Assessment of organic acid accumulation and its related genes in peach

•Degradation of organic acids caused low acidity of peach fruits.•Malate accumulation is controlled at the level of metabolism and vacuolar storage.•Citrate accumulation is controlled at the level of metabolism.•Seven candidate genes for peach fruit acidity were identified. Fruit acidity is an impor...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 334; p. 127567
Main Authors Zheng, Beibei, Zhao, Li, Jiang, Xiaohan, Cherono, Sylvia, Liu, JingJing, Ogutu, Collins, Ntini, Charmaine, Zhang, Xiujun, Han, Yuepeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Degradation of organic acids caused low acidity of peach fruits.•Malate accumulation is controlled at the level of metabolism and vacuolar storage.•Citrate accumulation is controlled at the level of metabolism.•Seven candidate genes for peach fruit acidity were identified. Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach.
AbstractList Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach.
•Degradation of organic acids caused low acidity of peach fruits.•Malate accumulation is controlled at the level of metabolism and vacuolar storage.•Citrate accumulation is controlled at the level of metabolism.•Seven candidate genes for peach fruit acidity were identified. Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach.
Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach.Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe fruits of seventy-five peach cultivars revealed the predominant components malate and citrate, accompanied by quinate. Organic acid accumulation increased at early stages of fruit growth, but exhibited a more dramatic reduction in low-acid cultivar during later stages of fruit development compared to high-acid cultivars. Low-acid cultivars showed citrate degradation and less transport of malate into the vacuole due to up- and down-regulation of a GABA pathway gene GAD and a malate transporter gene ALMT9, respectively. The NAD-MDH1 gene might control the rate-limiting step in malate synthesis, while three genes, PDK, PK, and ADH, could affect citrate synthesis through the pyruvate-to-acetyl-CoA-to-citrate pathway. Altogether, these results suggested that malate accumulation is controlled at the level of metabolism and vacuolar storage, while metabolism is crucial for citrate accumulation in peach.
ArticleNumber 127567
Author Zhang, Xiujun
Liu, JingJing
Ogutu, Collins
Han, Yuepeng
Zhao, Li
Ntini, Charmaine
Jiang, Xiaohan
Cherono, Sylvia
Zheng, Beibei
Author_xml – sequence: 1
  givenname: Beibei
  surname: Zheng
  fullname: Zheng, Beibei
  email: zhengbeibei@wbgcas.cn
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China
– sequence: 2
  givenname: Li
  surname: Zhao
  fullname: Zhao, Li
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China
– sequence: 3
  givenname: Xiaohan
  surname: Jiang
  fullname: Jiang, Xiaohan
  email: jiangxiaohan16@mails.ucas.ac.cn
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China
– sequence: 4
  givenname: Sylvia
  surname: Cherono
  fullname: Cherono, Sylvia
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China
– sequence: 5
  givenname: JingJing
  surname: Liu
  fullname: Liu, JingJing
  email: liujingjing18@mails.ucas.ac.cn
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China
– sequence: 6
  givenname: Collins
  surname: Ogutu
  fullname: Ogutu, Collins
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China
– sequence: 7
  givenname: Charmaine
  surname: Ntini
  fullname: Ntini, Charmaine
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China
– sequence: 8
  givenname: Xiujun
  surname: Zhang
  fullname: Zhang, Xiujun
  email: zhangxj@wbgcas.cn
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China
– sequence: 9
  givenname: Yuepeng
  orcidid: 0000-0003-3183-8095
  surname: Han
  fullname: Han, Yuepeng
  email: yphan@wbgcas.cn
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074 China
BookMark eNqFkD1v2zAQhokiAeK4-QsBxy5yKYriB9AhQZCkBQxkSWeCOp4cGhLpklKB_vvIdbN08XKHe_G8NzzX5CKmiITc1mxTs1p-3W_6lDy84bjhjC8hV61Un8iq1qqpFFP8gqxYw3SlayGvyHUpe8YWstYr8nRfCpYyYpxo6mnKOxcDUAfBLwPmcR7cFFKkLnoapkIzLgF6usOIhYZID-jg7TO57N1Q8ObfXpOfT4-vD9-r7cvzj4f7bQVCiKkyrRKNc500vVcepeoUl6A6AAFOtyg0uE7rznTML5c0pta9N6Ala03Ttc2afDn9PeT0a8Yy2TEUwGFwEdNcLG-54MKIRp5HBVfcqLYxCypPKORUSsbeHnIYXf5ja2aPju3efji2R8f25HgpfvuvCGH662vKLgzn63enOi7KfgfMtkDACOhDRpisT-Hci3f0zZ40
CitedBy_id crossref_primary_10_17221_128_2023_HORTSCI
crossref_primary_10_3389_fpls_2022_1024909
crossref_primary_10_1016_j_jfca_2022_105007
crossref_primary_10_1016_j_scienta_2022_111114
crossref_primary_10_1016_j_foodres_2022_111204
crossref_primary_10_1038_s41467_021_23879_2
crossref_primary_10_3390_plants10102191
crossref_primary_10_3389_fpls_2022_838370
crossref_primary_10_3390_agronomy12123227
crossref_primary_10_1093_treephys_tpae098
crossref_primary_10_3390_foods12050911
crossref_primary_10_4236_as_2023_148075
crossref_primary_10_3390_horticulturae8060468
crossref_primary_10_3389_fnut_2022_961626
crossref_primary_10_1007_s13580_021_00399_y
crossref_primary_10_3390_fermentation8100533
crossref_primary_10_3390_ijms242216384
crossref_primary_10_17660_ActaHortic_2022_1352_1
crossref_primary_10_3390_ijms25179542
crossref_primary_10_3390_plants14050757
crossref_primary_10_3389_fpls_2022_971506
crossref_primary_10_3390_horticulturae10121305
crossref_primary_10_1016_j_ultsonch_2025_107313
crossref_primary_10_3390_antiox11071319
crossref_primary_10_1186_s12864_020_07299_y
crossref_primary_10_1016_j_jhazmat_2023_131442
crossref_primary_10_3390_ijms24031871
crossref_primary_10_3389_fpls_2020_604133
crossref_primary_10_1093_hr_uhad158
crossref_primary_10_1111_jipb_13761
crossref_primary_10_1016_j_crfs_2022_11_017
crossref_primary_10_3390_foods13081193
crossref_primary_10_1016_j_jfca_2022_105105
crossref_primary_10_3390_electronics10243115
crossref_primary_10_3389_fpls_2021_794881
crossref_primary_10_3390_plants12244079
crossref_primary_10_1093_treephys_tpad029
crossref_primary_10_3390_agriculture12040553
crossref_primary_10_1080_23311932_2025_2470964
crossref_primary_10_1016_j_ijbiomac_2024_135144
crossref_primary_10_1186_s12870_023_04037_w
crossref_primary_10_48130_frures_0024_0025
crossref_primary_10_5650_jos_ess23214
crossref_primary_10_1093_hr_uhae353
crossref_primary_10_1016_j_plaphy_2020_12_023
crossref_primary_10_1111_nph_17965
crossref_primary_10_1016_j_lwt_2024_116791
crossref_primary_10_1016_j_hpj_2024_01_011
crossref_primary_10_1016_j_jfca_2021_104104
crossref_primary_10_1016_j_chemosphere_2021_132999
crossref_primary_10_1371_journal_pone_0292959
crossref_primary_10_1016_j_scienta_2025_114034
crossref_primary_10_1111_nph_19372
crossref_primary_10_3389_fpls_2022_1033805
crossref_primary_10_1111_pbi_14070
crossref_primary_10_1111_1750_3841_16681
crossref_primary_10_3389_fpls_2020_572601
crossref_primary_10_1016_j_foodcont_2021_108535
crossref_primary_10_1002_jsfa_11072
crossref_primary_10_3390_horticulturae9030299
crossref_primary_10_3390_foods11121718
crossref_primary_10_48130_vegres_0024_0011
crossref_primary_10_1002_2211_5463_13233
crossref_primary_10_2478_fhort_2023_0031
Cites_doi 10.1111/pbi.13007
10.1146/annurev.bb.15.060186.000525
10.1002/fsn3.1219
10.1007/s00217-019-03233-z
10.3389/fpls.2016.01042
10.1038/ng.2586
10.1034/j.1399-3054.2002.1140212.x
10.1016/j.cub.2018.11.040
10.1038/hortres.2015.67
10.1104/pp.19.01300
10.1016/j.foodchem.2010.03.060
10.1007/s11103-006-9037-7
10.1016/j.foodchem.2014.09.032
10.1042/BJ20141171
10.1016/j.scienta.2004.08.003
10.1186/1471-2199-10-71
10.1186/1471-2229-9-59
10.1016/j.scienta.2012.09.011
10.1038/s41467-019-08516-3
10.3389/fpls.2018.01689
10.1007/s11295-016-0996-9
10.1016/j.hpj.2017.01.012
10.1186/s12864-017-3783-6
10.1038/ncomms13246
10.1007/s001220051035
10.1105/tpc.17.00211
10.1186/s13059-014-0550-8
10.1038/nmeth.1923
10.1093/jxb/ert035
10.1104/pp.111.186064
10.1016/j.foodchem.2017.01.014
10.1111/tpj.12792
10.1111/j.1750-3841.2007.00282.x
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2020.127567
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 10_1016_j_foodchem_2020_127567
S0308814620314291
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
RIG
SCB
SEW
SSH
VH1
WUQ
Y6R
7X8
7S9
L.6
ID FETCH-LOGICAL-c444t-95743aab69fd7de67b726c7bcc4ca85e48cab88b9b0d5e469918fd9c860593b53
IEDL.DBID .~1
ISSN 0308-8146
1873-7072
IngestDate Fri Jul 11 08:52:55 EDT 2025
Fri Jul 11 09:46:47 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Tue Jul 01 03:22:14 EDT 2025
Fri Feb 23 02:50:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Citrate
GABA
Malate
Fruit Quality
Peach
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-95743aab69fd7de67b726c7bcc4ca85e48cab88b9b0d5e469918fd9c860593b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3183-8095
PQID 2427297539
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524249436
proquest_miscellaneous_2427297539
crossref_primary_10_1016_j_foodchem_2020_127567
crossref_citationtrail_10_1016_j_foodchem_2020_127567
elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_127567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Food chemistry
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Boudehri, Bendahmane, Cardinet, Troadec, Moing, Dirlewanger (b0025) 2009; 9
Wu, Quilot, Génard, Kervella, Li (b0155) 2005; 103
Ye, Wang, Hu, Zhang, Wang, Li, Ye (b0170) 2017; 29
Verde, Abbott, Scalabrin, Jung, Shu, Marroni, Rokhsar (b0145) 2013; 45
Yang, Chen, Shen, Sun, Song, Chen, Xi (b0165) 2019; 7
Bassi, Mignani, Spinardi, Tura (b0010) 2016
Etienne, Moing, Dirlewanger, Raymond, Monet, Rothan (b0065) 2002; 114
Nowicka, Wojdyło, Laskowski (b0125) 2019; 245
Ma, Chen, Zheng, Fang, Ogutu, Li, Wu (b0105) 2015; 172
Zhou, Lin-Wang, Wang, Gu, Dare, Espley, Han (b0180) 2015; 82
Fang, Zhen, Liao, Owiti, Zhao, Korban, Han (b0070) 2017; 225
Etienne, Génard, Lobit, Mbeguié-A-Mbéguié, Bugaud (b0060) 2013; 64
Wiegand, Remington (b0150) 1986; 15
Zeballos, Abidi, Giménez, Monforte, Moreno, á., & Gogorcena, Y (b0175) 2016; 12
Lombardo, Sonia, Julia, Lauxmann, Bustamante, Budde, Drincovich (b0095) 2011; 157
Langmead, Salzberg (b0085) 2012; 9
Chen, Jiang, Yin, Lin, Chen, Allan, Chen (b0045) 2012; 147
McCommis, Finck (b0115) 2015; 466
Cirilli, Bassi, Ciacciulli (b0050) 2016; 3
Cercós, Soler, Iglesias, Gadea, Forment, Talón (b0040) 2006; 62
Bordonaba, Terry (b0020) 2010; 122
Love, Huber, Anders (b0100) 2014; 15
Batista-Silva, Nascimento, Medeiros, Nunes-Nesi, Ribeiro, Zsogon, Araujo (b0015) 2018; 9
Taemook, David, Lothar, Daeyoup, Kang (b0135) 2018; 46
Bae, Yun, Jun, Yoon, Nam, Kwon (b0005) 2014; 87
Butelli, Licciardello, Ramadugu, Durand-Hulak, Celent, Reforgiato Recupero, Martin (b0030) 2019; 29
Cao, Zhou, Wang, Guo, Zhao, Zhu (b0035) 2016; 7
Igamberdiev, Eprintsev (b0080) 2016; 7
Ma, Liao, Fang, Peng, Ogutu, Zhou, Han (b0110) 2019; 17
Dirlewanger, Moing, Rothan, Svanella, Pronier (b0055) 1999; 98
Tong, Gao, Wang, Zhou, Zhang (b0140) 2009; 10
Strazzer, Spelt, Li, Bliek, Federici, Roose, Quattrocchio (b0130) 2019; 10
Hernandez-Mora, Micheletti, Bink, Van de Weg, Cantin, Nazzicari, Jose Aranzana (b0075) 2017; 18
Li, Dougherty, Coluccio, Meng, El-Sharkawy, Borejsza-Wysocka, Cheng (b0090) 2020; 82
Neta, Johanningsmeier, Mcfeeters (b0120) 2007; 72
Xi, Zheng, Lu, Quan (b0160) 2017; 3
Ma (10.1016/j.foodchem.2020.127567_b0105) 2015; 172
Verde (10.1016/j.foodchem.2020.127567_b0145) 2013; 45
Batista-Silva (10.1016/j.foodchem.2020.127567_b0015) 2018; 9
Igamberdiev (10.1016/j.foodchem.2020.127567_b0080) 2016; 7
Boudehri (10.1016/j.foodchem.2020.127567_b0025) 2009; 9
Ma (10.1016/j.foodchem.2020.127567_b0110) 2019; 17
Zhou (10.1016/j.foodchem.2020.127567_b0180) 2015; 82
Bassi (10.1016/j.foodchem.2020.127567_b0010) 2016
Wiegand (10.1016/j.foodchem.2020.127567_b0150) 1986; 15
Wu (10.1016/j.foodchem.2020.127567_b0155) 2005; 103
McCommis (10.1016/j.foodchem.2020.127567_b0115) 2015; 466
Strazzer (10.1016/j.foodchem.2020.127567_b0130) 2019; 10
Tong (10.1016/j.foodchem.2020.127567_b0140) 2009; 10
Love (10.1016/j.foodchem.2020.127567_b0100) 2014; 15
Cirilli (10.1016/j.foodchem.2020.127567_b0050) 2016; 3
Bae (10.1016/j.foodchem.2020.127567_b0005) 2014; 87
Cercós (10.1016/j.foodchem.2020.127567_b0040) 2006; 62
Li (10.1016/j.foodchem.2020.127567_b0090) 2020; 82
Neta (10.1016/j.foodchem.2020.127567_b0120) 2007; 72
Ye (10.1016/j.foodchem.2020.127567_b0170) 2017; 29
Dirlewanger (10.1016/j.foodchem.2020.127567_b0055) 1999; 98
Xi (10.1016/j.foodchem.2020.127567_b0160) 2017; 3
Lombardo (10.1016/j.foodchem.2020.127567_b0095) 2011; 157
Butelli (10.1016/j.foodchem.2020.127567_b0030) 2019; 29
Fang (10.1016/j.foodchem.2020.127567_b0070) 2017; 225
Yang (10.1016/j.foodchem.2020.127567_b0165) 2019; 7
Etienne (10.1016/j.foodchem.2020.127567_b0060) 2013; 64
Taemook (10.1016/j.foodchem.2020.127567_b0135) 2018; 46
Bordonaba (10.1016/j.foodchem.2020.127567_b0020) 2010; 122
Nowicka (10.1016/j.foodchem.2020.127567_b0125) 2019; 245
Langmead (10.1016/j.foodchem.2020.127567_b0085) 2012; 9
Hernandez-Mora (10.1016/j.foodchem.2020.127567_b0075) 2017; 18
Zeballos (10.1016/j.foodchem.2020.127567_b0175) 2016; 12
Chen (10.1016/j.foodchem.2020.127567_b0045) 2012; 147
Etienne (10.1016/j.foodchem.2020.127567_b0065) 2002; 114
Cao (10.1016/j.foodchem.2020.127567_b0035) 2016; 7
References_xml – volume: 225
  start-page: 132
  year: 2017
  end-page: 137
  ident: b0070
  article-title: Variation of ascorbic acid concentration in fruits of cultivated and wild apples
  publication-title: Food Chemistry
– volume: 172
  start-page: 86
  year: 2015
  end-page: 91
  ident: b0105
  article-title: Comparative assessment of sugar and malic acid composition in cultivated and wild apples
  publication-title: Food Chemistry
– volume: 87
  start-page: 24
  year: 2014
  end-page: 29
  ident: b0005
  article-title: Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development
  publication-title: Journal of Applied Botany and Food Quality
– volume: 122
  start-page: 1020
  year: 2010
  end-page: 1026
  ident: b0020
  article-title: Manipulating the taste-related composition of strawberry fruits from different cultivars using deficit irrigation
  publication-title: Food Chemistry
– volume: 7
  start-page: 13246
  year: 2016
  ident: b0035
  article-title: Genome-wide association study of 12 agronomic traits in peach
  publication-title: Nature Communications
– volume: 10
  start-page: 71
  year: 2009
  ident: b0140
  article-title: Selection of reliable reference genes for gene expression studies in peach using real-time PCR
  publication-title: BMC Molecular Biology
– volume: 82
  start-page: 992
  year: 2020
  end-page: 1006
  ident: b0090
  article-title: Apple ALMT9 requires a conserved c-terminal domain for malate transport underlying fruit acidity
  publication-title: Plant Physiology
– volume: 29
  start-page: 158
  year: 2019
  end-page: 164
  ident: b0030
  article-title: Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern citrus varieties
  publication-title: Current Biology
– volume: 103
  start-page: 429
  year: 2005
  end-page: 439
  ident: b0155
  article-title: Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis
  publication-title: Scientia Horticulturae
– volume: 82
  start-page: 105
  year: 2015
  end-page: 121
  ident: b0180
  article-title: Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors
  publication-title: Plant Journal
– volume: 147
  start-page: 115
  year: 2012
  end-page: 125
  ident: b0045
  article-title: Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (
  publication-title: Scientia Horticulturae
– volume: 7
  year: 2016
  ident: b0080
  article-title: Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants
  publication-title: Frontiers in Plant Science
– volume: 72
  start-page: 33
  year: 2007
  end-page: 38
  ident: b0120
  article-title: The chemistry and physiology of sour taste-a review
  publication-title: Journal of Food Science
– volume: 46
  year: 2018
  ident: b0135
  article-title: Octopus-toolkit: A workflow to automate mining of public epigenomic and transcriptomic next-generation sequencing data
  publication-title: Nucleic Acids Research
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: b0085
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nature Methods
– volume: 157
  start-page: 1696
  year: 2011
  end-page: 1710
  ident: b0095
  article-title: Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage
  publication-title: Plant Physiology
– volume: 62
  start-page: 513
  year: 2006
  end-page: 527
  ident: b0040
  article-title: Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization
  publication-title: Plant Molecular Biology
– volume: 12
  start-page: 37
  year: 2016
  ident: b0175
  article-title: Mapping QTLs associated with fruit quality traits in peach [Prunus persica(L.) Batsch] using SNP maps
  publication-title: Tree Genetics & Genomes
– volume: 9
  start-page: 1689
  year: 2018
  ident: b0015
  article-title: Modifications in organic acid profiles during fruit development and ripening: Correlation or causation?
  publication-title: Frontiers in Plant Science
– volume: 114
  start-page: 259
  year: 2002
  end-page: 270
  ident: b0065
  article-title: Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: Involvement in regulating peach fruit acidity
  publication-title: Physiologia Plantarum
– volume: 17
  start-page: 674
  year: 2019
  end-page: 686
  ident: b0110
  article-title: A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple
  publication-title: Plant Biotechnology Journal
– volume: 15
  start-page: 97
  year: 1986
  end-page: 117
  ident: b0150
  article-title: Citrate synthase: Structure, control, and mechanism
  publication-title: Annual Review of Biophysics and Biophysical Chemistry
– volume: 3
  start-page: 15067
  year: 2016
  ident: b0050
  article-title: Sugars in peach fruit: A breeding perspective
  publication-title: Horticulture Research
– volume: 466
  start-page: 443
  year: 2015
  end-page: 454
  ident: b0115
  article-title: Mitochondrial pyruvate transport: A historical perspective and future research directions
  publication-title: Bichemical Journal
– volume: 45
  start-page: 487
  year: 2013
  end-page: 493
  ident: b0145
  article-title: The high-quality draft genome of peach (
  publication-title: Nature Genetics
– volume: 9
  start-page: 59
  year: 2009
  ident: b0025
  article-title: Phenotypic and fine genetic characterization of theDlocus controlling fruit acidity in peach
  publication-title: BMC Plant Biology
– volume: 64
  start-page: 1451
  year: 2013
  end-page: 1469
  ident: b0060
  article-title: What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells
  publication-title: Journal of Experimental Botany
– volume: 3
  start-page: 3
  year: 2017
  end-page: 14
  ident: b0160
  article-title: Comparative analysis of three types of peaches:Identification of the key individual characteristic flavor compounds by integrating consumers' acceptability with flavor quality
  publication-title: Horticultural Plant Journal
– volume: 98
  start-page: 18
  year: 1999
  end-page: 31
  ident: b0055
  article-title: Mapping QTLs controlling fruit quality in peach (
  publication-title: Theoretical and Applied Genetics
– volume: 7
  start-page: 3635
  year: 2019
  end-page: 3643
  ident: b0165
  article-title: Citric acid treatment reduces decay and maintains the postharvest quality of peach (
  publication-title: Food Science & Nutrition
– volume: 10
  start-page: 744
  year: 2019
  ident: b0130
  article-title: Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex
  publication-title: Nature Communication
– start-page: 535
  year: 2016
  end-page: 571
  ident: b0010
  article-title: Peach (
  publication-title: Nutritional composition of fruit cultivars
– volume: 15
  start-page: 550
  year: 2014
  ident: b0100
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biology
– volume: 245
  start-page: 929
  year: 2019
  end-page: 938
  ident: b0125
  article-title: Principal component analysis (PCA) of physicochemical compounds’ content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC
  publication-title: European Food Research and Technology
– volume: 18
  start-page: 404
  year: 2017
  ident: b0075
  article-title: Integrated QTL detection for key breeding traits in multiple peach progenies
  publication-title: BMC Genomics
– volume: 29
  start-page: 2249
  year: 2017
  end-page: 2268
  ident: b0170
  article-title: An indel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance
  publication-title: Plant Cell
– volume: 17
  start-page: 674
  issue: 3
  year: 2019
  ident: 10.1016/j.foodchem.2020.127567_b0110
  article-title: A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.13007
– volume: 15
  start-page: 97
  year: 1986
  ident: 10.1016/j.foodchem.2020.127567_b0150
  article-title: Citrate synthase: Structure, control, and mechanism
  publication-title: Annual Review of Biophysics and Biophysical Chemistry
  doi: 10.1146/annurev.bb.15.060186.000525
– volume: 7
  start-page: 3635
  issue: 11
  year: 2019
  ident: 10.1016/j.foodchem.2020.127567_b0165
  article-title: Citric acid treatment reduces decay and maintains the postharvest quality of peach (Prunus persica L.) fruit
  publication-title: Food Science & Nutrition
  doi: 10.1002/fsn3.1219
– volume: 245
  start-page: 929
  issue: 4
  year: 2019
  ident: 10.1016/j.foodchem.2020.127567_b0125
  article-title: Principal component analysis (PCA) of physicochemical compounds’ content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC
  publication-title: European Food Research and Technology
  doi: 10.1007/s00217-019-03233-z
– volume: 7
  year: 2016
  ident: 10.1016/j.foodchem.2020.127567_b0080
  article-title: Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01042
– volume: 45
  start-page: 487
  year: 2013
  ident: 10.1016/j.foodchem.2020.127567_b0145
  article-title: The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution
  publication-title: Nature Genetics
  doi: 10.1038/ng.2586
– volume: 114
  start-page: 259
  issue: 2
  year: 2002
  ident: 10.1016/j.foodchem.2020.127567_b0065
  article-title: Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: Involvement in regulating peach fruit acidity
  publication-title: Physiologia Plantarum
  doi: 10.1034/j.1399-3054.2002.1140212.x
– volume: 29
  start-page: 158
  issue: 1
  year: 2019
  ident: 10.1016/j.foodchem.2020.127567_b0030
  article-title: Noemi controls production of flavonoid pigments and fruit acidity and illustrates the domestication routes of modern citrus varieties
  publication-title: Current Biology
  doi: 10.1016/j.cub.2018.11.040
– volume: 3
  start-page: 15067
  year: 2016
  ident: 10.1016/j.foodchem.2020.127567_b0050
  article-title: Sugars in peach fruit: A breeding perspective
  publication-title: Horticulture Research
  doi: 10.1038/hortres.2015.67
– volume: 82
  start-page: 992
  year: 2020
  ident: 10.1016/j.foodchem.2020.127567_b0090
  article-title: Apple ALMT9 requires a conserved c-terminal domain for malate transport underlying fruit acidity
  publication-title: Plant Physiology
  doi: 10.1104/pp.19.01300
– volume: 122
  start-page: 1020
  issue: 4
  year: 2010
  ident: 10.1016/j.foodchem.2020.127567_b0020
  article-title: Manipulating the taste-related composition of strawberry fruits from different cultivars using deficit irrigation
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2010.03.060
– volume: 62
  start-page: 513
  year: 2006
  ident: 10.1016/j.foodchem.2020.127567_b0040
  article-title: Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-006-9037-7
– volume: 172
  start-page: 86
  year: 2015
  ident: 10.1016/j.foodchem.2020.127567_b0105
  article-title: Comparative assessment of sugar and malic acid composition in cultivated and wild apples
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.09.032
– volume: 466
  start-page: 443
  issue: 3
  year: 2015
  ident: 10.1016/j.foodchem.2020.127567_b0115
  article-title: Mitochondrial pyruvate transport: A historical perspective and future research directions
  publication-title: Bichemical Journal
  doi: 10.1042/BJ20141171
– volume: 103
  start-page: 429
  issue: 4
  year: 2005
  ident: 10.1016/j.foodchem.2020.127567_b0155
  article-title: Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2004.08.003
– volume: 10
  start-page: 71
  issue: 1
  year: 2009
  ident: 10.1016/j.foodchem.2020.127567_b0140
  article-title: Selection of reliable reference genes for gene expression studies in peach using real-time PCR
  publication-title: BMC Molecular Biology
  doi: 10.1186/1471-2199-10-71
– volume: 9
  start-page: 59
  issue: 1
  year: 2009
  ident: 10.1016/j.foodchem.2020.127567_b0025
  article-title: Phenotypic and fine genetic characterization of theDlocus controlling fruit acidity in peach
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-9-59
– volume: 147
  start-page: 115
  year: 2012
  ident: 10.1016/j.foodchem.2020.127567_b0045
  article-title: Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2012.09.011
– volume: 10
  start-page: 744
  year: 2019
  ident: 10.1016/j.foodchem.2020.127567_b0130
  article-title: Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex
  publication-title: Nature Communication
  doi: 10.1038/s41467-019-08516-3
– volume: 9
  start-page: 1689
  year: 2018
  ident: 10.1016/j.foodchem.2020.127567_b0015
  article-title: Modifications in organic acid profiles during fruit development and ripening: Correlation or causation?
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.01689
– volume: 12
  start-page: 37
  issue: 3
  year: 2016
  ident: 10.1016/j.foodchem.2020.127567_b0175
  article-title: Mapping QTLs associated with fruit quality traits in peach [Prunus persica(L.) Batsch] using SNP maps
  publication-title: Tree Genetics & Genomes
  doi: 10.1007/s11295-016-0996-9
– volume: 3
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.foodchem.2020.127567_b0160
  article-title: Comparative analysis of three types of peaches:Identification of the key individual characteristic flavor compounds by integrating consumers' acceptability with flavor quality
  publication-title: Horticultural Plant Journal
  doi: 10.1016/j.hpj.2017.01.012
– volume: 18
  start-page: 404
  issue: 1
  year: 2017
  ident: 10.1016/j.foodchem.2020.127567_b0075
  article-title: Integrated QTL detection for key breeding traits in multiple peach progenies
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3783-6
– volume: 7
  start-page: 13246
  year: 2016
  ident: 10.1016/j.foodchem.2020.127567_b0035
  article-title: Genome-wide association study of 12 agronomic traits in peach
  publication-title: Nature Communications
  doi: 10.1038/ncomms13246
– volume: 98
  start-page: 18
  year: 1999
  ident: 10.1016/j.foodchem.2020.127567_b0055
  article-title: Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch)
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s001220051035
– volume: 29
  start-page: 2249
  issue: 9
  year: 2017
  ident: 10.1016/j.foodchem.2020.127567_b0170
  article-title: An indel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00211
– volume: 15
  start-page: 550
  issue: 12
  year: 2014
  ident: 10.1016/j.foodchem.2020.127567_b0100
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biology
  doi: 10.1186/s13059-014-0550-8
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  ident: 10.1016/j.foodchem.2020.127567_b0085
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1923
– volume: 87
  start-page: 24
  year: 2014
  ident: 10.1016/j.foodchem.2020.127567_b0005
  article-title: Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development
  publication-title: Journal of Applied Botany and Food Quality
– start-page: 535
  year: 2016
  ident: 10.1016/j.foodchem.2020.127567_b0010
  article-title: Peach (Prunus persica (L.) Batsch)
– volume: 64
  start-page: 1451
  issue: 6
  year: 2013
  ident: 10.1016/j.foodchem.2020.127567_b0060
  article-title: What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ert035
– volume: 46
  issue: 9
  year: 2018
  ident: 10.1016/j.foodchem.2020.127567_b0135
  article-title: Octopus-toolkit: A workflow to automate mining of public epigenomic and transcriptomic next-generation sequencing data
  publication-title: Nucleic Acids Research
– volume: 157
  start-page: 1696
  year: 2011
  ident: 10.1016/j.foodchem.2020.127567_b0095
  article-title: Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.186064
– volume: 225
  start-page: 132
  year: 2017
  ident: 10.1016/j.foodchem.2020.127567_b0070
  article-title: Variation of ascorbic acid concentration in fruits of cultivated and wild apples
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.01.014
– volume: 82
  start-page: 105
  issue: 1
  year: 2015
  ident: 10.1016/j.foodchem.2020.127567_b0180
  article-title: Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors
  publication-title: Plant Journal
  doi: 10.1111/tpj.12792
– volume: 72
  start-page: 33
  issue: 2
  year: 2007
  ident: 10.1016/j.foodchem.2020.127567_b0120
  article-title: The chemistry and physiology of sour taste-a review
  publication-title: Journal of Food Science
  doi: 10.1111/j.1750-3841.2007.00282.x
SSID ssj0002018
Score 2.579512
Snippet •Degradation of organic acids caused low acidity of peach fruits.•Malate accumulation is controlled at the level of metabolism and vacuolar storage.•Citrate...
Fruit acidity is an important determinant of peach organoleptic quality, but its regulatory mechanism remains elusive. Measurement of organic acids in ripe...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127567
SubjectTerms Citrate
citrates
cultivars
degradation
food chemistry
fruit acids
Fruit Quality
fruiting
GABA
genes
Malate
malates
measurement
metabolism
Peach
peaches
reaction kinetics
sensory properties
storage
synthesis
vacuoles
Title Assessment of organic acid accumulation and its related genes in peach
URI https://dx.doi.org/10.1016/j.foodchem.2020.127567
https://www.proquest.com/docview/2427297539
https://www.proquest.com/docview/2524249436
Volume 334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iB72IT1xfRBBvdddumjTHZXVZXdyDD_QW8qpUtF3c7tXfbiZtfCF68NLSkkCYSWemk_m-QegwPsk0c3F8JGPiUzc24omyEQO8Ho-NtCcATr4c0-EtubhP7udQP2BhoKyysf21TffWunnTbqTZnuR5-xqYViCBFQMDe1wj2AmDXX78-lHm4RxcWp8kpD7d9Qkl_HiclaVxsgFEegxECyzx_eZ_dFDfTLX3P4MVtNwEjrhXr20VzdliDS32Q7-2NdQ6zW2Fj3DD9PmEx4Fo340L-OPpOhr03sk4cZnhuq2TxlLnxl307Llp6IVlYXBeTbGHu1iDH8As4rzAE6jA3EC3g7Ob_jBquilEmhBSORW4YEFKRXlmmLGUKRZTzZTWRMs0sSTVUqWp4qpj3BN1gWOaGa5TCl3_VNLdRPNFWdgthLMs45a4f0eiO8R0IIY0tKPcx09kl1rSQkkQodAN1Th0vHgSoabsUQTRCxC9qEXfQu33eZOabOPPGTxoSHzZNsJ5hD_nHgSVCqcqOCiRhS1nU-HCFuYRx_yXMQkAazjp0u1_rGEHLcVQJONzOrtovnqZ2T0X5VRq32_jfbTQOx8Nx3AfXd2N3gDNn_0W
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGWBBPEV5Ggmxhbap48RjVajKo10Aic3yKygIkoqmK78dnxOXhxAdWCIlsiXrzr67nO-7D6HTsJOq2MbxgQiJS92YgEXSBDHg9ViohekAOHk0psMHcv0YPS6hvsfCQFllbfsrm-6sdf2lVUuzNcmy1h10WoEEVggd2ENAsC8Te3yBxuD8_bPOw3q4pLpKSFy-6wtM-Pk8LQpthQOQ9BA6LcSRI5z_1UP9sNXOAQ3W0VodOeJetbgNtGTyTbTS94Rtm6h5kZkSn-G61ecLHvtO-3acByBPt9CgN-_GiYsUV7xOCguVaftQs9ea0QuLXOOsnGKHdzEaP4FdxFmOJ1CCuY0eBpf3_WFQ0ykEihBSWh3YaEEISVmqY21oLOOQqlgqRZRIIkMSJWSSSCbb2r5RGzkmqWYqoUD7J6PuDmrkRW52EU7TlBlifx6JahPdhiBS07a0p5-ILjWkiSIvQq7qXuNAefHCfVHZM_ei5yB6Xom-iVrzeZOq28bCGcxriH_bN9y6hIVzT7xKuVUV3JSI3BSzKbdxS-wgx-yPMREgaxjp0r1_rOEYrQzvR7f89mp8s49WQ6iYcQmeA9Qo32bm0IY8pTxyW_oDokX9AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+organic+acid+accumulation+and+its+related+genes+in+peach&rft.jtitle=Food+chemistry&rft.au=Zheng%2C+Beibei&rft.au=Zhao%2C+Li&rft.au=Jiang%2C+Xiaohan&rft.au=Cherono%2C+Sylvia&rft.date=2021-01-01&rft.issn=1873-7072&rft.eissn=1873-7072&rft.volume=334&rft.spage=127567&rft_id=info:doi/10.1016%2Fj.foodchem.2020.127567&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon