Security of quantum position-verification limits Hamiltonian simulation via holography
A bstract We investigate the link between quantum position-verification (QPV) and holography established in [ 1 ] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a...
Saved in:
Published in | The journal of high energy physics Vol. 2024; no. 8; pp. 152 - 40 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2024
Springer Nature B.V Springer Nature SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We investigate the link between quantum position-verification (QPV) and holography established in [
1
] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another. |
---|---|
AbstractList | We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another. Abstract We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another. A bstract We investigate the link between quantum position-verification (QPV) and holography established in [ 1 ] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another. Abstract We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes as toy models. By inserting the “temporal” scaling of the AdS metric by hand via the bulk Hamiltonian interaction strength, we recover a toy model with consistent causality structure. This leads to an interesting implication between two topics in quantum information: if position-based verification is secure against attacks with small entanglement then there are new fundamental lower bounds for resources required for one Hamiltonian to simulate another. |
ArticleNumber | 152 |
Author | Cubitt, Toby Apel, Harriet Pérez-García, David Hayden, Patrick Kohler, Tamara |
Author_xml | – sequence: 1 givenname: Harriet orcidid: 0000-0001-5715-9838 surname: Apel fullname: Apel, Harriet email: harriet.apel.19@ucl.ac.uk organization: Department of Computer Science, University College London – sequence: 2 givenname: Toby orcidid: 0000-0002-5087-9346 surname: Cubitt fullname: Cubitt, Toby organization: Department of Computer Science, University College London – sequence: 3 givenname: Patrick orcidid: 0000-0002-3964-5602 surname: Hayden fullname: Hayden, Patrick organization: Stanford Institute for Theoretical Physics, Stanford University – sequence: 4 givenname: Tamara orcidid: 0000-0002-7136-6267 surname: Kohler fullname: Kohler, Tamara organization: Instituto de Ciencias Matemáticas, Department of Computer Science, Stanford University – sequence: 5 givenname: David orcidid: 0000-0003-2990-791X surname: Pérez-García fullname: Pérez-García, David organization: Instituto de Ciencias Matemáticas |
BackLink | https://www.osti.gov/servlets/purl/2576116$$D View this record in Osti.gov |
BookMark | eNp9UU1v1DAUtFCRaAtnrhFc4JDWdhx_HFHVsq0qgcTH1Xrx2rteJfbWdirtv8fbIEBIcLL93sy8eZ4zdBJisAi9JviCYCwu71bXn7F8RzFl70lPn6FTgqlqJRPq5I_7C3SW8w5j0hOFT9H3L9bMyZdDE13zMEMo89TsY_bFx9A-2uSdN3B8NKOffMnNCiY_lhg8hCb7aR6X7qOHZhvHuEmw3x5eoucOxmxf_TzP0beb669Xq_b-08fbqw_3rWGMlZZbcJISJwkGbCXpO2UIxx0IwqVh3QCDIWvBhaNKDWLoOLiB0gqVvRAD7c7R7aK7jrDT--QnSAcdweunQkwbDal4M1o9YN5JCYqKqmyJANY7WAtj7Jobx6BqvVm0Yi5eZ-OLNVsTQ7CmaNoLTgivoLcLaJ_iw2xz0bs4p1B31B1WTLGOiKOtywVlUsw5WffLGsH6mJZe0tLHtHRNqzL6vxh1_tPPlgR-_A8PL7xcJ4SNTb_9_IvyA98_qk8 |
CitedBy_id | crossref_primary_10_1103_PhysRevA_110_062605 |
Cites_doi | 10.1038/nphys2251 10.1109/FOCS.2015.54 10.1007/JHEP06(2015)149 10.1103/PhysRevLett.105.010502 10.1016/j.aop.2004.09.010 10.1007/s11467-009-0067-x 10.26421/QIC15.13-14-7 10.1073/pnas.1804949115 10.1007/JHEP08(2019)017 10.1007/s00023-021-01111-7 10.6028/nist.ir.8240 10.1109/SFCS.1994.365700 10.1007/JHEP11(2016)009 10.22331/q-2024-05-27-1362 10.1103/PhysRevLett.92.207901 10.1007/978-3-642-03356-8_23 10.22331/q-2023-08-09-1079 10.1088/1367-2630/15/10/103002 10.1007/s00220-022-04407-9 10.1088/1367-2630/13/9/093036 10.1007/JHEP08(2020)132 10.1007/JHEP10(2019)233 10.1137/130913687 10.22331/q-2022-11-28-864 10.1007/JHEP03(2022)052 10.1103/PhysRevLett.101.070503 10.1007/s00220-016-2787-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Univ. of Pennsylvania, Philadelphia, PA (United States) |
CorporateAuthor_xml | – name: Univ. of Pennsylvania, Philadelphia, PA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
DOI | 10.1007/JHEP08(2024)152 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1029-8479 |
EndPage | 40 |
ExternalDocumentID | oai_doaj_org_article_b06388a9278c4e17a45fad7cced6cf4a 2576116 10_1007_JHEP08_2024_152 |
GroupedDBID | 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMVHM AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP N5L N9A NB0 O93 OK1 P62 P9T PHGZM PHGZT PIMPY PQGLB PROAC R9I RO9 S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c444t-6eaf821f810a0e81539c1603a7168c43babc1d767f299b7b36afb220e88577b23 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:32:33 EDT 2025 Mon Aug 25 02:21:11 EDT 2025 Fri Jul 25 23:41:11 EDT 2025 Tue Jul 01 05:19:26 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Mon Jul 21 06:07:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Lattice Models of Gravity AdS-CFT Correspondence Holography and Condensed Matter Physics (AdS/CMT) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-6eaf821f810a0e81539c1603a7168c43babc1d767f299b7b36afb220e88577b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 None USDOE Office of Science (SC) SC0020360 |
ORCID | 0000-0003-2990-791X 0000-0002-7136-6267 0000-0001-5715-9838 0000-0002-5087-9346 0000-0002-3964-5602 0000000157159838 0000000250879346 0000000271366267 000000032990791X 0000000239645602 |
OpenAccessLink | https://www.proquest.com/docview/3094943172?pq-origsite=%requestingapplication% |
PQID | 3094943172 |
PQPubID | 2034718 |
PageCount | 40 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b06388a9278c4e17a45fad7cced6cf4a osti_scitechconnect_2576116 proquest_journals_3094943172 crossref_primary_10_1007_JHEP08_2024_152 crossref_citationtrail_10_1007_JHEP08_2024_152 springer_journals_10_1007_JHEP08_2024_152 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Nature SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Nature – name: SpringerOpen |
References | S. Beigi and R. König, Simplified instantaneous non-local quantum computation with applications to position-based cryptography, New J. Phys.13 (2011) 093036 [INSPIRE]. S. Bravyi, D.P. DiVincenzo, D. Loss and B.M. Terhal, Simulation of Many-Body Hamiltonians using Perturbation Theory with Bounded-Strength Interactions, Phys. Rev. Lett.101 (2008) 070503 [arXiv:0803.2686] [INSPIRE]. MayAPeningtonGSorceJHolographic scattering requires a connected entanglement wedgeJHEP2020081322020JHEP...08..132M417646210.1007/JHEP08(2020)132[arXiv:1912.05649] [INSPIRE] ApelHKohlerTCubittTHolographic duality between local Hamiltonians from random tensor networksJHEP2022030522022JHEP...03..052A442625210.1007/JHEP03(2022)052[arXiv:2105.12067] [INSPIRE] D.W. Berry, A.M. Childs and R. Kothari, Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters, arXiv:1501.01715 [https://doi.org/10.1109/FOCS.2015.54] [INSPIRE]. CreeJMayACode-routing: a new attack on position verificationQuantum20237107910.22331/q-2023-08-09-1079[arXiv:2202.07812] [INSPIRE] M. Tomamichel, S. Fehr, J. Kaniewski and S. Wehner, A Monogamy-of-Entanglement Game With Applications to Device-Independent Quantum Cryptography, arXiv:1210.4359 [https://doi.org/10.1088/1367-2630/15/10/103002]. CubittTSMontanaroAPiddockSUniversal quantum HamiltoniansProc. Nat. Acad. Sci.201811594972018PNAS..115.9497C385903710.1073/pnas.1804949115 K. Dolev and S. Cree, Holography as a resource for non-local quantum computation, arXiv:2210.13500 [INSPIRE]. D. Aharonov and L. Zhou, Hamiltonian sparsification and gap-simulations, arXiv:1804.11084. X.-L. Qi and Z. Yang, Butterfly velocity and bulk causal structure, arXiv:1705.01728 [INSPIRE]. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in the proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, U.S.A., November 20–22 (1994) [https://doi.org/10.1109/SFCS.1994.365700] [INSPIRE]. Y. Cao and D. Nagaj, Perturbative gadgets without strong interactions, Quant. Inf. Comput.15 (2015) 1197 [INSPIRE]. D. Porras and J.I. Cirac, Effective Quantum Spin Systems with Trapped Ions, Phys. Rev. Lett.92 (2004) 207901 [INSPIRE]. PengX-HSuterDSpin qubits for quantum simulationsFront. Phys. China2009512010FrPhC...5....1P10.1007/s11467-009-0067-x T. Barthel, M. Kliesch and J. Eisert, Real-Space Renormalization Yields Finite Correlations, Phys. Rev. Lett.105 (2010) 010502 [arXiv:1003.2319] [INSPIRE]. HaydenPHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H358444210.1007/JHEP11(2016)009[arXiv:1601.01694] [INSPIRE] K. Dolev and S. Cree, Non-local computation of quantum circuits with small light cones, arXiv:2203.10106 [INSPIRE]. PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP2015061492015JHEP...06..149P337018610.1007/JHEP06(2015)149[arXiv:1503.06237] [INSPIRE] MayAComplexity and entanglement in non-local computation and holographyQuantum2022686410.22331/q-2022-11-28-864[arXiv:2204.00908] [INSPIRE] N. Chandran, V. Goyal, R. Moriarty and R. Ostrovsky, Position based cryptography, in Advances in Cryptology — CRYPTO 2009, S. Halevi ed., Springer Berlin Heidelberg (2009), pp. 391–407. https://doi.org/10.1007/978-3-642-03356-8_23. MayAQuantum tasks in holographyJHEP2019102332019JHEP...10..233M405107910.1007/JHEP10(2019)233[arXiv:1902.06845] K. Dolev, Constraining the doability of relativistic quantum tasks, arXiv:1909.05403 [INSPIRE]. BravyiSHastingsMOn complexity of the quantum Ising modelCommun. Math. Phys.201734912017CMaPh.349....1B359274510.1007/s00220-016-2787-4[arXiv:1410.0703] [INSPIRE] KohlerTPiddockSBauschJCubittTTranslationally Invariant Universal Quantum Hamiltonians in 1DAnnales Henri Poincare202223223436187410.1007/s00023-021-01111-7[arXiv:2003.13753] [INSPIRE] F. Speelman, Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits, Leibniz Int. Proc. Inf.61 (2016) 9:1 [INSPIRE]. CaoYKaisSEfficient optimization of perturbative gadgetsQuant. Inf. Comput.20171707793728188[INSPIRE] S. Beigi and R. Koenig, Simplified instantaneous non-local quantum computation with applications to position-based cryptography, arXiv:1101.1065 [https://doi.org/10.1088/1367-2630/13/9/093036]. KohlerTCubittTToy Models of Holographic Duality between local HamiltoniansJHEP2019080172019JHEP...08..017K401448610.1007/JHEP08(2019)017[arXiv:1810.08992] [INSPIRE] L. Masanes, Discrete holography in dual-unitary circuits, arXiv:2301.02825 [INSPIRE]. G. Alagic et al., Status report on the first round of the NIST post-quantum cryptography standardization process, National Institute of Standards and Technology (2019) [https://doi.org/10.6028/nist.ir.8240]. JungeMKubickiAMPalazuelosCPérez-GarcíaDGeometry of Banach Spaces: A New Route Towards Position Based CryptographyCommun. Math. Phys.20223946252022CMaPh.394..625J446940310.1007/s00220-022-04407-9[arXiv:2103.16357] [INSPIRE] HouckAATüreciHEKochJOn-chip quantum simulation with superconducting circuitsNature Phys.201282922012NatPh...8..292H10.1038/nphys2251[INSPIRE] BuhrmanHPosition-Based Quantum Cryptography: Impossibility and ConstructionsSIAM J. Comput.201443150316241210.1137/130913687[INSPIRE] D. Jaksch and P. Zoller, The cold atom Hubbard toolbox, Annals Phys.315 (2005) 52 [cond-mat/0410614]. BettaqueVSwingleBNoRA: A Tensor Network Ansatz for Volume-Law Entangled Equilibrium States of Highly Connected HamiltoniansQuantum20248136210.22331/q-2024-05-27-1362[arXiv:2303.16946] [INSPIRE] D. Harley et al., Going Beyond Gadgets: The Importance of Scalability for Analogue Quantum Simulators, arXiv:2306.13739 [INSPIRE]. H Buhrman (24286_CR13) 2014; 43 24286_CR20 J Cree (24286_CR15) 2023; 7 TS Cubitt (24286_CR23) 2018; 115 A May (24286_CR18) 2022; 6 AA Houck (24286_CR22) 2012; 8 24286_CR7 24286_CR16 24286_CR35 A May (24286_CR11) 2019; 10 24286_CR14 24286_CR36 24286_CR33 24286_CR12 24286_CR34 T Kohler (24286_CR4) 2019; 08 24286_CR8 24286_CR19 24286_CR9 T Kohler (24286_CR5) 2022; 23 24286_CR10 24286_CR32 H Apel (24286_CR6) 2022; 03 24286_CR30 A May (24286_CR1) 2020; 08 V Bettaque (24286_CR27) 2024; 8 F Pastawski (24286_CR2) 2015; 06 24286_CR28 P Hayden (24286_CR3) 2016; 11 24286_CR29 X-H Peng (24286_CR21) 2009; 5 24286_CR26 24286_CR24 24286_CR25 S Bravyi (24286_CR37) 2017; 349 M Junge (24286_CR17) 2022; 394 Y Cao (24286_CR31) 2017; 17 |
References_xml | – reference: ApelHKohlerTCubittTHolographic duality between local Hamiltonians from random tensor networksJHEP2022030522022JHEP...03..052A442625210.1007/JHEP03(2022)052[arXiv:2105.12067] [INSPIRE] – reference: S. Beigi and R. Koenig, Simplified instantaneous non-local quantum computation with applications to position-based cryptography, arXiv:1101.1065 [https://doi.org/10.1088/1367-2630/13/9/093036]. – reference: D. Jaksch and P. Zoller, The cold atom Hubbard toolbox, Annals Phys.315 (2005) 52 [cond-mat/0410614]. – reference: PastawskiFYoshidaBHarlowDPreskillJHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondenceJHEP2015061492015JHEP...06..149P337018610.1007/JHEP06(2015)149[arXiv:1503.06237] [INSPIRE] – reference: K. Dolev and S. Cree, Non-local computation of quantum circuits with small light cones, arXiv:2203.10106 [INSPIRE]. – reference: S. Beigi and R. König, Simplified instantaneous non-local quantum computation with applications to position-based cryptography, New J. Phys.13 (2011) 093036 [INSPIRE]. – reference: D. Porras and J.I. Cirac, Effective Quantum Spin Systems with Trapped Ions, Phys. Rev. Lett.92 (2004) 207901 [INSPIRE]. – reference: K. Dolev, Constraining the doability of relativistic quantum tasks, arXiv:1909.05403 [INSPIRE]. – reference: S. Bravyi, D.P. DiVincenzo, D. Loss and B.M. Terhal, Simulation of Many-Body Hamiltonians using Perturbation Theory with Bounded-Strength Interactions, Phys. Rev. Lett.101 (2008) 070503 [arXiv:0803.2686] [INSPIRE]. – reference: CaoYKaisSEfficient optimization of perturbative gadgetsQuant. Inf. Comput.20171707793728188[INSPIRE] – reference: L. Masanes, Discrete holography in dual-unitary circuits, arXiv:2301.02825 [INSPIRE]. – reference: Y. Cao and D. Nagaj, Perturbative gadgets without strong interactions, Quant. Inf. Comput.15 (2015) 1197 [INSPIRE]. – reference: G. Alagic et al., Status report on the first round of the NIST post-quantum cryptography standardization process, National Institute of Standards and Technology (2019) [https://doi.org/10.6028/nist.ir.8240]. – reference: CubittTSMontanaroAPiddockSUniversal quantum HamiltoniansProc. Nat. Acad. Sci.201811594972018PNAS..115.9497C385903710.1073/pnas.1804949115 – reference: K. Dolev and S. Cree, Holography as a resource for non-local quantum computation, arXiv:2210.13500 [INSPIRE]. – reference: BuhrmanHPosition-Based Quantum Cryptography: Impossibility and ConstructionsSIAM J. Comput.201443150316241210.1137/130913687[INSPIRE] – reference: M. Tomamichel, S. Fehr, J. Kaniewski and S. Wehner, A Monogamy-of-Entanglement Game With Applications to Device-Independent Quantum Cryptography, arXiv:1210.4359 [https://doi.org/10.1088/1367-2630/15/10/103002]. – reference: CreeJMayACode-routing: a new attack on position verificationQuantum20237107910.22331/q-2023-08-09-1079[arXiv:2202.07812] [INSPIRE] – reference: MayAComplexity and entanglement in non-local computation and holographyQuantum2022686410.22331/q-2022-11-28-864[arXiv:2204.00908] [INSPIRE] – reference: D.W. Berry, A.M. Childs and R. Kothari, Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters, arXiv:1501.01715 [https://doi.org/10.1109/FOCS.2015.54] [INSPIRE]. – reference: N. Chandran, V. Goyal, R. Moriarty and R. Ostrovsky, Position based cryptography, in Advances in Cryptology — CRYPTO 2009, S. Halevi ed., Springer Berlin Heidelberg (2009), pp. 391–407. https://doi.org/10.1007/978-3-642-03356-8_23. – reference: PengX-HSuterDSpin qubits for quantum simulationsFront. Phys. China2009512010FrPhC...5....1P10.1007/s11467-009-0067-x – reference: BravyiSHastingsMOn complexity of the quantum Ising modelCommun. Math. Phys.201734912017CMaPh.349....1B359274510.1007/s00220-016-2787-4[arXiv:1410.0703] [INSPIRE] – reference: D. Aharonov and L. Zhou, Hamiltonian sparsification and gap-simulations, arXiv:1804.11084. – reference: F. Speelman, Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits, Leibniz Int. Proc. Inf.61 (2016) 9:1 [INSPIRE]. – reference: KohlerTPiddockSBauschJCubittTTranslationally Invariant Universal Quantum Hamiltonians in 1DAnnales Henri Poincare202223223436187410.1007/s00023-021-01111-7[arXiv:2003.13753] [INSPIRE] – reference: KohlerTCubittTToy Models of Holographic Duality between local HamiltoniansJHEP2019080172019JHEP...08..017K401448610.1007/JHEP08(2019)017[arXiv:1810.08992] [INSPIRE] – reference: MayAPeningtonGSorceJHolographic scattering requires a connected entanglement wedgeJHEP2020081322020JHEP...08..132M417646210.1007/JHEP08(2020)132[arXiv:1912.05649] [INSPIRE] – reference: HaydenPHolographic duality from random tensor networksJHEP2016110092016JHEP...11..009H358444210.1007/JHEP11(2016)009[arXiv:1601.01694] [INSPIRE] – reference: BettaqueVSwingleBNoRA: A Tensor Network Ansatz for Volume-Law Entangled Equilibrium States of Highly Connected HamiltoniansQuantum20248136210.22331/q-2024-05-27-1362[arXiv:2303.16946] [INSPIRE] – reference: JungeMKubickiAMPalazuelosCPérez-GarcíaDGeometry of Banach Spaces: A New Route Towards Position Based CryptographyCommun. Math. Phys.20223946252022CMaPh.394..625J446940310.1007/s00220-022-04407-9[arXiv:2103.16357] [INSPIRE] – reference: HouckAATüreciHEKochJOn-chip quantum simulation with superconducting circuitsNature Phys.201282922012NatPh...8..292H10.1038/nphys2251[INSPIRE] – reference: T. Barthel, M. Kliesch and J. Eisert, Real-Space Renormalization Yields Finite Correlations, Phys. Rev. Lett.105 (2010) 010502 [arXiv:1003.2319] [INSPIRE]. – reference: X.-L. Qi and Z. Yang, Butterfly velocity and bulk causal structure, arXiv:1705.01728 [INSPIRE]. – reference: D. Harley et al., Going Beyond Gadgets: The Importance of Scalability for Analogue Quantum Simulators, arXiv:2306.13739 [INSPIRE]. – reference: P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in the proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, U.S.A., November 20–22 (1994) [https://doi.org/10.1109/SFCS.1994.365700] [INSPIRE]. – reference: MayAQuantum tasks in holographyJHEP2019102332019JHEP...10..233M405107910.1007/JHEP10(2019)233[arXiv:1902.06845] – volume: 8 start-page: 292 year: 2012 ident: 24286_CR22 publication-title: Nature Phys. doi: 10.1038/nphys2251 – ident: 24286_CR36 doi: 10.1109/FOCS.2015.54 – volume: 06 start-page: 149 year: 2015 ident: 24286_CR2 publication-title: JHEP doi: 10.1007/JHEP06(2015)149 – ident: 24286_CR26 – ident: 24286_CR24 – ident: 24286_CR30 – ident: 24286_CR28 doi: 10.1103/PhysRevLett.105.010502 – ident: 24286_CR20 doi: 10.1016/j.aop.2004.09.010 – ident: 24286_CR34 – volume: 5 start-page: 1 year: 2009 ident: 24286_CR21 publication-title: Front. Phys. China doi: 10.1007/s11467-009-0067-x – ident: 24286_CR33 doi: 10.26421/QIC15.13-14-7 – volume: 115 start-page: 9497 year: 2018 ident: 24286_CR23 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.1804949115 – volume: 08 start-page: 017 year: 2019 ident: 24286_CR4 publication-title: JHEP doi: 10.1007/JHEP08(2019)017 – volume: 23 start-page: 223 year: 2022 ident: 24286_CR5 publication-title: Annales Henri Poincare doi: 10.1007/s00023-021-01111-7 – ident: 24286_CR9 doi: 10.6028/nist.ir.8240 – ident: 24286_CR10 doi: 10.1109/SFCS.1994.365700 – volume: 11 start-page: 009 year: 2016 ident: 24286_CR3 publication-title: JHEP doi: 10.1007/JHEP11(2016)009 – volume: 8 start-page: 1362 year: 2024 ident: 24286_CR27 publication-title: Quantum doi: 10.22331/q-2024-05-27-1362 – ident: 24286_CR19 doi: 10.1103/PhysRevLett.92.207901 – ident: 24286_CR7 – ident: 24286_CR8 doi: 10.1007/978-3-642-03356-8_23 – volume: 7 start-page: 1079 year: 2023 ident: 24286_CR15 publication-title: Quantum doi: 10.22331/q-2023-08-09-1079 – ident: 24286_CR25 doi: 10.1088/1367-2630/15/10/103002 – volume: 17 start-page: 0779 year: 2017 ident: 24286_CR31 publication-title: Quant. Inf. Comput. – volume: 394 start-page: 625 year: 2022 ident: 24286_CR17 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-022-04407-9 – ident: 24286_CR14 doi: 10.1088/1367-2630/13/9/093036 – volume: 08 start-page: 132 year: 2020 ident: 24286_CR1 publication-title: JHEP doi: 10.1007/JHEP08(2020)132 – volume: 10 start-page: 233 year: 2019 ident: 24286_CR11 publication-title: JHEP doi: 10.1007/JHEP10(2019)233 – ident: 24286_CR35 – volume: 43 start-page: 150 year: 2014 ident: 24286_CR13 publication-title: SIAM J. Comput. doi: 10.1137/130913687 – volume: 6 start-page: 864 year: 2022 ident: 24286_CR18 publication-title: Quantum doi: 10.22331/q-2022-11-28-864 – ident: 24286_CR12 – ident: 24286_CR29 doi: 10.1088/1367-2630/13/9/093036 – volume: 03 start-page: 052 year: 2022 ident: 24286_CR6 publication-title: JHEP doi: 10.1007/JHEP03(2022)052 – ident: 24286_CR16 – ident: 24286_CR32 doi: 10.1103/PhysRevLett.101.070503 – volume: 349 start-page: 1 year: 2017 ident: 24286_CR37 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-016-2787-4 |
SSID | ssj0015190 |
Score | 2.4541988 |
Snippet | A
bstract
We investigate the link between quantum position-verification (QPV) and holography established in [
1
] using holographic quantum error correcting... We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes as toy... Abstract We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes... Abstract We investigate the link between quantum position-verification (QPV) and holography established in [1] using holographic quantum error correcting codes... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 152 |
SubjectTerms | AdS-CFT Correspondence Causality Classical and Quantum Gravitation Codes Computer science Elementary Particles Error analysis Error correcting codes Error correction Error correction & detection Hilbert space Holography Holography and Condensed Matter Physics (AdS/CMT) Lattice Models of Gravity Lower bounds Physics Physics and Astronomy Quantum entanglement Quantum Field Theories Quantum Field Theory Quantum phenomena Quantum Physics Regular Article - Theoretical Physics Relativity Theory Simulation Spacetime String Theory Velocity Verification |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ66rkoMHPdRt0jTJHlVWyh5E8MHeQpI2KOxD7a6_35k-1geIF0-FNi3hm0nnm2b6DSEngQNJ8EkaBXhDRkLmPHJMhCjXiXRAj4Wrqy1uZPYghqN09KXVF9aE1fLANXA9hzFV2z5X2ouCKSvSYHPlfZFLH0RFjSDmtclUs38AvCRuhXxi1Rtmg9tYn0KiL85Yyr_FoEqqHw4zWFLfaOaPndEq4Fxvko2GKdKLeoZbZKWYbpO1qmLTlzvk8a7pPEdngb4uAKDFhLYlWBE4KNYAVbDTMf7EVNIMv2UA1QOHoOXzpOnbRd-fLX1aSlfvkofrwf1VFjVNEiIvhJhHsrBBcxY0i21caHiB9T22jraQCAFiibPOs1xJFSDwOOUSaYPjHIbqVCnHkz2yOp1Ni32scrKaC5laTDLi2FntVBK89ixwZr3tkPMWNuMbBXFsZDE2rfZxjbNBnA3g3CGnyxteavGM34deoh2Ww1D1ujoBvmAaXzB_-UKHdNGKBsgDKuB6LBXyc4M5FWOyQw5b45pmoZYmgfS2jyQKZnDWGvzz8i-zPfiP2XbJOj6vriY8JKvzt0VxBAxn7o4rZ_4AJ5_3mg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-ELyIT1xXJQcP7qHapGmSPeqiLHsQQVe8hSRtUNiH2l1_vzN9rLjiwVNLO4F0Jsl800y-IeQscAAJPkmjACtkJGTGI8dEiDKdSAfwWLgq2-JO9odi8Jw-1yRJeBZmaf_-ctC_uY_1OYToogOuZpWspyxRWKOhJ3uL7QKAIXHD2_O70Q-XUzLzw2UKM-gHqlzaCC39y-022aqBIb2qLLlDVvLJLtkoEzR9sUeeHupCc3Qa6Psc9DEf0ybjKoLxiCk_pZbpCM8sFbSPvy4A2YH9afE6rst00c9XS18WTNX7ZHh789jrR3VNhMgLIWaRzG3QnAXNYhvnGtarrsdK0RbiHu1F4qzzLFNSBfAzTrlE2uA4B1GdKuV4ckDWJtNJfohJTVZzIVOLMUUcO6udSoLXngXOrLctctGozfiaMBzrVoxMQ3Vc6dmgng3ouUXOFw3eKq6Mv0Wv0Q4LMSS5Lh-A7U09Z4xDOKVtlyv4spwpK9JgM-V9nkkfBHSwjVY0gBWQ8NZjZpCfGQyhGJMtctwY19TzsjAJRLNdxEzQg05j8O_Xf_T26B-ybbKJt1WO4DFZm33M8xPALTN3Wo7ZL4lQ5V4 priority: 102 providerName: Springer Nature |
Title | Security of quantum position-verification limits Hamiltonian simulation via holography |
URI | https://link.springer.com/article/10.1007/JHEP08(2024)152 https://www.proquest.com/docview/3094943172 https://www.osti.gov/servlets/purl/2576116 https://doaj.org/article/b06388a9278c4e17a45fad7cced6cf4a |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELdG0aS97INtWger_LAHePCIHcd2nyao2lU8ILStE2-W7cQMCRogLX8_d4lTxCT24iiJEzl357vf2Zc7Qr5GASAh5AWLoCGZVKVgnsvISpMrD_BY-i7a4lTNF_LkvDhPC25NCqvsdWKrqMs64Br5YQ5-yBitnfh-c8uwahTurqYSGltkG1SwMQOyfTw9Pfu52UcAfJL1CX0yfXgyn55lZh8cfnnAC_HEFrUp--FQw9R6Ajf_2SFtDc_sLXmdECM96lj8jryoljvkTV-NgabJuUNetsGcoXlP_vxKReloHentGmi3vqZ9dBYD2cXwoJYj9Ar_b2roHJc5AAWCrNDm8jqV9KL3l47-3WS1_kAWs-nvyZyl-gksSClXTFUuGsGj4ZnLKgO6bRywqrQDH8kEmXvnAy-10hFsktc-Vy56IaCrKbT2Iv9IBst6WX3CAChnhFSFQ_8jy7wzXucxmMCj4C64IfnWU9KGlFwca1xc2T4tckd6i6S3QPoh2d88cNPl1Xi-6zGyZtMNE2K3F-q7C5vml_UIvYwbCw1fVnHtZBFdqUOoShWihAHuImMt4ApMjhswiiisLLpbnKsh2ev5bdMcbuyjxA3JQS8Dj7efGe3n_79ql7zCnl0I4R4ZrO7W1ReANSs_Iltm9mOUJBjOJkJiqyajdqEA2oU4egDyb_nx |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFG4IxOiLIGpcQO2DJvAwMu102u6DMV5Yh4vERDC81bYzFRLYAWZX45_iN3rOzHQJJvjG0ya7nc3MuX5neno-Ql4FDiDBZ3kSIEImQpY8cUyEpNSZdACPheu6LfZlcSh2jvKjOXIVz8JgW2WMiW2gLmuP78g3M6hDhpjt-LvziwRZo3B3NVJodGaxW_35DSVb83b7E-j3NeejrYOPRdKzCiReCDFJZGWD5ixoltq00uDxQ49cyxYqB-1F5qzzrFRSBYjUTrlM2uA4h6U6V8rhoAMI-Qsig0yOJ9NHn2e7FoCG0jg-KFWbO8XW11Svc0iDGyznNzJfSxAAHzU48g1w-89-bJvmRkvkYY9P6fvOoB6RuWq8TBYj9wPtQ8Eyude2jvrmMfn-rafAo3WgF1PQ1PSMxl6wBDwFm5Fa_dNTPE3V0AJfqgDmBMukzclZTyBGf51Yejybof2EHN6JXJ-S-XE9rp5hu5XVXMjcYrWTps5qp7LgtWeBM-vtgLyJkjS-H2WOjBqnJg5h7kRvUPQGRD8g67MLzrspHrcv_YCqmS3D8dvtF_XlT9N7s3EI9LQdcgVPVjFlRR5sqbyvSumDgBtcRcUaQDE4itdjz5KfGCzuGJMDshb1bfqI0Zhr-x6QjWgD1z_fcrcr__-rl-R-cfBlz-xt7--ukgd4Vde8uEbmJ5fT6jkAqol70VoxJT_u2m3-Au40MBU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLamTiAuDAaIbgN8AGk7hMaOE7sHhBhr1W2oqoCh3TzbiWHS1m5LC-Jf46_jvcTuNKRx2ylS4kTJ--Xv2V_eI-S15wASXJYnHiJkIoqSJ5YJn5QqKyzAY2FbtsW4GB2Jg-P8eIX8if_CIK0yxsQmUJczh2vkvQzykD7OdrznAy1isjd8f3GZYAcp3GmN7TRaEzmsfv-C9K1-t78Hun7D-XDw9eMoCR0GEieEmCdFZbzizCuWmrRS4P19h32XDWQRyonMGutYKQvpIWpbabPCeMs5DFW5lBaLHkD4X5WYFXXI6u5gPPm83MMAbJTGYkKp7B2MBpNUbXOYFHdYzm_Mg027ADjMwK1vQN1_dmebSW_4iDwMaJV-aM3rMVmpputkLXaCoCEwrJN7DZHU1U_Ity-hIR6deXq5AL0tzmlkhiXgN0hNaqyBnuG_VTUd4RILIFCwU1qfnod2YvTnqaE_lhW1n5KjO5HsM9KZzqbVcyRfGcVFkRvMfdLUGmVl5p1yzHNmnOmSt1GS2oXC5thf40zHksyt6DWKXoPou2R7ecNFW9Pj9qG7qJrlMCzG3ZyYXX3Xwbe1RdinTJ9L-LKKSSNyb0rpXFUWzgt4wU1UrAZMg4V5HTKY3FxjqsdY0SVbUd86xI9aX1t7l-xEG7i-fMvbbvz_Ua_IfXAZ_Wl_fLhJHuBNLZNxi3TmV4vqBaCruX0ZzJiSk7v2nL85hzWn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Security+of+quantum+position-verification+limits+Hamiltonian+simulation+via+holography&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Apel%2C+Harriet&rft.au=Cubitt%2C+Toby&rft.au=Hayden%2C+Patrick&rft.au=Kohler%2C+Tamara&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2024&rft.issue=8&rft.spage=152&rft_id=info:doi/10.1007%2FJHEP08%282024%29152&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |