MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis
Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcrip...
Saved in:
Published in | Nucleic acids research Vol. 45; no. 11; pp. 6388 - 6403 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
20.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1. Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis. |
---|---|
AbstractList | Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1. Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis.Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1. Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis. Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1. Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis. Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1 . Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis. |
Author | Lai, Binbin Jang, Younghoon Lee, Ji-Eun Wang, Lifeng Ge, Kai Peng, Weiqun |
AuthorAffiliation | 1 Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA 2 Department of Physics and Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, USA |
AuthorAffiliation_xml | – name: 2 Department of Physics and Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, USA – name: 1 Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA |
Author_xml | – sequence: 1 givenname: Binbin surname: Lai fullname: Lai, Binbin – sequence: 2 givenname: Ji-Eun surname: Lee fullname: Lee, Ji-Eun – sequence: 3 givenname: Younghoon surname: Jang fullname: Jang, Younghoon – sequence: 4 givenname: Lifeng surname: Wang fullname: Wang, Lifeng – sequence: 5 givenname: Weiqun surname: Peng fullname: Peng, Weiqun – sequence: 6 givenname: Kai orcidid: 0000-0002-7442-5138 surname: Ge fullname: Ge, Kai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28398509$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1vFDEMhiNURLeFCz8A5YiQhnUmmU1yQYIVX9IiOMA5yiSebehsMk1m-Pj3pGxbAeJiS_bj15bfM3ISU0RCHjN4zkDzdbR5vb_80XJxj6wY37SN0Jv2hKyAQ9cwEOqUnJXyFYAJ1okH5LRVXKsO9Ipcftjt-LoGQW1GmvFqCRk9HVKm21ef1hMHoH2IPsQ9TZFivLDRYS7URk_LMmFubmvXQwc7h4qFSPucvkdqfZjSHiOWUB6S-4MdCz66yefky5vXn7fvmt3Ht--3L3eNE0LMjXQI3gJncgDds05q55WQQ99ir3TfyU5bxyUyaBFlDdZ2yvsePDgYFOPn5MVRd1r6A3qHcc52NFMOB5t_mmSD-bsTw4XZp2-mE1pLwavA0xuBnK4WLLM5hOJwHG3EtBTDlNrIjnFoK_rkz113S24_XIFnR8DlVErG4Q5hYK7tM9U-c7SvwvAP7ML8-6P1zjD-b-QXJ-mgCQ |
CitedBy_id | crossref_primary_10_1016_j_canlet_2022_215833 crossref_primary_10_1016_j_isci_2023_108331 crossref_primary_10_1002_bdr2_2253 crossref_primary_10_1016_j_jbc_2024_107581 crossref_primary_10_18632_oncotarget_27988 crossref_primary_10_1101_gad_347583_120 crossref_primary_10_1007_s00432_022_03968_5 crossref_primary_10_1152_ajpheart_00382_2020 crossref_primary_10_1038_s41467_018_04127_6 crossref_primary_10_1016_j_molmet_2019_10_007 crossref_primary_10_1038_s41467_017_02403_5 crossref_primary_10_1186_s12935_024_03599_5 crossref_primary_10_3390_ijms22115906 crossref_primary_10_1038_s41467_020_20511_7 crossref_primary_10_1038_s41588_019_0428_5 crossref_primary_10_1016_j_bbalip_2018_04_016 crossref_primary_10_1016_j_bbagrm_2020_194545 crossref_primary_10_1038_s12276_023_01058_1 crossref_primary_10_1038_s41419_021_03647_2 crossref_primary_10_1172_JCI136155 crossref_primary_10_1186_s13018_024_05121_z crossref_primary_10_3390_epigenomes5010003 crossref_primary_10_1016_j_celrep_2020_108293 crossref_primary_10_1038_s41467_024_50861_5 crossref_primary_10_1038_s41598_020_60049_8 crossref_primary_10_1016_j_mrrev_2022_108443 crossref_primary_10_1159_000513199 crossref_primary_10_1093_hmg_ddz284 crossref_primary_10_1002_1878_0261_12848 crossref_primary_10_1186_s13578_022_00785_8 crossref_primary_10_3389_fendo_2020_00634 crossref_primary_10_1186_s13059_023_02883_3 crossref_primary_10_1042_BST20191164 crossref_primary_10_1186_s12864_024_10090_y crossref_primary_10_3389_fcell_2020_619888 crossref_primary_10_3389_fendo_2020_00095 crossref_primary_10_1101_gad_346791_120 crossref_primary_10_1016_j_jmb_2023_168376 crossref_primary_10_1016_j_molcel_2024_02_030 crossref_primary_10_1002_bies_202200239 crossref_primary_10_1016_j_molcel_2018_04_028 crossref_primary_10_1186_s12872_023_03287_8 crossref_primary_10_1161_CIRCRESAHA_123_323458 crossref_primary_10_1098_rsob_200255 crossref_primary_10_1016_j_stem_2019_03_005 crossref_primary_10_1080_21541264_2020_1713682 crossref_primary_10_1016_j_celrep_2024_114542 crossref_primary_10_1002_dvg_23404 crossref_primary_10_1073_pnas_2218330120 crossref_primary_10_1016_j_isci_2019_02_013 crossref_primary_10_1146_annurev_genom_120220_085159 crossref_primary_10_1186_s13046_020_01626_7 crossref_primary_10_1038_s42003_025_07468_3 crossref_primary_10_1152_ajpendo_00120_2024 crossref_primary_10_4049_jimmunol_1800566 crossref_primary_10_1093_nar_gkaa082 crossref_primary_10_1080_10985549_2024_2388254 crossref_primary_10_3390_biom11030455 crossref_primary_10_3390_ijms19061793 crossref_primary_10_1080_15592294_2019_1634985 crossref_primary_10_1038_s42003_024_05835_0 crossref_primary_10_1002_mco2_261 crossref_primary_10_1016_j_ydbio_2020_09_007 crossref_primary_10_1016_j_bbagrm_2018_06_007 crossref_primary_10_1016_j_ccell_2020_03_005 crossref_primary_10_1128_MCB_00601_18 crossref_primary_10_1016_j_tibs_2017_10_004 crossref_primary_10_1016_j_tranon_2023_101815 crossref_primary_10_1042_BCJ20190599 crossref_primary_10_1080_21623945_2019_1697563 crossref_primary_10_1158_1078_0432_CCR_18_1480 crossref_primary_10_1016_j_molcel_2024_03_013 crossref_primary_10_1002_pro_4847 crossref_primary_10_1002_oby_22334 crossref_primary_10_1016_j_canlet_2019_05_024 crossref_primary_10_1016_j_celrep_2022_110603 crossref_primary_10_1136_jitc_2022_006020 crossref_primary_10_62347_QKHB5897 crossref_primary_10_1038_s41467_024_45669_2 crossref_primary_10_1016_j_csbj_2022_09_008 crossref_primary_10_1101_gad_306241_117 crossref_primary_10_1038_s41467_021_21893_y crossref_primary_10_1096_fasebj_2018_32_1_supplement_524_5 crossref_primary_10_1038_s41408_020_00389_w crossref_primary_10_1093_hmg_ddaa272 crossref_primary_10_1016_j_taap_2018_08_011 crossref_primary_10_1038_s41467_023_40606_1 crossref_primary_10_1016_j_celrep_2021_108751 crossref_primary_10_1128_MCB_00547_19 crossref_primary_10_3389_fendo_2024_1385811 crossref_primary_10_1038_s41588_023_01356_4 crossref_primary_10_1016_j_reth_2024_08_022 crossref_primary_10_1016_j_molmet_2021_101284 crossref_primary_10_1507_endocrj_EJ18_0442 crossref_primary_10_1038_s42255_024_01045_4 crossref_primary_10_1016_j_ijbiomac_2025_142414 crossref_primary_10_1093_nar_gkad698 crossref_primary_10_1007_s00018_019_03143_z crossref_primary_10_1038_s41467_020_20400_z crossref_primary_10_1016_j_bbagrm_2020_194579 crossref_primary_10_3390_cells11172675 crossref_primary_10_1038_s41467_021_26065_6 crossref_primary_10_1016_j_tig_2019_06_004 crossref_primary_10_3390_cells9071620 crossref_primary_10_1016_j_jmb_2024_168453 crossref_primary_10_1016_j_cell_2018_08_058 crossref_primary_10_1038_cr_2018_1 crossref_primary_10_1002_ctm2_1753 crossref_primary_10_1186_s13395_024_00369_9 crossref_primary_10_1016_j_celrep_2019_10_099 crossref_primary_10_3390_biom12030347 crossref_primary_10_3892_ol_2020_11855 crossref_primary_10_1038_s41467_024_49391_x crossref_primary_10_1016_j_ccell_2022_11_015 crossref_primary_10_1038_s41467_019_10324_8 crossref_primary_10_1007_s10753_021_01459_2 crossref_primary_10_1007_s00018_022_04349_4 crossref_primary_10_1101_gad_321059_118 crossref_primary_10_1038_s44318_025_00385_5 crossref_primary_10_26508_lsa_202201572 crossref_primary_10_1016_j_bbagrm_2022_194839 crossref_primary_10_1093_nar_gkac585 crossref_primary_10_2217_epi_2018_0065 crossref_primary_10_1002_mc_23204 |
Cites_doi | 10.1038/emboj.2010.318 10.1038/ng1966 10.1038/nature07730 10.1016/j.cell.2010.09.006 10.1016/j.cmet.2006.07.001 10.1016/j.ymeth.2009.03.003 10.1038/nprot.2008.211 10.1016/j.cmet.2013.01.015 10.1073/pnas.1606857113 10.1371/journal.pgen.1006474 10.1038/nrm3949 10.1016/j.cmet.2007.06.001 10.1016/j.cell.2013.03.035 10.1038/nature13992 10.7554/eLife.01503 10.1016/j.cell.2013.09.053 10.1016/j.molcel.2013.01.038 10.1038/nature11247 10.1073/pnas.0707292104 10.1152/physrev.00015.2003 10.1073/pnas.1000031107 10.1038/nbt.1621 10.1016/j.cell.2013.03.036 10.1038/nrm2066 10.1093/bioinformatics/btp340 10.1073/pnas.1016071107 10.1093/bioinformatics/btp120 10.1016/j.cell.2012.07.035 10.1016/j.bbagrm.2011.12.008 10.1038/emboj.2011.65 10.1038/ng.1064 10.1074/jbc.M200585200 10.1016/j.cell.2013.12.012 10.1016/j.tem.2014.04.001 |
ContentType | Journal Article |
Copyright | Published by Oxford University Press on behalf of Nucleic Acids Research 2017. Published by Oxford University Press on behalf of Nucleic Acids Research 2017. 2017 |
Copyright_xml | – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2017. – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2017. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkx234 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 6403 |
ExternalDocumentID | PMC5499743 28398509 10_1093_nar_gkx234 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI113806 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM CGR CUY CVF ECM EIF M49 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c444t-7ce0da0317f09b1579cd847fb2eb89b5759ac37e102ee702eaa58ddb0d0c0f813 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:33:36 EDT 2025 Thu Jul 10 16:27:08 EDT 2025 Thu Apr 03 06:57:06 EDT 2025 Thu Apr 24 22:54:02 EDT 2025 Tue Jul 01 02:07:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Published by Oxford University Press on behalf of Nucleic Acids Research 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-7ce0da0317f09b1579cd847fb2eb89b5759ac37e102ee702eaa58ddb0d0c0f813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7442-5138 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkx234 |
PMID | 28398509 |
PQID | 1886751302 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499743 proquest_miscellaneous_1886751302 pubmed_primary_28398509 crossref_primary_10_1093_nar_gkx234 crossref_citationtrail_10_1093_nar_gkx234 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-20 |
PublicationDateYYYYMMDD | 2017-06-20 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | ( key 20170620071246_B4) 2010; 107 ( key 20170620071246_B19) 2007; 6 ( key 20170620071246_B1) 2015; 16 ( key 20170620071246_B15) 2014; 4 ( key 20170620071246_B3) 2013; 49 ( key 20170620071246_B24) 2009; 48 ( key 20170620071246_B28) 2009; 4 ( key 20170620071246_B35) 2010; 143 ( key 20170620071246_B12) 2017; 37 ( key 20170620071246_B37) 2013; 153 ( key 20170620071246_B5) 2013; 2 ( key 20170620071246_B8) 2009; 457 ( key 20170620071246_B9) 2006; 4 ( key 20170620071246_B29) 2013; 153 ( key 20170620071246_B6) 2016; 113 ( key 20170620071246_B25) 2009; 25 ( key 20170620071246_B38) 2015; 16 ( key 20170620071246_B22) 2016 ( key 20170620071246_B20) 2013; 17 ( key 20170620071246_B31) 2013; 32 ( key 20170620071246_B7) 2011; 30 ( key 20170620071246_B2) 2007; 39 ( key 20170620071246_B11) 2011; 30 ( key 20170620071246_B13) 2014; 25 ( key 20170620071246_B14) 2012; 1819 ( key 20170620071246_B32) 2012; 151 ( key 20170620071246_B39) 2016; 12 ( key 20170620071246_B21) 2007; 104 ( key 20170620071246_B40) 2016; 2016 ( key 20170620071246_B10) 2006; 7 ( key 20170620071246_B18) 2014; 156 ( key 20170620071246_B26) 2009; 25 ( key 20170620071246_B27) 2010; 28 ( key 20170620071246_B23) 2010; 107 ( key 20170620071246_B33) 2012; 44 ENCODE Project Consortium ( key 20170620071246_B34) 2012; 489 ( key 20170620071246_B30) 2014; 515 ( key 20170620071246_B36) 2013; 155 ( key 20170620071246_B17) 2004; 84 ( key 20170620071246_B16) 2002; 277 20368440 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7317-22 27144179 - J Diabetes Res. 2016;2016:6785948 24793638 - Trends Endocrinol Metab. 2014 Jun;25(6):293-302 17011499 - Cell Metab. 2006 Oct;4(4):263-73 23582322 - Cell. 2013 Apr 11;153(2):307-19 22240386 - Biochim Biophys Acta. 2012 Jul;1819(7):727-32 24119843 - Cell. 2013 Nov 7;155(4):934-47 21131905 - EMBO J. 2011 Jan 19;30(2):249-62 17139329 - Nat Rev Mol Cell Biol. 2006 Dec;7(12):885-96 27777310 - Mol Cell Biol. 2017 Jan 4;37(2) 18003914 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18439-44 24904744 - Cell Biosci. 2014 May 29;4:29 24368734 - Elife. 2013 Dec 24;2:e01503 22981692 - Cell. 2012 Sep 28;151(1):206-20 25650801 - Nat Rev Mol Cell Biol. 2015 Mar;16(3):144-54 23582323 - Cell. 2013 Apr 11;153(2):320-34 23178591 - EMBO J. 2013 Jan 9;32(1):45-59 28013028 - J Mol Biol. 2017 Jun 30;429(13):2046-2054 26546038 - BMC Genomics. 2015 Nov 06;16:903 23473601 - Mol Cell. 2013 Mar 7;49(5):825-37 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 27698142 - Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11871-11876 27923061 - PLoS Genet. 2016 Dec 6;12 (12 ):e1006474 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 24439368 - Cell. 2014 Jan 16;156(1-2):20-44 17618855 - Cell Metab. 2007 Jul;6(1):38-54 17277777 - Nat Genet. 2007 Mar;39(3):311-8 22231485 - Nat Genet. 2012 Jan 08;44(2):148-56 11884404 - J Biol Chem. 2002 May 10;277(19):16906-12 19505939 - Bioinformatics. 2009 Aug 1;25(15):1952-8 19303047 - Methods. 2009 Jul;48(3):233-9 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 22955616 - Nature. 2012 Sep 6;489(7414):57-74 23499423 - Cell Metab. 2013 Apr 2;17(4):562-74 25409824 - Nature. 2014 Nov 20;515(7527):355-64 21427703 - EMBO J. 2011 Apr 20;30(8):1459-72 19212405 - Nature. 2009 Feb 12;457(7231):854-8 20887899 - Cell. 2010 Oct 1;143(1):156-69 14715917 - Physiol Rev. 2004 Jan;84(1):277-359 19131956 - Nat Protoc. 2009;4(1):44-57 |
References_xml | – volume: 30 start-page: 249 year: 2011 ident: key 20170620071246_B7 article-title: Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation publication-title: EMBO J. doi: 10.1038/emboj.2010.318 – volume: 39 start-page: 311 year: 2007 ident: key 20170620071246_B2 article-title: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome publication-title: Nat. Genet. doi: 10.1038/ng1966 – volume: 457 start-page: 854 year: 2009 ident: key 20170620071246_B8 article-title: ChIP-seq accurately predicts tissue-specific activity of enhancers publication-title: Nature doi: 10.1038/nature07730 – volume: 143 start-page: 156 year: 2010 ident: key 20170620071246_B35 article-title: Comparative epigenomic analysis of murine and human adipogenesis publication-title: Cell doi: 10.1016/j.cell.2010.09.006 – volume: 37 year: 2017 ident: key 20170620071246_B12 article-title: Distinct roles of transcription factors KLF4, Krox20, and peroxisome proliferator-activated receptor γ in adipogenesis publication-title: Mol. Cell. Biol. – volume: 32 start-page: 45 year: 2013 ident: key 20170620071246_B31 article-title: Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis publication-title: EMBO J. – volume: 4 start-page: 263 year: 2006 ident: key 20170620071246_B9 article-title: Transcriptional control of adipocyte formation publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.07.001 – volume: 48 start-page: 233 year: 2009 ident: key 20170620071246_B24 article-title: Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements) publication-title: Methods doi: 10.1016/j.ymeth.2009.03.003 – volume: 4 start-page: 44 year: 2009 ident: key 20170620071246_B28 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.211 – volume: 17 start-page: 562 year: 2013 ident: key 20170620071246_B20 article-title: EBF2 determines and maintains brown adipocyte identity publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.01.015 – volume: 113 start-page: 11871 year: 2016 ident: key 20170620071246_B6 article-title: Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1606857113 – volume: 12 start-page: e1006474 year: 2016 ident: key 20170620071246_B39 article-title: Comparative transcriptomic and epigenomic analyses reveal new regulators of murine brown adipogenesis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006474 – volume: 16 start-page: 144 year: 2015 ident: key 20170620071246_B1 article-title: The selection and function of cell type-specific enhancers publication-title: Na.t Rev. Mol. Cell Biol. doi: 10.1038/nrm3949 – volume: 6 start-page: 38 year: 2007 ident: key 20170620071246_B19 article-title: Transcriptional control of brown fat determination by PRDM16 publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.06.001 – volume: 153 start-page: 307 year: 2013 ident: key 20170620071246_B29 article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell doi: 10.1016/j.cell.2013.03.035 – volume: 515 start-page: 355 year: 2014 ident: key 20170620071246_B30 article-title: A comparative encyclopedia of DNA elements in the mouse genome publication-title: Nature doi: 10.1038/nature13992 – volume: 2 start-page: e01503 year: 2013 ident: key 20170620071246_B5 article-title: H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation publication-title: Elife doi: 10.7554/eLife.01503 – year: 2016 ident: key 20170620071246_B22 article-title: H3K4 methyltransferase activity is required for MLL4 protein stability publication-title: J. Mol. Biol. – volume: 155 start-page: 934 year: 2013 ident: key 20170620071246_B36 article-title: Super-enhancers in the control of cell identity and disease publication-title: Cell doi: 10.1016/j.cell.2013.09.053 – volume: 16 year: 2015 ident: key 20170620071246_B38 article-title: High-density P300 enhancers control cell state transitions publication-title: BMC Genomics – volume: 49 start-page: 825 year: 2013 ident: key 20170620071246_B3 article-title: Modification of enhancer chromatin: what, how, and why? publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.038 – volume: 489 start-page: 57 year: 2012 ident: key 20170620071246_B34 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 2016 year: 2016 ident: key 20170620071246_B40 article-title: Impaired thermogenesis and a molecular signature for brown adipose tissue in Id2 null mice publication-title: J. Diabetes Res. – volume: 104 start-page: 18439 year: 2007 ident: key 20170620071246_B21 article-title: Identification of JmjC domain-containing UTX and JMJD2 as histone H3 lysine 27 demethylases publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0707292104 – volume: 84 start-page: 277 year: 2004 ident: key 20170620071246_B17 article-title: Brown adipose tissue: function and physiological significance publication-title: Physiol. Rev. doi: 10.1152/physrev.00015.2003 – volume: 107 start-page: 7317 year: 2010 ident: key 20170620071246_B23 article-title: Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1000031107 – volume: 28 start-page: 511 year: 2010 ident: key 20170620071246_B27 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – volume: 153 start-page: 320 year: 2013 ident: key 20170620071246_B37 article-title: Selective inhibition of tumor oncogenes by disruption of super-enhancers publication-title: Cell doi: 10.1016/j.cell.2013.03.036 – volume: 7 start-page: 885 year: 2006 ident: key 20170620071246_B10 article-title: Adipocyte differentiation from the inside out publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2066 – volume: 25 start-page: 1952 year: 2009 ident: key 20170620071246_B25 article-title: A clustering approach for identification of enriched domains from histone modification ChIP-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp340 – volume: 107 start-page: 21931 year: 2010 ident: key 20170620071246_B4 article-title: Histone H3K27ac separates active from poised enhancers and predicts developmental state publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1016071107 – volume: 25 start-page: 1105 year: 2009 ident: key 20170620071246_B26 article-title: TopHat: discovering splice junctions with RNA-seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 151 start-page: 206 year: 2012 ident: key 20170620071246_B32 article-title: Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage publication-title: Cell doi: 10.1016/j.cell.2012.07.035 – volume: 1819 start-page: 727 year: 2012 ident: key 20170620071246_B14 article-title: Epigenetic regulation of adipogenesis by histone methylation publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2011.12.008 – volume: 30 start-page: 1459 year: 2011 ident: key 20170620071246_B11 article-title: Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis publication-title: EMBO J. doi: 10.1038/emboj.2011.65 – volume: 44 start-page: 148 year: 2012 ident: key 20170620071246_B33 article-title: Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development publication-title: Nat. Genet. doi: 10.1038/ng.1064 – volume: 4 year: 2014 ident: key 20170620071246_B15 article-title: Transcriptional and epigenetic regulation of PPARgamma expression during adipogenesis publication-title: Cell Biosci. – volume: 277 start-page: 16906 year: 2002 ident: key 20170620071246_B16 article-title: Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor gamma publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200585200 – volume: 156 start-page: 20 year: 2014 ident: key 20170620071246_B18 article-title: What we talk about when we talk about fat publication-title: Cell doi: 10.1016/j.cell.2013.12.012 – volume: 25 start-page: 293 year: 2014 ident: key 20170620071246_B13 article-title: PPARgamma and the global map of adipogenesis and beyond publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2014.04.001 – reference: 23582322 - Cell. 2013 Apr 11;153(2):307-19 – reference: 22231485 - Nat Genet. 2012 Jan 08;44(2):148-56 – reference: 21427703 - EMBO J. 2011 Apr 20;30(8):1459-72 – reference: 19212405 - Nature. 2009 Feb 12;457(7231):854-8 – reference: 17139329 - Nat Rev Mol Cell Biol. 2006 Dec;7(12):885-96 – reference: 19303047 - Methods. 2009 Jul;48(3):233-9 – reference: 27144179 - J Diabetes Res. 2016;2016:6785948 – reference: 21131905 - EMBO J. 2011 Jan 19;30(2):249-62 – reference: 19131956 - Nat Protoc. 2009;4(1):44-57 – reference: 24119843 - Cell. 2013 Nov 7;155(4):934-47 – reference: 27698142 - Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11871-11876 – reference: 17618855 - Cell Metab. 2007 Jul;6(1):38-54 – reference: 28013028 - J Mol Biol. 2017 Jun 30;429(13):2046-2054 – reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74 – reference: 23473601 - Mol Cell. 2013 Mar 7;49(5):825-37 – reference: 27777310 - Mol Cell Biol. 2017 Jan 4;37(2): – reference: 26546038 - BMC Genomics. 2015 Nov 06;16:903 – reference: 24368734 - Elife. 2013 Dec 24;2:e01503 – reference: 23499423 - Cell Metab. 2013 Apr 2;17(4):562-74 – reference: 24439368 - Cell. 2014 Jan 16;156(1-2):20-44 – reference: 20887899 - Cell. 2010 Oct 1;143(1):156-69 – reference: 18003914 - Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18439-44 – reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 – reference: 14715917 - Physiol Rev. 2004 Jan;84(1):277-359 – reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 – reference: 24793638 - Trends Endocrinol Metab. 2014 Jun;25(6):293-302 – reference: 25650801 - Nat Rev Mol Cell Biol. 2015 Mar;16(3):144-54 – reference: 27923061 - PLoS Genet. 2016 Dec 6;12 (12 ):e1006474 – reference: 23582323 - Cell. 2013 Apr 11;153(2):320-34 – reference: 22240386 - Biochim Biophys Acta. 2012 Jul;1819(7):727-32 – reference: 22981692 - Cell. 2012 Sep 28;151(1):206-20 – reference: 20368440 - Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7317-22 – reference: 19505939 - Bioinformatics. 2009 Aug 1;25(15):1952-8 – reference: 25409824 - Nature. 2014 Nov 20;515(7527):355-64 – reference: 17277777 - Nat Genet. 2007 Mar;39(3):311-8 – reference: 11884404 - J Biol Chem. 2002 May 10;277(19):16906-12 – reference: 17011499 - Cell Metab. 2006 Oct;4(4):263-73 – reference: 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 – reference: 24904744 - Cell Biosci. 2014 May 29;4:29 – reference: 23178591 - EMBO J. 2013 Jan 9;32(1):45-59 |
SSID | ssj0014154 |
Score | 2.5701864 |
Snippet | Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6388 |
SubjectTerms | Adipocytes, Brown - physiology Adipogenesis Adipose Tissue, Brown - cytology Animals Cells, Cultured CREB-Binding Protein - metabolism E1A-Associated p300 Protein - metabolism Enhancer Elements, Genetic Gene regulation, Chromatin and Epigenetics Histone-Lysine N-Methyltransferase - physiology Mice, Transgenic Protein Binding Transcriptional Activation Transcriptome |
Title | MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28398509 https://www.proquest.com/docview/1886751302 https://pubmed.ncbi.nlm.nih.gov/PMC5499743 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgPMALgo1LuUxGICQ0hTqN08SPW9VpmrqJh03sLbIdZ43GnKoXCfj1nGMnacqKBLyklZMmUr6vx8fn8pmQD8MCJoGQx4GQOg54aligpCwCA765Bg85zzl2I5-dD08u-elVfLXO4LvukqX6rH9u7Sv5H1RhDHDFLtl_QLa9KQzAd8AXjoAwHP8K47PJBAUR4IMfYAXX3GBdL7iQWDs4OvqCO-tGjB2o0veuANLGThHnuZdmXqxmZh40Y-tORoyCKFygH8i8nFXXaBDLRdeRPUcdZNR61WWOmYdOUMzJOLoigaPSqvJOzU8ZjFft4Gkdr3ZWZ1qtiwK-1icmZWHq2bUOToSukm7g8yzGG1TXlSU2La4XkGyYFXbsJ1iDdKth96JXFovOj69vvg98BLSD8ezWgQzekkhjJtbTW1t02Jy6Tx4MYE2B210kbNymnMCT4Y1-rYj68Ki-fxDqRdc_3XRe7qxIfi-s7XgqF0_I43qJQQ89X56Se8bukr1DK5fV7Q_6kbqiX5dN2SUPR82Gf3vkBunURzJRIBNtyESBFRTI1Ecq0ZpKtLK0pRIFKtFNKtGWSrS01FGJdqn0jFwejy9GJ0G9F0egOefLINGG5RJmgKRgQoVxInQOjk2hBkalQuE2r1JHiQF_1ZgEDlLG8EdXLGeaFWkYPSc7trLmJaEs0rEBP1PlqeCCwYSgkzjhMg71kIu06JFPzUvOdC1Uj_ulfMt8wUSUATaZx6ZH3rfXzrw8y9ar3jVYZfBOMSUmralWiyxMU1gxY_K-R1547Nr7NKD3SLKBansBKrNvnrHl1Cm0Y9AFXPNXf7zna_Jo_Xd5Q3aW85V5C97tUu07Vu672NAvaiupKg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLL3%2FMLL4+are+required+for+CBP%2Fp300+binding+on+enhancers+and+super-enhancer+formation+in+brown+adipogenesis&rft.jtitle=Nucleic+acids+research&rft.au=Lai%2C+Binbin&rft.au=Lee%2C+Ji-Eun&rft.au=Jang%2C+Younghoon&rft.au=Wang%2C+Lifeng&rft.date=2017-06-20&rft.eissn=1362-4962&rft.volume=45&rft.issue=11&rft.spage=6388&rft_id=info:doi/10.1093%2Fnar%2Fgkx234&rft_id=info%3Apmid%2F28398509&rft.externalDocID=28398509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |