Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States

We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 125; pp. 100 - 111
Main Authors Buchard, V., da Silva, A.M., Randles, C.A., Colarco, P., Ferrare, R., Hair, J., Hostetler, C., Tackett, J., Winker, D.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations. Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure. •Full evaluation of MERRAero PM2.5 diagnostics: PM2.5, AOD and vertical structure.•Impact of MODIS AOD assimilation on the simulation of surface PM2.5.•Quality control of PM2.5 in situ-measurements to minimize error of representativeness.•Part of the bias between MERRAero and PM2.5 observations are species dependent.
AbstractList We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations. Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure.
We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations. Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure. •Full evaluation of MERRAero PM2.5 diagnostics: PM2.5, AOD and vertical structure.•Impact of MODIS AOD assimilation on the simulation of surface PM2.5.•Quality control of PM2.5 in situ-measurements to minimize error of representativeness.•Part of the bias between MERRAero and PM2.5 observations are species dependent.
Author Hostetler, C.
Hair, J.
Buchard, V.
Colarco, P.
Randles, C.A.
Tackett, J.
Winker, D.
da Silva, A.M.
Ferrare, R.
Author_xml – sequence: 1
  givenname: V.
  surname: Buchard
  fullname: Buchard, V.
  email: virginie.buchard@nasa.gov
  organization: NASA/Goddard Space Flight Center, Greenbelt, MD, USA
– sequence: 2
  givenname: A.M.
  orcidid: 0000-0002-3381-4030
  surname: da Silva
  fullname: da Silva, A.M.
  organization: NASA/Goddard Space Flight Center, Greenbelt, MD, USA
– sequence: 3
  givenname: C.A.
  surname: Randles
  fullname: Randles, C.A.
  organization: NASA/Goddard Space Flight Center, Greenbelt, MD, USA
– sequence: 4
  givenname: P.
  surname: Colarco
  fullname: Colarco, P.
  organization: NASA/Goddard Space Flight Center, Greenbelt, MD, USA
– sequence: 5
  givenname: R.
  surname: Ferrare
  fullname: Ferrare, R.
  organization: NASA Langley Research Center, Hampton, VA, USA
– sequence: 6
  givenname: J.
  surname: Hair
  fullname: Hair, J.
  organization: NASA Langley Research Center, Hampton, VA, USA
– sequence: 7
  givenname: C.
  surname: Hostetler
  fullname: Hostetler, C.
  organization: NASA Langley Research Center, Hampton, VA, USA
– sequence: 8
  givenname: J.
  surname: Tackett
  fullname: Tackett, J.
  organization: NASA Langley Research Center, Hampton, VA, USA
– sequence: 9
  givenname: D.
  surname: Winker
  fullname: Winker, D.
  organization: NASA Langley Research Center, Hampton, VA, USA
BookMark eNqFkU9r3DAQxUVJofn3FYqOudjRWLLkhRxiwiYtJE3ZJL0KWR4TLV4pkbQL--3rzTaXXvY0A_N7D-a9E3Lkg0dCvgMrgYG8XJYmr0JCvykrBnUJUDImvpBjaBQvqkaIo2nndVVUHNg3cpLSkjHG1Uwdk9f5xoxrk13wNAw0vyJN6zgYi_T3Q1XW1Hn6B2Pa3eGT-NU-tfRhvli0tMUYUhjpAo034za5RMMG4wf24l3Gnj5lkzGdka-DGROe_5un5OV2_nzzo7h_vPt5094XVgiRC1UBqFlvUQ59o7AXOEhjZhIryUVX867jnWGdMJZxW6th6IyChnfWiMb2teCn5GLv-xbD-xpT1iuXLI6j8RjWSU_-csYaEPVBFJSsuGRc7Fyv9qid3k0RB21d_kgtR-NGDUzvutBL_dmF3nWhAfTUxSSX_8nfoluZuD0svN4LcYps4zDqZB16i72LaLPugztk8ReLm6mG
CitedBy_id crossref_primary_10_1007_s00024_025_03666_6
crossref_primary_10_5194_acp_24_2443_2024
crossref_primary_10_1016_j_jaerosci_2025_106551
crossref_primary_10_5194_acp_20_11143_2020
crossref_primary_10_1007_s11356_023_31168_2
crossref_primary_10_1007_s41810_024_00239_3
crossref_primary_10_1016_j_atmosenv_2021_118513
crossref_primary_10_1029_2022EA002375
crossref_primary_10_1016_j_atmosenv_2018_11_033
crossref_primary_10_1016_j_scitotenv_2021_150338
crossref_primary_10_1007_s11356_019_04602_7
crossref_primary_10_1080_00036846_2023_2203454
crossref_primary_10_3390_rs15102527
crossref_primary_10_1002_joc_5118
crossref_primary_10_1029_2018JD028313
crossref_primary_10_1021_acs_est_4c08610
crossref_primary_10_1029_2020JD034382
crossref_primary_10_1029_2021GL093796
crossref_primary_10_1016_j_rse_2019_111494
crossref_primary_10_1007_s11869_023_01392_3
crossref_primary_10_5194_amt_17_5747_2024
crossref_primary_10_1016_j_atmosenv_2025_121152
crossref_primary_10_1016_j_aeaoa_2022_100154
crossref_primary_10_1016_j_techsoc_2025_102843
crossref_primary_10_3389_fenvs_2022_975755
crossref_primary_10_2139_ssrn_4007688
crossref_primary_10_1016_j_apr_2016_10_009
crossref_primary_10_1016_j_jclepro_2022_130413
crossref_primary_10_1016_j_scitotenv_2023_165389
crossref_primary_10_5572_ajae_2022_039
crossref_primary_10_1029_2022JD037019
crossref_primary_10_2139_ssrn_3990662
crossref_primary_10_4018_JGIM_300816
crossref_primary_10_1007_s10640_024_00860_3
crossref_primary_10_5194_gmd_17_1443_2024
crossref_primary_10_1029_2018JD028534
crossref_primary_10_3390_rs12142286
crossref_primary_10_1371_journal_pntd_0011763
crossref_primary_10_1016_j_heliyon_2023_e12925
crossref_primary_10_1016_j_jdeveco_2020_102461
crossref_primary_10_3389_fenvs_2023_1136274
crossref_primary_10_1016_j_isci_2024_110697
crossref_primary_10_1016_j_chieco_2023_102101
crossref_primary_10_3390_su15076311
crossref_primary_10_1016_j_asr_2019_04_026
crossref_primary_10_1016_j_eti_2024_103930
crossref_primary_10_1175_JAMC_D_16_0183_1
crossref_primary_10_5194_essd_14_3439_2022
crossref_primary_10_1029_2022EF003266
crossref_primary_10_2139_ssrn_4591991
crossref_primary_10_1016_j_jenvman_2024_122379
crossref_primary_10_1016_j_atmosenv_2024_120470
crossref_primary_10_2139_ssrn_4126973
crossref_primary_10_3390_rs17050761
crossref_primary_10_3390_ijerph16183459
crossref_primary_10_3390_ijerph192215034
crossref_primary_10_5194_acp_21_2837_2021
crossref_primary_10_5194_acp_20_9281_2020
crossref_primary_10_1016_j_jdeveco_2022_102833
crossref_primary_10_1021_acs_est_8b00318
crossref_primary_10_1016_j_atmosenv_2020_117925
crossref_primary_10_1016_j_heliyon_2023_e17047
crossref_primary_10_2139_ssrn_3805382
crossref_primary_10_1016_j_uclim_2017_04_001
crossref_primary_10_1016_j_chieco_2021_101676
crossref_primary_10_2151_sola_2017_018
crossref_primary_10_1007_s10668_023_02937_3
crossref_primary_10_1016_j_chemosphere_2020_127894
crossref_primary_10_1016_j_jclepro_2021_127565
crossref_primary_10_1016_j_asr_2021_02_008
crossref_primary_10_3390_ijerph20032385
crossref_primary_10_3390_toxics12030177
crossref_primary_10_1016_j_jastp_2025_106450
crossref_primary_10_1029_2017JD028074
crossref_primary_10_1016_j_chemosphere_2023_139966
crossref_primary_10_1016_j_rse_2021_112674
crossref_primary_10_1016_j_jeem_2023_102827
crossref_primary_10_3390_rs12060902
crossref_primary_10_2139_ssrn_4092476
crossref_primary_10_1016_j_atmosenv_2019_117181
crossref_primary_10_1016_j_apr_2023_102032
crossref_primary_10_1016_j_atmosenv_2025_121085
crossref_primary_10_1016_j_atmosenv_2018_04_020
crossref_primary_10_1016_j_apr_2023_101981
crossref_primary_10_1117_1_JRS_18_038501
crossref_primary_10_1016_j_jenvman_2024_123807
crossref_primary_10_1016_j_eneco_2024_107834
crossref_primary_10_1016_j_scitotenv_2022_159673
crossref_primary_10_1016_j_regsciurbeco_2024_104005
crossref_primary_10_1002_met_1878
crossref_primary_10_3390_rs15204973
crossref_primary_10_3389_fenvs_2022_856438
crossref_primary_10_1016_j_envpol_2018_11_063
crossref_primary_10_1016_j_jenvman_2022_117154
crossref_primary_10_1029_2021JD035383
crossref_primary_10_1016_j_atmosenv_2018_08_012
crossref_primary_10_1175_JCLI_D_16_0613_1
crossref_primary_10_3390_su11051410
crossref_primary_10_1016_j_atmosenv_2020_117666
crossref_primary_10_1016_j_jqsrt_2017_09_009
crossref_primary_10_1007_s13351_022_1202_7
crossref_primary_10_1016_j_atmosres_2024_107685
crossref_primary_10_3390_app13031355
crossref_primary_10_3390_su11236811
crossref_primary_10_1038_s41598_025_88239_2
crossref_primary_10_2139_ssrn_3939238
crossref_primary_10_1039_D1EA00067E
crossref_primary_10_1016_j_chieco_2021_101624
crossref_primary_10_1016_j_eneco_2025_108314
crossref_primary_10_5194_acp_24_2239_2024
crossref_primary_10_1016_j_atmosres_2020_105146
crossref_primary_10_1016_j_chieco_2023_101984
crossref_primary_10_1016_j_eneco_2024_107738
crossref_primary_10_3390_atmos15111341
crossref_primary_10_1016_j_atmosres_2020_105027
crossref_primary_10_3390_fire6090365
crossref_primary_10_1016_j_regsciurbeco_2022_103851
crossref_primary_10_1016_j_atmosenv_2018_05_038
crossref_primary_10_1029_2023GH000971
crossref_primary_10_5194_acp_21_239_2021
crossref_primary_10_1016_j_atmosenv_2022_119297
crossref_primary_10_1016_j_atmosenv_2022_119298
crossref_primary_10_3390_atmos15070849
crossref_primary_10_1016_j_scitotenv_2022_155334
crossref_primary_10_1016_j_scitotenv_2022_154363
crossref_primary_10_3389_fenvs_2022_1015723
crossref_primary_10_2139_ssrn_4422902
crossref_primary_10_1175_JCLI_D_16_0609_1
crossref_primary_10_1016_j_apr_2023_101834
crossref_primary_10_1016_j_atmosenv_2021_118690
crossref_primary_10_1016_j_scitotenv_2022_158775
crossref_primary_10_3390_rs13071317
crossref_primary_10_1038_s41598_024_71269_7
crossref_primary_10_3390_rs15194702
crossref_primary_10_1002_asl_1231
crossref_primary_10_1016_j_atmosres_2022_106254
crossref_primary_10_1080_00036846_2023_2206105
crossref_primary_10_3390_atmos14111610
crossref_primary_10_3390_rs15020388
crossref_primary_10_1016_j_envpol_2022_120286
crossref_primary_10_1007_s11869_022_01250_8
crossref_primary_10_1029_2019JD031767
crossref_primary_10_1016_j_jenvman_2022_116847
crossref_primary_10_1088_1748_9326_abee4d
crossref_primary_10_3390_rs16081425
crossref_primary_10_5194_acp_16_15097_2016
crossref_primary_10_2139_ssrn_3070762
crossref_primary_10_1007_s12145_024_01685_w
crossref_primary_10_1016_j_jeem_2023_102893
crossref_primary_10_1007_s11356_021_12783_3
crossref_primary_10_1016_j_pce_2024_103693
crossref_primary_10_1016_j_rse_2021_112617
crossref_primary_10_2139_ssrn_2956505
crossref_primary_10_5194_acp_22_15469_2022
crossref_primary_10_1186_s40645_022_00520_4
crossref_primary_10_1007_s11356_022_21972_7
crossref_primary_10_1016_j_eng_2024_09_025
crossref_primary_10_1016_j_ecoenv_2022_114415
crossref_primary_10_1088_1748_9326_ab9334
crossref_primary_10_2139_ssrn_4002894
crossref_primary_10_2139_ssrn_4786059
crossref_primary_10_3390_rs11040460
crossref_primary_10_1093_ej_ueab033
crossref_primary_10_3390_rs14010007
crossref_primary_10_1007_s00127_023_02533_w
crossref_primary_10_5194_gmd_17_4821_2024
crossref_primary_10_5194_acp_17_993_2017
crossref_primary_10_1007_s10653_024_02024_0
crossref_primary_10_1038_s41598_018_24335_w
crossref_primary_10_3390_atmos14071073
crossref_primary_10_1016_j_atmosres_2020_105064
crossref_primary_10_5194_amt_11_949_2018
crossref_primary_10_1007_s13762_020_02994_5
crossref_primary_10_1016_j_scitotenv_2019_134570
crossref_primary_10_1016_j_atmosenv_2016_11_061
crossref_primary_10_1029_2019JD031260
crossref_primary_10_5194_gmd_15_219_2022
crossref_primary_10_5194_gmd_16_2689_2023
crossref_primary_10_1021_acs_est_8b02917
crossref_primary_10_1111_obes_12579
crossref_primary_10_1051_e3sconf_202455901005
crossref_primary_10_1016_j_atmosenv_2020_118180
crossref_primary_10_1016_j_envpol_2019_07_117
crossref_primary_10_1088_1755_1315_1151_1_012028
crossref_primary_10_1016_j_atmosenv_2018_07_034
crossref_primary_10_5194_essd_16_4051_2024
crossref_primary_10_1016_j_envres_2021_110735
crossref_primary_10_1016_j_scitotenv_2024_177839
crossref_primary_10_1002_ppul_71009
crossref_primary_10_1111_roie_12480
crossref_primary_10_1016_j_rsase_2022_100828
crossref_primary_10_1016_j_atmosenv_2020_118062
crossref_primary_10_1016_j_atmosres_2019_01_009
crossref_primary_10_3390_rs12101684
crossref_primary_10_1007_s10640_024_00878_7
Cites_doi 10.1016/j.atmosenv.2013.08.050
10.1029/2003GL018174
10.1029/2000JD000053
10.5194/acp-13-4265-2013
10.1029/2005JD006898
10.1029/93JD02916
10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2
10.1002/2013JD020937
10.1029/2007GL030135
10.5194/gmd-7-2709-2014
10.5194/acp-9-909-2009
10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
10.1029/2008JD011497
10.1002/qj.49712757714
10.1073/pnas.1310925110
10.5194/amt-8-3647-2015
10.5194/amt-7-2313-2014
10.1175/JCLI-D-11-00015.1
10.5194/acp-14-2139-2014
10.1029/2009JD012820
10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
10.1080/10473289.2004.10471005
10.1029/2005JD006996
10.5194/gmd-5-709-2012
10.1289/ehp.0901623
10.1080/10473289.2011.603998
10.1175/2009JTECHA1281.1
10.1364/AO.47.006734
10.1016/S0034-4257(98)00031-5
10.5194/acp-14-1929-2014
10.1029/2003GB002079
10.1029/2008JD011496
10.1029/2003JD004248
10.1056/NEJMsa0805646
10.1016/j.atmosenv.2006.02.039
10.1002/2014GL062089
10.5194/acp-15-5743-2015
10.1109/LGRS.2009.2023605
10.1002/2013JD020328
10.5194/acp-11-3137-2011
10.5194/acp-7-3385-2007
10.5194/acp-14-6049-2014
10.1109/LGRS.2014.2352630
10.1289/ehp.1408646
10.1021/es049352m
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
7S9
L.6
DOI 10.1016/j.atmosenv.2015.11.004
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2844
EndPage 111
ExternalDocumentID 10_1016_j_atmosenv_2015_11_004
S1352231015305136
GeographicLocations USA
Western United States
GeographicLocations_xml – name: USA
– name: Western United States
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.HR
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
T9H
TAE
VH1
WUQ
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TG
7UA
C1K
EFKBS
F1W
H96
KL.
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c444t-721179dce6fd87ed4ef6aa96e2634b53bb3ba0b4ac03c57ffba7183bca48cd543
IEDL.DBID .~1
ISSN 1352-2310
IngestDate Thu Jul 10 19:01:43 EDT 2025
Mon Jul 21 11:10:36 EDT 2025
Thu Apr 24 23:00:44 EDT 2025
Tue Jul 01 03:38:17 EDT 2025
Fri Feb 23 02:35:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords AERONET
Aerosols
MERRAero
Air pollution
Particulate mater
MODIS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-721179dce6fd87ed4ef6aa96e2634b53bb3ba0b4ac03c57ffba7183bca48cd543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3381-4030
PQID 1762360344
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_2116908145
proquest_miscellaneous_1762360344
crossref_citationtrail_10_1016_j_atmosenv_2015_11_004
crossref_primary_10_1016_j_atmosenv_2015_11_004
elsevier_sciencedirect_doi_10_1016_j_atmosenv_2015_11_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationTitle Atmospheric environment (1994)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schaap, Apituley, Timmermans, Koelemeijer, Leeuw (bib38) 2009; 9
Derber, Purser, Wu, Treadon, Pondeca, Parrish, Kleist (bib12) 2003
Toth, Zhang, Campbell, Hyer, Reid, Shi, Westphal (bib40) 2014; 14
Saide, Kim, Song, Choi, Cheng, Carmichael (bib37) 2014; 41
Kishcha, da Silva, Starobinets, Alpert (bib25) 2014; 119
Jaeglé, Quinn, Bates, Alexander, Lin (bib23) 2011; 11
Schwartz, Liu, Lin, Cetola (bib39) 2014; 119
Dee, Da Silva (bib10) 1999; 127
Buchard, da Silva, Colarco, Darmenov, Randles, Govindaraju, Torres, Campbell, Spurr (bib2) 2015; 15
Pope, Ezzati, Dockery (bib34) 2009; 360
Liu, Sarnat, Kilaru, Jacob, Koutrakis (bib29) 2005; 39
Colarco, Kahn, Remer, Levy (bib7) 2014; 7
Pope, Dockery (bib33) 2013; 110
Gupta, Christopher (bib18) 2009; 114
Chen, Liu, Schwartz, Lin, Cetola, Gu, Xue (bib3) 2014; 7
van Donkelaar, Martin, Brauer, Kahn, Levy, Verduzco, Villeneuve (bib41) 2010; 118
Yi, Yang, Dessler, da Silva (bib48) March 2015; 12
Colarco, da Silva, Chin, Diehl (bib5) 2010; 115
Colarco, Schoeberl, Doddridge, Marufu, Torres, Welton (bib6) 2004; 109
Li, Zang, Li, Chao, Chen, Ye, Liu, Liou (bib27) 2013; 13
Winker, Vaughan, Omar, Hu, Powell, Liu, Hunt, Young (bib46) 2009; 26
Wu, Purser, Parrish (bib47) 2002; 130
Gupta, Christopher (bib19) 2009; 114
Winker, Hunt, McGill (bib45) 2007; 34
Holben, Eck, Slutsker, Tanre, Buis, Setzer, Vermote, Reagan, Kaufman, Nakajima (bib22) 1998; 66
Zhang, Reid (bib49) 2006; 111
Ginoux, Chin, Tegen, Prospero, Holben, Dubovik, Lin (bib16) 2001; 106
Lary, Remer, MacNeill, Roscoe, Paradise (bib26) 2010; 6
Freitas, Longo, Chatfield, Latham, Silva Dias, Andreae, Prins, Santos, Gielow, Carvalho (bib15) 2007; 7
Wang, Christopher (bib44) 2003; 30
Chin, Ginoux, Kinne, Torres, Holben, Duncan, Martin, Logan, Higurashi, Nakajima (bib4) 2002; 59
Hand, Copeland, Day, Dillner, Indresand, Malm, McDade, Moore, Pitchford, Schichtel (bib21) 2011
Nowottnick, Colarco, Welton, da Silva (bib32) 2015; 8
Rienecker, Suarez, Todling, Bacmeister, Takacs, Liu, Gu, Sienkiewicz, Koster, Gelaro (bib35) 2008; vol. 27
Rienecker, Suarez, Todling, Bacmeister, Takacs, Liu, Gu, Sienkiewicz, Koster, Gelaro, Stajner, Nielsen (bib36) 2011; 24
Hair, Hostetler, Cook, Harper, Ferrare, Mack, Welch, Izquierdo, Hovis (bib20) 2008; 47
Liu, Easter, Ghan, Zaveri, Rasch, Shi, Lamarque, Gettelman, Morrison, Vitt, Conley, Park, Neale, Hannay, Ekman, Hess, Mahowald, Collins, Iacono, Bretherton, Flanner, Mitchell (bib28) 2012; 5
Darmenov, da Silva (bib9) 2015
van Donkelaar, Martin, Brauer, Boys (bib43) 2015; 123
Malm, Schichtel, Pitchford (bib30) 2011; 61
Engel-Cox, Hoff, Rogers, Dimmick, Rush, Szykman, Al-Saadi, Chu, Zell (bib14) 2006; 40
Buchard, da Silva, Colarco, Krotkov, Dickerson, Stehr, Mount, Spinei, Arkinson, He (bib1) 2014; 14
Kessner, Wang, Levy, Colarco (bib24) 2013; 81
Malm, Sisler, Huffman, Eldred, Cahill (bib31) 1994; 99
Dee, Rukhovets, Todling, da Silva, Larson (bib11) 2001; 127
Gong (bib17) 2003; 17
Crumeyrolle, Chen, Ziemba, Beyersdorf, Thornhill, Winstead, Moore, Shook, Hudgins, Anderson (bib8) 2014; 14
Engel-Cox, Hoff, Haymet (bib13) 2004; 54
van Donkelaar, Martin, Park (bib42) 2006; 111
Buchard (10.1016/j.atmosenv.2015.11.004_bib1) 2014; 14
Toth (10.1016/j.atmosenv.2015.11.004_bib40) 2014; 14
van Donkelaar (10.1016/j.atmosenv.2015.11.004_bib42) 2006; 111
Schwartz (10.1016/j.atmosenv.2015.11.004_bib39) 2014; 119
Lary (10.1016/j.atmosenv.2015.11.004_bib26) 2010; 6
Pope (10.1016/j.atmosenv.2015.11.004_bib33) 2013; 110
Malm (10.1016/j.atmosenv.2015.11.004_bib30) 2011; 61
Yi (10.1016/j.atmosenv.2015.11.004_bib48) 2015; 12
Li (10.1016/j.atmosenv.2015.11.004_bib27) 2013; 13
Darmenov (10.1016/j.atmosenv.2015.11.004_bib9) 2015
Gupta (10.1016/j.atmosenv.2015.11.004_bib19) 2009; 114
Pope (10.1016/j.atmosenv.2015.11.004_bib34) 2009; 360
Chen (10.1016/j.atmosenv.2015.11.004_bib3) 2014; 7
Engel-Cox (10.1016/j.atmosenv.2015.11.004_bib13) 2004; 54
Winker (10.1016/j.atmosenv.2015.11.004_bib45) 2007; 34
Zhang (10.1016/j.atmosenv.2015.11.004_bib49) 2006; 111
Buchard (10.1016/j.atmosenv.2015.11.004_bib2) 2015; 15
Wu (10.1016/j.atmosenv.2015.11.004_bib47) 2002; 130
Derber (10.1016/j.atmosenv.2015.11.004_bib12) 2003
Dee (10.1016/j.atmosenv.2015.11.004_bib10) 1999; 127
Winker (10.1016/j.atmosenv.2015.11.004_bib46) 2009; 26
Dee (10.1016/j.atmosenv.2015.11.004_bib11) 2001; 127
Liu (10.1016/j.atmosenv.2015.11.004_bib29) 2005; 39
Malm (10.1016/j.atmosenv.2015.11.004_bib31) 1994; 99
Wang (10.1016/j.atmosenv.2015.11.004_bib44) 2003; 30
Hair (10.1016/j.atmosenv.2015.11.004_bib20) 2008; 47
Liu (10.1016/j.atmosenv.2015.11.004_bib28) 2012; 5
Engel-Cox (10.1016/j.atmosenv.2015.11.004_bib14) 2006; 40
Colarco (10.1016/j.atmosenv.2015.11.004_bib6) 2004; 109
Jaeglé (10.1016/j.atmosenv.2015.11.004_bib23) 2011; 11
van Donkelaar (10.1016/j.atmosenv.2015.11.004_bib41) 2010; 118
Crumeyrolle (10.1016/j.atmosenv.2015.11.004_bib8) 2014; 14
van Donkelaar (10.1016/j.atmosenv.2015.11.004_bib43) 2015; 123
Ginoux (10.1016/j.atmosenv.2015.11.004_bib16) 2001; 106
Gupta (10.1016/j.atmosenv.2015.11.004_bib18) 2009; 114
Saide (10.1016/j.atmosenv.2015.11.004_bib37) 2014; 41
Nowottnick (10.1016/j.atmosenv.2015.11.004_bib32) 2015; 8
Rienecker (10.1016/j.atmosenv.2015.11.004_bib36) 2011; 24
Chin (10.1016/j.atmosenv.2015.11.004_bib4) 2002; 59
Kessner (10.1016/j.atmosenv.2015.11.004_bib24) 2013; 81
Schaap (10.1016/j.atmosenv.2015.11.004_bib38) 2009; 9
Kishcha (10.1016/j.atmosenv.2015.11.004_bib25) 2014; 119
Gong (10.1016/j.atmosenv.2015.11.004_bib17) 2003; 17
Freitas (10.1016/j.atmosenv.2015.11.004_bib15) 2007; 7
Colarco (10.1016/j.atmosenv.2015.11.004_bib5) 2010; 115
Holben (10.1016/j.atmosenv.2015.11.004_bib22) 1998; 66
Hand (10.1016/j.atmosenv.2015.11.004_bib21) 2011
Rienecker (10.1016/j.atmosenv.2015.11.004_bib35) 2008; vol. 27
Colarco (10.1016/j.atmosenv.2015.11.004_bib7) 2014; 7
References_xml – volume: 12
  start-page: 597
  year: March 2015
  end-page: 600
  ident: bib48
  article-title: Response of aerosol direct radiative effect to the east asian summer monsoon
  publication-title: Geosci. Remote Sens. Lett. IEEE
– volume: 7
  start-page: 3385
  year: 2007
  end-page: 3398
  ident: bib15
  article-title: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models
  publication-title: Atmos. Chem. Phys.
– volume: 14
  start-page: 1929
  year: 2014
  end-page: 1941
  ident: bib1
  article-title: Evaluation of GEOS-5 sulfur dioxide simulations during the Frostburg, MD 2010 field campaign
  publication-title: Atmos. Chem. Phys.
– volume: 7
  start-page: 2709
  year: 2014
  end-page: 2715
  ident: bib3
  article-title: The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States
  publication-title: Geosci. Model Dev.
– volume: 15
  start-page: 5743
  year: 2015
  end-page: 5760
  ident: bib2
  article-title: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis
  publication-title: Atmos. Chem. Phys.
– volume: 81
  start-page: 136
  year: 2013
  end-page: 147
  ident: bib24
  article-title: Remote sensing of surface visibility from space: a look at the United States east coast
  publication-title: Atmos. Environ.
– volume: 106
  start-page: 20255
  year: 2001
  end-page: 20273
  ident: bib16
  article-title: Sources and distributions of dust aerosols simulated with the GOCART model
  publication-title: J. Geophys. Res. Atmos.
– volume: 123
  start-page: 135
  year: 2015
  end-page: 143
  ident: bib43
  article-title: Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter
  publication-title: Environ. Health Perspect.
– volume: 11
  start-page: 3137
  year: 2011
  end-page: 3157
  ident: bib23
  article-title: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations
  publication-title: Atmos. Chem. Phys.
– volume: 41
  start-page: 9188
  year: 2014
  end-page: 9196
  ident: bib37
  article-title: Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations
  publication-title: Geophys. Res. Lett.
– volume: 14
  start-page: 6049
  year: 2014
  end-page: 6062
  ident: bib40
  article-title: Impact of data quality and surface-to-column representativeness on the PM
  publication-title: Atmos. Chem. Phys.
– year: 2011
  ident: bib21
  article-title: Improve (Interagency Monitoring of Protected Visual Environments): Spatial and Seasonal Patterns and Temporal Variability of Haze and Its Constituents in the United States
– volume: 99
  start-page: 1347
  year: 1994
  end-page: 1370
  ident: bib31
  article-title: Spatial and seasonal trends in particle concentration and optical extinction in the United States
  publication-title: J. Geophys. Res. Atmos.
– volume: 61
  start-page: 1131
  year: 2011
  end-page: 1149
  ident: bib30
  article-title: Uncertainties in PM2.5 gravimetric and speciation measurements and what we can learn from them
  publication-title: J. Air Waste Manag. Assoc.
– volume: 39
  start-page: 3269
  year: 2005
  end-page: 3278
  ident: bib29
  article-title: Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing
  publication-title: Environ. Sci. Technol.
– volume: 114
  year: 2009
  ident: bib19
  article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach
  publication-title: J. Geophys. Res. Atmos.
– start-page: 32
  year: 2015
  ident: bib9
  article-title: The Quick Fire Emissions Dataset (QFED) – Documentation of Versions 2.1, 2.2 and 2.4
– volume: 59
  start-page: 461
  year: 2002
  end-page: 483
  ident: bib4
  article-title: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements
  publication-title: J. Atmos. Sci.
– volume: 127
  start-page: 2451
  year: 2001
  end-page: 2471
  ident: bib11
  article-title: An adaptive buddy check for observational quality control
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 119
  start-page: 1555
  year: 2014
  end-page: 1570
  ident: bib25
  article-title: Air pollution over the Ganges basin and northwest Bay of Bengal in the early postmonsoon season based on NASA MERRAero data
  publication-title: J. Geophys. Res. Atmos.
– volume: 8
  start-page: 3647
  year: 2015
  end-page: 3669
  ident: bib32
  article-title: Use of the CALIOP vertical feature mask for evaluating global aerosol models
  publication-title: Atmos. Meas. Tech.
– volume: vol. 27
  start-page: 1
  year: 2008
  end-page: 118
  ident: bib35
  article-title: The GEOS-5 data assimilation system-documentation of versions 5.0.1, 5.1.0, and 5.2.0
  publication-title: Technical Report Series on Global Modeling and Data Assimilation
– volume: 9
  start-page: 909
  year: 2009
  end-page: 925
  ident: bib38
  article-title: Exploring the relation between aerosol optical depth and PM 2.5 at Cabauw, The Netherlands
  publication-title: Atmos. Chem. Phys.
– volume: 47
  start-page: 6734
  year: 2008
  end-page: 6752
  ident: bib20
  article-title: Airborne high spectral resolution lidar for profiling aerosol optical properties
  publication-title: Appl. Opt.
– volume: 360
  start-page: 376
  year: 2009
  end-page: 386
  ident: bib34
  article-title: Fine-particulate air pollution and life expectancy in the United States
  publication-title: N. Engl. J. Med.
– volume: 5
  start-page: 709
  year: 2012
  end-page: 739
  ident: bib28
  article-title: Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5
  publication-title: Geosci. Model Dev.
– volume: 130
  start-page: 2905
  year: 2002
  end-page: 2916
  ident: bib47
  article-title: Three-dimensional variational analysis with spatially inhomogeneous covariances
  publication-title: Mon. Weather Rev.
– volume: 119
  start-page: 4043
  year: 2014
  end-page: 4069
  ident: bib39
  article-title: Assimilating aerosol observations with a hybrid variational-ensemble data assimilation system
  publication-title: J. Geophys. Res. Atmos.
– volume: 127
  start-page: 1822
  year: 1999
  end-page: 1834
  ident: bib10
  article-title: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: methodology
  publication-title: Mon. Weather Rev.
– volume: 54
  start-page: 1360
  year: 2004
  end-page: 1371
  ident: bib13
  article-title: Recommendations on the use of satellite remote-sensing data for urban air quality
  publication-title: J. Air Waste Manag. Assoc.
– volume: 114
  year: 2009
  ident: bib18
  article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach
  publication-title: J. Geophys. Res. Atmos.
– volume: 110
  start-page: 12861
  year: 2013
  end-page: 12862
  ident: bib33
  article-title: Air pollution and life expectancy in china and beyond
  publication-title: Proc. Natl. Acad. Sci.
– volume: 34
  start-page: L19803
  year: 2007
  ident: bib45
  article-title: Initial performance assessment of CALIOP
  publication-title: Geophys. Res. Lett.
– volume: 14
  start-page: 2139
  year: 2014
  end-page: 2153
  ident: bib8
  article-title: Factors that influence surface PM
  publication-title: Atmos. Chem. Phys.
– volume: 40
  start-page: 8056
  year: 2006
  end-page: 8067
  ident: bib14
  article-title: Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization
  publication-title: Atmos. Environ.
– volume: 24
  start-page: 3624
  year: 2011
  end-page: 3648
  ident: bib36
  article-title: MERRA: NASA's modern-era retrospective analysis for research and applications
  publication-title: J. Clim.
– volume: 118
  start-page: 847
  year: 2010
  end-page: 855
  ident: bib41
  article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application
  publication-title: Environ. Health Perspect.
– volume: 26
  start-page: 2310
  year: 2009
  end-page: 2323
  ident: bib46
  article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms
  publication-title: J. Atmos. Ocean. Technol.
– volume: 13
  start-page: 4265
  year: 2013
  end-page: 4278
  ident: bib27
  article-title: A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM
  publication-title: Atmos. Chem. Phys.
– year: 2003
  ident: bib12
  article-title: Flow dependent Jb in a global grid-point 3D-var
  publication-title: Proc. ECMWF Annual Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean
– volume: 111
  year: 2006
  ident: bib49
  article-title: Modis aerosol product analysis for data assimilation: assessment of over-ocean level 2 aerosol optical thickness retrievals
  publication-title: J. Geophys. Res. Atmos.
– volume: 66
  start-page: 1
  year: 1998
  end-page: 16
  ident: bib22
  article-title: Aeronet—A federated instrument network and data archive for aerosol characterization
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 694
  year: 2010
  end-page: 698
  ident: bib26
  article-title: Machine Learning and Bias Correction of MODIS aerosol optical depth
  publication-title: Geosci. Remote Sens. Lett. IEEE
– volume: 7
  start-page: 2313
  year: 2014
  end-page: 2335
  ident: bib7
  article-title: Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends
  publication-title: Atmos. Meas. Tech.
– volume: 17
  year: 2003
  ident: bib17
  article-title: A parameterization of sea-salt aerosol source function for sub- and super-micron particles
  publication-title: Glob. Biogeochem. Cycles
– volume: 115
  year: 2010
  ident: bib5
  article-title: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth
  publication-title: J. Geophys. Res.
– volume: 111
  year: 2006
  ident: bib42
  article-title: Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing
  publication-title: J. Geophys. Res. Atmos.
– volume: 30
  year: 2003
  ident: bib44
  article-title: Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies
  publication-title: Geophys. Res. Lett.
– volume: 109
  year: 2004
  ident: bib6
  article-title: Transport of smoke from canadian forest fires to the surface near Washington, DC: injection height, entrainment, and optical properties
  publication-title: J. Geophys. Res. Atmos.
– volume: 81
  start-page: 136
  year: 2013
  ident: 10.1016/j.atmosenv.2015.11.004_bib24
  article-title: Remote sensing of surface visibility from space: a look at the United States east coast
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.08.050
– volume: 30
  issue: 21
  year: 2003
  ident: 10.1016/j.atmosenv.2015.11.004_bib44
  article-title: Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2003GL018174
– volume: 106
  start-page: 20255
  issue: D17
  year: 2001
  ident: 10.1016/j.atmosenv.2015.11.004_bib16
  article-title: Sources and distributions of dust aerosols simulated with the GOCART model
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2000JD000053
– volume: 13
  start-page: 4265
  issue: 8
  year: 2013
  ident: 10.1016/j.atmosenv.2015.11.004_bib27
  article-title: A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-13-4265-2013
– volume: 111
  issue: D22
  year: 2006
  ident: 10.1016/j.atmosenv.2015.11.004_bib49
  article-title: Modis aerosol product analysis for data assimilation: assessment of over-ocean level 2 aerosol optical thickness retrievals
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2005JD006898
– volume: 99
  start-page: 1347
  issue: D1
  year: 1994
  ident: 10.1016/j.atmosenv.2015.11.004_bib31
  article-title: Spatial and seasonal trends in particle concentration and optical extinction in the United States
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/93JD02916
– volume: 127
  start-page: 1822
  issue: 8
  year: 1999
  ident: 10.1016/j.atmosenv.2015.11.004_bib10
  article-title: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: methodology
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2
– volume: 119
  start-page: 4043
  issue: 7
  year: 2014
  ident: 10.1016/j.atmosenv.2015.11.004_bib39
  article-title: Assimilating aerosol observations with a hybrid variational-ensemble data assimilation system
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2013JD020937
– volume: 34
  start-page: L19803
  year: 2007
  ident: 10.1016/j.atmosenv.2015.11.004_bib45
  article-title: Initial performance assessment of CALIOP
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL030135
– volume: 7
  start-page: 2709
  issue: 6
  year: 2014
  ident: 10.1016/j.atmosenv.2015.11.004_bib3
  article-title: The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-2709-2014
– volume: 9
  start-page: 909
  issue: 3
  year: 2009
  ident: 10.1016/j.atmosenv.2015.11.004_bib38
  article-title: Exploring the relation between aerosol optical depth and PM 2.5 at Cabauw, The Netherlands
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-9-909-2009
– volume: 130
  start-page: 2905
  issue: 12
  year: 2002
  ident: 10.1016/j.atmosenv.2015.11.004_bib47
  article-title: Three-dimensional variational analysis with spatially inhomogeneous covariances
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
– volume: 114
  issue: D20
  year: 2009
  ident: 10.1016/j.atmosenv.2015.11.004_bib18
  article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2008JD011497
– volume: 127
  start-page: 2451
  issue: 577
  year: 2001
  ident: 10.1016/j.atmosenv.2015.11.004_bib11
  article-title: An adaptive buddy check for observational quality control
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49712757714
– volume: 110
  start-page: 12861
  issue: 32
  year: 2013
  ident: 10.1016/j.atmosenv.2015.11.004_bib33
  article-title: Air pollution and life expectancy in china and beyond
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1310925110
– volume: 8
  start-page: 3647
  issue: 9
  year: 2015
  ident: 10.1016/j.atmosenv.2015.11.004_bib32
  article-title: Use of the CALIOP vertical feature mask for evaluating global aerosol models
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-8-3647-2015
– volume: 7
  start-page: 2313
  issue: 7
  year: 2014
  ident: 10.1016/j.atmosenv.2015.11.004_bib7
  article-title: Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-7-2313-2014
– volume: 24
  start-page: 3624
  issue: 14
  year: 2011
  ident: 10.1016/j.atmosenv.2015.11.004_bib36
  article-title: MERRA: NASA's modern-era retrospective analysis for research and applications
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00015.1
– volume: 14
  start-page: 2139
  issue: 4
  year: 2014
  ident: 10.1016/j.atmosenv.2015.11.004_bib8
  article-title: Factors that influence surface PM2.5 values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-2139-2014
– volume: 115
  issue: D14
  year: 2010
  ident: 10.1016/j.atmosenv.2015.11.004_bib5
  article-title: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JD012820
– volume: 59
  start-page: 461
  issue: 3
  year: 2002
  ident: 10.1016/j.atmosenv.2015.11.004_bib4
  article-title: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
– volume: 54
  start-page: 1360
  issue: 11
  year: 2004
  ident: 10.1016/j.atmosenv.2015.11.004_bib13
  article-title: Recommendations on the use of satellite remote-sensing data for urban air quality
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10473289.2004.10471005
– volume: 111
  issue: D21
  year: 2006
  ident: 10.1016/j.atmosenv.2015.11.004_bib42
  article-title: Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2005JD006996
– volume: 5
  start-page: 709
  issue: 3
  year: 2012
  ident: 10.1016/j.atmosenv.2015.11.004_bib28
  article-title: Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-5-709-2012
– volume: 118
  start-page: 847
  issue: 6
  year: 2010
  ident: 10.1016/j.atmosenv.2015.11.004_bib41
  article-title: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0901623
– volume: 61
  start-page: 1131
  issue: 11
  year: 2011
  ident: 10.1016/j.atmosenv.2015.11.004_bib30
  article-title: Uncertainties in PM2.5 gravimetric and speciation measurements and what we can learn from them
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.1080/10473289.2011.603998
– volume: 26
  start-page: 2310
  issue: 11
  year: 2009
  ident: 10.1016/j.atmosenv.2015.11.004_bib46
  article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHA1281.1
– volume: 47
  start-page: 6734
  issue: 36
  year: 2008
  ident: 10.1016/j.atmosenv.2015.11.004_bib20
  article-title: Airborne high spectral resolution lidar for profiling aerosol optical properties
  publication-title: Appl. Opt.
  doi: 10.1364/AO.47.006734
– volume: 66
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.atmosenv.2015.11.004_bib22
  article-title: Aeronet—A federated instrument network and data archive for aerosol characterization
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00031-5
– volume: 14
  start-page: 1929
  issue: 4
  year: 2014
  ident: 10.1016/j.atmosenv.2015.11.004_bib1
  article-title: Evaluation of GEOS-5 sulfur dioxide simulations during the Frostburg, MD 2010 field campaign
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-1929-2014
– volume: 17
  issue: 4
  year: 2003
  ident: 10.1016/j.atmosenv.2015.11.004_bib17
  article-title: A parameterization of sea-salt aerosol source function for sub- and super-micron particles
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2003GB002079
– volume: 114
  issue: D14
  year: 2009
  ident: 10.1016/j.atmosenv.2015.11.004_bib19
  article-title: Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2008JD011496
– volume: vol. 27
  start-page: 1
  year: 2008
  ident: 10.1016/j.atmosenv.2015.11.004_bib35
  article-title: The GEOS-5 data assimilation system-documentation of versions 5.0.1, 5.1.0, and 5.2.0
– volume: 109
  issue: D6
  year: 2004
  ident: 10.1016/j.atmosenv.2015.11.004_bib6
  article-title: Transport of smoke from canadian forest fires to the surface near Washington, DC: injection height, entrainment, and optical properties
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2003JD004248
– year: 2011
  ident: 10.1016/j.atmosenv.2015.11.004_bib21
– volume: 360
  start-page: 376
  issue: 4
  year: 2009
  ident: 10.1016/j.atmosenv.2015.11.004_bib34
  article-title: Fine-particulate air pollution and life expectancy in the United States
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa0805646
– volume: 40
  start-page: 8056
  issue: 40
  year: 2006
  ident: 10.1016/j.atmosenv.2015.11.004_bib14
  article-title: Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.02.039
– volume: 41
  start-page: 9188
  issue: 24
  year: 2014
  ident: 10.1016/j.atmosenv.2015.11.004_bib37
  article-title: Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL062089
– volume: 15
  start-page: 5743
  issue: 10
  year: 2015
  ident: 10.1016/j.atmosenv.2015.11.004_bib2
  article-title: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-5743-2015
– volume: 6
  start-page: 694
  issue: 4
  year: 2010
  ident: 10.1016/j.atmosenv.2015.11.004_bib26
  article-title: Machine Learning and Bias Correction of MODIS aerosol optical depth
  publication-title: Geosci. Remote Sens. Lett. IEEE
  doi: 10.1109/LGRS.2009.2023605
– volume: 119
  start-page: 1555
  issue: 3
  year: 2014
  ident: 10.1016/j.atmosenv.2015.11.004_bib25
  article-title: Air pollution over the Ganges basin and northwest Bay of Bengal in the early postmonsoon season based on NASA MERRAero data
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2013JD020328
– year: 2003
  ident: 10.1016/j.atmosenv.2015.11.004_bib12
  article-title: Flow dependent Jb in a global grid-point 3D-var
– volume: 11
  start-page: 3137
  issue: 7
  year: 2011
  ident: 10.1016/j.atmosenv.2015.11.004_bib23
  article-title: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-3137-2011
– volume: 7
  start-page: 3385
  issue: 13
  year: 2007
  ident: 10.1016/j.atmosenv.2015.11.004_bib15
  article-title: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-7-3385-2007
– volume: 14
  start-page: 6049
  issue: 12
  year: 2014
  ident: 10.1016/j.atmosenv.2015.11.004_bib40
  article-title: Impact of data quality and surface-to-column representativeness on the PM2.5/satellite AOD relationship for the contiguous United States
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-6049-2014
– volume: 12
  start-page: 597
  issue: 3
  year: 2015
  ident: 10.1016/j.atmosenv.2015.11.004_bib48
  article-title: Response of aerosol direct radiative effect to the east asian summer monsoon
  publication-title: Geosci. Remote Sens. Lett. IEEE
  doi: 10.1109/LGRS.2014.2352630
– volume: 123
  start-page: 135
  issue: 2
  year: 2015
  ident: 10.1016/j.atmosenv.2015.11.004_bib43
  article-title: Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1408646
– start-page: 32
  year: 2015
  ident: 10.1016/j.atmosenv.2015.11.004_bib9
– volume: 39
  start-page: 3269
  issue: 9
  year: 2005
  ident: 10.1016/j.atmosenv.2015.11.004_bib29
  article-title: Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049352m
SSID ssj0003797
Score 2.5817528
Snippet We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100
SubjectTerms AERONET
Aerosols
Air pollution
atmospheric chemistry
chemical speciation
data collection
emissions
MERRAero
moderate resolution imaging spectroradiometer
MODIS
monitoring
nitrates
optical properties
Particulate mater
particulates
retrospective studies
satellites
summer
United States Environmental Protection Agency
wavelengths
Western United States
winter
Title Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States
URI https://dx.doi.org/10.1016/j.atmosenv.2015.11.004
https://www.proquest.com/docview/1762360344
https://www.proquest.com/docview/2116908145
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn_hmBa9p0-wjyTFIS1VapCp4W_YVrGhSbOvR3-5sstEqigePCbNh2Zmd-XYz8w1CZyZJcx2pJHDk7AFNQRdppFlgdMQM2IzlVR33YMj7d_Tynt0vofOmFsalVXrfX_v0ylv7N22_mu3JeNy-6TjsAOgE9ixYFnG025TGzspbb59pHiSuG6yAcOCkF6qEH0Ejz-XUFq8uxYu1HJunb9j2Q4D65qqr-NPbQOseOOKsntsmWrLFFlpboBPcQrvdz6o1EPXbdrqNHrofnN64zDFgPjydv-RSW3w9iFoMjwvsL85wp5EYZjcZHnRHowxnFqZaPuGRlZ7DBLvMz0qsBq24Bq076K7XvT3vB77FQqAppbPAnf_i1GjLc5PE1lCbcylTbiNOqGJEKaJkqKjUIdEsznMlIZgR5bjQtWGU7KLloizsHsLcJlaHMoo6Br4d0UTm3CjFQi7jxKThPmLNugrt-cddG4wn0SSaPYpGH8LpAw4nAvSxj9of4yY1A8efI9JGbeKLLQkIE3-OPW30LGCjub8nsrDlfCo6EDYIdwyJv8vAavIUQBZlB_-YwyFahSd_0XOElmcvc3sM0GemTirbPkEr2cVVf_gOM2YECg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BOBQOiEJRebVbiauJ433YPlooKBQSVQEkbqt9WQ0CG5GE389svA5QteLQqz1jrXZmZ75d73wDcGyzvDSJziJPzh6xHG2RJ4ZH1iTcos84sajjHo7E4Ib9vOW3K3Da1sL4a5Uh9jcxfRGtw5NumM3u42TSvep57IDoBNcsehYVq7Dm2al4B9aK84vBaBmQadr0WEH5yCu8KRS-Q6M81FNXPftbXvzEE3qGnm1_yVF_ROtFCjrbgs2AHUnRDO8zrLhqGzbeMApuw27_tXANRcPKne7A7_6S1pvUJUHYR6bzp1IZR34NkxNOJhUJZ2ek10qMiquCDPvjcUEKh0Ot78nYqUBjQvzlz4VYg1tJg1u_wM1Z__p0EIUuC5FhjM0ivwVMc2ucKG2WOstcKZTKhUsEZZpTralWsWbKxNTwtCy1wnxGtadDN5Yzugudqq7cVyDCZc7EKkl6Fr-dsEyVwmrNY6HSzObxHvB2XqUJFOS-E8a9bO-a3cnWHtLbA_cnEu2xB92l3mNDwvGhRt6aTb5zJ4mZ4kPdH62dJa41_wNFVa6eT2UPMwcVniTx3zI4myJHnMX4_n-M4Tt8GlwPL-Xl-ejiANbxTTj3OYTO7GnujhAJzfS34OkvEcAGuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+surface+PM2.5+in+Version+1+of+the+NASA+MERRA+Aerosol+Reanalysis+over+the+United+States&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Buchard%2C+V.&rft.au=da+Silva%2C+A.M.&rft.au=Randles%2C+C.A.&rft.au=Colarco%2C+P.&rft.date=2016-01-01&rft.issn=1352-2310&rft.volume=125&rft.spage=100&rft.epage=111&rft_id=info:doi/10.1016%2Fj.atmosenv.2015.11.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atmosenv_2015_11_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon