primary_10_1016_j_disopt_2021_100661
crossref_primary_10_1007_s10107_015_0921_2
crossref_primary_10_1007_s10898_017_0591_0
crossref_primary_10_1137_15M1012232
crossref_primary_10_1007_s11590_013_0676_8
crossref_primary_10_1016_j_ejor_2018_09_028
crossref_primary_10_1080_10556788_2017_1350675
crossref_primary_10_1007_s10107_015_0866_5
crossref_primary_10_1016_j_sorms_2012_08_001
crossref_primary_10_1007_s10589_023_00543_7
crossref_primary_10_1007_s10589_025_00672_1
crossref_primary_10_1007_s10957_013_0340_6
crossref_primary_10_1287_moor_2018_0969
crossref_primary_10_1142_S1469026821500243
crossref_primary_10_1021_acs_iecr_7b01270
crossref_primary_10_1137_130909597
crossref_primary_10_1007_s11590_018_1283_5
crossref_primary_10_3934_jimo_2020071
crossref_primary_10_1007_s00158_016_1406_5
crossref_primary_10_1016_j_cor_2024_106626
crossref_primary_10_1016_j_ejor_2019_08_027
crossref_primary_10_1155_2020_5974820
crossref_primary_10_1007_s10898_022_01138_y
crossref_primary_10_1007_s10878_012_9560_1
crossref_primary_10_1007_s40305_015_0082_2
crossref_primary_10_1007_s10898_022_01184_6
crossref_primary_10_1137_130929187
crossref_primary_10_1007_s10898_016_0443_3
crossref_primary_10_1016_j_cor_2014_09_008
crossref_primary_10_1016_j_ejor_2013_03_025
crossref_primary_10_1016_j_disopt_2014_08_002
Cites_doi 10.1080/00207540050031841
10.1016/j.ejor.2006.09.028
10.1287/mnsc.32.10.1274
10.1007/978-1-4757-4949-6
10.1007/s10288-006-0011-7
10.1051/ro/197004V300671
10.1007/b135610
10.1007/BF01580665
10.1016/j.dam.2007.12.007
10.1007/s10107-005-0594-3
10.1007/s10107-005-0637-9
10.1016/j.disopt.2006.10.011
10.1007/0-387-30528-9
10.1023/A:1017584227417
10.1007/978-1-4757-3532-1
10.1007/BF02253896
10.1016/j.apm.2005.02.007
10.1287/opre.22.1.180
10.1287/mnsc.22.4.455
10.1080/02331938608843180
10.1080/10556789908805765
10.1007/s10107-003-0467-6
ContentType Journal Article
Copyright Springer and Mathematical Programming Society 2010
2015 INIST-CNRS
Springer and Mathematical Optimization Society 2012
Copyright_xml – notice: Springer and Mathematical Programming Society 2010
– notice: 2015 INIST-CNRS
– notice: Springer and Mathematical Optimization Society 2012
DBID AAYXX
CITATION
IQODW
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10107-010-0381-7
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
EISSN 1436-4646
EndPage 401
ExternalDocumentID 2562173451
25600104
10_1007_s10107_010_0381_7
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
IQODW
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c444t-95e43e0c0279c9337259fa44788f8536900ce5c4bb436f2ef00c4c4deedad16e3
IEDL.DBID BENPR
ISSN 0025-5610
IngestDate Fri Jul 11 01:22:15 EDT 2025
Fri Jul 25 19:47:15 EDT 2025
Mon Jul 21 09:15:10 EDT 2025
Tue Jul 01 03:42:28 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Fri Feb 21 02:32:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords General integer programming
90C22 Semidefinite programming
90C11 Mixed integer programming
90C20 Quadratic programming
Mixed-integer programming
Convex reformulation
Quadratic programming
Experiments
Semi-definite programming
90C26 Nonconvex programming
Non convex programming
Semi definite programming
Convex programming
Relaxation
Inequality constraint
Relaxation method
Mathematical programming
Branch and bound method
Minimization
Mixed integer programming
Mixed method
Standards
Integer programming
Computation time
Implicit enumeration method
Equality constraint
Objective function
Quadratic function
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-95e43e0c0279c9337259fa44788f8536900ce5c4bb436f2ef00c4c4deedad16e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 916313398
PQPubID 25307
PageCount 21
ParticipantIDs proquest_miscellaneous_1019637006
proquest_journals_916313398
pascalfrancis_primary_25600104
crossref_primary_10_1007_s10107_010_0381_7
crossref_citationtrail_10_1007_s10107_010_0381_7
springer_journals_10_1007_s10107_010_0381_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2012
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References HammerP.L.RubinA.A.Some remarks on quadratic programming with 0–1 variablesRevue Française d’Informatique et de Recherche Opérationnelle.1970436779274033
BillionnetA.ElloumiS.Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problemMath. Program.2007109556822940340513105910.1007/s10107-005-0637-9
ILOG. ILOG CPLEX 11.0 Reference Manual. ILOG CPLEX Division, Gentilly (2008)
McCormickG.P.Computability of global solutions to factorable non-convex programs: part I—convex underestimating problemsMath. Program.19761011471754692810349.9010010.1007/BF01580665
LibertiL.MaculanN.Global Optimization: From Theory to Implementation, Chapter: Nonconvex Optimization and Its Applications2006New YorkSpringer
TawarmalaniM.SahinidisN.V.Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming2002DordrechtKluwer1031.90022
GloverF.Improved linear integer programming formulations of nonlinear integer problemsManag. Sci.19752245546040113810.1287/mnsc.22.4.455
HelmbergC.RendlF.Solving quadratic (0,1)-problems by semidefinite programs and cutting planesMath. Program.19988229131516396220919.90112
GloverF.WoolseyR.E.Converting the 0–1 polynomial programming problem to a 0–1 linear programOper. Res.1974221801820272.9004910.1287/opre.22.1.180
KörnerF.A new bound for the quadratic knapsack problem and its use in a branch and bound algorithmOptimization.1986176436488583110617.9006710.1080/02331938608843180
HuaZ.S.BanerjeeP.Aggregate line capacity design for PWB assembly systemsInt. J. Prod. Res.20003811241724410973.9050710.1080/00207540050031841
FrangioniA.GentileC.Perspective cuts for a class of convex 0–1 mixed integer programsMath. Program.200610622523622080821134.9044710.1007/s10107-005-0594-3
BillionnetA.ElloumiS.PlateauM.-C.Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR methodDiscrete Appl. Math.200915761185119725024371169.9040510.1016/j.dam.2007.12.007
FayeA.RoupinF.Partial lagrangian relaxation for general quadratic programming, 4’ ORQ. J. Oper. Res.200751758823055091142.9002510.1007/s10288-006-0011-7
FuH.L.ShiueL.ChengX.DuD.Z.KimJ.M.Quadratic integer programming with application in the chaotic mappings of complete multipartite graphsJ. Optim. Theory Appl.2001110354555618540151064.9002810.1023/A:1017584227417
TawarmalaniM.SahinidisN.V.Global optimization of mixed-integer nonlinear programs: a theoretical and computational studyMath. Program.200499356359120517121062.9004110.1007/s10107-003-0467-6
CapraraA.Constrained 0–1 quadratic programming: basic approaches and extensionsEur. J. Oper. Res.200818731494150323783461138.9045510.1016/j.ejor.2006.09.028
CuiY.Dynamic programming algorithms for the optimal cutting of equal rectanglesAppl.Math. Model.200529104010531163.9077910.1016/j.apm.2005.02.007
BorchersB.CSDP, A C library for semidefinite programmingOptim. Methods Softw.1999111613623177843210.1080/10556789908805765
BonamiP.BieglerL.ConnA.CornuéjolsG.GrossmannI.LairdC.LeeJ.LodiA.MargotF.SawayaN.WaechterA.An algorithmic framework for convex mixed integer nonlinear programmingDiscrete Optim.2005518620410.1016/j.disopt.2006.10.011
AudetC.HansenP.SavardG.Essays and Surveys in Global Optimization2005New YorkGERAD 25th Anniversary Series, Springer1071.9000110.1007/b135610
KörnerF.An efficient branch and bound algorithm to solve the quadratic integer programming problemComputing.1983302532607037730494.6503510.1007/BF02253896
GareyM.R.JohnsonD.S.Computers and Intractability: a guide to the theory of NP-Completness1979San FranciscoW.H. Freeman
SheraliH.D.AdamsW.P.A tight linearization and an algorithm for zero-one quadratic programming problemsManage. Sci.19863210127412908617110623.9005410.1287/mnsc.32.10.1274
FloudasC.A.Deterministic Global Optimization2000DordrechtKluwer
Saxena A., Bonami P., Lee J.: Disjunctive Cuts for Non-Convex Mixed Integer Quadratically Constrained Programs. IPCO, Bologna (2008)
Z.S. Hua (381_CR17) 2000; 38
F. Körner (381_CR19) 1986; 17
F. Glover (381_CR14) 1975; 22
A. Frangioni (381_CR10) 2006; 106
L. Liberti (381_CR21) 2006
A. Billionnet (381_CR2) 2007; 109
381_CR23
H.D. Sherali (381_CR24) 1986; 32
G.P. McCormick (381_CR22) 1976; 10
C. Audet (381_CR1) 2005
F. Körner (381_CR20) 1983; 30
A. Billionnet (381_CR3) 2009; 157
A. Caprara (381_CR6) 2008; 187
F. Glover (381_CR13) 1974; 22
B. Borchers (381_CR5) 1999; 11
A. Faye (381_CR9) 2007; 5
Y. Cui (381_CR7) 2005; 29
M. Tawarmalani (381_CR25) 2004; 99
C.A. Floudas (381_CR8) 2000
M.R. Garey (381_CR12) 1979
C. Helmberg (381_CR16) 1998; 82
M. Tawarmalani (381_CR26) 2002
381_CR18
H.L. Fu (381_CR11) 2001; 110
P.L. Hammer (381_CR15) 1970; 4
P. Bonami (381_CR4) 2005; 5
References_xml – reference: BillionnetA.ElloumiS.PlateauM.-C.Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR methodDiscrete Appl. Math.200915761185119725024371169.9040510.1016/j.dam.2007.12.007
– reference: FayeA.RoupinF.Partial lagrangian relaxation for general quadratic programming, 4’ ORQ. J. Oper. Res.200751758823055091142.9002510.1007/s10288-006-0011-7
– reference: GloverF.Improved linear integer programming formulations of nonlinear integer problemsManag. Sci.19752245546040113810.1287/mnsc.22.4.455
– reference: HammerP.L.RubinA.A.Some remarks on quadratic programming with 0–1 variablesRevue Française d’Informatique et de Recherche Opérationnelle.1970436779274033
– reference: FrangioniA.GentileC.Perspective cuts for a class of convex 0–1 mixed integer programsMath. Program.200610622523622080821134.9044710.1007/s10107-005-0594-3
– reference: TawarmalaniM.SahinidisN.V.Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming2002DordrechtKluwer1031.90022
– reference: HelmbergC.RendlF.Solving quadratic (0,1)-problems by semidefinite programs and cutting planesMath. Program.19988229131516396220919.90112
– reference: TawarmalaniM.SahinidisN.V.Global optimization of mixed-integer nonlinear programs: a theoretical and computational studyMath. Program.200499356359120517121062.9004110.1007/s10107-003-0467-6
– reference: FloudasC.A.Deterministic Global Optimization2000DordrechtKluwer
– reference: KörnerF.An efficient branch and bound algorithm to solve the quadratic integer programming problemComputing.1983302532607037730494.6503510.1007/BF02253896
– reference: BorchersB.CSDP, A C library for semidefinite programmingOptim. Methods Softw.1999111613623177843210.1080/10556789908805765
– reference: McCormickG.P.Computability of global solutions to factorable non-convex programs: part I—convex underestimating problemsMath. Program.19761011471754692810349.9010010.1007/BF01580665
– reference: KörnerF.A new bound for the quadratic knapsack problem and its use in a branch and bound algorithmOptimization.1986176436488583110617.9006710.1080/02331938608843180
– reference: AudetC.HansenP.SavardG.Essays and Surveys in Global Optimization2005New YorkGERAD 25th Anniversary Series, Springer1071.9000110.1007/b135610
– reference: ILOG. ILOG CPLEX 11.0 Reference Manual. ILOG CPLEX Division, Gentilly (2008)
– reference: CapraraA.Constrained 0–1 quadratic programming: basic approaches and extensionsEur. J. Oper. Res.200818731494150323783461138.9045510.1016/j.ejor.2006.09.028
– reference: HuaZ.S.BanerjeeP.Aggregate line capacity design for PWB assembly systemsInt. J. Prod. Res.20003811241724410973.9050710.1080/00207540050031841
– reference: GloverF.WoolseyR.E.Converting the 0–1 polynomial programming problem to a 0–1 linear programOper. Res.1974221801820272.9004910.1287/opre.22.1.180
– reference: SheraliH.D.AdamsW.P.A tight linearization and an algorithm for zero-one quadratic programming problemsManage. Sci.19863210127412908617110623.9005410.1287/mnsc.32.10.1274
– reference: LibertiL.MaculanN.Global Optimization: From Theory to Implementation, Chapter: Nonconvex Optimization and Its Applications2006New YorkSpringer
– reference: BillionnetA.ElloumiS.Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problemMath. Program.2007109556822940340513105910.1007/s10107-005-0637-9
– reference: FuH.L.ShiueL.ChengX.DuD.Z.KimJ.M.Quadratic integer programming with application in the chaotic mappings of complete multipartite graphsJ. Optim. Theory Appl.2001110354555618540151064.9002810.1023/A:1017584227417
– reference: CuiY.Dynamic programming algorithms for the optimal cutting of equal rectanglesAppl.Math. Model.200529104010531163.9077910.1016/j.apm.2005.02.007
– reference: Saxena A., Bonami P., Lee J.: Disjunctive Cuts for Non-Convex Mixed Integer Quadratically Constrained Programs. IPCO, Bologna (2008)
– reference: GareyM.R.JohnsonD.S.Computers and Intractability: a guide to the theory of NP-Completness1979San FranciscoW.H. Freeman
– reference: BonamiP.BieglerL.ConnA.CornuéjolsG.GrossmannI.LairdC.LeeJ.LodiA.MargotF.SawayaN.WaechterA.An algorithmic framework for convex mixed integer nonlinear programmingDiscrete Optim.2005518620410.1016/j.disopt.2006.10.011
– volume: 38
  start-page: 2417
  issue: 11
  year: 2000
  ident: 381_CR17
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540050031841
– ident: 381_CR18
– volume: 187
  start-page: 1494
  issue: 3
  year: 2008
  ident: 381_CR6
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.09.028
– volume: 32
  start-page: 1274
  issue: 10
  year: 1986
  ident: 381_CR24
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.32.10.1274
– volume-title: Computers and Intractability: a guide to the theory of NP-Completness
  year: 1979
  ident: 381_CR12
– volume: 82
  start-page: 291
  year: 1998
  ident: 381_CR16
  publication-title: Math. Program.
– volume-title: Deterministic Global Optimization
  year: 2000
  ident: 381_CR8
  doi: 10.1007/978-1-4757-4949-6
– volume: 5
  start-page: 75
  issue: 1
  year: 2007
  ident: 381_CR9
  publication-title: Q. J. Oper. Res.
  doi: 10.1007/s10288-006-0011-7
– volume: 4
  start-page: 67
  issue: 3
  year: 1970
  ident: 381_CR15
  publication-title: Revue Française d’Informatique et de Recherche Opérationnelle.
  doi: 10.1051/ro/197004V300671
– volume-title: Essays and Surveys in Global Optimization
  year: 2005
  ident: 381_CR1
  doi: 10.1007/b135610
– volume: 10
  start-page: 147
  issue: 1
  year: 1976
  ident: 381_CR22
  publication-title: Math. Program.
  doi: 10.1007/BF01580665
– volume: 157
  start-page: 1185
  issue: 6
  year: 2009
  ident: 381_CR3
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2007.12.007
– volume: 106
  start-page: 225
  year: 2006
  ident: 381_CR10
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0594-3
– volume: 109
  start-page: 55
  year: 2007
  ident: 381_CR2
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0637-9
– volume: 5
  start-page: 186
  year: 2005
  ident: 381_CR4
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2006.10.011
– volume-title: Global Optimization: From Theory to Implementation, Chapter: Nonconvex Optimization and Its Applications
  year: 2006
  ident: 381_CR21
  doi: 10.1007/0-387-30528-9
– volume: 110
  start-page: 545
  issue: 3
  year: 2001
  ident: 381_CR11
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017584227417
– volume-title: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming
  year: 2002
  ident: 381_CR26
  doi: 10.1007/978-1-4757-3532-1
– volume: 30
  start-page: 253
  year: 1983
  ident: 381_CR20
  publication-title: Computing.
  doi: 10.1007/BF02253896
– ident: 381_CR23
– volume: 29
  start-page: 1040
  year: 2005
  ident: 381_CR7
  publication-title: Appl.Math. Model.
  doi: 10.1016/j.apm.2005.02.007
– volume: 22
  start-page: 180
  year: 1974
  ident: 381_CR13
  publication-title: Oper. Res.
  doi: 10.1287/opre.22.1.180
– volume: 22
  start-page: 455
  year: 1975
  ident: 381_CR14
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.22.4.455
– volume: 17
  start-page: 643
  year: 1986
  ident: 381_CR19
  publication-title: Optimization.
  doi: 10.1080/02331938608843180
– volume: 11
  start-page: 613
  issue: 1
  year: 1999
  ident: 381_CR5
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789908805765
– volume: 99
  start-page: 563
  issue: 3
  year: 2004
  ident: 381_CR25
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0467-6
SSID ssj0001388
Score 2.290052
Snippet Let ( MQP ) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we...
Let (MQP) be a general mixed integer quadratic program that consists of minimizing a quadratic function subject to linear constraints. In this paper, we...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 381
SubjectTerms Algorithms
Applied sciences
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Eigenvalues
Equivalence
Exact sciences and technology
Full Length Paper
Inequalities
Inequality
Integer programming
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Mixed integer
Numerical Analysis
Operational research and scientific management
Operational research. Management science
Optimization techniques
Quadratic programming
Semidefinite programming
Solvers
Studies
Theoretical
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vigifmKdjgg-KYG2SZvWtzE2hjBBcbC3kqapCLqNtQP_fC_92iYq-FJIk5Ryl9xH7vI7gBtbMiadQOFGEi7lUgsaB35KnTgU0vGEENocDYwe_eGYP0y8SXWPO6uz3euQZCGp1y67OUWapE1NdIuKbdjx0HU3y3rsdhvx67AgqOu0GuOgDmX-9IkNZbQ_lxnSJS0LWmxYnN-CpIXuGRzCQWU0km7J5SPY0tNj2FuDEsTWqMFfzU7gvl-cbWMPwbfkqfdMylLRJJ-R1xJpmny8feqEFngRekGqRK3sFMaD_ktvSKsqCVRxznMaepozbSv0L0MVMibQoUklN7D4Kepi9H5tpT3F45gzP3V1im2ueILKUSaOr9kZtKazqT4HEifKVJ4P3TQobuRKJpkXe8y2pdCJLy2wa3JFqoIQN5Us3qMV-LGhcISPyFA4EhbcNlPmJX7GX4M7GzxoZpR2mc0taNdMiaq9lkVo4DL0tMPAguumFzeJiXzIqZ4tM5PHhoJGoISx4K7m5eoLv_7Qxb9Gt2EXzSm3zOm-hFa-WOorNFnyuFMs0S-9c98Z
  priority: 102
  providerName: Springer Nature
Title Extending the QCR method to general mixed-integer programs
URI https://link.springer.com/article/10.1007/s10107-010-0381-7
https://www.proquest.com/docview/916313398
https://www.proquest.com/docview/1019637006
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_UvSgifmL9GBF8UoJtkzatLzJlUxRFxYE-lTRNRdBtrhP88720aXWCvhTSNG25S-4jd7kfwL4rGZNepHAhCZ9yqQVNozCnXhoL6QVCCG22Bq5vwos-v3wMHm1uTmHTKmuZWArqbKjMHvkRmjEM_ak4Ohm9UwMaZYKrFkFjFloogSOc4K3T7s3tfSOKPRZFNWarMRTqsGZ1ds4rsy5daoJlVEwppsWRLJBGeQVuMWV9_gqYlnqotwxL1oAknYrjKzCjB6uw8KOsILaum1qsxRocd8t9buwheJfcnd2TCjaaTIbkuao6Td5ePnVGy9oRekxs0laxDv1e9-HsglrEBKo45xMaB5oz7Sr0NWMVMybQucklNyXyc9TL6Am7SgeKpylnYe7rHNtc8QwVpcy8ULMNmBsMB3oTSJopg0If-3lUns6VTLIgDZjrSqGzUDrg1uRKlC0nblAtXpPvQsiGwgleEkPhRDhw0AwZVbU0_nu4PcWDZkRlo7ncge2aKYldd0XSzBIH9ppeXDAmCiIHevhRmJw2FDoCpY0DhzUvv9_w5w9t_fu9bZhHU8qv8rl3YG4y_tC7aK5M0jbMRr3zNrQ6509X3badoni373e-AFIw5xk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dS-QwcFj1QUVE7xSrnhfhfFGCbZM2rXAcsrq3nq7goeBbTdNUBN1d7Yr6o_yPN2naentwvvlSSNOkYb4yk5nMAHxzJWPSixQykvApl1rQNApz6qWxkF4ghNDmaKB3GnYv-K_L4LIFr_VdGBNWWcvEUlBnA2XOyHdRjWFoT8XRj-E9NUWjjHO1rqBhqeJYvzyhxVZ8PzpA9G75fufwvN2lVVEBqjjnIxoHmjPtKjTHYoXWvED9P5fcZJHPcetCY9FVOlA8TTkLc1_n2OaKZ7iXyMwLNcN5J2CK41JMBGHU-dkIfo9FUV0h1qgltRPV3tTzyhhPlxrXHBVj2-DcUBaIkdyW0hjTdf9xz5a7XmcB5it1lexb-lqElu5_gtm_khhiq9dkfi0-w95heaqOPQTfkrP2b2KLVJPRgFzbHNfk7uZZZ7TMVKEfSBUiVizBxYeAchkm-4O-XgGSZsrUvI_9PCrvAksmWZAGzHWl0FkoHXBrcCWqSl5uamjcJm9plw2EE3wkBsKJcGC7GTK0mTve-3hjDAfNCKsRutyBtRopScXlRdLQpAObTS-yp_G5yL4ePBYmgg5FnEDZ5sBOjcu3Gf67oNV3__cVprvnvZPk5Oj0eA1mUInzbST5OkyOHh71F1SURulGSZ4Erj6aH_4AVAwfIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48QBQRT6zrEcEnJdg2adP6tqiLNyou-FbSNBVBu8u2gj_fSS9dUcGXQpqDMtPMkZl8A7BnS8akEyjcSMKlXGpB48BPqROHQjqeEEKbo4HrG_-szy8evce6zmneZLs3IcnqToNBacqKw2GSHn65-OaUKZM2NZEuKiZhGqWxY3K6-m63FcUOC4KmZqsxFJqw5k9LjCmm-aHMkUZpVdxizPr8FjAt9VBvERZqA5J0K44vwYTOlmHuC6wgtq5bLNZ8BY5Oy3Nu7CH4ltwd35OqbDQpBuSpQp0mr8_vOqEldoQekTppK1-Ffu_04fiM1hUTqOKcFzT0NGfaVuhrhipkTKBzk0puIPJT1MvoCdtKe4rHMWd-6uoU21zxBBWlTBxfszWYygaZXgcSJ8pUoQ_dNChv50ommRd7zLal0IkvLbAbckWqhhM3VS1eok8gZEPhCB-RoXAkLNhvpwwrLI2_Bm-P8aCdUdloNreg0zAlqvddHqGxy9DrDgMLdtte3DAmCiIzPXjLTU4bCh2B0saCg4aXnyv8-kEb_xq9AzO3J73o6vzmsgOzaGW5Var3JkwVoze9hZZMEW-Xf-sHs2PmSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+the+QCR+method+to+general+mixed-integer+programs&rft.jtitle=Mathematical+programming&rft.au=Billionnet%2C+Alain&rft.au=Elloumi%2C+Sourour&rft.au=Lambert%2C+Am%C3%A9lie&rft.date=2012-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=131&rft.issue=1-2&rft.spage=381&rft_id=info:doi/10.1007%2Fs10107-010-0381-7&rft.externalDocID=2562173451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon