Security of quantum position-verification limits Hamiltonian simulation via holography

A bstract We investigate the link between quantum position-verification (QPV) and holography established in [ 1 ] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 8; pp. 152 - 40
Main Authors Apel, Harriet, Cubitt, Toby, Hayden, Patrick, Kohler, Tamara, Pérez-García, David
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Springer Nature
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We investigate the link between quantum position-verification (QPV) and holography established in [ 1 ] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another.
AbstractList We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another.
Abstract We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another.
A bstract We investigate the link between quantum position-verification (QPV) and holography established in [ 1 ] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another.
Abstract We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another.
ArticleNumber 152
Author Cubitt, Toby
Apel, Harriet
Pérez-García, David
Hayden, Patrick
Kohler, Tamara
Author_xml – sequence: 1
  givenname: Harriet
  orcidid: 0000-0001-5715-9838
  surname: Apel
  fullname: Apel, Harriet
  email: harriet.apel.19@ucl.ac.uk
  organization: Department of Computer Science, University College London
– sequence: 2
  givenname: Toby
  orcidid: 0000-0002-5087-9346
  surname: Cubitt
  fullname: Cubitt, Toby
  organization: Department of Computer Science, University College London
– sequence: 3
  givenname: Patrick
  orcidid: 0000-0002-3964-5602
  surname: Hayden
  fullname: Hayden, Patrick
  organization: Stanford Institute for Theoretical Physics, Stanford University
– sequence: 4
  givenname: Tamara
  orcidid: 0000-0002-7136-6267
  surname: Kohler
  fullname: Kohler, Tamara
  organization: Instituto de Ciencias Matemáticas, Department of Computer Science, Stanford University
– sequence: 5
  givenname: David
  orcidid: 0000-0003-2990-791X
  surname: Pérez-García
  fullname: Pérez-García, David
  organization: Instituto de Ciencias Matemáticas
BackLink https://www.osti.gov/servlets/purl/2576116$$D View this record in Osti.gov
BookMark eNp9UU1v1DAUtFCRaAtnrhFc4JDWdhx_HFHVsq0qgcTH1Xrx2rteJfbWdirtv8fbIEBIcLL93sy8eZ4zdBJisAi9JviCYCwu71bXn7F8RzFl70lPn6FTgqlqJRPq5I_7C3SW8w5j0hOFT9H3L9bMyZdDE13zMEMo89TsY_bFx9A-2uSdN3B8NKOffMnNCiY_lhg8hCb7aR6X7qOHZhvHuEmw3x5eoucOxmxf_TzP0beb669Xq_b-08fbqw_3rWGMlZZbcJISJwkGbCXpO2UIxx0IwqVh3QCDIWvBhaNKDWLoOLiB0gqVvRAD7c7R7aK7jrDT--QnSAcdweunQkwbDal4M1o9YN5JCYqKqmyJANY7WAtj7Jobx6BqvVm0Yi5eZ-OLNVsTQ7CmaNoLTgivoLcLaJ_iw2xz0bs4p1B31B1WTLGOiKOtywVlUsw5WffLGsH6mJZe0tLHtHRNqzL6vxh1_tPPlgR-_A8PL7xcJ4SNTb_9_IvyA98_qk8
CitedBy_id crossref_primary_10_1103_PhysRevA_110_062605
Cites_doi 10.1038/nphys2251
10.1109/FOCS.2015.54
10.1007/JHEP06(2015)149
10.1103/PhysRevLett.105.010502
10.1016/j.aop.2004.09.010
10.1007/s11467-009-0067-x
10.26421/QIC15.13-14-7
10.1073/pnas.1804949115
10.1007/JHEP08(2019)017
10.1007/s00023-021-01111-7
10.6028/nist.ir.8240
10.1109/SFCS.1994.365700
10.1007/JHEP11(2016)009
10.22331/q-2024-05-27-1362
10.1103/PhysRevLett.92.207901
10.1007/978-3-642-03356-8_23
10.22331/q-2023-08-09-1079
10.1088/1367-2630/15/10/103002
10.1007/s00220-022-04407-9
10.1088/1367-2630/13/9/093036
10.1007/JHEP08(2020)132
10.1007/JHEP10(2019)233
10.1137/130913687
10.22331/q-2022-11-28-864
10.1007/JHEP03(2022)052
10.1103/PhysRevLett.101.070503
10.1007/s00220-016-2787-4
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Univ. of Pennsylvania, Philadelphia, PA (United States)
CorporateAuthor_xml – name: Univ. of Pennsylvania, Philadelphia, PA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP08(2024)152
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1029-8479
EndPage 40
ExternalDocumentID oai_doaj_org_article_b06388a9278c4e17a45fad7cced6cf4a
2576116
10_1007_JHEP08_2024_152
GroupedDBID 0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMVHM
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
N5L
N9A
NB0
O93
OK1
P62
P9T
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
R9I
RO9
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c444t-6eaf821f810a0e81539c1603a7168c43babc1d767f299b7b36afb220e88577b23
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:32:33 EDT 2025
Mon Aug 25 02:21:11 EDT 2025
Fri Jul 25 23:41:11 EDT 2025
Tue Jul 01 05:19:26 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Mon Jul 21 06:07:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Lattice Models of Gravity
AdS-CFT Correspondence
Holography and Condensed Matter Physics (AdS/CMT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-6eaf821f810a0e81539c1603a7168c43babc1d767f299b7b36afb220e88577b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
None
USDOE Office of Science (SC)
SC0020360
ORCID 0000-0003-2990-791X
0000-0002-7136-6267
0000-0001-5715-9838
0000-0002-5087-9346
0000-0002-3964-5602
0000000157159838
0000000250879346
0000000271366267
000000032990791X
0000000239645602
OpenAccessLink https://www.proquest.com/docview/3094943172?pq-origsite=%requestingapplication%
PQID 3094943172
PQPubID 2034718
PageCount 40
ParticipantIDs doaj_primary_oai_doaj_org_article_b06388a9278c4e17a45fad7cced6cf4a
osti_scitechconnect_2576116
proquest_journals_3094943172
crossref_primary_10_1007_JHEP08_2024_152
crossref_citationtrail_10_1007_JHEP08_2024_152
springer_journals_10_1007_JHEP08_2024_152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Nature
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Nature
– name: SpringerOpen
References S. Beigi and R. König, Simplified instantaneous non-local quantum computation with applications to position-based cryptography, New J. Phys.13 (2011) 093036 [INSPIRE].
S. Bravyi, D.P. DiVincenzo, D. Loss and B.M. Terhal, Simulation of Many-Body Hamiltonians using Perturbation Theory with Bounded-Strength Interactions, Phys. Rev. Lett.101 (2008) 070503 [arXiv:0803.2686] [INSPIRE].
MayAPeningtonGSorceJHolographic scattering requires a connected entanglement wedgeJHEP2020081322020JHEP...08..132M417646210.1007/JHEP08(2020)132[arXiv:1912.05649] [INSPIRE]
ApelHKohlerTCubittTHolographic duality between local Hamiltonians from random tensor networksJHEP2022030522022JHEP...03..052A442625210.1007/JHEP03(2022)052[arXiv:2105.12067] [INSPIRE]
D.W. Berry, A.M. Childs and R. Kothari, Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters, arXiv:1501.01715 [https://doi.org/10.1109/FOCS.2015.54] [INSPIRE].
CreeJMayACode-routing: a new attack on position verificationQuantum20237107910.22331/q-2023-08-09-1079[arXiv:2202.07812] [INSPIRE]
M. Tomamichel, S. Fehr, J. Kaniewski and S. Wehner, A Monogamy-of-Entanglement Game With Applications to Device-Independent Quantum Cryptography, arXiv:1210.4359 [https://doi.org/10.1088/1367-2630/15/10/103002].
CubittTSMontanaroAPiddockSUniversal quantum HamiltoniansProc. Nat. Acad. Sci.201811594972018PNAS..115.9497C385903710.1073/pnas.1804949115
K. Dolev and S. Cree, Holography as a resource for non-local quantum computation, arXiv:2210.13500 [INSPIRE].
D. Aharonov and L. Zhou, Hamiltonian sparsification and gap-simulations, arXiv:1804.11084.
X.-L. Qi and Z. Yang, Butterfly velocity and bulk causal structure, arXiv:1705.01728 [INSPIRE].
P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in the proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, U.S.A., November 20–22 (1994) [https://doi.org/10.1109/SFCS.1994.365700] [INSPIRE].
Y. Cao and D. Nagaj, Perturbative gadgets without strong interactions, Quant. Inf. Comput.15 (2015) 1197 [INSPIRE].
D. Porras and J.I. Cirac, Effective Quantum Spin Systems with Trapped Ions, Phys. Rev. Lett.92 (2004) 207901 [INSPIRE].
PengX-HSuterDSpin qubits for quantum simulationsFront. Phys. China2009512010FrPhC...5....1P10.1007/s11467-009-0067-x
T. Barthel, M. Kliesch and J. Eisert, Real-Space Renormalization Yields Finite Correlations, Phys. Rev. Lett.105 (2010) 010502 [arXiv:1003.2319] [INSPIRE].
HaydenPHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H358444210.1007/JHEP11(2016)009[arXiv:1601.01694] [INSPIRE]
K. Dolev and S. Cree, Non-local computation of quantum circuits with small light cones, arXiv:2203.10106 [INSPIRE].
PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP2015061492015JHEP...06..149P337018610.1007/JHEP06(2015)149[arXiv:1503.06237] [INSPIRE]
MayAComplexity and entanglement in non-local computation and holographyQuantum2022686410.22331/q-2022-11-28-864[arXiv:2204.00908] [INSPIRE]
N. Chandran, V. Goyal, R. Moriarty and R. Ostrovsky, Position based cryptography, in Advances in Cryptology — CRYPTO 2009, S. Halevi ed., Springer Berlin Heidelberg (2009), pp. 391–407. https://doi.org/10.1007/978-3-642-03356-8_23.
MayAQuantum tasks in holographyJHEP2019102332019JHEP...10..233M405107910.1007/JHEP10(2019)233[arXiv:1902.06845]
K. Dolev, Constraining the doability of relativistic quantum tasks, arXiv:1909.05403 [INSPIRE].
BravyiSHastingsMOn complexity of the quantum Ising modelCommun. Math. Phys.201734912017CMaPh.349....1B359274510.1007/s00220-016-2787-4[arXiv:1410.0703] [INSPIRE]
KohlerTPiddockSBauschJCubittTTranslationally Invariant Universal Quantum Hamiltonians in 1DAnnales Henri Poincare202223223436187410.1007/s00023-021-01111-7[arXiv:2003.13753] [INSPIRE]
F. Speelman, Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits, Leibniz Int. Proc. Inf.61 (2016) 9:1 [INSPIRE].
CaoYKaisSEfficient optimization of perturbative gadgetsQuant. Inf. Comput.20171707793728188[INSPIRE]
S. Beigi and R. Koenig, Simplified instantaneous non-local quantum computation with applications to position-based cryptography, arXiv:1101.1065 [https://doi.org/10.1088/1367-2630/13/9/093036].
KohlerTCubittTToy Models of Holographic Duality between local HamiltoniansJHEP2019080172019JHEP...08..017K401448610.1007/JHEP08(2019)017[arXiv:1810.08992] [INSPIRE]
L. Masanes, Discrete holography in dual-unitary circuits, arXiv:2301.02825 [INSPIRE].
G. Alagic et al., Status report on the first round of the NIST post-quantum cryptography standardization process, National Institute of Standards and Technology (2019) [https://doi.org/10.6028/nist.ir.8240].
JungeMKubickiAMPalazuelosCPérez-GarcíaDGeometry of Banach Spaces: A New Route Towards Position Based CryptographyCommun. Math. Phys.20223946252022CMaPh.394..625J446940310.1007/s00220-022-04407-9[arXiv:2103.16357] [INSPIRE]
HouckAATüreciHEKochJOn-chip quantum simulation with superconducting circuitsNature Phys.201282922012NatPh...8..292H10.1038/nphys2251[INSPIRE]
BuhrmanHPosition-Based Quantum Cryptography: Impossibility and ConstructionsSIAM J. Comput.201443150316241210.1137/130913687[INSPIRE]
D. Jaksch and P. Zoller, The cold atom Hubbard toolbox, Annals Phys.315 (2005) 52 [cond-mat/0410614].
BettaqueVSwingleBNoRA: A Tensor Network Ansatz for Volume-Law Entangled Equilibrium States of Highly Connected HamiltoniansQuantum20248136210.22331/q-2024-05-27-1362[arXiv:2303.16946] [INSPIRE]
D. Harley et al., Going Beyond Gadgets: The Importance of Scalability for Analogue Quantum Simulators, arXiv:2306.13739 [INSPIRE].
H Buhrman (24286_CR13) 2014; 43
24286_CR20
J Cree (24286_CR15) 2023; 7
TS Cubitt (24286_CR23) 2018; 115
A May (24286_CR18) 2022; 6
AA Houck (24286_CR22) 2012; 8
24286_CR7
24286_CR16
24286_CR35
A May (24286_CR11) 2019; 10
24286_CR14
24286_CR36
24286_CR33
24286_CR12
24286_CR34
T Kohler (24286_CR4) 2019; 08
24286_CR8
24286_CR19
24286_CR9
T Kohler (24286_CR5) 2022; 23
24286_CR10
24286_CR32
H Apel (24286_CR6) 2022; 03
24286_CR30
A May (24286_CR1) 2020; 08
V Bettaque (24286_CR27) 2024; 8
F Pastawski (24286_CR2) 2015; 06
24286_CR28
P Hayden (24286_CR3) 2016; 11
24286_CR29
X-H Peng (24286_CR21) 2009; 5
24286_CR26
24286_CR24
24286_CR25
S Bravyi (24286_CR37) 2017; 349
M Junge (24286_CR17) 2022; 394
Y Cao (24286_CR31) 2017; 17
References_xml – reference: ApelHKohlerTCubittTHolographic duality between local Hamiltonians from random tensor networksJHEP2022030522022JHEP...03..052A442625210.1007/JHEP03(2022)052[arXiv:2105.12067] [INSPIRE]
– reference: S. Beigi and R. Koenig, Simplified instantaneous non-local quantum computation with applications to position-based cryptography, arXiv:1101.1065 [https://doi.org/10.1088/1367-2630/13/9/093036].
– reference: D. Jaksch and P. Zoller, The cold atom Hubbard toolbox, Annals Phys.315 (2005) 52 [cond-mat/0410614].
– reference: PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP2015061492015JHEP...06..149P337018610.1007/JHEP06(2015)149[arXiv:1503.06237] [INSPIRE]
– reference: K. Dolev and S. Cree, Non-local computation of quantum circuits with small light cones, arXiv:2203.10106 [INSPIRE].
– reference: S. Beigi and R. König, Simplified instantaneous non-local quantum computation with applications to position-based cryptography, New J. Phys.13 (2011) 093036 [INSPIRE].
– reference: D. Porras and J.I. Cirac, Effective Quantum Spin Systems with Trapped Ions, Phys. Rev. Lett.92 (2004) 207901 [INSPIRE].
– reference: K. Dolev, Constraining the doability of relativistic quantum tasks, arXiv:1909.05403 [INSPIRE].
– reference: S. Bravyi, D.P. DiVincenzo, D. Loss and B.M. Terhal, Simulation of Many-Body Hamiltonians using Perturbation Theory with Bounded-Strength Interactions, Phys. Rev. Lett.101 (2008) 070503 [arXiv:0803.2686] [INSPIRE].
– reference: CaoYKaisSEfficient optimization of perturbative gadgetsQuant. Inf. Comput.20171707793728188[INSPIRE]
– reference: L. Masanes, Discrete holography in dual-unitary circuits, arXiv:2301.02825 [INSPIRE].
– reference: Y. Cao and D. Nagaj, Perturbative gadgets without strong interactions, Quant. Inf. Comput.15 (2015) 1197 [INSPIRE].
– reference: G. Alagic et al., Status report on the first round of the NIST post-quantum cryptography standardization process, National Institute of Standards and Technology (2019) [https://doi.org/10.6028/nist.ir.8240].
– reference: CubittTSMontanaroAPiddockSUniversal quantum HamiltoniansProc. Nat. Acad. Sci.201811594972018PNAS..115.9497C385903710.1073/pnas.1804949115
– reference: K. Dolev and S. Cree, Holography as a resource for non-local quantum computation, arXiv:2210.13500 [INSPIRE].
– reference: BuhrmanHPosition-Based Quantum Cryptography: Impossibility and ConstructionsSIAM J. Comput.201443150316241210.1137/130913687[INSPIRE]
– reference: M. Tomamichel, S. Fehr, J. Kaniewski and S. Wehner, A Monogamy-of-Entanglement Game With Applications to Device-Independent Quantum Cryptography, arXiv:1210.4359 [https://doi.org/10.1088/1367-2630/15/10/103002].
– reference: CreeJMayACode-routing: a new attack on position verificationQuantum20237107910.22331/q-2023-08-09-1079[arXiv:2202.07812] [INSPIRE]
– reference: MayAComplexity and entanglement in non-local computation and holographyQuantum2022686410.22331/q-2022-11-28-864[arXiv:2204.00908] [INSPIRE]
– reference: D.W. Berry, A.M. Childs and R. Kothari, Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters, arXiv:1501.01715 [https://doi.org/10.1109/FOCS.2015.54] [INSPIRE].
– reference: N. Chandran, V. Goyal, R. Moriarty and R. Ostrovsky, Position based cryptography, in Advances in Cryptology — CRYPTO 2009, S. Halevi ed., Springer Berlin Heidelberg (2009), pp. 391–407. https://doi.org/10.1007/978-3-642-03356-8_23.
– reference: PengX-HSuterDSpin qubits for quantum simulationsFront. Phys. China2009512010FrPhC...5....1P10.1007/s11467-009-0067-x
– reference: BravyiSHastingsMOn complexity of the quantum Ising modelCommun. Math. Phys.201734912017CMaPh.349....1B359274510.1007/s00220-016-2787-4[arXiv:1410.0703] [INSPIRE]
– reference: D. Aharonov and L. Zhou, Hamiltonian sparsification and gap-simulations, arXiv:1804.11084.
– reference: F. Speelman, Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits, Leibniz Int. Proc. Inf.61 (2016) 9:1 [INSPIRE].
– reference: KohlerTPiddockSBauschJCubittTTranslationally Invariant Universal Quantum Hamiltonians in 1DAnnales Henri Poincare202223223436187410.1007/s00023-021-01111-7[arXiv:2003.13753] [INSPIRE]
– reference: KohlerTCubittTToy Models of Holographic Duality between local HamiltoniansJHEP2019080172019JHEP...08..017K401448610.1007/JHEP08(2019)017[arXiv:1810.08992] [INSPIRE]
– reference: MayAPeningtonGSorceJHolographic scattering requires a connected entanglement wedgeJHEP2020081322020JHEP...08..132M417646210.1007/JHEP08(2020)132[arXiv:1912.05649] [INSPIRE]
– reference: HaydenPHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H358444210.1007/JHEP11(2016)009[arXiv:1601.01694] [INSPIRE]
– reference: BettaqueVSwingleBNoRA: A Tensor Network Ansatz for Volume-Law Entangled Equilibrium States of Highly Connected HamiltoniansQuantum20248136210.22331/q-2024-05-27-1362[arXiv:2303.16946] [INSPIRE]
– reference: JungeMKubickiAMPalazuelosCPérez-GarcíaDGeometry of Banach Spaces: A New Route Towards Position Based CryptographyCommun. Math. Phys.20223946252022CMaPh.394..625J446940310.1007/s00220-022-04407-9[arXiv:2103.16357] [INSPIRE]
– reference: HouckAATüreciHEKochJOn-chip quantum simulation with superconducting circuitsNature Phys.201282922012NatPh...8..292H10.1038/nphys2251[INSPIRE]
– reference: T. Barthel, M. Kliesch and J. Eisert, Real-Space Renormalization Yields Finite Correlations, Phys. Rev. Lett.105 (2010) 010502 [arXiv:1003.2319] [INSPIRE].
– reference: X.-L. Qi and Z. Yang, Butterfly velocity and bulk causal structure, arXiv:1705.01728 [INSPIRE].
– reference: D. Harley et al., Going Beyond Gadgets: The Importance of Scalability for Analogue Quantum Simulators, arXiv:2306.13739 [INSPIRE].
– reference: P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in the proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, U.S.A., November 20–22 (1994) [https://doi.org/10.1109/SFCS.1994.365700] [INSPIRE].
– reference: MayAQuantum tasks in holographyJHEP2019102332019JHEP...10..233M405107910.1007/JHEP10(2019)233[arXiv:1902.06845]
– volume: 8
  start-page: 292
  year: 2012
  ident: 24286_CR22
  publication-title: Nature Phys.
  doi: 10.1038/nphys2251
– ident: 24286_CR36
  doi: 10.1109/FOCS.2015.54
– volume: 06
  start-page: 149
  year: 2015
  ident: 24286_CR2
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)149
– ident: 24286_CR26
– ident: 24286_CR24
– ident: 24286_CR30
– ident: 24286_CR28
  doi: 10.1103/PhysRevLett.105.010502
– ident: 24286_CR20
  doi: 10.1016/j.aop.2004.09.010
– ident: 24286_CR34
– volume: 5
  start-page: 1
  year: 2009
  ident: 24286_CR21
  publication-title: Front. Phys. China
  doi: 10.1007/s11467-009-0067-x
– ident: 24286_CR33
  doi: 10.26421/QIC15.13-14-7
– volume: 115
  start-page: 9497
  year: 2018
  ident: 24286_CR23
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.1804949115
– volume: 08
  start-page: 017
  year: 2019
  ident: 24286_CR4
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)017
– volume: 23
  start-page: 223
  year: 2022
  ident: 24286_CR5
  publication-title: Annales Henri Poincare
  doi: 10.1007/s00023-021-01111-7
– ident: 24286_CR9
  doi: 10.6028/nist.ir.8240
– ident: 24286_CR10
  doi: 10.1109/SFCS.1994.365700
– volume: 11
  start-page: 009
  year: 2016
  ident: 24286_CR3
  publication-title: JHEP
  doi: 10.1007/JHEP11(2016)009
– volume: 8
  start-page: 1362
  year: 2024
  ident: 24286_CR27
  publication-title: Quantum
  doi: 10.22331/q-2024-05-27-1362
– ident: 24286_CR19
  doi: 10.1103/PhysRevLett.92.207901
– ident: 24286_CR7
– ident: 24286_CR8
  doi: 10.1007/978-3-642-03356-8_23
– volume: 7
  start-page: 1079
  year: 2023
  ident: 24286_CR15
  publication-title: Quantum
  doi: 10.22331/q-2023-08-09-1079
– ident: 24286_CR25
  doi: 10.1088/1367-2630/15/10/103002
– volume: 17
  start-page: 0779
  year: 2017
  ident: 24286_CR31
  publication-title: Quant. Inf. Comput.
– volume: 394
  start-page: 625
  year: 2022
  ident: 24286_CR17
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-022-04407-9
– ident: 24286_CR14
  doi: 10.1088/1367-2630/13/9/093036
– volume: 08
  start-page: 132
  year: 2020
  ident: 24286_CR1
  publication-title: JHEP
  doi: 10.1007/JHEP08(2020)132
– volume: 10
  start-page: 233
  year: 2019
  ident: 24286_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)233
– ident: 24286_CR35
– volume: 43
  start-page: 150
  year: 2014
  ident: 24286_CR13
  publication-title: SIAM J. Comput.
  doi: 10.1137/130913687
– volume: 6
  start-page: 864
  year: 2022
  ident: 24286_CR18
  publication-title: Quantum
  doi: 10.22331/q-2022-11-28-864
– ident: 24286_CR12
– ident: 24286_CR29
  doi: 10.1088/1367-2630/13/9/093036
– volume: 03
  start-page: 052
  year: 2022
  ident: 24286_CR6
  publication-title: JHEP
  doi: 10.1007/JHEP03(2022)052
– ident: 24286_CR16
– ident: 24286_CR32
  doi: 10.1103/PhysRevLett.101.070503
– volume: 349
  start-page: 1
  year: 2017
  ident: 24286_CR37
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-016-2787-4
SSID ssj0015190
Score 2.4541988
Snippet A bstract We investigate the link between quantum position-verification (QPV) and holography established in [ 1 ] using holographic quantum error correcting...
We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes as toy...
Abstract We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes...
Abstract We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152
SubjectTerms AdS-CFT Correspondence
Causality
Classical and Quantum Gravitation
Codes
Computer science
Elementary Particles
Error analysis
Error correcting codes
Error correction
Error correction & detection
Hilbert space
Holography
Holography and Condensed Matter Physics (AdS/CMT)
Lattice Models of Gravity
Lower bounds
Physics
Physics and Astronomy
Quantum entanglement
Quantum Field Theories
Quantum Field Theory
Quantum phenomena
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Simulation
Spacetime
String Theory
Velocity
Verification
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ66rkoMHPdRt0jTJHlVWyh5E8MHeQpI2KOxD7a6_35k-1geIF0-FNi3hm0nnm2b6DSEngQNJ8EkaBXhDRkLmPHJMhCjXiXRAj4Wrqy1uZPYghqN09KXVF9aE1fLANXA9hzFV2z5X2ouCKSvSYHPlfZFLH0RFjSDmtclUs38AvCRuhXxi1Rtmg9tYn0KiL85Yyr_FoEqqHw4zWFLfaOaPndEq4Fxvko2GKdKLeoZbZKWYbpO1qmLTlzvk8a7pPEdngb4uAKDFhLYlWBE4KNYAVbDTMf7EVNIMv2UA1QOHoOXzpOnbRd-fLX1aSlfvkofrwf1VFjVNEiIvhJhHsrBBcxY0i21caHiB9T22jraQCAFiibPOs1xJFSDwOOUSaYPjHIbqVCnHkz2yOp1Ni32scrKaC5laTDLi2FntVBK89ixwZr3tkPMWNuMbBXFsZDE2rfZxjbNBnA3g3CGnyxteavGM34deoh2Ww1D1ujoBvmAaXzB_-UKHdNGKBsgDKuB6LBXyc4M5FWOyQw5b45pmoZYmgfS2jyQKZnDWGvzz8i-zPfiP2XbJOj6vriY8JKvzt0VxBAxn7o4rZ_4AJ5_3mg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-ELyIT1xXJQcP7qHapGmSPeqiLHsQQVe8hSRtUNiH2l1_vzN9rLjiwVNLO4F0Jsl800y-IeQscAAJPkmjACtkJGTGI8dEiDKdSAfwWLgq2-JO9odi8Jw-1yRJeBZmaf_-ctC_uY_1OYToogOuZpWspyxRWKOhJ3uL7QKAIXHD2_O70Q-XUzLzw2UKM-gHqlzaCC39y-022aqBIb2qLLlDVvLJLtkoEzR9sUeeHupCc3Qa6Psc9DEf0ybjKoLxiCk_pZbpCM8sFbSPvy4A2YH9afE6rst00c9XS18WTNX7ZHh789jrR3VNhMgLIWaRzG3QnAXNYhvnGtarrsdK0RbiHu1F4qzzLFNSBfAzTrlE2uA4B1GdKuV4ckDWJtNJfohJTVZzIVOLMUUcO6udSoLXngXOrLctctGozfiaMBzrVoxMQ3Vc6dmgng3ouUXOFw3eKq6Mv0Wv0Q4LMSS5Lh-A7U09Z4xDOKVtlyv4spwpK9JgM-V9nkkfBHSwjVY0gBWQ8NZjZpCfGQyhGJMtctwY19TzsjAJRLNdxEzQg05j8O_Xf_T26B-ybbKJt1WO4DFZm33M8xPALTN3Wo7ZL4lQ5V4
  priority: 102
  providerName: Springer Nature
Title Security of quantum position-verification limits Hamiltonian simulation via holography
URI https://link.springer.com/article/10.1007/JHEP08(2024)152
https://www.proquest.com/docview/3094943172
https://www.osti.gov/servlets/purl/2576116
https://doaj.org/article/b06388a9278c4e17a45fad7cced6cf4a
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELdG0aS97INtWger_LAHePCIHcd2nyao2lU8ILStE2-W7cQMCRogLX8_d4lTxCT24iiJEzl357vf2Zc7Qr5GASAh5AWLoCGZVKVgnsvISpMrD_BY-i7a4lTNF_LkvDhPC25NCqvsdWKrqMs64Br5YQ5-yBitnfh-c8uwahTurqYSGltkG1SwMQOyfTw9Pfu52UcAfJL1CX0yfXgyn55lZh8cfnnAC_HEFrUp--FQw9R6Ajf_2SFtDc_sLXmdECM96lj8jryoljvkTV-NgabJuUNetsGcoXlP_vxKReloHentGmi3vqZ9dBYD2cXwoJYj9Ar_b2roHJc5AAWCrNDm8jqV9KL3l47-3WS1_kAWs-nvyZyl-gksSClXTFUuGsGj4ZnLKgO6bRywqrQDH8kEmXvnAy-10hFsktc-Vy56IaCrKbT2Iv9IBst6WX3CAChnhFSFQ_8jy7wzXucxmMCj4C64IfnWU9KGlFwca1xc2T4tckd6i6S3QPoh2d88cNPl1Xi-6zGyZtMNE2K3F-q7C5vml_UIvYwbCw1fVnHtZBFdqUOoShWihAHuImMt4ApMjhswiiisLLpbnKsh2ev5bdMcbuyjxA3JQS8Dj7efGe3n_79ql7zCnl0I4R4ZrO7W1ReANSs_Iltm9mOUJBjOJkJiqyajdqEA2oU4egDyb_nx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG4IxOiLIGpcQO2DJvAwMu102u6DMV5Yh4vERDC81bYzFRLYAWZX45_iN3rOzHQJJvjG0ya7nc3MuX5neno-Ql4FDiDBZ3kSIEImQpY8cUyEpNSZdACPheu6LfZlcSh2jvKjOXIVz8JgW2WMiW2gLmuP78g3M6hDhpjt-LvziwRZo3B3NVJodGaxW_35DSVb83b7E-j3NeejrYOPRdKzCiReCDFJZGWD5ixoltq00uDxQ49cyxYqB-1F5qzzrFRSBYjUTrlM2uA4h6U6V8rhoAMI-Qsig0yOJ9NHn2e7FoCG0jg-KFWbO8XW11Svc0iDGyznNzJfSxAAHzU48g1w-89-bJvmRkvkYY9P6fvOoB6RuWq8TBYj9wPtQ8Eyude2jvrmMfn-rafAo3WgF1PQ1PSMxl6wBDwFm5Fa_dNTPE3V0AJfqgDmBMukzclZTyBGf51Yejybof2EHN6JXJ-S-XE9rp5hu5XVXMjcYrWTps5qp7LgtWeBM-vtgLyJkjS-H2WOjBqnJg5h7kRvUPQGRD8g67MLzrspHrcv_YCqmS3D8dvtF_XlT9N7s3EI9LQdcgVPVjFlRR5sqbyvSumDgBtcRcUaQDE4itdjz5KfGCzuGJMDshb1bfqI0Zhr-x6QjWgD1z_fcrcr__-rl-R-cfBlz-xt7--ukgd4Vde8uEbmJ5fT6jkAqol70VoxJT_u2m3-Au40MBU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLamTiAuDAaIbgN8AGk7hMaOE7sHhBhr1W2oqoCh3TzbiWHS1m5LC-Jf46_jvcTuNKRx2ylS4kTJ--Xv2V_eI-S15wASXJYnHiJkIoqSJ5YJn5QqKyzAY2FbtsW4GB2Jg-P8eIX8if_CIK0yxsQmUJczh2vkvQzykD7OdrznAy1isjd8f3GZYAcp3GmN7TRaEzmsfv-C9K1-t78Hun7D-XDw9eMoCR0GEieEmCdFZbzizCuWmrRS4P19h32XDWQRyonMGutYKQvpIWpbabPCeMs5DFW5lBaLHkD4X5WYFXXI6u5gPPm83MMAbJTGYkKp7B2MBpNUbXOYFHdYzm_Mg027ADjMwK1vQN1_dmebSW_4iDwMaJV-aM3rMVmpputkLXaCoCEwrJN7DZHU1U_Ity-hIR6deXq5AL0tzmlkhiXgN0hNaqyBnuG_VTUd4RILIFCwU1qfnod2YvTnqaE_lhW1n5KjO5HsM9KZzqbVcyRfGcVFkRvMfdLUGmVl5p1yzHNmnOmSt1GS2oXC5thf40zHksyt6DWKXoPou2R7ecNFW9Pj9qG7qJrlMCzG3ZyYXX3Xwbe1RdinTJ9L-LKKSSNyb0rpXFUWzgt4wU1UrAZMg4V5HTKY3FxjqsdY0SVbUd86xI9aX1t7l-xEG7i-fMvbbvz_Ua_IfXAZ_Wl_fLhJHuBNLZNxi3TmV4vqBaCruX0ZzJiSk7v2nL85hzWn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Security+of+quantum+position-verification+limits+Hamiltonian+simulation+via+holography&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Apel%2C+Harriet&rft.au=Cubitt%2C+Toby&rft.au=Hayden%2C+Patrick&rft.au=Kohler%2C+Tamara&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2024&rft.issue=8&rft.spage=152&rft_id=info:doi/10.1007%2FJHEP08%282024%29152&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon