Adaptive regulation of amino acid transport in cultured human fibroblasts. Sites and mechanism of action
The regulation of the transport of neutral amino acids across the cell membrane by adaptive mechanisms has been studied in cultured human fibroblasts. Among the three transport systems (A, ASC, and L) individually discriminated, only the Na+-dependent System A was subject to adaptive regulation, sho...
Saved in:
Published in | The Journal of biological chemistry Vol. 256; no. 7; pp. 3191 - 3198 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Biochemistry and Molecular Biology
10.04.1981
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The regulation of the transport of neutral amino acids across the cell membrane by adaptive mechanisms has been studied in
cultured human fibroblasts. Among the three transport systems (A, ASC, and L) individually discriminated, only the Na+-dependent
System A was subject to adaptive regulation, showing enhancement of its activity when the cells were incubated under conditions
of amino acid shortage (derepression phase) and decrease of its activity when the cells were exposed to a medium supplied
with Site A-reactive amino acids (repression phase). Starvation-induced derepression of transport activity and its reversal
by amino acid refeeding required active RNA and protein synthesis. Derepression involved an early mRNA synthesis which started
within 30 min from the abrupt change in extracellular amino acid concentration and apparently lasted 90 min. The transcribed
mRNA was rather stable and translatable for a few hours (presumably into transport proteins) in cells maintained in the absence
of amino acids. Repression by amino acid refeeding also involved an early mRNA synthesis, the product of its translation being
presumably a protein capable of causing degradation or inactivation of transport proteins. The rate of decay in transport
activity of previously derepressed cells was somewhat faster in the presence of added Site A-reactive amino acids than in
their absence. A model is proposed in which the concentration of Site A-reactive amino acids affects transport activity of
System A by modulating transcription of mRNA species coding for transport proteins and their putative inactivators and by
regulating the efficiency of transport protein inactivation at the cell membrane. |
---|---|
AbstractList | The regulation of the transport of neutral amino acids across the cell membrane by adaptive mechanisms has been studied in
cultured human fibroblasts. Among the three transport systems (A, ASC, and L) individually discriminated, only the Na+-dependent
System A was subject to adaptive regulation, showing enhancement of its activity when the cells were incubated under conditions
of amino acid shortage (derepression phase) and decrease of its activity when the cells were exposed to a medium supplied
with Site A-reactive amino acids (repression phase). Starvation-induced derepression of transport activity and its reversal
by amino acid refeeding required active RNA and protein synthesis. Derepression involved an early mRNA synthesis which started
within 30 min from the abrupt change in extracellular amino acid concentration and apparently lasted 90 min. The transcribed
mRNA was rather stable and translatable for a few hours (presumably into transport proteins) in cells maintained in the absence
of amino acids. Repression by amino acid refeeding also involved an early mRNA synthesis, the product of its translation being
presumably a protein capable of causing degradation or inactivation of transport proteins. The rate of decay in transport
activity of previously derepressed cells was somewhat faster in the presence of added Site A-reactive amino acids than in
their absence. A model is proposed in which the concentration of Site A-reactive amino acids affects transport activity of
System A by modulating transcription of mRNA species coding for transport proteins and their putative inactivators and by
regulating the efficiency of transport protein inactivation at the cell membrane. The regulation of the transport of neutral amino acids across the cell membrane by adaptive mechanisms has been studied in cultured human fibroblasts. Among the three transport systems (A, ASC, and L) individually discriminated, only the Na+-dependent System A was subject to adaptive regulation, showing enhancement of its activity when the cells were incubated under conditions of amino acid shortage (derepression phase) and decrease of its activity when the cells were exposed to a medium supplied with Site A-reactive amino acids (repression phase). Starvation-induced derepression of transport activity and its reversal by amino acid refeeding required active RNA and protein synthesis. Derepression involved an early mRNA synthesis which started within 30 min from the abrupt change in extracellular amino acid concentration and apparently lasted 90 min. The transcribed mRNA was rather stable and translatable for a few hours (presumably into transport proteins) in cells maintained in the absence of amino acids. Repression by amino acid refeeding also involved an early mRNA synthesis, the product of its translation being presumably a protein capable of causing degradation or inactivation of transport proteins. The rate of decay in transport activity of previously derepressed cells was somewhat faster in the presence of added Site A-reactive amino acids than in their absence. A model is proposed in which the concentration of Site A-reactive amino acids affects transport activity of System A by modulating transcription of mRNA species coding for transport proteins and their putative inactivators and by regulating the efficiency of transport protein inactivation at the cell membrane. |
Author | V Dall'Asta G G Guidotti G C Gazzola |
Author_xml | – sequence: 1 givenname: G C surname: Gazzola fullname: Gazzola, G C – sequence: 2 givenname: V surname: Dall'Asta fullname: Dall'Asta, V – sequence: 3 givenname: G G surname: Guidotti fullname: Guidotti, G G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/7204399$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kM1q3DAUhUVJSWbSPsKAyCK0C6eSZVnSchiaNBDoIi10J2TpOlaxpYkkJ_Tt68kMuZuzOD8XvjU6CzEAQhtKbiih7bdMSE0rVXP5haqvreJSVvIDWlEiWcU4_XOGVu-RC7TO-S9ZrlH0HJ2LmjRMqRUats7si38BnOBpHk3xMeDYYzP5ELGx3uGSTMj7mAr2Adt5LHMCh4d5MgH3vkuxG00u-QY_-gIZm-DwBHYwwefpbcoeRj-hj70ZM3w-6SX6ffv91-5H9fDz7n63fahs0zSlahslwHTOEc64Y20NYNuucbWzjWsNEOBS9NZIAk5wzgwILggoWwtlhbTsEl0fd_cpPs-Qi558tjCOJkCcs15KrSCCLEF-DNoUc07Q633yk0n_NCX6QFg_HvDpAz5NlX4jrOXS25wezN0E7r11Qrr4V0d_8E_Dq0-gOx_tAJOueauFZlRR9h_AFYY4 |
CitedBy_id | crossref_primary_10_1152_ajpcell_2001_280_6_C1465 crossref_primary_10_1016_S0021_9258_18_38240_1 crossref_primary_10_1002__SICI_1097_4652_199712_173_3_343__AID_JCP6_3_0_CO_2_N crossref_primary_10_1016_S0021_9258_18_90884_7 crossref_primary_10_1002_jcp_1041220219 crossref_primary_10_1242_jeb_199_11_2459 crossref_primary_10_1016_S0014_5793_01_02126_3 crossref_primary_10_1016_S0021_9258_19_81060_8 crossref_primary_10_3390_nu10010023 crossref_primary_10_1016_S0006_291X_88_80083_4 crossref_primary_10_3109_13813458209070556 crossref_primary_10_1016_0005_2736_86_90491_8 crossref_primary_10_1016_0005_2736_88_90489_0 crossref_primary_10_1016_S0021_9258_18_34102_4 crossref_primary_10_1074_jbc_M114_625137 crossref_primary_10_1007_BF00965751 crossref_primary_10_1002_jcb_20849 crossref_primary_10_1016_0005_2736_93_90099_L crossref_primary_10_1002_jcp_1041260313 crossref_primary_10_1016_0024_3205_83_90258_8 crossref_primary_10_1016_0005_2736_91_90071_F crossref_primary_10_1002_jcp_1041410116 crossref_primary_10_1016_0300_9629_85_90903_X crossref_primary_10_1016_S0014_5793_98_01508_7 crossref_primary_10_1002_jcp_1041220207 crossref_primary_10_1016_0167_4889_85_90093_X crossref_primary_10_1002_hep_1840060624 crossref_primary_10_1152_physrev_00022_2002 crossref_primary_10_1074_jbc_274_41_28922 crossref_primary_10_1016_S0021_9258_18_34111_5 crossref_primary_10_1002_jbmr_5650070612 crossref_primary_10_1016_0304_4157_83_90003_5 crossref_primary_10_1074_jbc_M611520200 crossref_primary_10_1007_BF01871898 crossref_primary_10_1016_0167_4889_82_90017_9 crossref_primary_10_1016_0005_2736_86_90116_1 crossref_primary_10_1016_0968_0004_83_90099_3 crossref_primary_10_1016_S0021_9258_18_32419_0 crossref_primary_10_1002_jcp_1041110116 crossref_primary_10_1016_S0021_9258_17_42426_4 crossref_primary_10_1016_S0021_9258_18_52335_8 crossref_primary_10_1016_S0021_9258_19_84442_3 crossref_primary_10_1007_BF01868814 crossref_primary_10_1146_annurev_nutr_23_011702_073120 crossref_primary_10_1002_jcp_1041130111 crossref_primary_10_1016_0005_2736_85_90204_4 crossref_primary_10_1113_jphysiol_2003_550004 crossref_primary_10_1002_jcp_1041300115 crossref_primary_10_1002__SICI_1097_4652_200004_183_1_65__AID_JCP8_3_0_CO_2_H crossref_primary_10_1158_0008_5472_291_65_1 crossref_primary_10_1016_0006_291X_84_91429_3 crossref_primary_10_1111_j_1749_6632_1985_tb14892_x crossref_primary_10_1016_0306_9877_95_90135_3 crossref_primary_10_1016_0968_0004_88_90023_0 crossref_primary_10_1016_0005_2736_90_90281_R crossref_primary_10_1016_S0021_9258_18_66887_5 crossref_primary_10_1016_0143_4004_89_90020_9 crossref_primary_10_1016_S0021_9258_17_43371_0 crossref_primary_10_2527_jas_2008_1495 crossref_primary_10_1152_ajpendo_91002_2008 crossref_primary_10_1016_S0021_9258_17_42910_3 crossref_primary_10_3390_nu13113906 crossref_primary_10_1016_S0021_9258_17_35969_0 crossref_primary_10_1242_jeb_169_1_37 crossref_primary_10_1146_annurev_nutr_24_012003_132145 crossref_primary_10_1002_jcp_1041290113 crossref_primary_10_1016_S0021_9258_20_82023_7 crossref_primary_10_1016_0167_4889_90_90063_J crossref_primary_10_1002__SICI_1097_4652_199609_168_3_721__AID_JCP25_3_0_CO_2 crossref_primary_10_1016_0022_4804_92_90114_F crossref_primary_10_3168_jds_S0022_0302_85_81119_X crossref_primary_10_1016_S0006_291X_05_80929_5 crossref_primary_10_1016_S0021_9258_18_34742_2 crossref_primary_10_1080_09687680110033756 crossref_primary_10_1016_0005_2736_87_90287_2 crossref_primary_10_1515_jpme_1990_18_2_89 crossref_primary_10_1248_bpb_b23_00904 crossref_primary_10_1016_S0006_291X_05_80876_9 crossref_primary_10_3389_fmars_2023_1216488 crossref_primary_10_1016_S0021_9258_18_42447_7 crossref_primary_10_3109_03009739009178580 crossref_primary_10_1128_mcb_4_4_799_808_1984 crossref_primary_10_1242_jeb_00280 crossref_primary_10_1016_S0021_9258_19_68368_7 crossref_primary_10_1002_jcp_1041220222 crossref_primary_10_1002_jcp_1041220221 crossref_primary_10_1111_j_1753_4887_1984_tb02287_x crossref_primary_10_1007_BF01871236 |
Cites_doi | 10.1016/0005-2736(73)90506-3 10.1016/0005-2736(78)90383-8 10.1016/0014-4827(68)90213-9 10.1016/0005-2736(75)90311-9 10.1016/0014-4827(69)90520-5 10.1038/255073a0 10.1016/S0021-9258(17)37931-0 10.1073/pnas.63.3.948 10.1016/S0021-9258(18)50424-5 10.1016/S0021-9258(17)34278-3 10.1016/0304-4157(78)90009-6 10.1113/jphysiol.1976.sp011456 10.1016/S0021-9258(17)40512-6 10.1016/S0021-9258(18)81372-2 10.1016/0005-2736(73)90275-7 10.1016/S0021-9258(19)52451-6 10.1002/jcp.1040890307 10.1016/S0021-9258(19)86122-7 10.1016/0005-2736(75)90009-7 10.1016/0005-2736(72)90097-1 10.1152/ajplegacy.1973.224.3.558 10.1016/S0021-9258(17)40447-9 10.1016/S0140-6736(71)90287-X 10.1126/science.184.4132.68 10.1042/bj1280019 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1016/s0021-9258(19)69588-8 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 3198 |
ExternalDocumentID | 10_1016_S0021_9258_19_69588_8 7204399 256_7_3191 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 08R 186 2WC 3O- 53G 55 5BI 5GY 5RE 5VS 85S AARDX AAWZA AAYJJ ABFLS ABOCM ABPPZ ABPTK ABUFD ABZEH ACNCT ADACO ADBBV ADBIT ADCOW AEILP AENEX AFFNX AFMIJ AIZTS ALMA_UNASSIGNED_HOLDINGS C1A CJ0 CS3 DIK DL DU5 DZ E3Z EBS EJD ET F20 F5P FA8 FRP GJ GX1 H13 HH5 IH2 J5H KM KQ8 L7B LI MVM MYA N9A NHB O0- OHM OHT OK1 P-O P0W P2P R.V RHF RHI RNS RPM SJN TBC TN5 UHB UPT UQL VH1 VQA WH7 WOQ X X7M XFK XHC XJT Y6R YZZ ZA5 ZGI ZY4 --- -DZ -ET -~X .55 .GJ 0R~ 0SF 18M 6TJ 79B AAEDW AAFWJ AALRI AAXUO ABDNZ ABRJW ACGFO ADIYS ADVLN AEXQZ AFOSN AFPKN AI. AITUG AKRWK AMRAJ BTFSW CGR CUY CVF ECM EIF FDB GROUPED_DOAJ NPM ROL TR2 W8F WHG XSW YQT YSK YWH YYP ~02 ~KM 29J 34G 39C 4.4 41~ AAYOK AAYXX ABFSI ABTAH ACSFO ACYGS ADNWM AOIJS BAWUL CITATION E.L HYE QZG UKR ZE2 7X8 |
ID | FETCH-LOGICAL-c444t-6497eabdd0535d362eec6b4d2dc4d6ae0e587fca80ed7553ae7570e9c279c78c3 |
ISSN | 0021-9258 |
IngestDate | Fri Oct 25 04:44:58 EDT 2024 Fri Aug 23 02:20:44 EDT 2024 Sat Sep 28 08:25:16 EDT 2024 Tue Jan 05 14:52:11 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-6497eabdd0535d362eec6b4d2dc4d6ae0e587fca80ed7553ae7570e9c279c78c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1016/s0021-9258(19)69588-8 |
PMID | 7204399 |
PQID | 75567070 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_75567070 crossref_primary_10_1016_S0021_9258_19_69588_8 pubmed_primary_7204399 highwire_biochem_256_7_3191 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 1900 |
PublicationDate | 1981-Apr-10 |
PublicationDateYYYYMMDD | 1981-04-10 |
PublicationDate_xml | – month: 04 year: 1981 text: 1981-Apr-10 day: 10 |
PublicationDecade | 1980 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 1981 |
Publisher | American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: American Society for Biochemistry and Molecular Biology |
References | Oxender (10.1016/S0021-9258(19)69588-8_bib3) 1977; 252 Guidotti (10.1016/S0021-9258(19)69588-8_bib9) 1975; 406 Christensen (10.1016/S0021-9258(19)69588-8_bib24) 1969; 69 Gazzola (10.1016/S0021-9258(19)69588-8_bib1) 1980; 255 Riggs (10.1016/S0021-9258(19)69588-8_bib6) 1972; 128 Peck (10.1016/S0021-9258(19)69588-8_bib11) 1976; 89 Gazzola (10.1016/S0021-9258(19)69588-8_bib4) 1972; 266 Gazzola (10.1016/S0021-9258(19)69588-8_bib5) 1973; 311 Dall'Asta (10.1016/S0021-9258(19)69588-8_bib16) 1978; 507 Dall'Asta (10.1016/S0021-9258(19)69588-8_bib17) 1978; 3 Lowry (10.1016/S0021-9258(19)69588-8_bib21) 1951; 193 Hume (10.1016/S0021-9258(19)69588-8_bib27) 1975; 255 Guidotti (10.1016/S0021-9258(19)69588-8_bib2) 1978; 515 Kelley (10.1016/S0021-9258(19)69588-8_bib26) 1979; 254 Seabright (10.1016/S0021-9258(19)69588-8_bib20) 1971; 2 Akedo (10.1016/S0021-9258(19)69588-8_bib22) 1962; 237 Franchi-Gazzola (10.1016/S0021-9258(19)69588-8_bib25) 1973; 291 Kelley (10.1016/S0021-9258(19)69588-8_bib14) 1978; 253 Rein (10.1016/S0021-9258(19)69588-8_bib18) 1968; 49 Reynolds (10.1016/S0021-9258(19)69588-8_bib8) 1974; 184 Hume (10.1016/S0021-9258(19)69588-8_bib13) 1976; 259 Fehlmann (10.1016/S0021-9258(19)69588-8_bib12) 1979; 254 Pontén (10.1016/S0021-9258(19)69588-8_bib19) 1969; 58 Heaton (10.1016/S0021-9258(19)69588-8_bib15) 1977; 252 White (10.1016/S0021-9258(19)69588-8_bib23) 1980; 39 Smith (10.1016/S0021-9258(19)69588-8_bib7) 1973; 224 Gusseck (10.1016/S0021-9258(19)69588-8_bib10) 1975; 401 |
References_xml | – volume: 291 start-page: 545 year: 1973 ident: 10.1016/S0021-9258(19)69588-8_bib25 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(73)90506-3 contributor: fullname: Franchi-Gazzola – volume: 507 start-page: 165 year: 1978 ident: 10.1016/S0021-9258(19)69588-8_bib16 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(78)90383-8 contributor: fullname: Dall'Asta – volume: 49 start-page: 666 year: 1968 ident: 10.1016/S0021-9258(19)69588-8_bib18 publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(68)90213-9 contributor: fullname: Rein – volume: 401 start-page: 278 year: 1975 ident: 10.1016/S0021-9258(19)69588-8_bib10 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(75)90311-9 contributor: fullname: Gusseck – volume: 58 start-page: 393 year: 1969 ident: 10.1016/S0021-9258(19)69588-8_bib19 publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(69)90520-5 contributor: fullname: Pontén – volume: 255 start-page: 73 year: 1975 ident: 10.1016/S0021-9258(19)69588-8_bib27 publication-title: Nature doi: 10.1038/255073a0 contributor: fullname: Hume – volume: 254 start-page: 401 year: 1979 ident: 10.1016/S0021-9258(19)69588-8_bib12 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37931-0 contributor: fullname: Fehlmann – volume: 69 start-page: 948 year: 1969 ident: 10.1016/S0021-9258(19)69588-8_bib24 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.63.3.948 contributor: fullname: Christensen – volume: 254 start-page: 6691 year: 1979 ident: 10.1016/S0021-9258(19)69588-8_bib26 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)50424-5 contributor: fullname: Kelley – volume: 39 start-page: 2160 year: 1980 ident: 10.1016/S0021-9258(19)69588-8_bib23 publication-title: Fed. Proc. contributor: fullname: White – volume: 253 start-page: 9009 year: 1978 ident: 10.1016/S0021-9258(19)69588-8_bib14 publication-title: J. Biol Chem. doi: 10.1016/S0021-9258(17)34278-3 contributor: fullname: Kelley – volume: 515 start-page: 329 year: 1978 ident: 10.1016/S0021-9258(19)69588-8_bib2 publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(78)90009-6 contributor: fullname: Guidotti – volume: 259 start-page: 83 year: 1976 ident: 10.1016/S0021-9258(19)69588-8_bib13 publication-title: J. Phyisol. (Lond.) doi: 10.1113/jphysiol.1976.sp011456 contributor: fullname: Hume – volume: 3 start-page: 250 year: 1978 ident: 10.1016/S0021-9258(19)69588-8_bib17 publication-title: Bull. Mol. Biol. Med. contributor: fullname: Dall'Asta – volume: 252 start-page: 2680 year: 1977 ident: 10.1016/S0021-9258(19)69588-8_bib3 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)40512-6 contributor: fullname: Oxender – volume: 237 start-page: 118 year: 1962 ident: 10.1016/S0021-9258(19)69588-8_bib22 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)81372-2 contributor: fullname: Akedo – volume: 311 start-page: 292 year: 1973 ident: 10.1016/S0021-9258(19)69588-8_bib5 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(73)90275-7 contributor: fullname: Gazzola – volume: 193 start-page: 265 year: 1951 ident: 10.1016/S0021-9258(19)69588-8_bib21 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)52451-6 contributor: fullname: Lowry – volume: 89 start-page: 417 year: 1976 ident: 10.1016/S0021-9258(19)69588-8_bib11 publication-title: J. Cell. Physiol. doi: 10.1002/jcp.1040890307 contributor: fullname: Peck – volume: 255 start-page: 929 year: 1980 ident: 10.1016/S0021-9258(19)69588-8_bib1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)86122-7 contributor: fullname: Gazzola – volume: 406 start-page: 264 year: 1975 ident: 10.1016/S0021-9258(19)69588-8_bib9 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(75)90009-7 contributor: fullname: Guidotti – volume: 266 start-page: 407 year: 1972 ident: 10.1016/S0021-9258(19)69588-8_bib4 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(72)90097-1 contributor: fullname: Gazzola – volume: 224 start-page: 558 year: 1973 ident: 10.1016/S0021-9258(19)69588-8_bib7 publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1973.224.3.558 contributor: fullname: Smith – volume: 252 start-page: 2900 year: 1977 ident: 10.1016/S0021-9258(19)69588-8_bib15 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)40447-9 contributor: fullname: Heaton – volume: 2 start-page: 971 year: 1971 ident: 10.1016/S0021-9258(19)69588-8_bib20 publication-title: Lancet doi: 10.1016/S0140-6736(71)90287-X contributor: fullname: Seabright – volume: 184 start-page: 68 year: 1974 ident: 10.1016/S0021-9258(19)69588-8_bib8 publication-title: Science doi: 10.1126/science.184.4132.68 contributor: fullname: Reynolds – volume: 128 start-page: 19 year: 1972 ident: 10.1016/S0021-9258(19)69588-8_bib6 publication-title: Biochem. J. doi: 10.1042/bj1280019 contributor: fullname: Riggs |
SSID | ssj0000491 |
Score | 1.482062 |
Snippet | The regulation of the transport of neutral amino acids across the cell membrane by adaptive mechanisms has been studied in
cultured human fibroblasts. Among... The regulation of the transport of neutral amino acids across the cell membrane by adaptive mechanisms has been studied in cultured human fibroblasts. Among... |
SourceID | proquest crossref pubmed highwire |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3191 |
SubjectTerms | Amino Acids - metabolism Biological Transport - drug effects Cells, Cultured Cycloheximide - pharmacology Dactinomycin - pharmacology Fibroblasts - drug effects Fibroblasts - metabolism Humans Inulin - metabolism Proline - metabolism Skin - metabolism |
Title | Adaptive regulation of amino acid transport in cultured human fibroblasts. Sites and mechanism of action |
URI | http://www.jbc.org/content/256/7/3191.abstract https://www.ncbi.nlm.nih.gov/pubmed/7204399 https://search.proquest.com/docview/75567070 |
Volume | 256 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgHOCCYGOibIAPgEBTusZ14vhYjf0QTEOIVurNcmxHFKnJtKaH9a_n2Y7jIg3x4xK1kWpX_j7Z7z2_9z2E3ihdUZMbnoA_myV0TKqE62qccCMJL4gBYrss36v8YkY_zbN5TOV11SVtOVSbO-tK_gdVeAe42irZf0C2HxRewGfAF56AMDz_CuOJltcu9efGd5TvjD-5XNTNkVQLbTtAeO1yG9fwKhtgYfrGfBV4yk0J1nO7Gh59W9gArI2iL40tBra9M-xQqgfuR-TVlhXrRZy8zEjoHdfn9MjNBjxnF3qP0diP0t50sElnt_ZJtufrBXjIPrvgvGv5pX19XpHam5UuMTWUB6QJJ16PPWyxxIuHd1xiWxsm7ADp1uELX4s7N3YfY1j1o1sVK_6W8JxnQIoinmbhBv_qizibXV6K6el8eh89ILAP2Yy_z1-jmDw4R76hYjdmLPA6jhO9T_mHbpJfTZcgJ_1718SZKNMn6HGHCp54ojxF90y9i_YmtWyb5S1-h122r7tG2UUPTwJae-h74BGOPMJNhR2PsOUR7nmEFzUOPMKOR3ibR9jxCAOPcM8jN5Tj0TM0OzudnlwkXQeORFFK2ySnnBlZam1VgDTYOsaovKSaaEV1Ls3IZAWrlCxGRrMsG0vDMjYyXMFyK1ao8T7aqZvaPEc4IzqtKgnHhU0t5roEy1-Cd0KJsfpC-QANw-KKay-0ImIGIqAhLBoi5cKhIYoBOggQCOC65bgAngkmLKcG6HVARcBq2lswWZtmvRLwP3MGB90A7Xuw-umYqxPnL_740wP0KFL_EO20N2vzEmzTtnzlGPYT-sCNjg |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+regulation+of+amino+acid+transport+in+cultured+human+fibroblasts.+Sites+and+mechanism+of+action&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Gazzola%2C+G+C&rft.au=Dall%27Asta%2C+V&rft.au=Guidotti%2C+G+G&rft.date=1981-04-10&rft.issn=0021-9258&rft.volume=256&rft.issue=7&rft.spage=3191&rft.epage=3198&rft_id=info:doi/10.1016%2Fs0021-9258%2819%2969588-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |