MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis

Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcrip...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 45; no. 11; pp. 6388 - 6403
Main Authors Lai, Binbin, Lee, Ji-Eun, Jang, Younghoon, Wang, Lifeng, Peng, Weiqun, Ge, Kai
Format Journal Article
LanguageEnglish
Published England Oxford University Press 20.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1. Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis.
AbstractList Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1. Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis.Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1. Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis.
Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1. Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis.
Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1 . Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis.
Author Lai, Binbin
Jang, Younghoon
Lee, Ji-Eun
Wang, Lifeng
Ge, Kai
Peng, Weiqun
AuthorAffiliation 1 Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
2 Department of Physics and Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, USA
AuthorAffiliation_xml – name: 2 Department of Physics and Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, USA
– name: 1 Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
Author_xml – sequence: 1
  givenname: Binbin
  surname: Lai
  fullname: Lai, Binbin
– sequence: 2
  givenname: Ji-Eun
  surname: Lee
  fullname: Lee, Ji-Eun
– sequence: 3
  givenname: Younghoon
  surname: Jang
  fullname: Jang, Younghoon
– sequence: 4
  givenname: Lifeng
  surname: Wang
  fullname: Wang, Lifeng
– sequence: 5
  givenname: Weiqun
  surname: Peng
  fullname: Peng, Weiqun
– sequence: 6
  givenname: Kai
  orcidid: 0000-0002-7442-5138
  surname: Ge
  fullname: Ge, Kai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28398509$$D View this record in MEDLINE/PubMed
BookMark eNptkU1vFDEMhiNURLeFCz8A5YiQhnUmmU1yQYIVX9IiOMA5yiSebehsMk1m-Pj3pGxbAeJiS_bj15bfM3ISU0RCHjN4zkDzdbR5vb_80XJxj6wY37SN0Jv2hKyAQ9cwEOqUnJXyFYAJ1okH5LRVXKsO9Ipcftjt-LoGQW1GmvFqCRk9HVKm21ef1hMHoH2IPsQ9TZFivLDRYS7URk_LMmFubmvXQwc7h4qFSPucvkdqfZjSHiOWUB6S-4MdCz66yefky5vXn7fvmt3Ht--3L3eNE0LMjXQI3gJncgDds05q55WQQ99ir3TfyU5bxyUyaBFlDdZ2yvsePDgYFOPn5MVRd1r6A3qHcc52NFMOB5t_mmSD-bsTw4XZp2-mE1pLwavA0xuBnK4WLLM5hOJwHG3EtBTDlNrIjnFoK_rkz113S24_XIFnR8DlVErG4Q5hYK7tM9U-c7SvwvAP7ML8-6P1zjD-b-QXJ-mgCQ
CitedBy_id crossref_primary_10_1016_j_canlet_2022_215833
crossref_primary_10_1016_j_isci_2023_108331
crossref_primary_10_1002_bdr2_2253
crossref_primary_10_1016_j_jbc_2024_107581
crossref_primary_10_18632_oncotarget_27988
crossref_primary_10_1101_gad_347583_120
crossref_primary_10_1007_s00432_022_03968_5
crossref_primary_10_1152_ajpheart_00382_2020
crossref_primary_10_1038_s41467_018_04127_6
crossref_primary_10_1016_j_molmet_2019_10_007
crossref_primary_10_1038_s41467_017_02403_5
crossref_primary_10_1186_s12935_024_03599_5
crossref_primary_10_3390_ijms22115906
crossref_primary_10_1038_s41467_020_20511_7
crossref_primary_10_1038_s41588_019_0428_5
crossref_primary_10_1016_j_bbalip_2018_04_016
crossref_primary_10_1016_j_bbagrm_2020_194545
crossref_primary_10_1038_s12276_023_01058_1
crossref_primary_10_1038_s41419_021_03647_2
crossref_primary_10_1172_JCI136155
crossref_primary_10_1186_s13018_024_05121_z
crossref_primary_10_3390_epigenomes5010003
crossref_primary_10_1016_j_celrep_2020_108293
crossref_primary_10_1038_s41467_024_50861_5
crossref_primary_10_1038_s41598_020_60049_8
crossref_primary_10_1016_j_mrrev_2022_108443
crossref_primary_10_1159_000513199
crossref_primary_10_1093_hmg_ddz284
crossref_primary_10_1002_1878_0261_12848
crossref_primary_10_1186_s13578_022_00785_8
crossref_primary_10_3389_fendo_2020_00634
crossref_primary_10_1186_s13059_023_02883_3
crossref_primary_10_1042_BST20191164
crossref_primary_10_1186_s12864_024_10090_y
crossref_primary_10_3389_fcell_2020_619888
crossref_primary_10_3389_fendo_2020_00095
crossref_primary_10_1101_gad_346791_120
crossref_primary_10_1016_j_jmb_2023_168376
crossref_primary_10_1016_j_molcel_2024_02_030
crossref_primary_10_1002_bies_202200239
crossref_primary_10_1016_j_molcel_2018_04_028
crossref_primary_10_1186_s12872_023_03287_8
crossref_primary_10_1161_CIRCRESAHA_123_323458
crossref_primary_10_1098_rsob_200255
crossref_primary_10_1016_j_stem_2019_03_005
crossref_primary_10_1080_21541264_2020_1713682
crossref_primary_10_1016_j_celrep_2024_114542
crossref_primary_10_1002_dvg_23404
crossref_primary_10_1073_pnas_2218330120
crossref_primary_10_1016_j_isci_2019_02_013
crossref_primary_10_1146_annurev_genom_120220_085159
crossref_primary_10_1186_s13046_020_01626_7
crossref_primary_10_1038_s42003_025_07468_3
crossref_primary_10_1152_ajpendo_00120_2024
crossref_primary_10_4049_jimmunol_1800566
crossref_primary_10_1093_nar_gkaa082
crossref_primary_10_1080_10985549_2024_2388254
crossref_primary_10_3390_biom11030455
crossref_primary_10_3390_ijms19061793
crossref_primary_10_1080_15592294_2019_1634985
crossref_primary_10_1038_s42003_024_05835_0
crossref_primary_10_1002_mco2_261
crossref_primary_10_1016_j_ydbio_2020_09_007
crossref_primary_10_1016_j_bbagrm_2018_06_007
crossref_primary_10_1016_j_ccell_2020_03_005
crossref_primary_10_1128_MCB_00601_18
crossref_primary_10_1016_j_tibs_2017_10_004
crossref_primary_10_1016_j_tranon_2023_101815
crossref_primary_10_1042_BCJ20190599
crossref_primary_10_1080_21623945_2019_1697563
crossref_primary_10_1158_1078_0432_CCR_18_1480
crossref_primary_10_1016_j_molcel_2024_03_013
crossref_primary_10_1002_pro_4847
crossref_primary_10_1002_oby_22334
crossref_primary_10_1016_j_canlet_2019_05_024
crossref_primary_10_1016_j_celrep_2022_110603
crossref_primary_10_1136_jitc_2022_006020
crossref_primary_10_62347_QKHB5897
crossref_primary_10_1038_s41467_024_45669_2
crossref_primary_10_1016_j_csbj_2022_09_008
crossref_primary_10_1101_gad_306241_117
crossref_primary_10_1038_s41467_021_21893_y
crossref_primary_10_1096_fasebj_2018_32_1_supplement_524_5
crossref_primary_10_1038_s41408_020_00389_w
crossref_primary_10_1093_hmg_ddaa272
crossref_primary_10_1016_j_taap_2018_08_011
crossref_primary_10_1038_s41467_023_40606_1
crossref_primary_10_1016_j_celrep_2021_108751
crossref_primary_10_1128_MCB_00547_19
crossref_primary_10_3389_fendo_2024_1385811
crossref_primary_10_1038_s41588_023_01356_4
crossref_primary_10_1016_j_reth_2024_08_022
crossref_primary_10_1016_j_molmet_2021_101284
crossref_primary_10_1507_endocrj_EJ18_0442
crossref_primary_10_1038_s42255_024_01045_4
crossref_primary_10_1016_j_ijbiomac_2025_142414
crossref_primary_10_1093_nar_gkad698
crossref_primary_10_1007_s00018_019_03143_z
crossref_primary_10_1038_s41467_020_20400_z
crossref_primary_10_1016_j_bbagrm_2020_194579
crossref_primary_10_3390_cells11172675
crossref_primary_10_1038_s41467_021_26065_6
crossref_primary_10_1016_j_tig_2019_06_004
crossref_primary_10_3390_cells9071620
crossref_primary_10_1016_j_jmb_2024_168453
crossref_primary_10_1016_j_cell_2018_08_058
crossref_primary_10_1038_cr_2018_1
crossref_primary_10_1002_ctm2_1753
crossref_primary_10_1186_s13395_024_00369_9
crossref_primary_10_1016_j_celrep_2019_10_099
crossref_primary_10_3390_biom12030347
crossref_primary_10_3892_ol_2020_11855
crossref_primary_10_1038_s41467_024_49391_x
crossref_primary_10_1016_j_ccell_2022_11_015
crossref_primary_10_1038_s41467_019_10324_8
crossref_primary_10_1007_s10753_021_01459_2
crossref_primary_10_1007_s00018_022_04349_4
crossref_primary_10_1101_gad_321059_118
crossref_primary_10_1038_s44318_025_00385_5
crossref_primary_10_26508_lsa_202201572
crossref_primary_10_1016_j_bbagrm_2022_194839
crossref_primary_10_1093_nar_gkac585
crossref_primary_10_2217_epi_2018_0065
crossref_primary_10_1002_mc_23204
Cites_doi 10.1038/emboj.2010.318
10.1038/ng1966
10.1038/nature07730
10.1016/j.cell.2010.09.006
10.1016/j.cmet.2006.07.001
10.1016/j.ymeth.2009.03.003
10.1038/nprot.2008.211
10.1016/j.cmet.2013.01.015
10.1073/pnas.1606857113
10.1371/journal.pgen.1006474
10.1038/nrm3949
10.1016/j.cmet.2007.06.001
10.1016/j.cell.2013.03.035
10.1038/nature13992
10.7554/eLife.01503
10.1016/j.cell.2013.09.053
10.1016/j.molcel.2013.01.038
10.1038/nature11247
10.1073/pnas.0707292104
10.1152/physrev.00015.2003
10.1073/pnas.1000031107
10.1038/nbt.1621
10.1016/j.cell.2013.03.036
10.1038/nrm2066
10.1093/bioinformatics/btp340
10.1073/pnas.1016071107
10.1093/bioinformatics/btp120
10.1016/j.cell.2012.07.035
10.1016/j.bbagrm.2011.12.008
10.1038/emboj.2011.65
10.1038/ng.1064
10.1074/jbc.M200585200
10.1016/j.cell.2013.12.012
10.1016/j.tem.2014.04.001
ContentType Journal Article
Copyright Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
Published by Oxford University Press on behalf of Nucleic Acids Research 2017. 2017
Copyright_xml – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
– notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2017. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkx234
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 6403
ExternalDocumentID PMC5499743
28398509
10_1093_nar_gkx234
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI113806
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c444t-7ce0da0317f09b1579cd847fb2eb89b5759ac37e102ee702eaa58ddb0d0c0f813
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:33:36 EDT 2025
Thu Jul 10 16:27:08 EDT 2025
Thu Apr 03 06:57:06 EDT 2025
Thu Apr 24 22:54:02 EDT 2025
Tue Jul 01 02:07:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
This work is written by (a) US Government employee(s) and is in the public domain in the US.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-7ce0da0317f09b1579cd847fb2eb89b5759ac37e102ee702eaa58ddb0d0c0f813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7442-5138
OpenAccessLink http://dx.doi.org/10.1093/nar/gkx234
PMID 28398509
PQID 1886751302
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499743
proquest_miscellaneous_1886751302
pubmed_primary_28398509
crossref_primary_10_1093_nar_gkx234
crossref_citationtrail_10_1093_nar_gkx234
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-20
PublicationDateYYYYMMDD 2017-06-20
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References ( key 20170620071246_B4) 2010; 107
( key 20170620071246_B19) 2007; 6
( key 20170620071246_B1) 2015; 16
( key 20170620071246_B15) 2014; 4
( key 20170620071246_B3) 2013; 49
( key 20170620071246_B24) 2009; 48
( key 20170620071246_B28) 2009; 4
( key 20170620071246_B35) 2010; 143
( key 20170620071246_B12) 2017; 37
( key 20170620071246_B37) 2013; 153
( key 20170620071246_B5) 2013; 2
( key 20170620071246_B8) 2009; 457
( key 20170620071246_B9) 2006; 4
( key 20170620071246_B29) 2013; 153
( key 20170620071246_B6) 2016; 113
( key 20170620071246_B25) 2009; 25
( key 20170620071246_B38) 2015; 16
( key 20170620071246_B22) 2016
( key 20170620071246_B20) 2013; 17
( key 20170620071246_B31) 2013; 32
( key 20170620071246_B7) 2011; 30
( key 20170620071246_B2) 2007; 39
( key 20170620071246_B11) 2011; 30
( key 20170620071246_B13) 2014; 25
( key 20170620071246_B14) 2012; 1819
( key 20170620071246_B32) 2012; 151
( key 20170620071246_B39) 2016; 12
( key 20170620071246_B21) 2007; 104
( key 20170620071246_B40) 2016; 2016
( key 20170620071246_B10) 2006; 7
( key 20170620071246_B18) 2014; 156
( key 20170620071246_B26) 2009; 25
( key 20170620071246_B27) 2010; 28
( key 20170620071246_B23) 2010; 107
( key 20170620071246_B33) 2012; 44
ENCODE Project Consortium ( key 20170620071246_B34) 2012; 489
( key 20170620071246_B30) 2014; 515
( key 20170620071246_B36) 2013; 155
( key 20170620071246_B17) 2004; 84
( key 20170620071246_B16) 2002; 277
20368440 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7317-22
27144179 - J Diabetes Res. 2016;2016:6785948
24793638 - Trends Endocrinol Metab. 2014 Jun;25(6):293-302
17011499 - Cell Metab. 2006 Oct;4(4):263-73
23582322 - Cell. 2013 Apr 11;153(2):307-19
22240386 - Biochim Biophys Acta. 2012 Jul;1819(7):727-32
24119843 - Cell. 2013 Nov 7;155(4):934-47
21131905 - EMBO J. 2011 Jan 19;30(2):249-62
17139329 - Nat Rev Mol Cell Biol. 2006 Dec;7(12):885-96
27777310 - Mol Cell Biol. 2017 Jan 4;37(2)
18003914 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18439-44
24904744 - Cell Biosci. 2014 May 29;4:29
24368734 - Elife. 2013 Dec 24;2:e01503
22981692 - Cell. 2012 Sep 28;151(1):206-20
25650801 - Nat Rev Mol Cell Biol. 2015 Mar;16(3):144-54
23582323 - Cell. 2013 Apr 11;153(2):320-34
23178591 - EMBO J. 2013 Jan 9;32(1):45-59
28013028 - J Mol Biol. 2017 Jun 30;429(13):2046-2054
26546038 - BMC Genomics. 2015 Nov 06;16:903
23473601 - Mol Cell. 2013 Mar 7;49(5):825-37
21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6
27698142 - Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11871-11876
27923061 - PLoS Genet. 2016 Dec 6;12 (12 ):e1006474
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
24439368 - Cell. 2014 Jan 16;156(1-2):20-44
17618855 - Cell Metab. 2007 Jul;6(1):38-54
17277777 - Nat Genet. 2007 Mar;39(3):311-8
22231485 - Nat Genet. 2012 Jan 08;44(2):148-56
11884404 - J Biol Chem. 2002 May 10;277(19):16906-12
19505939 - Bioinformatics. 2009 Aug 1;25(15):1952-8
19303047 - Methods. 2009 Jul;48(3):233-9
20436464 - Nat Biotechnol. 2010 May;28(5):511-5
22955616 - Nature. 2012 Sep 6;489(7414):57-74
23499423 - Cell Metab. 2013 Apr 2;17(4):562-74
25409824 - Nature. 2014 Nov 20;515(7527):355-64
21427703 - EMBO J. 2011 Apr 20;30(8):1459-72
19212405 - Nature. 2009 Feb 12;457(7231):854-8
20887899 - Cell. 2010 Oct 1;143(1):156-69
14715917 - Physiol Rev. 2004 Jan;84(1):277-359
19131956 - Nat Protoc. 2009;4(1):44-57
References_xml – volume: 30
  start-page: 249
  year: 2011
  ident: key 20170620071246_B7
  article-title: Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.318
– volume: 39
  start-page: 311
  year: 2007
  ident: key 20170620071246_B2
  article-title: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
  publication-title: Nat. Genet.
  doi: 10.1038/ng1966
– volume: 457
  start-page: 854
  year: 2009
  ident: key 20170620071246_B8
  article-title: ChIP-seq accurately predicts tissue-specific activity of enhancers
  publication-title: Nature
  doi: 10.1038/nature07730
– volume: 143
  start-page: 156
  year: 2010
  ident: key 20170620071246_B35
  article-title: Comparative epigenomic analysis of murine and human adipogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2010.09.006
– volume: 37
  year: 2017
  ident: key 20170620071246_B12
  article-title: Distinct roles of transcription factors KLF4, Krox20, and peroxisome proliferator-activated receptor γ in adipogenesis
  publication-title: Mol. Cell. Biol.
– volume: 32
  start-page: 45
  year: 2013
  ident: key 20170620071246_B31
  article-title: Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis
  publication-title: EMBO J.
– volume: 4
  start-page: 263
  year: 2006
  ident: key 20170620071246_B9
  article-title: Transcriptional control of adipocyte formation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.07.001
– volume: 48
  start-page: 233
  year: 2009
  ident: key 20170620071246_B24
  article-title: Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements)
  publication-title: Methods
  doi: 10.1016/j.ymeth.2009.03.003
– volume: 4
  start-page: 44
  year: 2009
  ident: key 20170620071246_B28
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.211
– volume: 17
  start-page: 562
  year: 2013
  ident: key 20170620071246_B20
  article-title: EBF2 determines and maintains brown adipocyte identity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.01.015
– volume: 113
  start-page: 11871
  year: 2016
  ident: key 20170620071246_B6
  article-title: Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1606857113
– volume: 12
  start-page: e1006474
  year: 2016
  ident: key 20170620071246_B39
  article-title: Comparative transcriptomic and epigenomic analyses reveal new regulators of murine brown adipogenesis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006474
– volume: 16
  start-page: 144
  year: 2015
  ident: key 20170620071246_B1
  article-title: The selection and function of cell type-specific enhancers
  publication-title: Na.t Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3949
– volume: 6
  start-page: 38
  year: 2007
  ident: key 20170620071246_B19
  article-title: Transcriptional control of brown fat determination by PRDM16
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.06.001
– volume: 153
  start-page: 307
  year: 2013
  ident: key 20170620071246_B29
  article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.035
– volume: 515
  start-page: 355
  year: 2014
  ident: key 20170620071246_B30
  article-title: A comparative encyclopedia of DNA elements in the mouse genome
  publication-title: Nature
  doi: 10.1038/nature13992
– volume: 2
  start-page: e01503
  year: 2013
  ident: key 20170620071246_B5
  article-title: H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation
  publication-title: Elife
  doi: 10.7554/eLife.01503
– year: 2016
  ident: key 20170620071246_B22
  article-title: H3K4 methyltransferase activity is required for MLL4 protein stability
  publication-title: J. Mol. Biol.
– volume: 155
  start-page: 934
  year: 2013
  ident: key 20170620071246_B36
  article-title: Super-enhancers in the control of cell identity and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.053
– volume: 16
  year: 2015
  ident: key 20170620071246_B38
  article-title: High-density P300 enhancers control cell state transitions
  publication-title: BMC Genomics
– volume: 49
  start-page: 825
  year: 2013
  ident: key 20170620071246_B3
  article-title: Modification of enhancer chromatin: what, how, and why?
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.038
– volume: 489
  start-page: 57
  year: 2012
  ident: key 20170620071246_B34
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 2016
  year: 2016
  ident: key 20170620071246_B40
  article-title: Impaired thermogenesis and a molecular signature for brown adipose tissue in Id2 null mice
  publication-title: J. Diabetes Res.
– volume: 104
  start-page: 18439
  year: 2007
  ident: key 20170620071246_B21
  article-title: Identification of JmjC domain-containing UTX and JMJD2 as histone H3 lysine 27 demethylases
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0707292104
– volume: 84
  start-page: 277
  year: 2004
  ident: key 20170620071246_B17
  article-title: Brown adipose tissue: function and physiological significance
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00015.2003
– volume: 107
  start-page: 7317
  year: 2010
  ident: key 20170620071246_B23
  article-title: Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1000031107
– volume: 28
  start-page: 511
  year: 2010
  ident: key 20170620071246_B27
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 153
  start-page: 320
  year: 2013
  ident: key 20170620071246_B37
  article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.036
– volume: 7
  start-page: 885
  year: 2006
  ident: key 20170620071246_B10
  article-title: Adipocyte differentiation from the inside out
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2066
– volume: 25
  start-page: 1952
  year: 2009
  ident: key 20170620071246_B25
  article-title: A clustering approach for identification of enriched domains from histone modification ChIP-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp340
– volume: 107
  start-page: 21931
  year: 2010
  ident: key 20170620071246_B4
  article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1016071107
– volume: 25
  start-page: 1105
  year: 2009
  ident: key 20170620071246_B26
  article-title: TopHat: discovering splice junctions with RNA-seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 151
  start-page: 206
  year: 2012
  ident: key 20170620071246_B32
  article-title: Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.035
– volume: 1819
  start-page: 727
  year: 2012
  ident: key 20170620071246_B14
  article-title: Epigenetic regulation of adipogenesis by histone methylation
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2011.12.008
– volume: 30
  start-page: 1459
  year: 2011
  ident: key 20170620071246_B11
  article-title: Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.65
– volume: 44
  start-page: 148
  year: 2012
  ident: key 20170620071246_B33
  article-title: Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development
  publication-title: Nat. Genet.
  doi: 10.1038/ng.1064
– volume: 4
  year: 2014
  ident: key 20170620071246_B15
  article-title: Transcriptional and epigenetic regulation of PPARgamma expression during adipogenesis
  publication-title: Cell Biosci.
– volume: 277
  start-page: 16906
  year: 2002
  ident: key 20170620071246_B16
  article-title: Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor gamma
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M200585200
– volume: 156
  start-page: 20
  year: 2014
  ident: key 20170620071246_B18
  article-title: What we talk about when we talk about fat
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.012
– volume: 25
  start-page: 293
  year: 2014
  ident: key 20170620071246_B13
  article-title: PPARgamma and the global map of adipogenesis and beyond
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2014.04.001
– reference: 23582322 - Cell. 2013 Apr 11;153(2):307-19
– reference: 22231485 - Nat Genet. 2012 Jan 08;44(2):148-56
– reference: 21427703 - EMBO J. 2011 Apr 20;30(8):1459-72
– reference: 19212405 - Nature. 2009 Feb 12;457(7231):854-8
– reference: 17139329 - Nat Rev Mol Cell Biol. 2006 Dec;7(12):885-96
– reference: 19303047 - Methods. 2009 Jul;48(3):233-9
– reference: 27144179 - J Diabetes Res. 2016;2016:6785948
– reference: 21131905 - EMBO J. 2011 Jan 19;30(2):249-62
– reference: 19131956 - Nat Protoc. 2009;4(1):44-57
– reference: 24119843 - Cell. 2013 Nov 7;155(4):934-47
– reference: 27698142 - Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11871-11876
– reference: 17618855 - Cell Metab. 2007 Jul;6(1):38-54
– reference: 28013028 - J Mol Biol. 2017 Jun 30;429(13):2046-2054
– reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74
– reference: 23473601 - Mol Cell. 2013 Mar 7;49(5):825-37
– reference: 27777310 - Mol Cell Biol. 2017 Jan 4;37(2):
– reference: 26546038 - BMC Genomics. 2015 Nov 06;16:903
– reference: 24368734 - Elife. 2013 Dec 24;2:e01503
– reference: 23499423 - Cell Metab. 2013 Apr 2;17(4):562-74
– reference: 24439368 - Cell. 2014 Jan 16;156(1-2):20-44
– reference: 20887899 - Cell. 2010 Oct 1;143(1):156-69
– reference: 18003914 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18439-44
– reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5
– reference: 14715917 - Physiol Rev. 2004 Jan;84(1):277-359
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 24793638 - Trends Endocrinol Metab. 2014 Jun;25(6):293-302
– reference: 25650801 - Nat Rev Mol Cell Biol. 2015 Mar;16(3):144-54
– reference: 27923061 - PLoS Genet. 2016 Dec 6;12 (12 ):e1006474
– reference: 23582323 - Cell. 2013 Apr 11;153(2):320-34
– reference: 22240386 - Biochim Biophys Acta. 2012 Jul;1819(7):727-32
– reference: 22981692 - Cell. 2012 Sep 28;151(1):206-20
– reference: 20368440 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7317-22
– reference: 19505939 - Bioinformatics. 2009 Aug 1;25(15):1952-8
– reference: 25409824 - Nature. 2014 Nov 20;515(7527):355-64
– reference: 17277777 - Nat Genet. 2007 Mar;39(3):311-8
– reference: 11884404 - J Biol Chem. 2002 May 10;277(19):16906-12
– reference: 17011499 - Cell Metab. 2006 Oct;4(4):263-73
– reference: 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6
– reference: 24904744 - Cell Biosci. 2014 May 29;4:29
– reference: 23178591 - EMBO J. 2013 Jan 9;32(1):45-59
SSID ssj0014154
Score 2.5701864
Snippet Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6388
SubjectTerms Adipocytes, Brown - physiology
Adipogenesis
Adipose Tissue, Brown - cytology
Animals
Cells, Cultured
CREB-Binding Protein - metabolism
E1A-Associated p300 Protein - metabolism
Enhancer Elements, Genetic
Gene regulation, Chromatin and Epigenetics
Histone-Lysine N-Methyltransferase - physiology
Mice, Transgenic
Protein Binding
Transcriptional Activation
Transcriptome
Title MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/28398509
https://www.proquest.com/docview/1886751302
https://pubmed.ncbi.nlm.nih.gov/PMC5499743
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgPMALgo1LuUxGICQ0hTqN08SPW9VpmrqJh03sLbIdZ43GnKoXCfj1nGMnacqKBLyklZMmUr6vx8fn8pmQD8MCJoGQx4GQOg54aligpCwCA765Bg85zzl2I5-dD08u-elVfLXO4LvukqX6rH9u7Sv5H1RhDHDFLtl_QLa9KQzAd8AXjoAwHP8K47PJBAUR4IMfYAXX3GBdL7iQWDs4OvqCO-tGjB2o0veuANLGThHnuZdmXqxmZh40Y-tORoyCKFygH8i8nFXXaBDLRdeRPUcdZNR61WWOmYdOUMzJOLoigaPSqvJOzU8ZjFft4Gkdr3ZWZ1qtiwK-1icmZWHq2bUOToSukm7g8yzGG1TXlSU2La4XkGyYFXbsJ1iDdKth96JXFovOj69vvg98BLSD8ezWgQzekkhjJtbTW1t02Jy6Tx4MYE2B210kbNymnMCT4Y1-rYj68Ki-fxDqRdc_3XRe7qxIfi-s7XgqF0_I43qJQQ89X56Se8bukr1DK5fV7Q_6kbqiX5dN2SUPR82Gf3vkBunURzJRIBNtyESBFRTI1Ecq0ZpKtLK0pRIFKtFNKtGWSrS01FGJdqn0jFwejy9GJ0G9F0egOefLINGG5RJmgKRgQoVxInQOjk2hBkalQuE2r1JHiQF_1ZgEDlLG8EdXLGeaFWkYPSc7trLmJaEs0rEBP1PlqeCCwYSgkzjhMg71kIu06JFPzUvOdC1Uj_ulfMt8wUSUATaZx6ZH3rfXzrw8y9ar3jVYZfBOMSUmralWiyxMU1gxY_K-R1547Nr7NKD3SLKBansBKrNvnrHl1Cm0Y9AFXPNXf7zna_Jo_Xd5Q3aW85V5C97tUu07Vu672NAvaiupKg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLL3%2FMLL4+are+required+for+CBP%2Fp300+binding+on+enhancers+and+super-enhancer+formation+in+brown+adipogenesis&rft.jtitle=Nucleic+acids+research&rft.au=Lai%2C+Binbin&rft.au=Lee%2C+Ji-Eun&rft.au=Jang%2C+Younghoon&rft.au=Wang%2C+Lifeng&rft.date=2017-06-20&rft.eissn=1362-4962&rft.volume=45&rft.issue=11&rft.spage=6388&rft_id=info:doi/10.1093%2Fnar%2Fgkx234&rft_id=info%3Apmid%2F28398509&rft.externalDocID=28398509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon