Universal lowest-twist in CFTs from holography
A bstract We probe the conformal block structure of a scalar four-point function in d ≥ 2 conformal field theories by including higher-order derivative terms in a bulk gravitational action. We consider a heavy-light four-point function as the boundary correlator at large central charge. Such a four-...
Saved in:
Published in | The journal of high energy physics Vol. 2019; no. 8; pp. 1 - 54 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2019
Springer Nature B.V Springer Berlin SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We probe the conformal block structure of a scalar four-point function in
d
≥ 2 conformal field theories by including higher-order derivative terms in a bulk gravitational action. We consider a heavy-light four-point function as the boundary correlator at large central charge. Such a four-point function can be computed, on the gravity side, as a two-point function of the light operator in a black hole geometry created by the heavy operator. We consider analytically solving the corresponding scalar field equation in a near-boundary expansion and find that the multi-stress tensor conformal blocks are insensitive to the horizon boundary condition. The main result of this paper is that the lowest-twist operator product expansion (OPE) coefficients of the multi-stress tensor conformal blocks are universal: they are fixed by the dimension of the light operators and the ratio between the dimension of the heavy operator and the central charge
C
T
. Neither supersymmetry nor unitary is assumed. Higher-twist coefficients, on the other hand, generally are not protected. A recursion relation allows us to efficiently compute universal lowest-twist coefficients. The universality result hints at the potential existence of a higher-dimensional Virasoro-like symmetry near the lightcone. While we largely focus on the planar black hole limit in this paper, we include some preliminary analysis of the spherical black hole case in an appendix. |
---|---|
AbstractList | We probe the conformal block structure of a scalar four-point function in
d
≥ 2 conformal field theories by including higher-order derivative terms in a bulk gravitational action. We consider a heavy-light four-point function as the boundary correlator at large central charge. Such a four-point function can be computed, on the gravity side, as a two-point function of the light operator in a black hole geometry created by the heavy operator. We consider analytically solving the corresponding scalar field equation in a near-boundary expansion and find that the multi-stress tensor conformal blocks are insensitive to the horizon boundary condition. The main result of this paper is that the lowest-twist operator product expansion (OPE) coefficients of the multi-stress tensor conformal blocks are universal: they are fixed by the dimension of the light operators and the ratio between the dimension of the heavy operator and the central charge
C
T
. Neither supersymmetry nor unitary is assumed. Higher-twist coefficients, on the other hand, generally are not protected. A recursion relation allows us to efficiently compute universal lowest-twist coefficients. The universality result hints at the potential existence of a higher-dimensional Virasoro-like symmetry near the lightcone. While we largely focus on the planar black hole limit in this paper, we include some preliminary analysis of the spherical black hole case in an appendix. A bstract We probe the conformal block structure of a scalar four-point function in d ≥ 2 conformal field theories by including higher-order derivative terms in a bulk gravitational action. We consider a heavy-light four-point function as the boundary correlator at large central charge. Such a four-point function can be computed, on the gravity side, as a two-point function of the light operator in a black hole geometry created by the heavy operator. We consider analytically solving the corresponding scalar field equation in a near-boundary expansion and find that the multi-stress tensor conformal blocks are insensitive to the horizon boundary condition. The main result of this paper is that the lowest-twist operator product expansion (OPE) coefficients of the multi-stress tensor conformal blocks are universal: they are fixed by the dimension of the light operators and the ratio between the dimension of the heavy operator and the central charge C T . Neither supersymmetry nor unitary is assumed. Higher-twist coefficients, on the other hand, generally are not protected. A recursion relation allows us to efficiently compute universal lowest-twist coefficients. The universality result hints at the potential existence of a higher-dimensional Virasoro-like symmetry near the lightcone. While we largely focus on the planar black hole limit in this paper, we include some preliminary analysis of the spherical black hole case in an appendix. We probe the conformal block structure of a scalar four-point function in d ≥ 2 conformal field theories by including higher-order derivative terms in a bulk gravitational action. We consider a heavy-light four-point function as the boundary correlator at large central charge. Such a four-point function can be computed, on the gravity side, as a two-point function of the light operator in a black hole geometry created by the heavy operator. We consider analytically solving the corresponding scalar field equation in a near-boundary expansion and find that the multi-stress tensor conformal blocks are insensitive to the horizon boundary condition. The main result of this paper is that the lowest-twist operator product expansion (OPE) coefficients of the multi-stress tensor conformal blocks are universal: they are fixed by the dimension of the light operators and the ratio between the dimension of the heavy operator and the central charge CT. Neither supersymmetry nor unitary is assumed. Higher-twist coefficients, on the other hand, generally are not protected. A recursion relation allows us to efficiently compute universal lowest-twist coefficients. The universality result hints at the potential existence of a higher-dimensional Virasoro-like symmetry near the lightcone. While we largely focus on the planar black hole limit in this paper, we include some preliminary analysis of the spherical black hole case in an appendix. Abstract We probe the conformal block structure of a scalar four-point function in d ≥ 2 conformal field theories by including higher-order derivative terms in a bulk gravitational action. We consider a heavy-light four-point function as the boundary correlator at large central charge. Such a four-point function can be computed, on the gravity side, as a two-point function of the light operator in a black hole geometry created by the heavy operator. We consider analytically solving the corresponding scalar field equation in a near-boundary expansion and find that the multi-stress tensor conformal blocks are insensitive to the horizon boundary condition. The main result of this paper is that the lowest-twist operator product expansion (OPE) coefficients of the multi-stress tensor conformal blocks are universal: they are fixed by the dimension of the light operators and the ratio between the dimension of the heavy operator and the central charge C T . Neither supersymmetry nor unitary is assumed. Higher-twist coefficients, on the other hand, generally are not protected. A recursion relation allows us to efficiently compute universal lowest-twist coefficients. The universality result hints at the potential existence of a higher-dimensional Virasoro-like symmetry near the lightcone. While we largely focus on the planar black hole limit in this paper, we include some preliminary analysis of the spherical black hole case in an appendix. |
ArticleNumber | 138 |
Author | Huang, Kuo-Wei Fitzpatrick, A. Liam |
Author_xml | – sequence: 1 givenname: A. Liam surname: Fitzpatrick fullname: Fitzpatrick, A. Liam organization: Department of Physics, Boston University – sequence: 2 givenname: Kuo-Wei surname: Huang fullname: Huang, Kuo-Wei email: kwhuang@bu.edu organization: Department of Physics, Boston University |
BackLink | https://www.osti.gov/servlets/purl/1612334$$D View this record in Osti.gov |
BookMark | eNp9kc1vFSEUxYlpE9vatduJbnQx7b3AfLA0L62taWIX7ZoAA-_xMoUnUJv-9_KcRo2JriDk_M49l3NMDkIMlpC3CGcIMJx_ubq4hfEDBRQfkY2vyBECFe3IB3Hwx_01Oc55C4AdCjgiZ_fBf7cpq7mZ45PNpS1PPpfGh2Z1eZcbl-JDs4lzXCe12zy_IYdOzdmevpwn5P7y4m511d58_Xy9-nTTGs55aQejOj7qHsAJxZlQTqF2vBcMpl6b3owAlhqnDFPTZAZ0qHHgFhjiaKlgJ-R68Z2i2spd8g8qPcuovPz5ENNaqlS8ma0EMTFjXGc11v00VW7QTjMLTvPega1e7xavmIuX2fhizcbEEKwpEnukjPEqer-Idil-e6z_ILfxMYW6o6R0hJ6OndjHOl9UJsWck3W_oiHIfQtyaUHuW5C1hUp0fxF1vio-hpKUn__DwcLlOiGsbfqd51_ID-_lm0k |
CitedBy_id | crossref_primary_10_1007_JHEP06_2023_116 crossref_primary_10_1007_JHEP05_2021_033 crossref_primary_10_1007_JHEP01_2024_036 crossref_primary_10_1007_JHEP08_2024_202 crossref_primary_10_1007_JHEP10_2019_107 crossref_primary_10_1007_JHEP10_2020_055 crossref_primary_10_1007_s10714_023_03072_0 crossref_primary_10_1007_JHEP05_2023_065 crossref_primary_10_1007_JHEP09_2021_205 crossref_primary_10_1007_JHEP12_2023_058 crossref_primary_10_1007_JHEP07_2020_019 crossref_primary_10_1007_JHEP06_2021_048 crossref_primary_10_1007_JHEP11_2019_139 crossref_primary_10_1007_JHEP12_2023_139 crossref_primary_10_1007_JHEP09_2022_053 crossref_primary_10_1103_PhysRevD_100_061701 crossref_primary_10_1103_PhysRevD_111_046016 crossref_primary_10_1007_JHEP03_2021_289 crossref_primary_10_1007_JHEP09_2022_234 crossref_primary_10_1007_JHEP08_2020_037 crossref_primary_10_1007_JHEP03_2021_131 crossref_primary_10_1007_JHEP10_2024_105 crossref_primary_10_1007_JHEP12_2022_163 crossref_primary_10_1007_JHEP05_2024_296 crossref_primary_10_1007_JHEP07_2020_046 crossref_primary_10_1007_JHEP11_2021_049 crossref_primary_10_1103_PhysRevD_101_066003 crossref_primary_10_1142_S0217751X23430054 crossref_primary_10_1103_PhysRevD_107_066022 crossref_primary_10_1007_JHEP10_2019_046 crossref_primary_10_21468_SciPostPhys_14_5_116 crossref_primary_10_1007_JHEP07_2024_287 crossref_primary_10_1016_j_physrep_2022_09_004 crossref_primary_10_1007_JHEP11_2020_060 crossref_primary_10_1007_JHEP06_2022_162 crossref_primary_10_1103_PhysRevD_102_021701 crossref_primary_10_1007_JHEP10_2023_050 crossref_primary_10_1007_JHEP03_2024_024 crossref_primary_10_1007_JHEP07_2021_148 crossref_primary_10_1007_JHEP11_2023_203 crossref_primary_10_1007_JHEP01_2020_076 crossref_primary_10_1007_JHEP11_2019_102 crossref_primary_10_1007_JHEP11_2023_107 crossref_primary_10_1007_JHEP11_2021_139 crossref_primary_10_1007_JHEP05_2023_103 crossref_primary_10_1103_PhysRevD_103_L121702 crossref_primary_10_1007_JHEP06_2021_082 |
Cites_doi | 10.1023/A:1026654312961 10.1007/JHEP09(2016)015 10.7208/chicago/9780226870373.001.0001 10.1016/S0370-2693(98)00377-3 10.1007/JHEP10(2016)110 10.1007/JHEP11(2015)200 10.1007/JHEP06(2017)099 10.1088/0264-9381/22/14/004 10.1088/1126-6708/2008/10/091 10.1007/JHEP07(2016)123 10.1103/PhysRevD.95.044010 10.1007/JHEP05(2016)127 10.1007/JHEP04(2018)075 10.1007/JHEP05(2016)069 10.1007/JHEP08(2010)067 10.1007/JHEP01(2016)146 10.1016/0550-3213(89)90414-8 10.1007/JHEP07(2015)131 10.1088/1126-6708/2004/02/014 10.1007/JHEP02(2013)054 10.1103/PhysRevD.87.081901 10.1088/1126-6708/2003/04/021 10.1007/JHEP05(2016)109 10.1016/0550-3213(86)90552-3 10.1007/BF01205790 10.1007/JHEP05(2016)075 10.4236/jhepgc.2017.32017 10.1007/JHEP10(2017)189 10.1007/JHEP07(2011)023 10.1088/1126-6708/2009/10/079 10.1016/S0550-3213(01)00013-X 10.1007/JHEP10(2012)127 10.1007/JHEP02(2018)012 10.1007/JHEP11(2017)060 10.1007/JHEP09(2018)161 10.1007/BF01211590 10.1103/RevModPhys.91.015002 10.1007/JHEP12(2015)077 10.1103/PhysRevLett.96.181602 10.1016/j.nuclphysb.2003.11.016 10.1103/PhysRevLett.69.1849 10.1007/JHEP08(2010)035 10.4310/ATMP.1998.v2.n2.a2 10.1088/1126-6708/1999/02/010 10.21468/SciPostPhys.7.1.003 10.21468/SciPostPhys.6.6.065 10.1016/j.nuclphysb.2013.12.013 10.1006/aphy.1994.1045 10.1007/JHEP08(2014)145 10.1007/JHEP02(2015)171 10.1007/JHEP09(2017)102 10.1007/JHEP09(2014)118 10.1088/0264-9381/27/22/225002 10.1103/PhysRevLett.115.131603 10.1007/JHEP10(2012)032 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
CorporateAuthor | Boston Univ., MA (United States) |
CorporateAuthor_xml | – name: Boston Univ., MA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI OIOZB OTOTI DOA |
DOI | 10.1007/JHEP08(2019)138 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition OSTI.GOV - Hybrid OSTI.GOV Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 54 |
ExternalDocumentID | oai_doaj_org_article_09d3ccf5eb1847b2af7bfb3e0fb46f0e 1612334 10_1007_JHEP08_2019_138 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI AAYZJ AHBXF OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c444t-7ca548b600f9a439afa1bf46930d6bc6c800e2cfac3addc71f1b174e03118e293 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:24:10 EDT 2025 Mon Jul 10 02:33:34 EDT 2023 Sat Jul 26 00:17:47 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 Tue Jul 01 03:54:44 EDT 2025 Fri Feb 21 02:33:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | AdS-CFT Correspondence Conformal Field Theory Field Theories in Higher Dimensions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-7ca548b600f9a439afa1bf46930d6bc6c800e2cfac3addc71f1b174e03118e293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0015845 USDOE Office of Science (SC), High Energy Physics (HEP) |
OpenAccessLink | https://www.proquest.com/docview/2280628599?pq-origsite=%requestingapplication% |
PQID | 2280628599 |
PQPubID | 2034718 |
PageCount | 54 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_09d3ccf5eb1847b2af7bfb3e0fb46f0e osti_scitechconnect_1612334 proquest_journals_2280628599 crossref_primary_10_1007_JHEP08_2019_138 crossref_citationtrail_10_1007_JHEP08_2019_138 springer_journals_10_1007_JHEP08_2019_138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Berlin SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Berlin – name: SpringerOpen |
References | HeemskerkIPenedonesJPolchinskiJSullyJHolography from Conformal Field TheoryJHEP2009100792009JHEP...10..079H2607436[INSPIRE]; [arXiv:0907.0151] B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP10 (2016) 110 [arXiv:1609.00801] [INSPIRE]. CardyJLConformal invariance and universality in finite-size scalingJ. Phys.1984A 17L3851984JPhA...17L.385C748768[INSPIRE] O. Aharony, O. Bergman, D.L. Jafferis and J.M. Maldacena, N=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=6 $$\end{document}superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE]. MaldacenaJMEternal black holes in anti-de SitterJHEP2003040212003JHEP...04..021M198984710.1088/1126-6708/2003/04/021[hep-th/0106112] [INSPIRE] FitzpatrickALKaplanJAdS Field Theory from Conformal Field TheoryJHEP2013020542013JHEP...02..054F304658210.1007/JHEP02(2013)054[INSPIRE]; [arXiv:1208.0337] OlivaJRaySA new cubic theory of gravity in five dimensions: Black hole, Birkhoff ’s theorem and C-functionClass. Quant. Grav.2010272250022010CQGra..27v5002O273409510.1088/0264-9381/27/22/225002[INSPIRE]; [arXiv:1003.4773] WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W163301210.4310/ATMP.1998.v2.n2.a2[INSPIRE]; [hep-th/9802150] AsplundCTBernamontiAGalliFHartmanTHolographic Entanglement Entropy from 2d CFT: Heavy States and Local QuenchesJHEP2015021712015JHEP...02..171A332128210.1007/JHEP02(2015)171[INSPIRE]; [arXiv:1410.1392] AnousTHartmanTRovaiASonnerJBlack Hole Collapse in the 1/c ExpansionJHEP2016071232016JHEP...07..123A355021810.1007/JHEP07(2016)123[INSPIRE]; [arXiv:1603.04856] DolanFAOsbornHConformal four point functions and the operator product expansionNucl. Phys.2001B 5994592001NuPhB.599..459D182646710.1016/S0550-3213(01)00013-X[hep-th/0011040] [INSPIRE] HerzogCPHuangK-WShamirIVirruetaJSuperconformal Models for Graphene and Boundary Central ChargesJHEP2018091612018JHEP...09..161H386832610.1007/JHEP09(2018)161[INSPIRE]; [arXiv:1807.01700] MaldacenaJMThe Large N limit of superconformal field theories and supergravityInt. J. Theor. Phys.199938111317055080969.81047[INSPIRE]; [hep-th/9711200] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS3gravity, JHEP12 (2015) 077 [arXiv:1508.04987] [INSPIRE]. HartmanTKellerCAStoicaBUniversal Spectrum of 2d Conformal Field Theory in the Large c LimitJHEP2014091182014JHEP...09..118H326796110.1007/JHEP09(2014)118[INSPIRE]; [arXiv:1405.5137] A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP07 (2011) 023 [arXiv:1007.2412] [INSPIRE]. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE]. HijanoEKrausPPerlmutterESnivelyRWitten Diagrams Revisited: The AdS Geometry of Conformal BlocksJHEP2016011462016JHEP...01..146H347143410.1007/JHEP01(2016)146[INSPIRE]; [arXiv:1508.00501] FitzpatrickALKaplanJAnalyticity and the Holographic S-matrixJHEP2012101272012JHEP...10..127F10.1007/JHEP10(2012)127[INSPIRE]; [arXiv:1111.6972] A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP10 (2012) 032 [arXiv:1112.4845] [INSPIRE]. ChenBWuJ-qHolographic Entanglement Entropy For a Large Class of States in 2D CFTJHEP2016090152016JHEP...09..015C355791810.1007/JHEP09(2016)015[INSPIRE]; [arXiv:1605.06753] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE]. CastroALlabrésERejon-BarreraFGeodesic Diagrams, Gravitational Interactions & OPE StructuresJHEP2017060992017JHEP...06..099C367845810.1007/JHEP06(2017)099[INSPIRE]; [arXiv:1702.06128] C.P. Herzog and K.-W. Huang, Stress Tensors from Trace Anomalies in Conformal Field Theories, Phys. Rev.D 87 (2013) 081901 [arXiv:1301.5002] [INSPIRE]. Keski-VakkuriEBulk and boundary dynamics in BTZ black holesPhys. Rev.1999D 591040011999PhRvD..59j4001K1709221[INSPIRE]; [hep-th/9808037] ChenHHussongCKaplanJLiDA Numerical Approach to Virasoro Blocks and the Information ParadoxJHEP2017091022017JHEP...09..102C10.1007/JHEP09(2017)102[INSPIRE]; [arXiv:1703.09727] ChenHFitzpatrickALKaplanJLiDWangJDegenerate Operators and the 1/c Expansion: Lorentzian Resummations, High Order Computations and Super-Virasoro BlocksJHEP2017031672017JHEP...03..167C365065010.4236/jhepgc.2017.32017[INSPIRE]; [arXiv:1606.02659] CappelliACosteAOn the Stress Tensor of Conformal Field Theories in Higher DimensionsNucl. Phys.1989B 3147071989NuPhB.314..707C98458210.1016/0550-3213(89)90414-8[INSPIRE] BrownJDHenneauxMCentral Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional GravityCommun. Math. Phys.19861042071986CMaPh.104..207B83600010.1007/BF01211590[INSPIRE] FitzpatrickALKaplanJWaltersMTUniversality of Long-Distance AdS Physics from the CFT BootstrapJHEP2014081452014JHEP...08..145F10.1007/JHEP08(2014)145[INSPIRE]; [arXiv:1403.6829] R.M. Wald, General Relativity, Chicago University Press, Chicago U.S.A. (1984) [INSPIRE]. FitzpatrickALKaplanJWaltersMTWangJHawking from CatalanJHEP2016050692016JHEP...05..069F352178810.1007/JHEP05(2016)069[INSPIRE]; [arXiv:1510.00014] HorowitzGTItzhakiNBlack holes, shock waves and causality in the AdS/CFT correspondenceJHEP1999020101999JHEP...02..010H169024610.1088/1126-6708/1999/02/010[hep-th/9901012] [INSPIRE] FitzpatrickALKaplanJLiDWangJOn information loss in AdS3/CFT2JHEP201605109[INSPIRE]; [arXiv:1603.08925] D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett.115 (2015) 131603 [arXiv:1412.5123] [INSPIRE]. AnousTSonnerJPhases of scrambling in eigenstatesSciPost Phys.201970032019ScPP....7....3A10.21468/SciPostPhys.7.1.003[INSPIRE]; [arXiv:1903.03143] HollandsSIshibashiAMarolfDComparison between various notions of conserved charges in asymptotically AdS-spacetimesClass. Quant. Grav.20052228812005CQGra..22.2881H215419210.1088/0264-9381/22/14/004[hep-th/0503045] [INSPIRE] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE]. E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP07 (2015) 131 [arXiv:1501.02260] [INSPIRE]. AnandNChenHFitzpatrickALKaplanJLiDAn Exact Operator That Knows Its LocationJHEP2018020122018JHEP...02..012A378965810.1007/JHEP02(2018)012[INSPIRE]; [arXiv:1708.04246] R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP08 (2010) 035 [arXiv:1004.2055] [INSPIRE]. FidkowskiLHubenyVKlebanMShenkerSThe Black hole singularity in AdS/CFTJHEP2004020142004JHEP...02..014F204679510.1088/1126-6708/2004/02/014[hep-th/0306170] [INSPIRE] BañadosMTeitelboimCZanelliJThe Black hole in three-dimensional space-timePhys. Rev. Lett.19926918491992PhRvL..69.1849B118166310.1103/PhysRevLett.69.1849[INSPIRE]; [hep-th/9204099] HerzogCPHuangK-WBoundary Conformal Field Theory and a Boundary Central ChargeJHEP2017101892017JHEP...10..189H373010110.1007/JHEP10(2017)189[INSPIRE]; [arXiv:1707.06224] GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett.1998B 4281051998PhLB..428..105G10.1016/S0370-2693(98)00377-3[hep-th/9802109] [INSPIRE] DyerEFreedmanDZSullyJSpinning Geodesic Witten DiagramsJHEP2017110602017JHEP...11..060D374724710.1007/JHEP11(2017)060[INSPIRE]; [arXiv:1702.06139] CardyJLOperator Content of Two-Dimensional Conformally Invariant TheoriesNucl. Phys.1986B 2701861986NuPhB.270..186C84594010.1016/0550-3213(86)90552-3[INSPIRE] M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE]. HenneauxMTeitelboimCAsymptotically anti-de Sitter SpacesCommun. Math. Phys.1985983911985CMaPh..98..391H78878110.1007/BF01205790[INSPIRE] OsbornHPetkouACImplications of conformal invariance in field theories for general dimensionsAnnals Phys.19942313111994AnPhy.231..311O127386310.1006/aphy.1994.1045[hep-th/9307010] [INSPIRE] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: Theory, numerical techniques, and applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE]. BanerjeePDattaSSinhaRHigher-point conformal blocks and entanglement entropy in heavy statesJHEP2016051272016JHEP...05..127B352184610.1007/JHEP05(2016)127[INSPIRE]; [arXiv:1601.06794] R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP08 (2010) 067 [arXiv:1003.5357] [INSPIRE]. A.L. Fitzpatrick and J. Kaplan, Conformal Blocks Beyond the Semi-Classical Limit, JHEP05 (2016) 075 [arXiv:1512.03052] [INSPIRE]. RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R222105010.1103/PhysRevLett.96.181602[INSPIRE]; [hep-th/0603001] ChenHFitzpatrickALKaplanJLiDThe AdS3propagator and the fate of localityJHEP201804075[INSPIRE]; [arXiv:1712.02351] DolanFAOsbornHConformal partial waves and the operator product expansionNucl. Phys.2004B 6784912004NuPhB.678..491D202299810.1016/j.nuclphysb.2003.11.016[hep-th/0309180] [INSPIRE] P. Bueno, P.A. Cano, V.S. Min and M.R. Visser, Aspects of general higher-order gravities, Phys. Rev.D 95 (2017) 044010 [arXiv:1610.08519] [INSPIRE]. HuangK-WWeyl Anomaly Induced Stress Tensors in General ManifoldsNucl. Phys.2014B 8793702014NuPhB.879..370H315198710.1016/j.nuclphysb.2013.12.013[INSPIRE]; [arXiv:1308.2355] A Cappelli (11142_CR54) 1989; B 314 S Ryu (11142_CR13) 2006; 96 H Osborn (11142_CR28) 1994; 231 JL Cardy (11142_CR50) 1984; A 17 11142_CR53 11142_CR47 CP Herzog (11142_CR58) 2018; 09 11142_CR48 T Anous (11142_CR22) 2016; 07 11142_CR46 M Bañados (11142_CR34) 1992; 69 AL Fitzpatrick (11142_CR7) 2014; 08 GT Horowitz (11142_CR56) 1999; 02 H Chen (11142_CR52) 2017; 03 H Chen (11142_CR17) 2017; 09 E Hijano (11142_CR35) 2016; 01 N Anand (11142_CR25) 2018; 02 AL Fitzpatrick (11142_CR16) 2016; 05 E Dyer (11142_CR36) 2017; 11 P Banerjee (11142_CR18) 2016; 05 JD Brown (11142_CR5) 1986; 104 11142_CR41 T Anous (11142_CR15) 2019; 7 AL Fitzpatrick (11142_CR33) 2013; 02 E Keski-Vakkuri (11142_CR44) 1999; D 59 E Witten (11142_CR2) 1998; 2 11142_CR38 11142_CR39 M Henneaux (11142_CR42) 1985; 98 CP Herzog (11142_CR57) 2017; 10 SS Gubser (11142_CR3) 1998; B 428 S Hollands (11142_CR43) 2005; 22 AL Fitzpatrick (11142_CR31) 2012; 10 11142_CR32 11142_CR30 11142_CR23 L Fidkowski (11142_CR49) 2004; 02 11142_CR8 11142_CR9 11142_CR27 J Oliva (11142_CR40) 2010; 27 JM Maldacena (11142_CR6) 2003; 04 FA Dolan (11142_CR29) 2001; B 599 FA Dolan (11142_CR45) 2004; B 678 JL Cardy (11142_CR51) 1986; B 270 B Chen (11142_CR11) 2016; 09 AL Fitzpatrick (11142_CR24) 2016; 05 JM Maldacena (11142_CR1) 1999; 38 H Chen (11142_CR26) 2018; 04 CT Asplund (11142_CR10) 2015; 02 11142_CR20 A Castro (11142_CR37) 2017; 06 11142_CR14 11142_CR59 11142_CR12 11142_CR19 K-W Huang (11142_CR55) 2014; B 879 I Heemskerk (11142_CR4) 2009; 10 T Hartman (11142_CR21) 2014; 09 |
References_xml | – reference: M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE]. – reference: E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP07 (2015) 131 [arXiv:1501.02260] [INSPIRE]. – reference: ChenBWuJ-qHolographic Entanglement Entropy For a Large Class of States in 2D CFTJHEP2016090152016JHEP...09..015C355791810.1007/JHEP09(2016)015[INSPIRE]; [arXiv:1605.06753] – reference: HeemskerkIPenedonesJPolchinskiJSullyJHolography from Conformal Field TheoryJHEP2009100792009JHEP...10..079H2607436[INSPIRE]; [arXiv:0907.0151] – reference: AnousTSonnerJPhases of scrambling in eigenstatesSciPost Phys.201970032019ScPP....7....3A10.21468/SciPostPhys.7.1.003[INSPIRE]; [arXiv:1903.03143] – reference: R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP08 (2010) 035 [arXiv:1004.2055] [INSPIRE]. – reference: HorowitzGTItzhakiNBlack holes, shock waves and causality in the AdS/CFT correspondenceJHEP1999020101999JHEP...02..010H169024610.1088/1126-6708/1999/02/010[hep-th/9901012] [INSPIRE] – reference: E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS3gravity, JHEP12 (2015) 077 [arXiv:1508.04987] [INSPIRE]. – reference: AnousTHartmanTRovaiASonnerJBlack Hole Collapse in the 1/c ExpansionJHEP2016071232016JHEP...07..123A355021810.1007/JHEP07(2016)123[INSPIRE]; [arXiv:1603.04856] – reference: ChenHFitzpatrickALKaplanJLiDWangJDegenerate Operators and the 1/c Expansion: Lorentzian Resummations, High Order Computations and Super-Virasoro BlocksJHEP2017031672017JHEP...03..167C365065010.4236/jhepgc.2017.32017[INSPIRE]; [arXiv:1606.02659] – reference: MaldacenaJMEternal black holes in anti-de SitterJHEP2003040212003JHEP...04..021M198984710.1088/1126-6708/2003/04/021[hep-th/0106112] [INSPIRE] – reference: R.M. Wald, General Relativity, Chicago University Press, Chicago U.S.A. (1984) [INSPIRE]. – reference: FitzpatrickALKaplanJAnalyticity and the Holographic S-matrixJHEP2012101272012JHEP...10..127F10.1007/JHEP10(2012)127[INSPIRE]; [arXiv:1111.6972] – reference: T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE]. – reference: B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP10 (2016) 110 [arXiv:1609.00801] [INSPIRE]. – reference: R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP08 (2010) 067 [arXiv:1003.5357] [INSPIRE]. – reference: RyuSTakayanagiTHolographic derivation of entanglement entropy from AdS/CFTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R222105010.1103/PhysRevLett.96.181602[INSPIRE]; [hep-th/0603001] – reference: A.L. Fitzpatrick and J. Kaplan, Conformal Blocks Beyond the Semi-Classical Limit, JHEP05 (2016) 075 [arXiv:1512.03052] [INSPIRE]. – reference: AsplundCTBernamontiAGalliFHartmanTHolographic Entanglement Entropy from 2d CFT: Heavy States and Local QuenchesJHEP2015021712015JHEP...02..171A332128210.1007/JHEP02(2015)171[INSPIRE]; [arXiv:1410.1392] – reference: CardyJLConformal invariance and universality in finite-size scalingJ. Phys.1984A 17L3851984JPhA...17L.385C748768[INSPIRE] – reference: HerzogCPHuangK-WBoundary Conformal Field Theory and a Boundary Central ChargeJHEP2017101892017JHEP...10..189H373010110.1007/JHEP10(2017)189[INSPIRE]; [arXiv:1707.06224] – reference: HijanoEKrausPPerlmutterESnivelyRWitten Diagrams Revisited: The AdS Geometry of Conformal BlocksJHEP2016011462016JHEP...01..146H347143410.1007/JHEP01(2016)146[INSPIRE]; [arXiv:1508.00501] – reference: MaldacenaJMThe Large N limit of superconformal field theories and supergravityInt. J. Theor. Phys.199938111317055080969.81047[INSPIRE]; [hep-th/9711200] – reference: AnandNChenHFitzpatrickALKaplanJLiDAn Exact Operator That Knows Its LocationJHEP2018020122018JHEP...02..012A378965810.1007/JHEP02(2018)012[INSPIRE]; [arXiv:1708.04246] – reference: WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W163301210.4310/ATMP.1998.v2.n2.a2[INSPIRE]; [hep-th/9802150] – reference: HuangK-WWeyl Anomaly Induced Stress Tensors in General ManifoldsNucl. Phys.2014B 8793702014NuPhB.879..370H315198710.1016/j.nuclphysb.2013.12.013[INSPIRE]; [arXiv:1308.2355] – reference: DyerEFreedmanDZSullyJSpinning Geodesic Witten DiagramsJHEP2017110602017JHEP...11..060D374724710.1007/JHEP11(2017)060[INSPIRE]; [arXiv:1702.06139] – reference: FitzpatrickALKaplanJWaltersMTWangJHawking from CatalanJHEP2016050692016JHEP...05..069F352178810.1007/JHEP05(2016)069[INSPIRE]; [arXiv:1510.00014] – reference: A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP10 (2012) 032 [arXiv:1112.4845] [INSPIRE]. – reference: DolanFAOsbornHConformal partial waves and the operator product expansionNucl. Phys.2004B 6784912004NuPhB.678..491D202299810.1016/j.nuclphysb.2003.11.016[hep-th/0309180] [INSPIRE] – reference: E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE]. – reference: O. Aharony, O. Bergman, D.L. Jafferis and J.M. Maldacena, N=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=6 $$\end{document}superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE]. – reference: CardyJLOperator Content of Two-Dimensional Conformally Invariant TheoriesNucl. Phys.1986B 2701861986NuPhB.270..186C84594010.1016/0550-3213(86)90552-3[INSPIRE] – reference: DolanFAOsbornHConformal four point functions and the operator product expansionNucl. Phys.2001B 5994592001NuPhB.599..459D182646710.1016/S0550-3213(01)00013-X[hep-th/0011040] [INSPIRE] – reference: BañadosMTeitelboimCZanelliJThe Black hole in three-dimensional space-timePhys. Rev. Lett.19926918491992PhRvL..69.1849B118166310.1103/PhysRevLett.69.1849[INSPIRE]; [hep-th/9204099] – reference: HerzogCPHuangK-WShamirIVirruetaJSuperconformal Models for Graphene and Boundary Central ChargesJHEP2018091612018JHEP...09..161H386832610.1007/JHEP09(2018)161[INSPIRE]; [arXiv:1807.01700] – reference: OlivaJRaySA new cubic theory of gravity in five dimensions: Black hole, Birkhoff ’s theorem and C-functionClass. Quant. Grav.2010272250022010CQGra..27v5002O273409510.1088/0264-9381/27/22/225002[INSPIRE]; [arXiv:1003.4773] – reference: Keski-VakkuriEBulk and boundary dynamics in BTZ black holesPhys. Rev.1999D 591040011999PhRvD..59j4001K1709221[INSPIRE]; [hep-th/9808037] – reference: BrownJDHenneauxMCentral Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional GravityCommun. Math. Phys.19861042071986CMaPh.104..207B83600010.1007/BF01211590[INSPIRE] – reference: BanerjeePDattaSSinhaRHigher-point conformal blocks and entanglement entropy in heavy statesJHEP2016051272016JHEP...05..127B352184610.1007/JHEP05(2016)127[INSPIRE]; [arXiv:1601.06794] – reference: ChenHFitzpatrickALKaplanJLiDThe AdS3propagator and the fate of localityJHEP201804075[INSPIRE]; [arXiv:1712.02351] – reference: OsbornHPetkouACImplications of conformal invariance in field theories for general dimensionsAnnals Phys.19942313111994AnPhy.231..311O127386310.1006/aphy.1994.1045[hep-th/9307010] [INSPIRE] – reference: FidkowskiLHubenyVKlebanMShenkerSThe Black hole singularity in AdS/CFTJHEP2004020142004JHEP...02..014F204679510.1088/1126-6708/2004/02/014[hep-th/0306170] [INSPIRE] – reference: FitzpatrickALKaplanJLiDWangJOn information loss in AdS3/CFT2JHEP201605109[INSPIRE]; [arXiv:1603.08925] – reference: CastroALlabrésERejon-BarreraFGeodesic Diagrams, Gravitational Interactions & OPE StructuresJHEP2017060992017JHEP...06..099C367845810.1007/JHEP06(2017)099[INSPIRE]; [arXiv:1702.06128] – reference: HartmanTKellerCAStoicaBUniversal Spectrum of 2d Conformal Field Theory in the Large c LimitJHEP2014091182014JHEP...09..118H326796110.1007/JHEP09(2014)118[INSPIRE]; [arXiv:1405.5137] – reference: A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE]. – reference: D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: Theory, numerical techniques, and applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE]. – reference: A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP07 (2011) 023 [arXiv:1007.2412] [INSPIRE]. – reference: HenneauxMTeitelboimCAsymptotically anti-de Sitter SpacesCommun. Math. Phys.1985983911985CMaPh..98..391H78878110.1007/BF01205790[INSPIRE] – reference: P. Bueno, P.A. Cano, V.S. Min and M.R. Visser, Aspects of general higher-order gravities, Phys. Rev.D 95 (2017) 044010 [arXiv:1610.08519] [INSPIRE]. – reference: GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett.1998B 4281051998PhLB..428..105G10.1016/S0370-2693(98)00377-3[hep-th/9802109] [INSPIRE] – reference: FitzpatrickALKaplanJWaltersMTUniversality of Long-Distance AdS Physics from the CFT BootstrapJHEP2014081452014JHEP...08..145F10.1007/JHEP08(2014)145[INSPIRE]; [arXiv:1403.6829] – reference: FitzpatrickALKaplanJAdS Field Theory from Conformal Field TheoryJHEP2013020542013JHEP...02..054F304658210.1007/JHEP02(2013)054[INSPIRE]; [arXiv:1208.0337] – reference: C.P. Herzog and K.-W. Huang, Stress Tensors from Trace Anomalies in Conformal Field Theories, Phys. Rev.D 87 (2013) 081901 [arXiv:1301.5002] [INSPIRE]. – reference: ChenHHussongCKaplanJLiDA Numerical Approach to Virasoro Blocks and the Information ParadoxJHEP2017091022017JHEP...09..102C10.1007/JHEP09(2017)102[INSPIRE]; [arXiv:1703.09727] – reference: CappelliACosteAOn the Stress Tensor of Conformal Field Theories in Higher DimensionsNucl. Phys.1989B 3147071989NuPhB.314..707C98458210.1016/0550-3213(89)90414-8[INSPIRE] – reference: D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett.115 (2015) 131603 [arXiv:1412.5123] [INSPIRE]. – reference: HollandsSIshibashiAMarolfDComparison between various notions of conserved charges in asymptotically AdS-spacetimesClass. Quant. Grav.20052228812005CQGra..22.2881H215419210.1088/0264-9381/22/14/004[hep-th/0503045] [INSPIRE] – volume: 38 start-page: 1113 year: 1999 ident: 11142_CR1 publication-title: Int. J. Theor. Phys. doi: 10.1023/A:1026654312961 – volume: 09 start-page: 015 year: 2016 ident: 11142_CR11 publication-title: JHEP doi: 10.1007/JHEP09(2016)015 – ident: 11142_CR41 doi: 10.7208/chicago/9780226870373.001.0001 – volume: B 428 start-page: 105 year: 1998 ident: 11142_CR3 publication-title: Phys. Lett. doi: 10.1016/S0370-2693(98)00377-3 – ident: 11142_CR12 doi: 10.1007/JHEP10(2016)110 – ident: 11142_CR8 doi: 10.1007/JHEP11(2015)200 – volume: 06 start-page: 099 year: 2017 ident: 11142_CR37 publication-title: JHEP doi: 10.1007/JHEP06(2017)099 – volume: 22 start-page: 2881 year: 2005 ident: 11142_CR43 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/22/14/004 – ident: 11142_CR59 doi: 10.1088/1126-6708/2008/10/091 – volume: 07 start-page: 123 year: 2016 ident: 11142_CR22 publication-title: JHEP doi: 10.1007/JHEP07(2016)123 – ident: 11142_CR46 doi: 10.1103/PhysRevD.95.044010 – volume: 05 start-page: 127 year: 2016 ident: 11142_CR18 publication-title: JHEP doi: 10.1007/JHEP05(2016)127 – volume: 04 start-page: 075 year: 2018 ident: 11142_CR26 publication-title: JHEP doi: 10.1007/JHEP04(2018)075 – volume: A 17 start-page: L385 year: 1984 ident: 11142_CR50 publication-title: J. Phys. – volume: 05 start-page: 069 year: 2016 ident: 11142_CR24 publication-title: JHEP doi: 10.1007/JHEP05(2016)069 – ident: 11142_CR38 doi: 10.1007/JHEP08(2010)067 – volume: 01 start-page: 146 year: 2016 ident: 11142_CR35 publication-title: JHEP doi: 10.1007/JHEP01(2016)146 – volume: B 314 start-page: 707 year: 1989 ident: 11142_CR54 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(89)90414-8 – ident: 11142_CR20 doi: 10.1007/JHEP07(2015)131 – volume: 02 start-page: 014 year: 2004 ident: 11142_CR49 publication-title: JHEP doi: 10.1088/1126-6708/2004/02/014 – volume: 02 start-page: 054 year: 2013 ident: 11142_CR33 publication-title: JHEP doi: 10.1007/JHEP02(2013)054 – volume: D 59 start-page: 104001 year: 1999 ident: 11142_CR44 publication-title: Phys. Rev. – ident: 11142_CR53 doi: 10.1103/PhysRevD.87.081901 – volume: 04 start-page: 021 year: 2003 ident: 11142_CR6 publication-title: JHEP doi: 10.1088/1126-6708/2003/04/021 – volume: 05 start-page: 109 year: 2016 ident: 11142_CR16 publication-title: JHEP doi: 10.1007/JHEP05(2016)109 – volume: B 270 start-page: 186 year: 1986 ident: 11142_CR51 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(86)90552-3 – volume: 98 start-page: 391 year: 1985 ident: 11142_CR42 publication-title: Commun. Math. Phys. doi: 10.1007/BF01205790 – ident: 11142_CR27 doi: 10.1007/JHEP05(2016)075 – volume: 03 start-page: 167 year: 2017 ident: 11142_CR52 publication-title: JHEP doi: 10.4236/jhepgc.2017.32017 – volume: 10 start-page: 189 year: 2017 ident: 11142_CR57 publication-title: JHEP doi: 10.1007/JHEP10(2017)189 – ident: 11142_CR30 doi: 10.1007/JHEP07(2011)023 – volume: 10 start-page: 079 year: 2009 ident: 11142_CR4 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/079 – volume: B 599 start-page: 459 year: 2001 ident: 11142_CR29 publication-title: Nucl. Phys. doi: 10.1016/S0550-3213(01)00013-X – volume: 10 start-page: 127 year: 2012 ident: 11142_CR31 publication-title: JHEP doi: 10.1007/JHEP10(2012)127 – volume: 02 start-page: 012 year: 2018 ident: 11142_CR25 publication-title: JHEP doi: 10.1007/JHEP02(2018)012 – volume: 11 start-page: 060 year: 2017 ident: 11142_CR36 publication-title: JHEP doi: 10.1007/JHEP11(2017)060 – volume: 09 start-page: 161 year: 2018 ident: 11142_CR58 publication-title: JHEP doi: 10.1007/JHEP09(2018)161 – volume: 104 start-page: 207 year: 1986 ident: 11142_CR5 publication-title: Commun. Math. Phys. doi: 10.1007/BF01211590 – ident: 11142_CR47 doi: 10.1103/RevModPhys.91.015002 – ident: 11142_CR19 doi: 10.1007/JHEP12(2015)077 – ident: 11142_CR48 – volume: 96 start-page: 181602 year: 2006 ident: 11142_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – volume: B 678 start-page: 491 year: 2004 ident: 11142_CR45 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2003.11.016 – volume: 69 start-page: 1849 year: 1992 ident: 11142_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1849 – ident: 11142_CR39 doi: 10.1007/JHEP08(2010)035 – volume: 2 start-page: 253 year: 1998 ident: 11142_CR2 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – ident: 11142_CR9 – volume: 02 start-page: 010 year: 1999 ident: 11142_CR56 publication-title: JHEP doi: 10.1088/1126-6708/1999/02/010 – volume: 7 start-page: 003 year: 2019 ident: 11142_CR15 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.7.1.003 – ident: 11142_CR23 doi: 10.21468/SciPostPhys.6.6.065 – volume: B 879 start-page: 370 year: 2014 ident: 11142_CR55 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2013.12.013 – volume: 231 start-page: 311 year: 1994 ident: 11142_CR28 publication-title: Annals Phys. doi: 10.1006/aphy.1994.1045 – volume: 08 start-page: 145 year: 2014 ident: 11142_CR7 publication-title: JHEP doi: 10.1007/JHEP08(2014)145 – volume: 02 start-page: 171 year: 2015 ident: 11142_CR10 publication-title: JHEP doi: 10.1007/JHEP02(2015)171 – volume: 09 start-page: 102 year: 2017 ident: 11142_CR17 publication-title: JHEP doi: 10.1007/JHEP09(2017)102 – volume: 09 start-page: 118 year: 2014 ident: 11142_CR21 publication-title: JHEP doi: 10.1007/JHEP09(2014)118 – volume: 27 start-page: 225002 year: 2010 ident: 11142_CR40 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/22/225002 – ident: 11142_CR14 doi: 10.1103/PhysRevLett.115.131603 – ident: 11142_CR32 doi: 10.1007/JHEP10(2012)032 |
SSID | ssj0015190 |
Score | 2.5507298 |
Snippet | A
bstract
We probe the conformal block structure of a scalar four-point function in
d
≥ 2 conformal field theories by including higher-order derivative terms... We probe the conformal block structure of a scalar four-point function in d ≥ 2 conformal field theories by including higher-order derivative terms in a bulk... We probe the conformal block structure of a scalar four-point function in d ≥ 2 conformal field theories by including higher-order derivative terms in a bulk... Abstract We probe the conformal block structure of a scalar four-point function in d ≥ 2 conformal field theories by including higher-order derivative terms in... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | AdS-CFT Correspondence ASTRONOMY AND ASTROPHYSICS Boundary conditions Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Conformal Field Theory Elementary Particles Field Theories in Higher Dimensions Gravitation theory High energy physics Holography Mathematical analysis Operators (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Supersymmetry Tensors Thermal expansion |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFH7IQPAi_sS6KT142A7d0jVr2qOOjTFQPGywW0iyBIXRiav47_tef8wpDC-eCm1SwvuavO81L98DuHMRBtKCiUCht8cAhfNAxUkaCB5HSmk3sMUPt8eneDLn08VgsVPqi3LCSnng0nA9li4jY7CPxlhE6L5yQjsdWeY0jx2ztPqiz6uDqWr_AHkJq4V8mOhNJ6NnlrTR2aWdkI6i7PigQqofL2ucUj9o5q-d0cLhjE_guGKK_n05wlM4sNkZHBYZm2ZzDt0qpQKbrNakdxDknwiZ_5r5w_Fs49O5Ef9lK0l9AfPxaDacBFXxg8BwzvNAGIXBhEY-4lKFrEE5FWrHqXLhMtYmNsj0bN84ZSJcoowIXagxurA4ScPEohO_hEa2zuwV-EYbxRAq4RLDVYwxDpEGt-SpQ0KiIg-6tTmkqZTBqUDFStaaxqX9JNlPov08aG87vJWiGPubPpB9t81Izbq4gRjLCmP5F8YeNAkdiaSAlG0NpQCZXIYkHRNxD1o1aLKagBtJKj90OjRNPejUQH4_3jPa6_8YbROO6H1llmALGvn7h71B5pLr2-Ij_QJr0OmO priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50Ivgi_sQ6lT74sD10tkvWtI9aNsZA8WGDvYUkS1AYnbiK_753XTvZZA8-tbQXKHe53nfJ5TuAe8cwkRahCBRGe0xQOA9UnKSB4DFTSrueLRfcnl_i4YSPpr1pRZJEZ2G29u8fRsP-a5i0MEyl7Ygl-3DQi5igHg1ZnK23CxCGhDVvz99BGyGnZObHywI9aANVbm2ElvFlcALHFTD0H1eWPIU9m5_BYVmgaZbn0KkqKFBkviB6g6D4Rgv577mfDcZLn46J-G9rBuoLmAz642wYVL0OAsM5LwJhFOYOGuGHSxWCBOVUpB2nRoWzWJvYILCzXeOUYfhHMiJykcZkwqJPRonFmH0JjXyR2yvwjTYqRMsIlxiuYkxpCCO4GU8d4g_FPOjU6pCmIgKnfhRzWVMYr_QnSX8S9edBaz3gY8WBsVv0ifS7FiPy6vIB2lRWviDDdMaMwWmgMb0Uuquc0E4zGzrNYxdaD5pkHYkYgIhsDVX8mEJGxBTDuAc3tdFk5W9LSaQ-dBg0TT1o14b8fb3ja6__IduEI7pd1f7dQKP4_LK3iEcKfVfOxR-MZNa6 priority: 102 providerName: Springer Nature |
Title | Universal lowest-twist in CFTs from holography |
URI | https://link.springer.com/article/10.1007/JHEP08(2019)138 https://www.proquest.com/docview/2280628599 https://www.osti.gov/servlets/purl/1612334 https://doaj.org/article/09d3ccf5eb1847b2af7bfb3e0fb46f0e |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAiPrE-lh486KHabmPTnkSXXRdBEXHBW0hmExVkq27Fv-9MN10foJeWttNSZpLMN8nkG4B9l1IgLWMZafL2FKAIEeksLyIpslRr405sPeF2dZ0NhuLy_uTeT7hNfFplMybWA_WoRJ4jP2baFt7uVxSnL68RV43i1VVfQmMeFmgIzvMWLJz3rm9uZ-sIhE_ihtAnlseXg95NnB-Q0ysOE96S8s0X1ZT9dCqpa_2Am79WSGvH01-BZY8Yw7OpiVdhzo7XYLHO3MTJOhz51AoSeS6Z9yCqPsh04dM47PbvJiHvHwkfZ9TUGzDs9-66g8gXQYhQCFFFEjUFFYZwiSs0oQftdGKc4AqGo8xghoT4bAedxpSGKpSJSwxFGZY6a5Jbcuab0BqXY7sFIRrUMZlMuhyFzijWYfDgRqJwBEx0GsBRow6FniGcC1U8q4bbeKo_xfpTpL8ADmYvvEzJMf4WPWf9zsSY1bq-Ub49KN9JVFyMUkRqH4biTmk62knjTGpjZ0TmYhvADltHEThghlvkVCCsVMIUMqkIYLcxmvIdcaK-mk0Ah40hvx7_8bfb_39qB5ZYcpoHuAut6u3d7hE2qUwb5vP-Rds3Q7rqdgQfs267jvbpOOycfQJBxuUD |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hECoXxFOkUMihleAQyMPEyQEhXtvlqR4WiZuxZ-22EtoAG4T4U_zGzuSxFCS4cYqUOFEy_uz5Jh5_A_DdJRRIy1AGmrw9BShCBDrN8kCKNNHauG1b_XA7v0i7l-LkavtqDJ7bvTCcVtnOidVE3S-Q_5FvsWwLb_fL893bu4CrRvHqaltCo4bFqX16pJBtuHN8SP37I447R72DbtBUFQhQCFEGEjWxdEOO3uWa3LF2OjJOcEnAfmowRaJQNkanMaGxjzJykSHabgn9UWZjFl-iKX9C0EdysJd1fo5WLYgNha18UCi3TrpHv8JsnVxsvhHxBpj_PF9VIIAOBQ3kV-T2zXps5eY6MzDd8FN_rwbULIzZwRxMVnmiOJyHzSaRg5rcFKyyEJSPBBT_78A_6PSGPu9W8f-MhLAX4PJTjLMI44NiYJfAR4M6JIBIl6HQKUVWTFVcX-SOaJBOPNhszaGw0SPnshg3qlVSru2n2H6K7OfB-uiG21qK4_2m-2zfUTPW0K5OFPe_VTMkVZj3E0RCo6EoV5pYO2mcSWzojEhdaD1Y5t5RREVYTxc58QhLFbFgTSI8WGk7TTXDfqheQOrBRtuRL5ffeduvHz9qDb50e-dn6uz44nQZpviuOgNxBcbL-wf7jVhRaVYrKPpw_dnY_wdwFBzd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6hICouiNJWmFd9aCU4mPixeOMDQjwSBWijqAKJ23Z3sgtIKAZihPrX-uuY8SO0SHDjFMlZW9bstzPfeGe_AfjmEkqkZSgDTdGeEhQhAp12skCKNNHauB1bfnD7OUj75-LkYudiBv42Z2G4rLLxiaWjHuXI38jbLNvCx_2yrO3qsojhUW_v9i7gDlK809q006ggcmr_PFL6Ntk9PqK5_h7Hve7ZYT-oOwwEKIQoAomaGLuhoO8yTaFZOx0ZJ7g94Cg1mCLRKRuj05iQH0AZucgQhbe0EqKOjVmIidz_rOSsqAWzB93B8Nd0D4O4UdiICYWyfdLvDsPOJgXcbCvi4zD_xMGyXQD95LSs_6O6L3Zny6DXW4SFmq36-xW8PsKMHS_BXFk1ipNPsF2XddCQm5w1F4LikWDjX4_9w97ZxOezK_7VVBb7M5y_i3m-QGucj-0y-GhQhwQX6ToodEp5FhMXNxKZI1KkEw-2G3MorNXJuUnGjWp0lSv7KbafIvt5sDm94bYS5nh96AHbdzqMFbXLC_n9paoXqAqzUYJI2DSU80oTayeNM4kNnRGpC60Hqzw7iogJq-silyFhoSKWr0mEB2vNpKnaCUzUM2Q92Gom8vnvV9525e1HfYUPhHv143hwugrzfFNVjrgGreL-wa4TRSrMRo1FH36_N_yfAHK2Im8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+lowest-twist+in+CFTs+from+holography&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fitzpatrick%2C+A+Liam&rft.au=Kuo-Wei%2C+Huang&rft.date=2019-08-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2019&rft.issue=8&rft.spage=1&rft.epage=54&rft_id=info:doi/10.1007%2FJHEP08%282019%29138&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |