Lactic acid enrichment with inorganic nanofiltration and molecular sieving membranes by pervaporation
Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readil...
Saved in:
Published in | Food and bioproducts processing Vol. 86; no. 4; pp. 290 - 295 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Rugby
Elsevier B.V
01.12.2008
Institution of Chemical Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 0960-3085 1744-3571 |
DOI | 10.1016/j.fbp.2008.01.005 |
Cover
Loading…
Abstract | Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readily available γ-alumina (nanofiltration), and the more advanced molecular sieve silica membranes, to enrich lactic acid for product use by selectively depleting water through the membrane. The alumina membranes showed flux starting at 6
kg
m
−2
h
−1, reducing to 1
kg
m
−2
h
−1 after 250
min due to pore blocking of lactic acid. The membrane acted to remove water from the 15
wt% feed, with permeate lactic acid concentration at 2
wt% corresponding to a water selectivity factor of 9. Silica membranes on the other hand exhibited a water selectivity factor up to 220 (a rejection coefficient of 0.995) with lactic acid in the permeate as low as 0.08
wt% after regeneration with an overall stable flux of 0.2
kg
m
−2
h
−1. The strong surface charge and wider pore size of the alumina membrane enabled a slow pore blocking mechanism, with flux dropping towards that of the silica membrane. The silica membrane was therefore the choice technology as the tight pore spaces inhibited lactic acid from entering and the charge-neutral surface leading to a more stable separation not subject to pore blocking. Performance results allowed calculation of membrane area for industrial separation. Flux improvements and longer term studies are needed to improve silica membrane commercial attraction. |
---|---|
AbstractList | Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readily available - gamma -alumina (nanofiltration), and the more advanced molecular sieve silica membranes, to enrich lactic acid for product use by selectively depleting water through the membrane. The alumina membranes showed flux starting at 6 kg m- super(2) h super(-1), reducing to 1 kg m super(-2) h super(1) sub(-) after 250 min due to pore blocking of lactic acid. The membrane acted to remove water from the 15 wt% feed, with permeate lactic acid concentration at 2 wt% corresponding to a water selectivity factor of 9. Silica membranes on the other hand exhibited a water selectivity factor up to 220 (a rejection coefficient of 0.995) with lactic acid in the permeate as low as 0.08 wt% after regeneration with an overall stable flux of 0.2 kgm super(-2) h super(-1). The strong surface charge and wider pore size of the alumina membrane enabled a slow pore blocking mechanism, with flux dropping towards that of the silica membrane. The silica membrane was therefore the choice technology as the tight pore spaces inhibited lactic acid from entering and the charge-neutral surface leading to a more stable separation not subject to pore blocking. Performance results allowed calculation of membrane area for industrial separation. Flux improvements and longer term studies are needed to improve silica membrane commercial attraction. Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readily available gamma-alumina (nanofiltration), and the more advanced molecular sieve silica membranes, to enrich lactic acid for product use by selectively depleting water through the membrane. The alumina membranes showed flux starting at 6 kg m-2 h-1, reducing to 1 kg m-2 h-1 after 250 min due to pore blocking of lactic acid. The membrane acted to remove water from the 15 wt% feed, with permeate lactic acid concentration at 2 wt% corresponding to a water selectivity factor of 9. Silica membranes on the other hand exhibited a water selectivity factor up to 220 (a rejection coefficient of 0.995) with lactic acid in the permeate as low as 0.08 wt% after regeneration with an overall stable flux of 0.2 kg m-2 h-1. The strong surface charge and wider pore size of the alumina membrane enabled a slow pore blocking mechanism, with flux dropping towards that of the silica membrane. The silica membrane was therefore the choice technology as the tight pore spaces inhibited lactic acid from entering and the charge-neutral surface leading to a more stable separation not subject to pore blocking. Performance results allowed calculation of membrane area for industrial separation. Flux improvements and longer term studies are needed to improve silica membrane commercial attraction. Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readily available γ-alumina (nanofiltration), and the more advanced molecular sieve silica membranes, to enrich lactic acid for product use by selectively depleting water through the membrane. The alumina membranes showed flux starting at 6 kg m −2 h −1, reducing to 1 kg m −2 h −1 after 250 min due to pore blocking of lactic acid. The membrane acted to remove water from the 15 wt% feed, with permeate lactic acid concentration at 2 wt% corresponding to a water selectivity factor of 9. Silica membranes on the other hand exhibited a water selectivity factor up to 220 (a rejection coefficient of 0.995) with lactic acid in the permeate as low as 0.08 wt% after regeneration with an overall stable flux of 0.2 kg m −2 h −1. The strong surface charge and wider pore size of the alumina membrane enabled a slow pore blocking mechanism, with flux dropping towards that of the silica membrane. The silica membrane was therefore the choice technology as the tight pore spaces inhibited lactic acid from entering and the charge-neutral surface leading to a more stable separation not subject to pore blocking. Performance results allowed calculation of membrane area for industrial separation. Flux improvements and longer term studies are needed to improve silica membrane commercial attraction. |
Author | Nielsen, Lars Lim, Agnes Duke, Mikel. C. Luz, Sheila Castro da |
Author_xml | – sequence: 1 givenname: Mikel. C. surname: Duke fullname: Duke, Mikel. C. email: mikel.duke@vu.edu.au organization: Institute for Sustainability and Innovation, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Vic. 8001, Australia – sequence: 2 givenname: Agnes surname: Lim fullname: Lim, Agnes organization: School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore – sequence: 3 givenname: Sheila Castro da surname: Luz fullname: Luz, Sheila Castro da organization: Faculdade Cenecista, Facensa University, Gravatai, Brazil – sequence: 4 givenname: Lars surname: Nielsen fullname: Nielsen, Lars organization: Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld 4072, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20998340$$DView record in Pascal Francis |
BookMark | eNqFkcFu1DAQhi1UJLaFB-CEL3BLGMdOYosTqqAgrcQBerYcZ7z1KrEXO7uob4-3qThwaE8-zPf_Hs13SS5CDEjIWwY1A9Z93NduONQNgKyB1QDtC7JhvRAVb3t2QTagOqg4yPYVucx5DwBMsnZDcGvs4i011o8UQ_L2bsaw0D9-uaM-xLQzoYyDCdH5aUlm8TFQE0Y6xwntcTKJZo8nH3Z0xnlIJmCmwz09YDqZQ1wDr8lLZ6aMbx7fK3L79cuv62_V9sfN9-vP28oKIZaqaxUH1eDQOy6xk2bkEsTQN-jYOOLAmk5xJnjPhZSuFQPKhndOqW5AlL3gV-TD2ntI8fcR86Jnny1OU9kqHrMWXQOMKXgW5K3gjAv2LNgAL5WqLeD7R9BkayZXDmF91ofkZ5PuC6eU5OL8M1s5m2LOCd0_hIE-q9R7XVTqs0oNTBeVJdP_l7F-eThsEeKnJ5Pv1qQzUZtdKhvd_iwLc2Ct5B2oQnxaCSxeTh6TztZjsDj6hHbRY_RP9P8FPS_EJg |
CitedBy_id | crossref_primary_10_1016_j_bej_2013_06_014 crossref_primary_10_1016_j_memsci_2012_02_042 crossref_primary_10_1016_j_memsci_2012_12_006 crossref_primary_10_1016_j_cep_2009_09_003 crossref_primary_10_1016_j_seppur_2015_07_050 crossref_primary_10_1016_j_seppur_2015_07_018 crossref_primary_10_1016_j_biotechadv_2014_04_002 crossref_primary_10_1016_j_desal_2011_12_009 crossref_primary_10_1080_19443994_2014_993726 crossref_primary_10_1016_j_fluid_2013_06_007 crossref_primary_10_1016_j_memsci_2020_118968 crossref_primary_10_1007_s40034_017_0101_4 crossref_primary_10_1016_j_cep_2016_03_009 crossref_primary_10_1016_j_lwt_2014_02_011 |
Cites_doi | 10.1016/S0011-9164(04)00070-0 10.1016/j.memsci.2005.01.013 10.1016/S0376-7388(01)00575-0 10.1016/j.memsci.2004.06.004 10.1016/j.memsci.2004.08.033 10.1016/j.jfoodeng.2006.06.021 10.1016/S0956-7135(97)00015-7 10.1016/0376-7388(92)87017-R 10.1016/j.bej.2004.03.006 10.1002/adfm.200500456 10.1016/0927-6513(95)00004-S 10.1016/0095-8522(58)90010-2 10.1016/S0376-7388(97)00334-7 10.1016/S0376-7388(99)00343-9 10.1016/j.memsci.2006.07.041 10.1016/j.memsci.2005.10.004 10.1007/BF01120016 10.1016/j.memsci.2004.08.023 10.1016/j.desal.2006.04.002 10.1016/S1383-5866(03)00218-1 10.1016/S0011-9164(02)00685-9 10.1016/j.watres.2007.05.028 10.1016/j.cep.2005.02.006 |
ContentType | Journal Article |
Copyright | 2008 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 – notice: 2009 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7QO 8FD FR3 P64 7QF F28 JG9 7S9 L.6 |
DOI | 10.1016/j.fbp.2008.01.005 |
DatabaseName | AGRIS CrossRef Pascal-Francis Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Aluminium Industry Abstracts ANTE: Abstracts in New Technology & Engineering Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Aluminium Industry Abstracts ANTE: Abstracts in New Technology & Engineering AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Engineering Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1744-3571 |
EndPage | 295 |
ExternalDocumentID | 20998340 10_1016_j_fbp_2008_01_005 US201301583609 S0960308508000060 |
GroupedDBID | --K --M -QF .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABDBF ABFRF ABGRD ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHPOS AI. AIAGR AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 ESX FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SJN SPC SPCBC SSA SSG SSU SSZ T5K UNMZH VH1 XFK ~G- ~KM AAHBH AATTM AAXKI ABWVN ACRPL ADMLS ADNMO AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW 7QO 8FD FR3 P64 7QF F28 JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c444t-6593092eb7f38e68ad3804b72ef1ddeb1269314373488f54be8236f996bee8743 |
IEDL.DBID | .~1 |
ISSN | 0960-3085 |
IngestDate | Tue Aug 05 09:18:08 EDT 2025 Fri Jul 11 07:25:42 EDT 2025 Fri Jul 11 11:28:57 EDT 2025 Mon Jul 21 09:17:44 EDT 2025 Tue Jul 01 02:00:36 EDT 2025 Thu Apr 24 23:01:27 EDT 2025 Thu Apr 03 09:45:18 EDT 2025 Fri Feb 23 02:35:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Nanofiltration Separation Lactic acid Inorganic membrane Molecular sieve Pervaporation Enrichment Membrane Sieving |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-6593092eb7f38e68ad3804b72ef1ddeb1269314373488f54be8236f996bee8743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 20320195 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_46201190 proquest_miscellaneous_35431341 proquest_miscellaneous_20320195 pascalfrancis_primary_20998340 crossref_primary_10_1016_j_fbp_2008_01_005 crossref_citationtrail_10_1016_j_fbp_2008_01_005 fao_agris_US201301583609 elsevier_sciencedirect_doi_10_1016_j_fbp_2008_01_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-01 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rugby |
PublicationPlace_xml | – name: Rugby |
PublicationTitle | Food and bioproducts processing |
PublicationYear | 2008 |
Publisher | Elsevier B.V Institution of Chemical Engineers |
Publisher_xml | – name: Elsevier B.V – name: Institution of Chemical Engineers |
References | Sommer, Klinkhammer, Melin (bib20) 2002; 149 Sommer, Melin (bib19) 2005; 44 Duke, Diniz da Costa, Do, Lu, Gray (bib6) 2006; 16 Polom, Szaniawska (bib16) 2006; 198 Tsai, Tam, Lu, Brinker (bib22) 2000; 169 Yang, Yoshioka, Tsuru, Asaeda (bib26) 2006; 284 Peters, Fontalvo, Vorstman, Benes, van Dam, Vroon, van Soest-Vercammen, Keurentjes (bib15) 2005; 248 Duke, Mee, da Costa (bib7) 2007; 41 Uhlhorn, Burggraaf (bib23) 1991 Young (bib28) 1958; 13 Leenaars, Keizer, Burggraaf (bib12) 1984; 19 Lee (bib11) 1997; 8 de Vos, Verweij (bib4) 1998; 143 González, Alvarez, Riera, Alvarez (bib8) 2007; 80 Campaniello, Engelen, Haije, Pex, Vente (bib1) 2004 Sekulic, Elshof, Blank (bib18) 2005; 254 Duke, Diniz da Costa, Lu, Petch, Gray (bib5) 2004; 241 Samuel de Lint, Zivkovic, Benes, Bouwmeester, Blank (bib17) 2006; 277 Urbas, B., 1984, Recovery of organic acids from a fermentation broth, USA Patent 4,444,881. Yankov, Molinier, Albet, Malmary, Kyuchoukov (bib27) 2004; 21 Thang, Koschuh, Kulbe, Novalin (bib21) 2005; 249 Marinova, Kyuchoukov, Albet, Molinier, Malmary (bib13) 2004; 37 Kaščák, Komínek, Roehr (bib10) 1996; vol. 6 Uhlhorn, Keizer, Burggraaf (bib24) 1992; 66 Nair, Yoshino, Kawahara, Taguchi (bib14) 2004 Habova, Melzoch, Rychtera, Sekavova (bib9) 2004; 162 Dafinov, Garcia-Valls, Font (bib2) 2002; 196 de Lange, Hekkink, Keizer, Burggraaf (bib3) 1995; 4 Duke (10.1016/j.fbp.2008.01.005_bib7) 2007; 41 Sommer (10.1016/j.fbp.2008.01.005_bib19) 2005; 44 Tsai (10.1016/j.fbp.2008.01.005_bib22) 2000; 169 de Vos (10.1016/j.fbp.2008.01.005_bib4) 1998; 143 Marinova (10.1016/j.fbp.2008.01.005_bib13) 2004; 37 Peters (10.1016/j.fbp.2008.01.005_bib15) 2005; 248 Thang (10.1016/j.fbp.2008.01.005_bib21) 2005; 249 Dafinov (10.1016/j.fbp.2008.01.005_bib2) 2002; 196 Polom (10.1016/j.fbp.2008.01.005_bib16) 2006; 198 Uhlhorn (10.1016/j.fbp.2008.01.005_bib23) 1991 Leenaars (10.1016/j.fbp.2008.01.005_bib12) 1984; 19 González (10.1016/j.fbp.2008.01.005_bib8) 2007; 80 Yankov (10.1016/j.fbp.2008.01.005_bib27) 2004; 21 Duke (10.1016/j.fbp.2008.01.005_bib6) 2006; 16 Uhlhorn (10.1016/j.fbp.2008.01.005_bib24) 1992; 66 Habova (10.1016/j.fbp.2008.01.005_bib9) 2004; 162 10.1016/j.fbp.2008.01.005_bib25 de Lange (10.1016/j.fbp.2008.01.005_bib3) 1995; 4 Kaščák (10.1016/j.fbp.2008.01.005_bib10) 1996; vol. 6 Campaniello (10.1016/j.fbp.2008.01.005_bib1) 2004 Yang (10.1016/j.fbp.2008.01.005_bib26) 2006; 284 Sekulic (10.1016/j.fbp.2008.01.005_bib18) 2005; 254 Young (10.1016/j.fbp.2008.01.005_bib28) 1958; 13 Duke (10.1016/j.fbp.2008.01.005_bib5) 2004; 241 Samuel de Lint (10.1016/j.fbp.2008.01.005_bib17) 2006; 277 Sommer (10.1016/j.fbp.2008.01.005_bib20) 2002; 149 Nair (10.1016/j.fbp.2008.01.005_bib14) 2004 Lee (10.1016/j.fbp.2008.01.005_bib11) 1997; 8 |
References_xml | – volume: 143 start-page: 37 year: 1998 end-page: 51 ident: bib4 article-title: Improved performance of silica membranes for gas separation publication-title: J Membr Sci – volume: 16 start-page: 1215 year: 2006 end-page: 1220 ident: bib6 article-title: Hydrothermally robust molecular sieve silica for wet gas separation publication-title: Adv Funct Mater – volume: 254 start-page: 267 year: 2005 end-page: 274 ident: bib18 article-title: Separation mechanism in dehydration of water/organic binary liquids by pervaporation through microporous silica publication-title: J Membr Sci – volume: 277 start-page: 18 year: 2006 end-page: 27 ident: bib17 article-title: Electrolyte retention of supported bi-layered nanofiltration membranes publication-title: J Membr Sci – volume: 284 start-page: 205 year: 2006 end-page: 213 ident: bib26 article-title: Pervaporation characteristics of aqueous-organic solutions with microporous SiO publication-title: J Membr Sci – volume: 44 start-page: 1138 year: 2005 end-page: 1156 ident: bib19 article-title: Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents publication-title: Chem Eng Process – volume: 162 start-page: 361 year: 2004 end-page: 372 ident: bib9 article-title: Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth publication-title: Desalination – volume: 248 start-page: 73 year: 2005 end-page: 80 ident: bib15 article-title: Hollow fibre microporous silica membranes for gas separation and pervaporation: synthesis, performance and stability publication-title: J Membr Sci – start-page: 467 year: 2004 end-page: 470 ident: bib14 article-title: Development of ceramic support substrates, microporous membranes and membrane modules for hydrogen separation publication-title: Proceedings of the Eighth International Conference on Inorganic Membranes – volume: vol. 6 start-page: 294 year: 1996 end-page: 306 ident: bib10 article-title: Lactic acid publication-title: Products of Primary Metabolism – reference: Urbas, B., 1984, Recovery of organic acids from a fermentation broth, USA Patent 4,444,881. – year: 2004 ident: bib1 article-title: Long-Term Pervaporation Performance of Microporous Methylated Silica Membranes, no. 7 – volume: 4 start-page: 169 year: 1995 end-page: 186 ident: bib3 article-title: Permeation and separation studies on microporous sol–gel modified ceramic membranes publication-title: Micropor Mater – volume: 241 start-page: 325 year: 2004 end-page: 333 ident: bib5 article-title: Carbonised template molecular sieve silica membranes in fuel processing systems: permeation, hydrostability and regeneration publication-title: J Membr Sci – volume: 13 start-page: 67 year: 1958 end-page: 85 ident: bib28 article-title: Interaction of water vapor with silica surfaces publication-title: J Colloid Sci – volume: 196 start-page: 69 year: 2002 end-page: 77 ident: bib2 article-title: Modification of ceramic membranes by alcohol adsorption publication-title: J Membr Sci – volume: 249 start-page: 173 year: 2005 end-page: 182 ident: bib21 article-title: Detailed investigation of an electrodialytic process during the separation of lactic acid from a complex mixture publication-title: J Membr Sci – volume: 37 start-page: 199 year: 2004 end-page: 207 ident: bib13 article-title: Separation of tartaric and lactic acids by means of solvent extraction publication-title: Sep Purif Technol – volume: 66 start-page: 271 year: 1992 end-page: 287 ident: bib24 article-title: Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes publication-title: J Membr Sci – volume: 198 start-page: 208 year: 2006 end-page: 214 ident: bib16 article-title: Rejection of lactic acid solutions by dynamically formed nanofiltration membranes using a statistical design method publication-title: Desalination – volume: 149 start-page: 15 year: 2002 end-page: 21 ident: bib20 article-title: Integrated system design for dewatering of solvents with microporous silica membranes publication-title: Desalination – volume: 169 start-page: 255 year: 2000 end-page: 268 ident: bib22 article-title: Dual-layer asymmetric microporous silica membranes publication-title: J Membr Sci – volume: 21 start-page: 63 year: 2004 end-page: 71 ident: bib27 article-title: Lactic acid extraction from aqueous solutions with tri- publication-title: Biochem Eng J – start-page: 155 year: 1991 ident: bib23 article-title: Gas separations with inorganic membranes publication-title: Inorganic Membranes: Synthesis, Characteristics, and Applications – volume: 19 start-page: 1077 year: 1984 end-page: 1088 ident: bib12 article-title: The preparation and characterization of alumina membranes with ultra-fine pores. 1. Microstructural investigations on non-supported membranes publication-title: J Mater Sci – volume: 8 start-page: 259 year: 1997 end-page: 269 ident: bib11 article-title: Lactic acid fermented foods and their benefits in Asia publication-title: Food Control – volume: 41 start-page: 3998 year: 2007 end-page: 4004 ident: bib7 article-title: Performance of porous inorganic membranes in non-osmotic desalination publication-title: Water Res – volume: 80 start-page: 553 year: 2007 end-page: 561 ident: bib8 article-title: Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey publication-title: J Food Eng – volume: 162 start-page: 361 year: 2004 ident: 10.1016/j.fbp.2008.01.005_bib9 article-title: Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth publication-title: Desalination doi: 10.1016/S0011-9164(04)00070-0 – volume: 254 start-page: 267 issue: 1–2 year: 2005 ident: 10.1016/j.fbp.2008.01.005_bib18 article-title: Separation mechanism in dehydration of water/organic binary liquids by pervaporation through microporous silica publication-title: J Membr Sci doi: 10.1016/j.memsci.2005.01.013 – volume: 196 start-page: 69 issue: 1 year: 2002 ident: 10.1016/j.fbp.2008.01.005_bib2 article-title: Modification of ceramic membranes by alcohol adsorption publication-title: J Membr Sci doi: 10.1016/S0376-7388(01)00575-0 – volume: 241 start-page: 325 issue: 2 year: 2004 ident: 10.1016/j.fbp.2008.01.005_bib5 article-title: Carbonised template molecular sieve silica membranes in fuel processing systems: permeation, hydrostability and regeneration publication-title: J Membr Sci doi: 10.1016/j.memsci.2004.06.004 – volume: 249 start-page: 173 issue: 1–2 year: 2005 ident: 10.1016/j.fbp.2008.01.005_bib21 article-title: Detailed investigation of an electrodialytic process during the separation of lactic acid from a complex mixture publication-title: J Membr Sci doi: 10.1016/j.memsci.2004.08.033 – volume: 80 start-page: 553 issue: 2 year: 2007 ident: 10.1016/j.fbp.2008.01.005_bib8 article-title: Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2006.06.021 – volume: 8 start-page: 259 issue: 5–6 year: 1997 ident: 10.1016/j.fbp.2008.01.005_bib11 article-title: Lactic acid fermented foods and their benefits in Asia publication-title: Food Control doi: 10.1016/S0956-7135(97)00015-7 – volume: 66 start-page: 271 issue: 2–3 year: 1992 ident: 10.1016/j.fbp.2008.01.005_bib24 article-title: Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes publication-title: J Membr Sci doi: 10.1016/0376-7388(92)87017-R – volume: 21 start-page: 63 issue: 1 year: 2004 ident: 10.1016/j.fbp.2008.01.005_bib27 article-title: Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane publication-title: Biochem Eng J doi: 10.1016/j.bej.2004.03.006 – volume: 16 start-page: 1215 issue: 9 year: 2006 ident: 10.1016/j.fbp.2008.01.005_bib6 article-title: Hydrothermally robust molecular sieve silica for wet gas separation publication-title: Adv Funct Mater doi: 10.1002/adfm.200500456 – start-page: 155 year: 1991 ident: 10.1016/j.fbp.2008.01.005_bib23 article-title: Gas separations with inorganic membranes – volume: 4 start-page: 169 issue: 2–3 year: 1995 ident: 10.1016/j.fbp.2008.01.005_bib3 article-title: Permeation and separation studies on microporous sol–gel modified ceramic membranes publication-title: Micropor Mater doi: 10.1016/0927-6513(95)00004-S – volume: 13 start-page: 67 year: 1958 ident: 10.1016/j.fbp.2008.01.005_bib28 article-title: Interaction of water vapor with silica surfaces publication-title: J Colloid Sci doi: 10.1016/0095-8522(58)90010-2 – volume: 143 start-page: 37 issue: 1–2 year: 1998 ident: 10.1016/j.fbp.2008.01.005_bib4 article-title: Improved performance of silica membranes for gas separation publication-title: J Membr Sci doi: 10.1016/S0376-7388(97)00334-7 – volume: 169 start-page: 255 issue: 2 year: 2000 ident: 10.1016/j.fbp.2008.01.005_bib22 article-title: Dual-layer asymmetric microporous silica membranes publication-title: J Membr Sci doi: 10.1016/S0376-7388(99)00343-9 – volume: 284 start-page: 205 issue: 1–2 year: 2006 ident: 10.1016/j.fbp.2008.01.005_bib26 article-title: Pervaporation characteristics of aqueous-organic solutions with microporous SiO2–ZrO2 membranes: experimental study on separation mechanism publication-title: J Membr Sci doi: 10.1016/j.memsci.2006.07.041 – volume: 277 start-page: 18 issue: 1–2 year: 2006 ident: 10.1016/j.fbp.2008.01.005_bib17 article-title: Electrolyte retention of supported bi-layered nanofiltration membranes publication-title: J Membr Sci doi: 10.1016/j.memsci.2005.10.004 – volume: 19 start-page: 1077 issue: 4 year: 1984 ident: 10.1016/j.fbp.2008.01.005_bib12 article-title: The preparation and characterization of alumina membranes with ultra-fine pores. 1. Microstructural investigations on non-supported membranes publication-title: J Mater Sci doi: 10.1007/BF01120016 – volume: 248 start-page: 73 issue: 1–2 year: 2005 ident: 10.1016/j.fbp.2008.01.005_bib15 article-title: Hollow fibre microporous silica membranes for gas separation and pervaporation: synthesis, performance and stability publication-title: J Membr Sci doi: 10.1016/j.memsci.2004.08.023 – volume: 198 start-page: 208 issue: 1–3 year: 2006 ident: 10.1016/j.fbp.2008.01.005_bib16 article-title: Rejection of lactic acid solutions by dynamically formed nanofiltration membranes using a statistical design method publication-title: Desalination doi: 10.1016/j.desal.2006.04.002 – volume: 37 start-page: 199 issue: 3 year: 2004 ident: 10.1016/j.fbp.2008.01.005_bib13 article-title: Separation of tartaric and lactic acids by means of solvent extraction publication-title: Sep Purif Technol doi: 10.1016/S1383-5866(03)00218-1 – year: 2004 ident: 10.1016/j.fbp.2008.01.005_bib1 – ident: 10.1016/j.fbp.2008.01.005_bib25 – volume: 149 start-page: 15 issue: 1–3 year: 2002 ident: 10.1016/j.fbp.2008.01.005_bib20 article-title: Integrated system design for dewatering of solvents with microporous silica membranes publication-title: Desalination doi: 10.1016/S0011-9164(02)00685-9 – volume: 41 start-page: 3998 issue: 17 year: 2007 ident: 10.1016/j.fbp.2008.01.005_bib7 article-title: Performance of porous inorganic membranes in non-osmotic desalination publication-title: Water Res doi: 10.1016/j.watres.2007.05.028 – start-page: 467 year: 2004 ident: 10.1016/j.fbp.2008.01.005_bib14 article-title: Development of ceramic support substrates, microporous membranes and membrane modules for hydrogen separation – volume: vol. 6 start-page: 294 year: 1996 ident: 10.1016/j.fbp.2008.01.005_bib10 article-title: Lactic acid – volume: 44 start-page: 1138 issue: 10 year: 2005 ident: 10.1016/j.fbp.2008.01.005_bib19 article-title: Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents publication-title: Chem Eng Process doi: 10.1016/j.cep.2005.02.006 |
SSID | ssj0001815 |
Score | 1.9283367 |
Snippet | Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 290 |
SubjectTerms | artificial membranes Biological and medical sciences Food industries fouling Fundamental and applied biological sciences. Psychology Inorganic membrane Lactic acid membrane filtration methodology Molecular sieve Nanofiltration nanotechnology new methods permeates Pervaporation porosity purification Separation surface interactions ultrafiltration water content water selectivity factor water solubility |
Title | Lactic acid enrichment with inorganic nanofiltration and molecular sieving membranes by pervaporation |
URI | https://dx.doi.org/10.1016/j.fbp.2008.01.005 https://www.proquest.com/docview/20320195 https://www.proquest.com/docview/35431341 https://www.proquest.com/docview/46201190 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOCAqoy2PxgRNSunHiPHysKqqFhR4oK3qzbMcuQWw2YrcHLvx2ZhynUEF74BQpGkuJx54Zj7-ZD-BVUwlrU8NRA7JJhPAy0UaUiZDOV9ZkGW8oD_nhpJwvxbuz4mwHjsZaGIJVRts_2PRgreObWZzNWd-2s1MKvnPquFYHo0vndiEq6p9_8PM3zAM9WIAxonBC0uPNZsB4edNHOCU_SInB7t--6ZbXawJN6g3Omx8IL_6y3cEhHT-A-zGSZIfDxz6EHdftwZ2x0HizB_f-6DX4CNz7UA7FtG0bhoumtV8oMcgoEcvabmB3sqzTHZF4x2a6THcNW40MumzTOso_sJVb4SEbjSQzP1hPad0-rqTHsDx-8-lonkSOhcQKIbZJWcg8lZkzlc9rV9a6yetUmCpznqPlMzwrZc6p_xHudF8I44gh3eMpyThXY_jxBHa7def2gVnvqauh5Rm6vMw2tU5zV2sc6jk3mZ9AOs6usrEBOfFgfFMj0uyrQoVEYkyuUCETeH05pB-6b9wkLEaVqStLSKF3uGnYPqpX6XM0qmp5mtFVLi-otkVOYHpF55ffQPXGdS7SCbwcF4HCbUl3LTj564uNCsT0XBbXS-TUhQBjiOslREnRmUyf_t-PPYO7AdwSsDfPYXf7_cK9wAhqa6Zhi0zh9uHbxfyEnouPnxe_AEC7GuE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V9lA4ICigLh-tD5yQwsaJk42PVUW1pdu9tCv1ZtmODanYbMRuD_x7ZhxnRQXtgWtkS45nPDMez7wH8LGeCGtTw1ECsk6E8DLRRpSJkM5PrMkyXlMe8nJeThfi601xswOnQy8MlVVG29_b9GCt45dx3M1x1zTjKwq-c0Jcq4LRxXv7HqFTobLvnZxfTOdbg4xOLFQy4viEJgyPm6HMy5suVlTyzymR2P3bPT3xekV1k3qNW-d7zou_zHfwSWcv4HkMJtlJv96XsOPaA9gfeo3XB_DsD7jBV-BmoSOKadvUDPWmsd8pN8goF8uatid4sqzVLfF4RzxdptuaLQcSXbZuHKUg2NIt8Z6NdpKZX6yjzG4Xlek1LM6-XJ9Ok0izkFghxCYpC5mnMnNm4vPKlZWu8yoVZpI5z9H4GZ6VMucEgYSH3RfCOCJJ93hRMs5VGIG8gd121bpDYNZ7Aja0PEOvl9m60mnuKo1TPecm8yNIh91VNmKQExXGDzUUm90qFEjkxuQKBTKCT9spXQ_A8dhgMYhM3dMihQ7isWmHKF6lv6FdVYurjF5zeUHtLXIER_dkvl0DtRxXuUhHcDwogcKTSc8tuPmru7UK3PRcFg-PyAmIAMOIh0eIkgI0mb79vx87hv3p9eVMzc7nF-_gaah1CaU472F38_POfcCAamOO4oH5DQdfG-8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lactic+acid+enrichment+with+inorganic+nanofiltration+and+molecular+sieving+membranes+by+pervaporation&rft.jtitle=Food+and+bioproducts+processing&rft.au=Duke%2C+M+C&rft.au=Lim%2C+A&rft.au=da+Luz%2C+SC&rft.au=Nielsen%2C+L&rft.date=2008-12-01&rft.issn=0960-3085&rft.volume=86&rft.issue=4&rft.spage=290&rft.epage=295&rft_id=info:doi/10.1016%2Fj.fbp.2008.01.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3085&client=summon |