Lactic acid enrichment with inorganic nanofiltration and molecular sieving membranes by pervaporation

Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readil...

Full description

Saved in:
Bibliographic Details
Published inFood and bioproducts processing Vol. 86; no. 4; pp. 290 - 295
Main Authors Duke, Mikel. C., Lim, Agnes, Luz, Sheila Castro da, Nielsen, Lars
Format Journal Article
LanguageEnglish
Published Rugby Elsevier B.V 01.12.2008
Institution of Chemical Engineers
Subjects
Online AccessGet full text
ISSN0960-3085
1744-3571
DOI10.1016/j.fbp.2008.01.005

Cover

Loading…
Abstract Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readily available γ-alumina (nanofiltration), and the more advanced molecular sieve silica membranes, to enrich lactic acid for product use by selectively depleting water through the membrane. The alumina membranes showed flux starting at 6 kg m −2 h −1, reducing to 1 kg m −2 h −1 after 250 min due to pore blocking of lactic acid. The membrane acted to remove water from the 15 wt% feed, with permeate lactic acid concentration at 2 wt% corresponding to a water selectivity factor of 9. Silica membranes on the other hand exhibited a water selectivity factor up to 220 (a rejection coefficient of 0.995) with lactic acid in the permeate as low as 0.08 wt% after regeneration with an overall stable flux of 0.2 kg m −2 h −1. The strong surface charge and wider pore size of the alumina membrane enabled a slow pore blocking mechanism, with flux dropping towards that of the silica membrane. The silica membrane was therefore the choice technology as the tight pore spaces inhibited lactic acid from entering and the charge-neutral surface leading to a more stable separation not subject to pore blocking. Performance results allowed calculation of membrane area for industrial separation. Flux improvements and longer term studies are needed to improve silica membrane commercial attraction.
AbstractList Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readily available - gamma -alumina (nanofiltration), and the more advanced molecular sieve silica membranes, to enrich lactic acid for product use by selectively depleting water through the membrane. The alumina membranes showed flux starting at 6 kg m- super(2) h super(-1), reducing to 1 kg m super(-2) h super(1) sub(-) after 250 min due to pore blocking of lactic acid. The membrane acted to remove water from the 15 wt% feed, with permeate lactic acid concentration at 2 wt% corresponding to a water selectivity factor of 9. Silica membranes on the other hand exhibited a water selectivity factor up to 220 (a rejection coefficient of 0.995) with lactic acid in the permeate as low as 0.08 wt% after regeneration with an overall stable flux of 0.2 kgm super(-2) h super(-1). The strong surface charge and wider pore size of the alumina membrane enabled a slow pore blocking mechanism, with flux dropping towards that of the silica membrane. The silica membrane was therefore the choice technology as the tight pore spaces inhibited lactic acid from entering and the charge-neutral surface leading to a more stable separation not subject to pore blocking. Performance results allowed calculation of membrane area for industrial separation. Flux improvements and longer term studies are needed to improve silica membrane commercial attraction.
Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readily available gamma-alumina (nanofiltration), and the more advanced molecular sieve silica membranes, to enrich lactic acid for product use by selectively depleting water through the membrane. The alumina membranes showed flux starting at 6 kg m-2 h-1, reducing to 1 kg m-2 h-1 after 250 min due to pore blocking of lactic acid. The membrane acted to remove water from the 15 wt% feed, with permeate lactic acid concentration at 2 wt% corresponding to a water selectivity factor of 9. Silica membranes on the other hand exhibited a water selectivity factor up to 220 (a rejection coefficient of 0.995) with lactic acid in the permeate as low as 0.08 wt% after regeneration with an overall stable flux of 0.2 kg m-2 h-1. The strong surface charge and wider pore size of the alumina membrane enabled a slow pore blocking mechanism, with flux dropping towards that of the silica membrane. The silica membrane was therefore the choice technology as the tight pore spaces inhibited lactic acid from entering and the charge-neutral surface leading to a more stable separation not subject to pore blocking. Performance results allowed calculation of membrane area for industrial separation. Flux improvements and longer term studies are needed to improve silica membrane commercial attraction.
Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water separation potential and are driven only by pressure difference without the need for added chemicals. Here we show the application of readily available γ-alumina (nanofiltration), and the more advanced molecular sieve silica membranes, to enrich lactic acid for product use by selectively depleting water through the membrane. The alumina membranes showed flux starting at 6 kg m −2 h −1, reducing to 1 kg m −2 h −1 after 250 min due to pore blocking of lactic acid. The membrane acted to remove water from the 15 wt% feed, with permeate lactic acid concentration at 2 wt% corresponding to a water selectivity factor of 9. Silica membranes on the other hand exhibited a water selectivity factor up to 220 (a rejection coefficient of 0.995) with lactic acid in the permeate as low as 0.08 wt% after regeneration with an overall stable flux of 0.2 kg m −2 h −1. The strong surface charge and wider pore size of the alumina membrane enabled a slow pore blocking mechanism, with flux dropping towards that of the silica membrane. The silica membrane was therefore the choice technology as the tight pore spaces inhibited lactic acid from entering and the charge-neutral surface leading to a more stable separation not subject to pore blocking. Performance results allowed calculation of membrane area for industrial separation. Flux improvements and longer term studies are needed to improve silica membrane commercial attraction.
Author Nielsen, Lars
Lim, Agnes
Duke, Mikel. C.
Luz, Sheila Castro da
Author_xml – sequence: 1
  givenname: Mikel. C.
  surname: Duke
  fullname: Duke, Mikel. C.
  email: mikel.duke@vu.edu.au
  organization: Institute for Sustainability and Innovation, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Vic. 8001, Australia
– sequence: 2
  givenname: Agnes
  surname: Lim
  fullname: Lim, Agnes
  organization: School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore
– sequence: 3
  givenname: Sheila Castro da
  surname: Luz
  fullname: Luz, Sheila Castro da
  organization: Faculdade Cenecista, Facensa University, Gravatai, Brazil
– sequence: 4
  givenname: Lars
  surname: Nielsen
  fullname: Nielsen, Lars
  organization: Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld 4072, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20998340$$DView record in Pascal Francis
BookMark eNqFkcFu1DAQhi1UJLaFB-CEL3BLGMdOYosTqqAgrcQBerYcZ7z1KrEXO7uob4-3qThwaE8-zPf_Hs13SS5CDEjIWwY1A9Z93NduONQNgKyB1QDtC7JhvRAVb3t2QTagOqg4yPYVucx5DwBMsnZDcGvs4i011o8UQ_L2bsaw0D9-uaM-xLQzoYyDCdH5aUlm8TFQE0Y6xwntcTKJZo8nH3Z0xnlIJmCmwz09YDqZQ1wDr8lLZ6aMbx7fK3L79cuv62_V9sfN9-vP28oKIZaqaxUH1eDQOy6xk2bkEsTQN-jYOOLAmk5xJnjPhZSuFQPKhndOqW5AlL3gV-TD2ntI8fcR86Jnny1OU9kqHrMWXQOMKXgW5K3gjAv2LNgAL5WqLeD7R9BkayZXDmF91ofkZ5PuC6eU5OL8M1s5m2LOCd0_hIE-q9R7XVTqs0oNTBeVJdP_l7F-eThsEeKnJ5Pv1qQzUZtdKhvd_iwLc2Ct5B2oQnxaCSxeTh6TztZjsDj6hHbRY_RP9P8FPS_EJg
CitedBy_id crossref_primary_10_1016_j_bej_2013_06_014
crossref_primary_10_1016_j_memsci_2012_02_042
crossref_primary_10_1016_j_memsci_2012_12_006
crossref_primary_10_1016_j_cep_2009_09_003
crossref_primary_10_1016_j_seppur_2015_07_050
crossref_primary_10_1016_j_seppur_2015_07_018
crossref_primary_10_1016_j_biotechadv_2014_04_002
crossref_primary_10_1016_j_desal_2011_12_009
crossref_primary_10_1080_19443994_2014_993726
crossref_primary_10_1016_j_fluid_2013_06_007
crossref_primary_10_1016_j_memsci_2020_118968
crossref_primary_10_1007_s40034_017_0101_4
crossref_primary_10_1016_j_cep_2016_03_009
crossref_primary_10_1016_j_lwt_2014_02_011
Cites_doi 10.1016/S0011-9164(04)00070-0
10.1016/j.memsci.2005.01.013
10.1016/S0376-7388(01)00575-0
10.1016/j.memsci.2004.06.004
10.1016/j.memsci.2004.08.033
10.1016/j.jfoodeng.2006.06.021
10.1016/S0956-7135(97)00015-7
10.1016/0376-7388(92)87017-R
10.1016/j.bej.2004.03.006
10.1002/adfm.200500456
10.1016/0927-6513(95)00004-S
10.1016/0095-8522(58)90010-2
10.1016/S0376-7388(97)00334-7
10.1016/S0376-7388(99)00343-9
10.1016/j.memsci.2006.07.041
10.1016/j.memsci.2005.10.004
10.1007/BF01120016
10.1016/j.memsci.2004.08.023
10.1016/j.desal.2006.04.002
10.1016/S1383-5866(03)00218-1
10.1016/S0011-9164(02)00685-9
10.1016/j.watres.2007.05.028
10.1016/j.cep.2005.02.006
ContentType Journal Article
Copyright 2008
2009 INIST-CNRS
Copyright_xml – notice: 2008
– notice: 2009 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7QO
8FD
FR3
P64
7QF
F28
JG9
7S9
L.6
DOI 10.1016/j.fbp.2008.01.005
DatabaseName AGRIS
CrossRef
Pascal-Francis
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Aluminium Industry Abstracts
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Aluminium Industry Abstracts
ANTE: Abstracts in New Technology & Engineering
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Engineering Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1744-3571
EndPage 295
ExternalDocumentID 20998340
10_1016_j_fbp_2008_01_005
US201301583609
S0960308508000060
GroupedDBID --K
--M
-QF
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABDBF
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSA
SSG
SSU
SSZ
T5K
UNMZH
VH1
XFK
~G-
~KM
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADMLS
ADNMO
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
7QO
8FD
FR3
P64
7QF
F28
JG9
7S9
L.6
ID FETCH-LOGICAL-c444t-6593092eb7f38e68ad3804b72ef1ddeb1269314373488f54be8236f996bee8743
IEDL.DBID .~1
ISSN 0960-3085
IngestDate Tue Aug 05 09:18:08 EDT 2025
Fri Jul 11 07:25:42 EDT 2025
Fri Jul 11 11:28:57 EDT 2025
Mon Jul 21 09:17:44 EDT 2025
Tue Jul 01 02:00:36 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Thu Apr 03 09:45:18 EDT 2025
Fri Feb 23 02:35:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Nanofiltration
Separation
Lactic acid
Inorganic membrane
Molecular sieve
Pervaporation
Enrichment
Membrane
Sieving
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-6593092eb7f38e68ad3804b72ef1ddeb1269314373488f54be8236f996bee8743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 20320195
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_46201190
proquest_miscellaneous_35431341
proquest_miscellaneous_20320195
pascalfrancis_primary_20998340
crossref_primary_10_1016_j_fbp_2008_01_005
crossref_citationtrail_10_1016_j_fbp_2008_01_005
fao_agris_US201301583609
elsevier_sciencedirect_doi_10_1016_j_fbp_2008_01_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Rugby
PublicationPlace_xml – name: Rugby
PublicationTitle Food and bioproducts processing
PublicationYear 2008
Publisher Elsevier B.V
Institution of Chemical Engineers
Publisher_xml – name: Elsevier B.V
– name: Institution of Chemical Engineers
References Sommer, Klinkhammer, Melin (bib20) 2002; 149
Sommer, Melin (bib19) 2005; 44
Duke, Diniz da Costa, Do, Lu, Gray (bib6) 2006; 16
Polom, Szaniawska (bib16) 2006; 198
Tsai, Tam, Lu, Brinker (bib22) 2000; 169
Yang, Yoshioka, Tsuru, Asaeda (bib26) 2006; 284
Peters, Fontalvo, Vorstman, Benes, van Dam, Vroon, van Soest-Vercammen, Keurentjes (bib15) 2005; 248
Duke, Mee, da Costa (bib7) 2007; 41
Uhlhorn, Burggraaf (bib23) 1991
Young (bib28) 1958; 13
Leenaars, Keizer, Burggraaf (bib12) 1984; 19
Lee (bib11) 1997; 8
de Vos, Verweij (bib4) 1998; 143
González, Alvarez, Riera, Alvarez (bib8) 2007; 80
Campaniello, Engelen, Haije, Pex, Vente (bib1) 2004
Sekulic, Elshof, Blank (bib18) 2005; 254
Duke, Diniz da Costa, Lu, Petch, Gray (bib5) 2004; 241
Samuel de Lint, Zivkovic, Benes, Bouwmeester, Blank (bib17) 2006; 277
Urbas, B., 1984, Recovery of organic acids from a fermentation broth, USA Patent 4,444,881.
Yankov, Molinier, Albet, Malmary, Kyuchoukov (bib27) 2004; 21
Thang, Koschuh, Kulbe, Novalin (bib21) 2005; 249
Marinova, Kyuchoukov, Albet, Molinier, Malmary (bib13) 2004; 37
Kaščák, Komínek, Roehr (bib10) 1996; vol. 6
Uhlhorn, Keizer, Burggraaf (bib24) 1992; 66
Nair, Yoshino, Kawahara, Taguchi (bib14) 2004
Habova, Melzoch, Rychtera, Sekavova (bib9) 2004; 162
Dafinov, Garcia-Valls, Font (bib2) 2002; 196
de Lange, Hekkink, Keizer, Burggraaf (bib3) 1995; 4
Duke (10.1016/j.fbp.2008.01.005_bib7) 2007; 41
Sommer (10.1016/j.fbp.2008.01.005_bib19) 2005; 44
Tsai (10.1016/j.fbp.2008.01.005_bib22) 2000; 169
de Vos (10.1016/j.fbp.2008.01.005_bib4) 1998; 143
Marinova (10.1016/j.fbp.2008.01.005_bib13) 2004; 37
Peters (10.1016/j.fbp.2008.01.005_bib15) 2005; 248
Thang (10.1016/j.fbp.2008.01.005_bib21) 2005; 249
Dafinov (10.1016/j.fbp.2008.01.005_bib2) 2002; 196
Polom (10.1016/j.fbp.2008.01.005_bib16) 2006; 198
Uhlhorn (10.1016/j.fbp.2008.01.005_bib23) 1991
Leenaars (10.1016/j.fbp.2008.01.005_bib12) 1984; 19
González (10.1016/j.fbp.2008.01.005_bib8) 2007; 80
Yankov (10.1016/j.fbp.2008.01.005_bib27) 2004; 21
Duke (10.1016/j.fbp.2008.01.005_bib6) 2006; 16
Uhlhorn (10.1016/j.fbp.2008.01.005_bib24) 1992; 66
Habova (10.1016/j.fbp.2008.01.005_bib9) 2004; 162
10.1016/j.fbp.2008.01.005_bib25
de Lange (10.1016/j.fbp.2008.01.005_bib3) 1995; 4
Kaščák (10.1016/j.fbp.2008.01.005_bib10) 1996; vol. 6
Campaniello (10.1016/j.fbp.2008.01.005_bib1) 2004
Yang (10.1016/j.fbp.2008.01.005_bib26) 2006; 284
Sekulic (10.1016/j.fbp.2008.01.005_bib18) 2005; 254
Young (10.1016/j.fbp.2008.01.005_bib28) 1958; 13
Duke (10.1016/j.fbp.2008.01.005_bib5) 2004; 241
Samuel de Lint (10.1016/j.fbp.2008.01.005_bib17) 2006; 277
Sommer (10.1016/j.fbp.2008.01.005_bib20) 2002; 149
Nair (10.1016/j.fbp.2008.01.005_bib14) 2004
Lee (10.1016/j.fbp.2008.01.005_bib11) 1997; 8
References_xml – volume: 143
  start-page: 37
  year: 1998
  end-page: 51
  ident: bib4
  article-title: Improved performance of silica membranes for gas separation
  publication-title: J Membr Sci
– volume: 16
  start-page: 1215
  year: 2006
  end-page: 1220
  ident: bib6
  article-title: Hydrothermally robust molecular sieve silica for wet gas separation
  publication-title: Adv Funct Mater
– volume: 254
  start-page: 267
  year: 2005
  end-page: 274
  ident: bib18
  article-title: Separation mechanism in dehydration of water/organic binary liquids by pervaporation through microporous silica
  publication-title: J Membr Sci
– volume: 277
  start-page: 18
  year: 2006
  end-page: 27
  ident: bib17
  article-title: Electrolyte retention of supported bi-layered nanofiltration membranes
  publication-title: J Membr Sci
– volume: 284
  start-page: 205
  year: 2006
  end-page: 213
  ident: bib26
  article-title: Pervaporation characteristics of aqueous-organic solutions with microporous SiO
  publication-title: J Membr Sci
– volume: 44
  start-page: 1138
  year: 2005
  end-page: 1156
  ident: bib19
  article-title: Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents
  publication-title: Chem Eng Process
– volume: 162
  start-page: 361
  year: 2004
  end-page: 372
  ident: bib9
  article-title: Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth
  publication-title: Desalination
– volume: 248
  start-page: 73
  year: 2005
  end-page: 80
  ident: bib15
  article-title: Hollow fibre microporous silica membranes for gas separation and pervaporation: synthesis, performance and stability
  publication-title: J Membr Sci
– start-page: 467
  year: 2004
  end-page: 470
  ident: bib14
  article-title: Development of ceramic support substrates, microporous membranes and membrane modules for hydrogen separation
  publication-title: Proceedings of the Eighth International Conference on Inorganic Membranes
– volume: vol. 6
  start-page: 294
  year: 1996
  end-page: 306
  ident: bib10
  article-title: Lactic acid
  publication-title: Products of Primary Metabolism
– reference: Urbas, B., 1984, Recovery of organic acids from a fermentation broth, USA Patent 4,444,881.
– year: 2004
  ident: bib1
  article-title: Long-Term Pervaporation Performance of Microporous Methylated Silica Membranes, no. 7
– volume: 4
  start-page: 169
  year: 1995
  end-page: 186
  ident: bib3
  article-title: Permeation and separation studies on microporous sol–gel modified ceramic membranes
  publication-title: Micropor Mater
– volume: 241
  start-page: 325
  year: 2004
  end-page: 333
  ident: bib5
  article-title: Carbonised template molecular sieve silica membranes in fuel processing systems: permeation, hydrostability and regeneration
  publication-title: J Membr Sci
– volume: 13
  start-page: 67
  year: 1958
  end-page: 85
  ident: bib28
  article-title: Interaction of water vapor with silica surfaces
  publication-title: J Colloid Sci
– volume: 196
  start-page: 69
  year: 2002
  end-page: 77
  ident: bib2
  article-title: Modification of ceramic membranes by alcohol adsorption
  publication-title: J Membr Sci
– volume: 249
  start-page: 173
  year: 2005
  end-page: 182
  ident: bib21
  article-title: Detailed investigation of an electrodialytic process during the separation of lactic acid from a complex mixture
  publication-title: J Membr Sci
– volume: 37
  start-page: 199
  year: 2004
  end-page: 207
  ident: bib13
  article-title: Separation of tartaric and lactic acids by means of solvent extraction
  publication-title: Sep Purif Technol
– volume: 66
  start-page: 271
  year: 1992
  end-page: 287
  ident: bib24
  article-title: Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes
  publication-title: J Membr Sci
– volume: 198
  start-page: 208
  year: 2006
  end-page: 214
  ident: bib16
  article-title: Rejection of lactic acid solutions by dynamically formed nanofiltration membranes using a statistical design method
  publication-title: Desalination
– volume: 149
  start-page: 15
  year: 2002
  end-page: 21
  ident: bib20
  article-title: Integrated system design for dewatering of solvents with microporous silica membranes
  publication-title: Desalination
– volume: 169
  start-page: 255
  year: 2000
  end-page: 268
  ident: bib22
  article-title: Dual-layer asymmetric microporous silica membranes
  publication-title: J Membr Sci
– volume: 21
  start-page: 63
  year: 2004
  end-page: 71
  ident: bib27
  article-title: Lactic acid extraction from aqueous solutions with tri-
  publication-title: Biochem Eng J
– start-page: 155
  year: 1991
  ident: bib23
  article-title: Gas separations with inorganic membranes
  publication-title: Inorganic Membranes: Synthesis, Characteristics, and Applications
– volume: 19
  start-page: 1077
  year: 1984
  end-page: 1088
  ident: bib12
  article-title: The preparation and characterization of alumina membranes with ultra-fine pores. 1. Microstructural investigations on non-supported membranes
  publication-title: J Mater Sci
– volume: 8
  start-page: 259
  year: 1997
  end-page: 269
  ident: bib11
  article-title: Lactic acid fermented foods and their benefits in Asia
  publication-title: Food Control
– volume: 41
  start-page: 3998
  year: 2007
  end-page: 4004
  ident: bib7
  article-title: Performance of porous inorganic membranes in non-osmotic desalination
  publication-title: Water Res
– volume: 80
  start-page: 553
  year: 2007
  end-page: 561
  ident: bib8
  article-title: Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey
  publication-title: J Food Eng
– volume: 162
  start-page: 361
  year: 2004
  ident: 10.1016/j.fbp.2008.01.005_bib9
  article-title: Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth
  publication-title: Desalination
  doi: 10.1016/S0011-9164(04)00070-0
– volume: 254
  start-page: 267
  issue: 1–2
  year: 2005
  ident: 10.1016/j.fbp.2008.01.005_bib18
  article-title: Separation mechanism in dehydration of water/organic binary liquids by pervaporation through microporous silica
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2005.01.013
– volume: 196
  start-page: 69
  issue: 1
  year: 2002
  ident: 10.1016/j.fbp.2008.01.005_bib2
  article-title: Modification of ceramic membranes by alcohol adsorption
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(01)00575-0
– volume: 241
  start-page: 325
  issue: 2
  year: 2004
  ident: 10.1016/j.fbp.2008.01.005_bib5
  article-title: Carbonised template molecular sieve silica membranes in fuel processing systems: permeation, hydrostability and regeneration
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2004.06.004
– volume: 249
  start-page: 173
  issue: 1–2
  year: 2005
  ident: 10.1016/j.fbp.2008.01.005_bib21
  article-title: Detailed investigation of an electrodialytic process during the separation of lactic acid from a complex mixture
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2004.08.033
– volume: 80
  start-page: 553
  issue: 2
  year: 2007
  ident: 10.1016/j.fbp.2008.01.005_bib8
  article-title: Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2006.06.021
– volume: 8
  start-page: 259
  issue: 5–6
  year: 1997
  ident: 10.1016/j.fbp.2008.01.005_bib11
  article-title: Lactic acid fermented foods and their benefits in Asia
  publication-title: Food Control
  doi: 10.1016/S0956-7135(97)00015-7
– volume: 66
  start-page: 271
  issue: 2–3
  year: 1992
  ident: 10.1016/j.fbp.2008.01.005_bib24
  article-title: Gas transport and separation with ceramic membranes. Part II. Synthesis and separation properties of microporous membranes
  publication-title: J Membr Sci
  doi: 10.1016/0376-7388(92)87017-R
– volume: 21
  start-page: 63
  issue: 1
  year: 2004
  ident: 10.1016/j.fbp.2008.01.005_bib27
  article-title: Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2004.03.006
– volume: 16
  start-page: 1215
  issue: 9
  year: 2006
  ident: 10.1016/j.fbp.2008.01.005_bib6
  article-title: Hydrothermally robust molecular sieve silica for wet gas separation
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200500456
– start-page: 155
  year: 1991
  ident: 10.1016/j.fbp.2008.01.005_bib23
  article-title: Gas separations with inorganic membranes
– volume: 4
  start-page: 169
  issue: 2–3
  year: 1995
  ident: 10.1016/j.fbp.2008.01.005_bib3
  article-title: Permeation and separation studies on microporous sol–gel modified ceramic membranes
  publication-title: Micropor Mater
  doi: 10.1016/0927-6513(95)00004-S
– volume: 13
  start-page: 67
  year: 1958
  ident: 10.1016/j.fbp.2008.01.005_bib28
  article-title: Interaction of water vapor with silica surfaces
  publication-title: J Colloid Sci
  doi: 10.1016/0095-8522(58)90010-2
– volume: 143
  start-page: 37
  issue: 1–2
  year: 1998
  ident: 10.1016/j.fbp.2008.01.005_bib4
  article-title: Improved performance of silica membranes for gas separation
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(97)00334-7
– volume: 169
  start-page: 255
  issue: 2
  year: 2000
  ident: 10.1016/j.fbp.2008.01.005_bib22
  article-title: Dual-layer asymmetric microporous silica membranes
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(99)00343-9
– volume: 284
  start-page: 205
  issue: 1–2
  year: 2006
  ident: 10.1016/j.fbp.2008.01.005_bib26
  article-title: Pervaporation characteristics of aqueous-organic solutions with microporous SiO2–ZrO2 membranes: experimental study on separation mechanism
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2006.07.041
– volume: 277
  start-page: 18
  issue: 1–2
  year: 2006
  ident: 10.1016/j.fbp.2008.01.005_bib17
  article-title: Electrolyte retention of supported bi-layered nanofiltration membranes
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2005.10.004
– volume: 19
  start-page: 1077
  issue: 4
  year: 1984
  ident: 10.1016/j.fbp.2008.01.005_bib12
  article-title: The preparation and characterization of alumina membranes with ultra-fine pores. 1. Microstructural investigations on non-supported membranes
  publication-title: J Mater Sci
  doi: 10.1007/BF01120016
– volume: 248
  start-page: 73
  issue: 1–2
  year: 2005
  ident: 10.1016/j.fbp.2008.01.005_bib15
  article-title: Hollow fibre microporous silica membranes for gas separation and pervaporation: synthesis, performance and stability
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2004.08.023
– volume: 198
  start-page: 208
  issue: 1–3
  year: 2006
  ident: 10.1016/j.fbp.2008.01.005_bib16
  article-title: Rejection of lactic acid solutions by dynamically formed nanofiltration membranes using a statistical design method
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.04.002
– volume: 37
  start-page: 199
  issue: 3
  year: 2004
  ident: 10.1016/j.fbp.2008.01.005_bib13
  article-title: Separation of tartaric and lactic acids by means of solvent extraction
  publication-title: Sep Purif Technol
  doi: 10.1016/S1383-5866(03)00218-1
– year: 2004
  ident: 10.1016/j.fbp.2008.01.005_bib1
– ident: 10.1016/j.fbp.2008.01.005_bib25
– volume: 149
  start-page: 15
  issue: 1–3
  year: 2002
  ident: 10.1016/j.fbp.2008.01.005_bib20
  article-title: Integrated system design for dewatering of solvents with microporous silica membranes
  publication-title: Desalination
  doi: 10.1016/S0011-9164(02)00685-9
– volume: 41
  start-page: 3998
  issue: 17
  year: 2007
  ident: 10.1016/j.fbp.2008.01.005_bib7
  article-title: Performance of porous inorganic membranes in non-osmotic desalination
  publication-title: Water Res
  doi: 10.1016/j.watres.2007.05.028
– start-page: 467
  year: 2004
  ident: 10.1016/j.fbp.2008.01.005_bib14
  article-title: Development of ceramic support substrates, microporous membranes and membrane modules for hydrogen separation
– volume: vol. 6
  start-page: 294
  year: 1996
  ident: 10.1016/j.fbp.2008.01.005_bib10
  article-title: Lactic acid
– volume: 44
  start-page: 1138
  issue: 10
  year: 2005
  ident: 10.1016/j.fbp.2008.01.005_bib19
  article-title: Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents
  publication-title: Chem Eng Process
  doi: 10.1016/j.cep.2005.02.006
SSID ssj0001815
Score 1.9283367
Snippet Lactic acid is a valuable product in the food industry, but requires expensive complex systems to purify. Porous inorganic membranes have high fluxes and water...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 290
SubjectTerms artificial membranes
Biological and medical sciences
Food industries
fouling
Fundamental and applied biological sciences. Psychology
Inorganic membrane
Lactic acid
membrane filtration
methodology
Molecular sieve
Nanofiltration
nanotechnology
new methods
permeates
Pervaporation
porosity
purification
Separation
surface interactions
ultrafiltration
water content
water selectivity factor
water solubility
Title Lactic acid enrichment with inorganic nanofiltration and molecular sieving membranes by pervaporation
URI https://dx.doi.org/10.1016/j.fbp.2008.01.005
https://www.proquest.com/docview/20320195
https://www.proquest.com/docview/35431341
https://www.proquest.com/docview/46201190
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOCAqoy2PxgRNSunHiPHysKqqFhR4oK3qzbMcuQWw2YrcHLvx2ZhynUEF74BQpGkuJx54Zj7-ZD-BVUwlrU8NRA7JJhPAy0UaUiZDOV9ZkGW8oD_nhpJwvxbuz4mwHjsZaGIJVRts_2PRgreObWZzNWd-2s1MKvnPquFYHo0vndiEq6p9_8PM3zAM9WIAxonBC0uPNZsB4edNHOCU_SInB7t--6ZbXawJN6g3Omx8IL_6y3cEhHT-A-zGSZIfDxz6EHdftwZ2x0HizB_f-6DX4CNz7UA7FtG0bhoumtV8oMcgoEcvabmB3sqzTHZF4x2a6THcNW40MumzTOso_sJVb4SEbjSQzP1hPad0-rqTHsDx-8-lonkSOhcQKIbZJWcg8lZkzlc9rV9a6yetUmCpznqPlMzwrZc6p_xHudF8I44gh3eMpyThXY_jxBHa7def2gVnvqauh5Rm6vMw2tU5zV2sc6jk3mZ9AOs6usrEBOfFgfFMj0uyrQoVEYkyuUCETeH05pB-6b9wkLEaVqStLSKF3uGnYPqpX6XM0qmp5mtFVLi-otkVOYHpF55ffQPXGdS7SCbwcF4HCbUl3LTj564uNCsT0XBbXS-TUhQBjiOslREnRmUyf_t-PPYO7AdwSsDfPYXf7_cK9wAhqa6Zhi0zh9uHbxfyEnouPnxe_AEC7GuE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V9lA4ICigLh-tD5yQwsaJk42PVUW1pdu9tCv1ZtmODanYbMRuD_x7ZhxnRQXtgWtkS45nPDMez7wH8LGeCGtTw1ECsk6E8DLRRpSJkM5PrMkyXlMe8nJeThfi601xswOnQy8MlVVG29_b9GCt45dx3M1x1zTjKwq-c0Jcq4LRxXv7HqFTobLvnZxfTOdbg4xOLFQy4viEJgyPm6HMy5suVlTyzymR2P3bPT3xekV1k3qNW-d7zou_zHfwSWcv4HkMJtlJv96XsOPaA9gfeo3XB_DsD7jBV-BmoSOKadvUDPWmsd8pN8goF8uatid4sqzVLfF4RzxdptuaLQcSXbZuHKUg2NIt8Z6NdpKZX6yjzG4Xlek1LM6-XJ9Ok0izkFghxCYpC5mnMnNm4vPKlZWu8yoVZpI5z9H4GZ6VMucEgYSH3RfCOCJJ93hRMs5VGIG8gd121bpDYNZ7Aja0PEOvl9m60mnuKo1TPecm8yNIh91VNmKQExXGDzUUm90qFEjkxuQKBTKCT9spXQ_A8dhgMYhM3dMihQ7isWmHKF6lv6FdVYurjF5zeUHtLXIER_dkvl0DtRxXuUhHcDwogcKTSc8tuPmru7UK3PRcFg-PyAmIAMOIh0eIkgI0mb79vx87hv3p9eVMzc7nF-_gaah1CaU472F38_POfcCAamOO4oH5DQdfG-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lactic+acid+enrichment+with+inorganic+nanofiltration+and+molecular+sieving+membranes+by+pervaporation&rft.jtitle=Food+and+bioproducts+processing&rft.au=Duke%2C+M+C&rft.au=Lim%2C+A&rft.au=da+Luz%2C+SC&rft.au=Nielsen%2C+L&rft.date=2008-12-01&rft.issn=0960-3085&rft.volume=86&rft.issue=4&rft.spage=290&rft.epage=295&rft_id=info:doi/10.1016%2Fj.fbp.2008.01.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3085&client=summon