Assessment of organic acid accumulation and its related genes in peach
•Degradation of organic acids caused low acidity of peach fruits.•Malate accumulation is controlled at the level of metabolism and vacuolar storage.•Citrate accumulation is controlled at the level of metabolism.•Seven candidate genes for peach fruit acidity were identified. Fruit acidity is an impor...
Saved in:
Published in | Food chemistry Vol. 334; p. 127567 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Degradation of organic acids caused low acidity of peach fruits.•Malate accumulation is controlled at the level of metabolism and vacuolar storage.•Citrate accumulation is controlled at the level of metabolism.•Seven candidate genes for peach fruit acidity were identified.
Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach. |
---|---|
AbstractList | Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach. •Degradation of organic acids caused low acidity of peach fruits.•Malate accumulation is controlled at the level of metabolism and vacuolar storage.•Citrate accumulation is controlled at the level of metabolism.•Seven candidate genes for peach fruit acidity were identified. Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach. Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach.Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach. |
ArticleNumber | 127567 |
Author | Zhang, Xiujun Liu, JingJing Ogutu, Collins Han, Yuepeng Zhao, Li Ntini, Charmaine Jiang, Xiaohan Cherono, Sylvia Zheng, Beibei |
Author_xml | – sequence: 1 givenname: Beibei surname: Zheng fullname: Zheng, Beibei email: zhengbeibei@wbgcas.cn organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China – sequence: 2 givenname: Li surname: Zhao fullname: Zhao, Li organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China – sequence: 3 givenname: Xiaohan surname: Jiang fullname: Jiang, Xiaohan email: jiangxiaohan16@mails.ucas.ac.cn organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China – sequence: 4 givenname: Sylvia surname: Cherono fullname: Cherono, Sylvia organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China – sequence: 5 givenname: JingJing surname: Liu fullname: Liu, JingJing email: liujingjing18@mails.ucas.ac.cn organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China – sequence: 6 givenname: Collins surname: Ogutu fullname: Ogutu, Collins organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China – sequence: 7 givenname: Charmaine surname: Ntini fullname: Ntini, Charmaine organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China – sequence: 8 givenname: Xiujun surname: Zhang fullname: Zhang, Xiujun email: zhangxj@wbgcas.cn organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China – sequence: 9 givenname: Yuepeng orcidid: 0000-0003-3183-8095 surname: Han fullname: Han, Yuepeng email: yphan@wbgcas.cn organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China |
BookMark | eNqFkD1v2zAQhokiAeK4-QsBxy5yKYriB9AhQZCkBQxkSWeCOp4cGhLpklKB_vvIdbN08XKHe_G8NzzX5CKmiITc1mxTs1p-3W_6lDy84bjhjC8hV61Un8iq1qqpFFP8gqxYw3SlayGvyHUpe8YWstYr8nRfCpYyYpxo6mnKOxcDUAfBLwPmcR7cFFKkLnoapkIzLgF6usOIhYZID-jg7TO57N1Q8ObfXpOfT4-vD9-r7cvzj4f7bQVCiKkyrRKNc500vVcepeoUl6A6AAFOtyg0uE7rznTML5c0pta9N6Ala03Ttc2afDn9PeT0a8Yy2TEUwGFwEdNcLG-54MKIRp5HBVfcqLYxCypPKORUSsbeHnIYXf5ja2aPju3efji2R8f25HgpfvuvCGH662vKLgzn63enOi7KfgfMtkDACOhDRpisT-Hci3f0zZ40 |
CitedBy_id | crossref_primary_10_17221_128_2023_HORTSCI crossref_primary_10_3389_fpls_2022_1024909 crossref_primary_10_1016_j_jfca_2022_105007 crossref_primary_10_1016_j_scienta_2022_111114 crossref_primary_10_1016_j_foodres_2022_111204 crossref_primary_10_1038_s41467_021_23879_2 crossref_primary_10_3390_plants10102191 crossref_primary_10_3389_fpls_2022_838370 crossref_primary_10_3390_agronomy12123227 crossref_primary_10_1093_treephys_tpae098 crossref_primary_10_3390_foods12050911 crossref_primary_10_4236_as_2023_148075 crossref_primary_10_3390_horticulturae8060468 crossref_primary_10_3389_fnut_2022_961626 crossref_primary_10_1007_s13580_021_00399_y crossref_primary_10_3390_fermentation8100533 crossref_primary_10_3390_ijms242216384 crossref_primary_10_17660_ActaHortic_2022_1352_1 crossref_primary_10_3390_ijms25179542 crossref_primary_10_3390_plants14050757 crossref_primary_10_3389_fpls_2022_971506 crossref_primary_10_3390_horticulturae10121305 crossref_primary_10_1016_j_ultsonch_2025_107313 crossref_primary_10_3390_antiox11071319 crossref_primary_10_1186_s12864_020_07299_y crossref_primary_10_1016_j_jhazmat_2023_131442 crossref_primary_10_3390_ijms24031871 crossref_primary_10_3389_fpls_2020_604133 crossref_primary_10_1093_hr_uhad158 crossref_primary_10_1111_jipb_13761 crossref_primary_10_1016_j_crfs_2022_11_017 crossref_primary_10_3390_foods13081193 crossref_primary_10_1016_j_jfca_2022_105105 crossref_primary_10_3390_electronics10243115 crossref_primary_10_3389_fpls_2021_794881 crossref_primary_10_3390_plants12244079 crossref_primary_10_1093_treephys_tpad029 crossref_primary_10_3390_agriculture12040553 crossref_primary_10_1080_23311932_2025_2470964 crossref_primary_10_1016_j_ijbiomac_2024_135144 crossref_primary_10_1186_s12870_023_04037_w crossref_primary_10_48130_frures_0024_0025 crossref_primary_10_5650_jos_ess23214 crossref_primary_10_1093_hr_uhae353 crossref_primary_10_1016_j_plaphy_2020_12_023 crossref_primary_10_1111_nph_17965 crossref_primary_10_1016_j_lwt_2024_116791 crossref_primary_10_1016_j_hpj_2024_01_011 crossref_primary_10_1016_j_jfca_2021_104104 crossref_primary_10_1016_j_chemosphere_2021_132999 crossref_primary_10_1371_journal_pone_0292959 crossref_primary_10_1016_j_scienta_2025_114034 crossref_primary_10_1111_nph_19372 crossref_primary_10_3389_fpls_2022_1033805 crossref_primary_10_1111_pbi_14070 crossref_primary_10_1111_1750_3841_16681 crossref_primary_10_3389_fpls_2020_572601 crossref_primary_10_1016_j_foodcont_2021_108535 crossref_primary_10_1002_jsfa_11072 crossref_primary_10_3390_horticulturae9030299 crossref_primary_10_3390_foods11121718 crossref_primary_10_48130_vegres_0024_0011 crossref_primary_10_1002_2211_5463_13233 crossref_primary_10_2478_fhort_2023_0031 |
Cites_doi | 10.1111/pbi.13007 10.1146/annurev.bb.15.060186.000525 10.1002/fsn3.1219 10.1007/s00217-019-03233-z 10.3389/fpls.2016.01042 10.1038/ng.2586 10.1034/j.1399-3054.2002.1140212.x 10.1016/j.cub.2018.11.040 10.1038/hortres.2015.67 10.1104/pp.19.01300 10.1016/j.foodchem.2010.03.060 10.1007/s11103-006-9037-7 10.1016/j.foodchem.2014.09.032 10.1042/BJ20141171 10.1016/j.scienta.2004.08.003 10.1186/1471-2199-10-71 10.1186/1471-2229-9-59 10.1016/j.scienta.2012.09.011 10.1038/s41467-019-08516-3 10.3389/fpls.2018.01689 10.1007/s11295-016-0996-9 10.1016/j.hpj.2017.01.012 10.1186/s12864-017-3783-6 10.1038/ncomms13246 10.1007/s001220051035 10.1105/tpc.17.00211 10.1186/s13059-014-0550-8 10.1038/nmeth.1923 10.1093/jxb/ert035 10.1104/pp.111.186064 10.1016/j.foodchem.2017.01.014 10.1111/tpj.12792 10.1111/j.1750-3841.2007.00282.x |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.foodchem.2020.127567 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Chemistry Diet & Clinical Nutrition |
EISSN | 1873-7072 |
ExternalDocumentID | 10_1016_j_foodchem_2020_127567 S0308814620314291 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- RIG SCB SEW SSH VH1 WUQ Y6R 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c444t-95743aab69fd7de67b726c7bcc4ca85e48cab88b9b0d5e469918fd9c860593b53 |
IEDL.DBID | .~1 |
ISSN | 0308-8146 1873-7072 |
IngestDate | Fri Jul 11 08:52:55 EDT 2025 Fri Jul 11 09:46:47 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Tue Jul 01 03:22:14 EDT 2025 Fri Feb 23 02:50:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Citrate GABA Malate Fruit Quality Peach |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-95743aab69fd7de67b726c7bcc4ca85e48cab88b9b0d5e469918fd9c860593b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3183-8095 |
PQID | 2427297539 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524249436 proquest_miscellaneous_2427297539 crossref_primary_10_1016_j_foodchem_2020_127567 crossref_citationtrail_10_1016_j_foodchem_2020_127567 elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_127567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Food chemistry |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Boudehri, Bendahmane, Cardinet, Troadec, Moing, Dirlewanger (b0025) 2009; 9 Wu, Quilot, Génard, Kervella, Li (b0155) 2005; 103 Ye, Wang, Hu, Zhang, Wang, Li, Ye (b0170) 2017; 29 Verde, Abbott, Scalabrin, Jung, Shu, Marroni, Rokhsar (b0145) 2013; 45 Yang, Chen, Shen, Sun, Song, Chen, Xi (b0165) 2019; 7 Bassi, Mignani, Spinardi, Tura (b0010) 2016 Etienne, Moing, Dirlewanger, Raymond, Monet, Rothan (b0065) 2002; 114 Nowicka, Wojdyło, Laskowski (b0125) 2019; 245 Ma, Chen, Zheng, Fang, Ogutu, Li, Wu (b0105) 2015; 172 Zhou, Lin-Wang, Wang, Gu, Dare, Espley, Han (b0180) 2015; 82 Fang, Zhen, Liao, Owiti, Zhao, Korban, Han (b0070) 2017; 225 Etienne, Génard, Lobit, Mbeguié-A-Mbéguié, Bugaud (b0060) 2013; 64 Wiegand, Remington (b0150) 1986; 15 Zeballos, Abidi, Giménez, Monforte, Moreno, á., & Gogorcena, Y (b0175) 2016; 12 Lombardo, Sonia, Julia, Lauxmann, Bustamante, Budde, Drincovich (b0095) 2011; 157 Langmead, Salzberg (b0085) 2012; 9 Chen, Jiang, Yin, Lin, Chen, Allan, Chen (b0045) 2012; 147 McCommis, Finck (b0115) 2015; 466 Cirilli, Bassi, Ciacciulli (b0050) 2016; 3 Cercós, Soler, Iglesias, Gadea, Forment, Talón (b0040) 2006; 62 Bordonaba, Terry (b0020) 2010; 122 Love, Huber, Anders (b0100) 2014; 15 Batista-Silva, Nascimento, Medeiros, Nunes-Nesi, Ribeiro, Zsogon, Araujo (b0015) 2018; 9 Taemook, David, Lothar, Daeyoup, Kang (b0135) 2018; 46 Bae, Yun, Jun, Yoon, Nam, Kwon (b0005) 2014; 87 Butelli, Licciardello, Ramadugu, Durand-Hulak, Celent, Reforgiato Recupero, Martin (b0030) 2019; 29 Cao, Zhou, Wang, Guo, Zhao, Zhu (b0035) 2016; 7 Igamberdiev, Eprintsev (b0080) 2016; 7 Ma, Liao, Fang, Peng, Ogutu, Zhou, Han (b0110) 2019; 17 Dirlewanger, Moing, Rothan, Svanella, Pronier (b0055) 1999; 98 Tong, Gao, Wang, Zhou, Zhang (b0140) 2009; 10 Strazzer, Spelt, Li, Bliek, Federici, Roose, Quattrocchio (b0130) 2019; 10 Hernandez-Mora, Micheletti, Bink, Van de Weg, Cantin, Nazzicari, Jose Aranzana (b0075) 2017; 18 Li, Dougherty, Coluccio, Meng, El-Sharkawy, Borejsza-Wysocka, Cheng (b0090) 2020; 82 Neta, Johanningsmeier, Mcfeeters (b0120) 2007; 72 Xi, Zheng, Lu, Quan (b0160) 2017; 3 Ma (10.1016/j.foodchem.2020.127567_b0105) 2015; 172 Verde (10.1016/j.foodchem.2020.127567_b0145) 2013; 45 Batista-Silva (10.1016/j.foodchem.2020.127567_b0015) 2018; 9 Igamberdiev (10.1016/j.foodchem.2020.127567_b0080) 2016; 7 Boudehri (10.1016/j.foodchem.2020.127567_b0025) 2009; 9 Ma (10.1016/j.foodchem.2020.127567_b0110) 2019; 17 Zhou (10.1016/j.foodchem.2020.127567_b0180) 2015; 82 Bassi (10.1016/j.foodchem.2020.127567_b0010) 2016 Wiegand (10.1016/j.foodchem.2020.127567_b0150) 1986; 15 Wu (10.1016/j.foodchem.2020.127567_b0155) 2005; 103 McCommis (10.1016/j.foodchem.2020.127567_b0115) 2015; 466 Strazzer (10.1016/j.foodchem.2020.127567_b0130) 2019; 10 Tong (10.1016/j.foodchem.2020.127567_b0140) 2009; 10 Love (10.1016/j.foodchem.2020.127567_b0100) 2014; 15 Cirilli (10.1016/j.foodchem.2020.127567_b0050) 2016; 3 Bae (10.1016/j.foodchem.2020.127567_b0005) 2014; 87 Cercós (10.1016/j.foodchem.2020.127567_b0040) 2006; 62 Li (10.1016/j.foodchem.2020.127567_b0090) 2020; 82 Neta (10.1016/j.foodchem.2020.127567_b0120) 2007; 72 Ye (10.1016/j.foodchem.2020.127567_b0170) 2017; 29 Dirlewanger (10.1016/j.foodchem.2020.127567_b0055) 1999; 98 Xi (10.1016/j.foodchem.2020.127567_b0160) 2017; 3 Lombardo (10.1016/j.foodchem.2020.127567_b0095) 2011; 157 Butelli (10.1016/j.foodchem.2020.127567_b0030) 2019; 29 Fang (10.1016/j.foodchem.2020.127567_b0070) 2017; 225 Yang (10.1016/j.foodchem.2020.127567_b0165) 2019; 7 Etienne (10.1016/j.foodchem.2020.127567_b0060) 2013; 64 Taemook (10.1016/j.foodchem.2020.127567_b0135) 2018; 46 Bordonaba (10.1016/j.foodchem.2020.127567_b0020) 2010; 122 Nowicka (10.1016/j.foodchem.2020.127567_b0125) 2019; 245 Langmead (10.1016/j.foodchem.2020.127567_b0085) 2012; 9 Hernandez-Mora (10.1016/j.foodchem.2020.127567_b0075) 2017; 18 Zeballos (10.1016/j.foodchem.2020.127567_b0175) 2016; 12 Chen (10.1016/j.foodchem.2020.127567_b0045) 2012; 147 Etienne (10.1016/j.foodchem.2020.127567_b0065) 2002; 114 Cao (10.1016/j.foodchem.2020.127567_b0035) 2016; 7 |
References_xml | – volume: 225 start-page: 132 year: 2017 end-page: 137 ident: b0070 article-title: Variation of ascorbic acid concentration in fruits of cultivated and wild apples publication-title: Food Chemistry – volume: 172 start-page: 86 year: 2015 end-page: 91 ident: b0105 article-title: Comparative assessment of sugar and malic acid composition in cultivated and wild apples publication-title: Food Chemistry – volume: 87 start-page: 24 year: 2014 end-page: 29 ident: b0005 article-title: Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development publication-title: Journal of Applied Botany and Food Quality – volume: 122 start-page: 1020 year: 2010 end-page: 1026 ident: b0020 article-title: Manipulating the taste-related composition of strawberry fruits from different cultivars using deficit irrigation publication-title: Food Chemistry – volume: 7 start-page: 13246 year: 2016 ident: b0035 article-title: Genome-wide association study of 12 agronomic traits in peach publication-title: Nature Communications – volume: 10 start-page: 71 year: 2009 ident: b0140 article-title: Selection of reliable reference genes for gene expression studies in peach using real-time PCR publication-title: BMC Molecular Biology – volume: 82 start-page: 992 year: 2020 end-page: 1006 ident: b0090 article-title: Apple ALMT9 requires a conserved c-terminal domain for malate transport underlying fruit acidity publication-title: Plant Physiology – volume: 29 start-page: 158 year: 2019 end-page: 164 ident: b0030 article-title: Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern citrus varieties publication-title: Current Biology – volume: 103 start-page: 429 year: 2005 end-page: 439 ident: b0155 article-title: Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis publication-title: Scientia Horticulturae – volume: 82 start-page: 105 year: 2015 end-page: 121 ident: b0180 article-title: Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors publication-title: Plant Journal – volume: 147 start-page: 115 year: 2012 end-page: 125 ident: b0045 article-title: Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan ( publication-title: Scientia Horticulturae – volume: 7 year: 2016 ident: b0080 article-title: Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants publication-title: Frontiers in Plant Science – volume: 72 start-page: 33 year: 2007 end-page: 38 ident: b0120 article-title: The chemistry and physiology of sour taste-a review publication-title: Journal of Food Science – volume: 46 year: 2018 ident: b0135 article-title: Octopus-toolkit: A workflow to automate mining of public epigenomic and transcriptomic next-generation sequencing data publication-title: Nucleic Acids Research – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: b0085 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nature Methods – volume: 157 start-page: 1696 year: 2011 end-page: 1710 ident: b0095 article-title: Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage publication-title: Plant Physiology – volume: 62 start-page: 513 year: 2006 end-page: 527 ident: b0040 article-title: Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization publication-title: Plant Molecular Biology – volume: 12 start-page: 37 year: 2016 ident: b0175 article-title: Mapping QTLs associated with fruit quality traits in peach [Prunus persica(L.) Batsch] using SNP maps publication-title: Tree Genetics & Genomes – volume: 9 start-page: 1689 year: 2018 ident: b0015 article-title: Modifications in organic acid profiles during fruit development and ripening: Correlation or causation? publication-title: Frontiers in Plant Science – volume: 114 start-page: 259 year: 2002 end-page: 270 ident: b0065 article-title: Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: Involvement in regulating peach fruit acidity publication-title: Physiologia Plantarum – volume: 17 start-page: 674 year: 2019 end-page: 686 ident: b0110 article-title: A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple publication-title: Plant Biotechnology Journal – volume: 15 start-page: 97 year: 1986 end-page: 117 ident: b0150 article-title: Citrate synthase: Structure, control, and mechanism publication-title: Annual Review of Biophysics and Biophysical Chemistry – volume: 3 start-page: 15067 year: 2016 ident: b0050 article-title: Sugars in peach fruit: A breeding perspective publication-title: Horticulture Research – volume: 466 start-page: 443 year: 2015 end-page: 454 ident: b0115 article-title: Mitochondrial pyruvate transport: A historical perspective and future research directions publication-title: Bichemical Journal – volume: 45 start-page: 487 year: 2013 end-page: 493 ident: b0145 article-title: The high-quality draft genome of peach ( publication-title: Nature Genetics – volume: 9 start-page: 59 year: 2009 ident: b0025 article-title: Phenotypic and fine genetic characterization of theDlocus controlling fruit acidity in peach publication-title: BMC Plant Biology – volume: 64 start-page: 1451 year: 2013 end-page: 1469 ident: b0060 article-title: What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells publication-title: Journal of Experimental Botany – volume: 3 start-page: 3 year: 2017 end-page: 14 ident: b0160 article-title: Comparative analysis of three types of peaches:Identification of the key individual characteristic flavor compounds by integrating consumers' acceptability with flavor quality publication-title: Horticultural Plant Journal – volume: 98 start-page: 18 year: 1999 end-page: 31 ident: b0055 article-title: Mapping QTLs controlling fruit quality in peach ( publication-title: Theoretical and Applied Genetics – volume: 7 start-page: 3635 year: 2019 end-page: 3643 ident: b0165 article-title: Citric acid treatment reduces decay and maintains the postharvest quality of peach ( publication-title: Food Science & Nutrition – volume: 10 start-page: 744 year: 2019 ident: b0130 article-title: Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex publication-title: Nature Communication – start-page: 535 year: 2016 end-page: 571 ident: b0010 article-title: Peach ( publication-title: Nutritional composition of fruit cultivars – volume: 15 start-page: 550 year: 2014 ident: b0100 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biology – volume: 245 start-page: 929 year: 2019 end-page: 938 ident: b0125 article-title: Principal component analysis (PCA) of physicochemical compounds’ content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC publication-title: European Food Research and Technology – volume: 18 start-page: 404 year: 2017 ident: b0075 article-title: Integrated QTL detection for key breeding traits in multiple peach progenies publication-title: BMC Genomics – volume: 29 start-page: 2249 year: 2017 end-page: 2268 ident: b0170 article-title: An indel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance publication-title: Plant Cell – volume: 17 start-page: 674 issue: 3 year: 2019 ident: 10.1016/j.foodchem.2020.127567_b0110 article-title: A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.13007 – volume: 15 start-page: 97 year: 1986 ident: 10.1016/j.foodchem.2020.127567_b0150 article-title: Citrate synthase: Structure, control, and mechanism publication-title: Annual Review of Biophysics and Biophysical Chemistry doi: 10.1146/annurev.bb.15.060186.000525 – volume: 7 start-page: 3635 issue: 11 year: 2019 ident: 10.1016/j.foodchem.2020.127567_b0165 article-title: Citric acid treatment reduces decay and maintains the postharvest quality of peach (Prunus persica L.) fruit publication-title: Food Science & Nutrition doi: 10.1002/fsn3.1219 – volume: 245 start-page: 929 issue: 4 year: 2019 ident: 10.1016/j.foodchem.2020.127567_b0125 article-title: Principal component analysis (PCA) of physicochemical compounds’ content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC publication-title: European Food Research and Technology doi: 10.1007/s00217-019-03233-z – volume: 7 year: 2016 ident: 10.1016/j.foodchem.2020.127567_b0080 article-title: Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.01042 – volume: 45 start-page: 487 year: 2013 ident: 10.1016/j.foodchem.2020.127567_b0145 article-title: The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution publication-title: Nature Genetics doi: 10.1038/ng.2586 – volume: 114 start-page: 259 issue: 2 year: 2002 ident: 10.1016/j.foodchem.2020.127567_b0065 article-title: Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: Involvement in regulating peach fruit acidity publication-title: Physiologia Plantarum doi: 10.1034/j.1399-3054.2002.1140212.x – volume: 29 start-page: 158 issue: 1 year: 2019 ident: 10.1016/j.foodchem.2020.127567_b0030 article-title: Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern citrus varieties publication-title: Current Biology doi: 10.1016/j.cub.2018.11.040 – volume: 3 start-page: 15067 year: 2016 ident: 10.1016/j.foodchem.2020.127567_b0050 article-title: Sugars in peach fruit: A breeding perspective publication-title: Horticulture Research doi: 10.1038/hortres.2015.67 – volume: 82 start-page: 992 year: 2020 ident: 10.1016/j.foodchem.2020.127567_b0090 article-title: Apple ALMT9 requires a conserved c-terminal domain for malate transport underlying fruit acidity publication-title: Plant Physiology doi: 10.1104/pp.19.01300 – volume: 122 start-page: 1020 issue: 4 year: 2010 ident: 10.1016/j.foodchem.2020.127567_b0020 article-title: Manipulating the taste-related composition of strawberry fruits from different cultivars using deficit irrigation publication-title: Food Chemistry doi: 10.1016/j.foodchem.2010.03.060 – volume: 62 start-page: 513 year: 2006 ident: 10.1016/j.foodchem.2020.127567_b0040 article-title: Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization publication-title: Plant Molecular Biology doi: 10.1007/s11103-006-9037-7 – volume: 172 start-page: 86 year: 2015 ident: 10.1016/j.foodchem.2020.127567_b0105 article-title: Comparative assessment of sugar and malic acid composition in cultivated and wild apples publication-title: Food Chemistry doi: 10.1016/j.foodchem.2014.09.032 – volume: 466 start-page: 443 issue: 3 year: 2015 ident: 10.1016/j.foodchem.2020.127567_b0115 article-title: Mitochondrial pyruvate transport: A historical perspective and future research directions publication-title: Bichemical Journal doi: 10.1042/BJ20141171 – volume: 103 start-page: 429 issue: 4 year: 2005 ident: 10.1016/j.foodchem.2020.127567_b0155 article-title: Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis publication-title: Scientia Horticulturae doi: 10.1016/j.scienta.2004.08.003 – volume: 10 start-page: 71 issue: 1 year: 2009 ident: 10.1016/j.foodchem.2020.127567_b0140 article-title: Selection of reliable reference genes for gene expression studies in peach using real-time PCR publication-title: BMC Molecular Biology doi: 10.1186/1471-2199-10-71 – volume: 9 start-page: 59 issue: 1 year: 2009 ident: 10.1016/j.foodchem.2020.127567_b0025 article-title: Phenotypic and fine genetic characterization of theDlocus controlling fruit acidity in peach publication-title: BMC Plant Biology doi: 10.1186/1471-2229-9-59 – volume: 147 start-page: 115 year: 2012 ident: 10.1016/j.foodchem.2020.127567_b0045 article-title: Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit publication-title: Scientia Horticulturae doi: 10.1016/j.scienta.2012.09.011 – volume: 10 start-page: 744 year: 2019 ident: 10.1016/j.foodchem.2020.127567_b0130 article-title: Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex publication-title: Nature Communication doi: 10.1038/s41467-019-08516-3 – volume: 9 start-page: 1689 year: 2018 ident: 10.1016/j.foodchem.2020.127567_b0015 article-title: Modifications in organic acid profiles during fruit development and ripening: Correlation or causation? publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.01689 – volume: 12 start-page: 37 issue: 3 year: 2016 ident: 10.1016/j.foodchem.2020.127567_b0175 article-title: Mapping QTLs associated with fruit quality traits in peach [Prunus persica(L.) Batsch] using SNP maps publication-title: Tree Genetics & Genomes doi: 10.1007/s11295-016-0996-9 – volume: 3 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.foodchem.2020.127567_b0160 article-title: Comparative analysis of three types of peaches:Identification of the key individual characteristic flavor compounds by integrating consumers' acceptability with flavor quality publication-title: Horticultural Plant Journal doi: 10.1016/j.hpj.2017.01.012 – volume: 18 start-page: 404 issue: 1 year: 2017 ident: 10.1016/j.foodchem.2020.127567_b0075 article-title: Integrated QTL detection for key breeding traits in multiple peach progenies publication-title: BMC Genomics doi: 10.1186/s12864-017-3783-6 – volume: 7 start-page: 13246 year: 2016 ident: 10.1016/j.foodchem.2020.127567_b0035 article-title: Genome-wide association study of 12 agronomic traits in peach publication-title: Nature Communications doi: 10.1038/ncomms13246 – volume: 98 start-page: 18 year: 1999 ident: 10.1016/j.foodchem.2020.127567_b0055 article-title: Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch) publication-title: Theoretical and Applied Genetics doi: 10.1007/s001220051035 – volume: 29 start-page: 2249 issue: 9 year: 2017 ident: 10.1016/j.foodchem.2020.127567_b0170 article-title: An indel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance publication-title: Plant Cell doi: 10.1105/tpc.17.00211 – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 10.1016/j.foodchem.2020.127567_b0100 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biology doi: 10.1186/s13059-014-0550-8 – volume: 9 start-page: 357 issue: 4 year: 2012 ident: 10.1016/j.foodchem.2020.127567_b0085 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nature Methods doi: 10.1038/nmeth.1923 – volume: 87 start-page: 24 year: 2014 ident: 10.1016/j.foodchem.2020.127567_b0005 article-title: Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development publication-title: Journal of Applied Botany and Food Quality – start-page: 535 year: 2016 ident: 10.1016/j.foodchem.2020.127567_b0010 article-title: Peach (Prunus persica (L.) Batsch) – volume: 64 start-page: 1451 issue: 6 year: 2013 ident: 10.1016/j.foodchem.2020.127567_b0060 article-title: What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ert035 – volume: 46 issue: 9 year: 2018 ident: 10.1016/j.foodchem.2020.127567_b0135 article-title: Octopus-toolkit: A workflow to automate mining of public epigenomic and transcriptomic next-generation sequencing data publication-title: Nucleic Acids Research – volume: 157 start-page: 1696 year: 2011 ident: 10.1016/j.foodchem.2020.127567_b0095 article-title: Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage publication-title: Plant Physiology doi: 10.1104/pp.111.186064 – volume: 225 start-page: 132 year: 2017 ident: 10.1016/j.foodchem.2020.127567_b0070 article-title: Variation of ascorbic acid concentration in fruits of cultivated and wild apples publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.01.014 – volume: 82 start-page: 105 issue: 1 year: 2015 ident: 10.1016/j.foodchem.2020.127567_b0180 article-title: Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors publication-title: Plant Journal doi: 10.1111/tpj.12792 – volume: 72 start-page: 33 issue: 2 year: 2007 ident: 10.1016/j.foodchem.2020.127567_b0120 article-title: The chemistry and physiology of sour taste-a review publication-title: Journal of Food Science doi: 10.1111/j.1750-3841.2007.00282.x |
SSID | ssj0002018 |
Score | 2.579512 |
Snippet | •Degradation of organic acids caused low acidity of peach fruits.•Malate accumulation is controlled at the level of metabolism and vacuolar storage.•Citrate... Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 127567 |
SubjectTerms | Citrate citrates cultivars degradation food chemistry fruit acids Fruit Quality fruiting GABA genes Malate malates measurement metabolism Peach peaches reaction kinetics sensory properties storage synthesis vacuoles |
Title | Assessment of organic acid accumulation and its related genes in peach |
URI | https://dx.doi.org/10.1016/j.foodchem.2020.127567 https://www.proquest.com/docview/2427297539 https://www.proquest.com/docview/2524249436 |
Volume | 334 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB72IT1xfRBBvdddumjTHZXVZXdyDD_QW8qpUtF3c7tXfbiZtfCF68NLSkkCYSWemk_m-QegwPsk0c3F8JGPiUzc24omyEQO8Ho-NtCcATr4c0-EtubhP7udQP2BhoKyysf21TffWunnTbqTZnuR5-xqYViCBFQMDe1wj2AmDXX78-lHm4RxcWp8kpD7d9Qkl_HiclaVxsgFEegxECyzx_eZ_dFDfTLX3P4MVtNwEjrhXr20VzdliDS32Q7-2NdQ6zW2Fj3DD9PmEx4Fo340L-OPpOhr03sk4cZnhuq2TxlLnxl307Llp6IVlYXBeTbGHu1iDH8As4rzAE6jA3EC3g7Ob_jBquilEmhBSORW4YEFKRXlmmLGUKRZTzZTWRMs0sSTVUqWp4qpj3BN1gWOaGa5TCl3_VNLdRPNFWdgthLMs45a4f0eiO8R0IIY0tKPcx09kl1rSQkkQodAN1Th0vHgSoabsUQTRCxC9qEXfQu33eZOabOPPGTxoSHzZNsJ5hD_nHgSVCqcqOCiRhS1nU-HCFuYRx_yXMQkAazjp0u1_rGEHLcVQJONzOrtovnqZ2T0X5VRq32_jfbTQOx8Nx3AfXd2N3gDNn_0W |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGWBBPEV5Ggmxhbap48RjVajKo10Aic3yKygIkoqmK78dnxOXhxAdWCIlsiXrzr67nO-7D6HTsJOq2MbxgQiJS92YgEXSBDHg9ViohekAOHk0psMHcv0YPS6hvsfCQFllbfsrm-6sdf2lVUuzNcmy1h10WoEEVggd2ENAsC8Te3yBxuD8_bPOw3q4pLpKSFy-6wtM-Pk8LQpthQOQ9BA6LcSRI5z_1UP9sNXOAQ3W0VodOeJetbgNtGTyTbTS94Rtm6h5kZkSn-G61ecLHvtO-3acByBPt9CgN-_GiYsUV7xOCguVaftQs9ea0QuLXOOsnGKHdzEaP4FdxFmOJ1CCuY0eBpf3_WFQ0ykEihBSWh3YaEEISVmqY21oLOOQqlgqRZRIIkMSJWSSSCbb2r5RGzkmqWYqoUD7J6PuDmrkRW52EU7TlBlifx6JahPdhiBS07a0p5-ILjWkiSIvQq7qXuNAefHCfVHZM_ei5yB6Xom-iVrzeZOq28bCGcxriH_bN9y6hIVzT7xKuVUV3JSI3BSzKbdxS-wgx-yPMREgaxjp0r1_rOEYrQzvR7f89mp8s49WQ6iYcQmeA9Qo32bm0IY8pTxyW_oDokX9AQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+organic+acid+accumulation+and+its+related+genes+in+peach&rft.jtitle=Food+chemistry&rft.au=Zheng%2C+Beibei&rft.au=Zhao%2C+Li&rft.au=Jiang%2C+Xiaohan&rft.au=Cherono%2C+Sylvia&rft.date=2021-01-01&rft.issn=1873-7072&rft.eissn=1873-7072&rft.volume=334&rft.spage=127567&rft_id=info:doi/10.1016%2Fj.foodchem.2020.127567&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |