On the Pareto optimality of variance reduction simulation techniques in structural reliability

•Trade-off between error and effort of variance reduction algorithms is discussed.•Multi-objective stochastic optimization framework is adopted to study the trade-off.•Six benchmark reliability problems of increasing complexity are analyzed.•Pareto sets for four variance reduction algorithms obtaine...

Full description

Saved in:
Bibliographic Details
Published inStructural safety Vol. 53; pp. 57 - 74
Main Authors Sen, Debarshi, Bhattacharya, Baidurya
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2015
Subjects
Online AccessGet full text
ISSN0167-4730
1879-3355
DOI10.1016/j.strusafe.2015.01.001

Cover

Abstract •Trade-off between error and effort of variance reduction algorithms is discussed.•Multi-objective stochastic optimization framework is adopted to study the trade-off.•Six benchmark reliability problems of increasing complexity are analyzed.•Pareto sets for four variance reduction algorithms obtained for each problem.•Best algorithm, limits of performance, optimal design variables are discussed for each. Estimation of low failure probabilities in high dimensional structural reliability problems generally involves a trade-off between computational effort and accuracy of the estimate, whether efficient sampling techniques have been employed or not. While a substantial effort continues to be made by the community to develop and benchmark new and efficient sampling schemes, the limits of performance of a given algorithm, e.g., what is the best attainable accuracy of the method for a fixed computational effort and if that is good enough, have not received comparable attention. However, such insights could prove valuable in making the right choice in solving a computationally demanding reliability problem. In a multi-objective stochastic optimization formulation, these questions yield the so-called Pareto front or the set of non-dominated solutions: solutions that cannot be further improved without worsening at least one objective. Posteriori user defined preferences can then be applied to rank members of the Pareto set and obtain the best strategy. We take up two classes of variance-reducing algorithms – importance sampling (IS) and subset simulations (SS) – and apply them to a range of benchmarked reliability problems of various size and complexity to bring out the issue of optimality and trade-off between accuracy and effort. The design variables are variously of categorical, discrete as well as continuous types and the stochastic multi-objective optimization without recourse is solved using Genetic Algorithms. In each case, we ascertain the best possible accuracies that a given method can achieve and identify the corresponding design variables. We find that the proposal pdf does have an effect on the efficiency of SS, the FORM design point is not always the best sampling location in IS and setting the sensitivity parameter associated with Adaptive Importance Sampling at 0.5 does not guarantee optimal performance. In addition to this the benefits of using SS for high dimensional problems are reinforced. We also show that the Pareto fronts corresponding to different methods can intersect indicating that more is not always better and different solution techniques for the same problem may be required in different computational regimes.
AbstractList Estimation of low failure probabilities in high dimensional structural reliability problems generally involves a trade-off between computational effort and accuracy of the estimate, whether efficient sampling techniques have been employed or not. While a substantial effort continues to be made by the community to develop and benchmark new and efficient sampling schemes, the limits of performance of a given algorithm, e.g., what is the best attainable accuracy of the method for a fixed computational effort and if that is good enough, have not received comparable attention. We find that the proposal pdf does have an effect on the efficiency of S5, the FORM design point is not always the best sampling location in IS and setting the sensitivity parameter associated with Adaptive Importance Sampling at 0.5 does not guarantee optimal performance. We also show that the Pareto fronts corresponding to different methods can intersect indicating that more is not always better and different solution techniques for the same problem may be required in different computational regimes.
•Trade-off between error and effort of variance reduction algorithms is discussed.•Multi-objective stochastic optimization framework is adopted to study the trade-off.•Six benchmark reliability problems of increasing complexity are analyzed.•Pareto sets for four variance reduction algorithms obtained for each problem.•Best algorithm, limits of performance, optimal design variables are discussed for each. Estimation of low failure probabilities in high dimensional structural reliability problems generally involves a trade-off between computational effort and accuracy of the estimate, whether efficient sampling techniques have been employed or not. While a substantial effort continues to be made by the community to develop and benchmark new and efficient sampling schemes, the limits of performance of a given algorithm, e.g., what is the best attainable accuracy of the method for a fixed computational effort and if that is good enough, have not received comparable attention. However, such insights could prove valuable in making the right choice in solving a computationally demanding reliability problem. In a multi-objective stochastic optimization formulation, these questions yield the so-called Pareto front or the set of non-dominated solutions: solutions that cannot be further improved without worsening at least one objective. Posteriori user defined preferences can then be applied to rank members of the Pareto set and obtain the best strategy. We take up two classes of variance-reducing algorithms – importance sampling (IS) and subset simulations (SS) – and apply them to a range of benchmarked reliability problems of various size and complexity to bring out the issue of optimality and trade-off between accuracy and effort. The design variables are variously of categorical, discrete as well as continuous types and the stochastic multi-objective optimization without recourse is solved using Genetic Algorithms. In each case, we ascertain the best possible accuracies that a given method can achieve and identify the corresponding design variables. We find that the proposal pdf does have an effect on the efficiency of SS, the FORM design point is not always the best sampling location in IS and setting the sensitivity parameter associated with Adaptive Importance Sampling at 0.5 does not guarantee optimal performance. In addition to this the benefits of using SS for high dimensional problems are reinforced. We also show that the Pareto fronts corresponding to different methods can intersect indicating that more is not always better and different solution techniques for the same problem may be required in different computational regimes.
Author Sen, Debarshi
Bhattacharya, Baidurya
Author_xml – sequence: 1
  givenname: Debarshi
  surname: Sen
  fullname: Sen, Debarshi
– sequence: 2
  givenname: Baidurya
  surname: Bhattacharya
  fullname: Bhattacharya, Baidurya
  email: baidurya@civil.iitkgp.ernet.in
BookMark eNqFkU1rGzEQhkVIIE6avxD22MtuNSvth6CHFtM0gYBzaK4RWmlEZNYrV9Ia8u8j28klF59GMM_7Mjy6IueTn5CQW6AVUGh_rKuYwhyVxaqm0FQUKkrhjCyg70TJWNOck0UGu5J3jF6SqxjXlNKmr_sFeVlNRXrF4kkFTL7w2-Q2anTprfC22Kng1KSxCGhmnZyfiug286gOz4T6dXL_Z4yFy4t8g05zUGOmR6cGt2_5Ri6sGiPefMxr8nz359_yvnxc_X1Y_n4sNec8lY22wJSoNRrTDkoMRgM3fW-tVUIMvWI1dMipGSwqOxgEaxjnra4HYQcr2DX5fuzdBr-_KMmNixrHUU3o5yiho0B7YDU_jbYC6r5hAjLaHlEdfIwBrdyGrCe8SaBy716u5ad7uXcvKcjsPgd_fglqlw7WUlBuPB3_dYxjVrZzGGTUDvNHGBdQJ2m8O1XxDjS6qx8
CitedBy_id crossref_primary_10_1016_j_strusafe_2020_102050
crossref_primary_10_1061_JBENF2_BEENG_6189
crossref_primary_10_1016_j_nucengdes_2024_113820
crossref_primary_10_1016_j_probengmech_2023_103479
crossref_primary_10_1080_19648189_2019_1570871
crossref_primary_10_1109_ACCESS_2020_3008778
Cites_doi 10.1145/1830483.1830609
10.1016/S0266-8920(98)00009-5
10.1061/(ASCE)0733-9399(1992)118:6(1146)
10.1145/272991.272995
10.1016/S0167-4730(99)00014-4
10.1109/4235.996017
10.1016/j.strusafe.2006.07.008
10.1016/j.probengmech.2004.09.001
10.1016/j.strusafe.2006.07.003
10.1016/j.probengmech.2010.11.008
10.1016/S0167-4730(02)00047-4
10.1007/s10479-006-6169-8
10.1016/j.probengmech.2004.05.001
10.1016/S0266-8920(01)00019-4
10.1016/j.strusafe.2006.07.010
10.1016/j.probengmech.2007.12.026
10.1098/rspa.2005.1504
10.1016/j.strusafe.2007.10.002
10.1061/(ASCE)0733-9399(2003)129:8(901)
10.1016/S0951-8339(00)00024-1
10.1016/0167-4730(87)90004-X
10.1016/j.cma.2004.05.028
10.1115/1.4002459
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7T2
C1K
7SM
8FD
FR3
KR7
DOI 10.1016/j.strusafe.2015.01.001
DatabaseName CrossRef
Health and Safety Science Abstracts (Full archive)
Environmental Sciences and Pollution Management
Earthquake Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Health & Safety Science Abstracts
Environmental Sciences and Pollution Management
Earthquake Engineering Abstracts
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
DatabaseTitleList Earthquake Engineering Abstracts

Health & Safety Science Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3355
EndPage 74
ExternalDocumentID 10_1016_j_strusafe_2015_01_001
S0167473015000028
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7T2
C1K
EFKBS
7SM
8FD
FR3
KR7
ID FETCH-LOGICAL-c444t-5cf13a92cedd6ba9bdc14d88fffa99b8a3217e40dbfeafbde1fd3446c2b9fbf93
IEDL.DBID AIKHN
ISSN 0167-4730
IngestDate Thu Sep 04 20:06:27 EDT 2025
Thu Sep 04 18:50:14 EDT 2025
Tue Jul 01 00:59:30 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Fri Feb 23 02:33:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Subset simulation
Multi-objective
Stochastic optimization
Pareto optimal set
Variance reduction
Importance sampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-5cf13a92cedd6ba9bdc14d88fffa99b8a3217e40dbfeafbde1fd3446c2b9fbf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1691285391
PQPubID 23462
PageCount 18
ParticipantIDs proquest_miscellaneous_1701081324
proquest_miscellaneous_1691285391
crossref_primary_10_1016_j_strusafe_2015_01_001
crossref_citationtrail_10_1016_j_strusafe_2015_01_001
elsevier_sciencedirect_doi_10_1016_j_strusafe_2015_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Structural safety
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Kiureghian (b0005) 1989
Schueller GI, Pradlwarter HJ, Koutsourelakis PS. A comparative study of reliability estimation procedures for high dimensions. In: 16th ASCE engineering mechanics conference. Seattle: University of Washington; 2003.
Au, Beck (b0130) 2003
Linderoth, Shapiro, Wright (b0145) 2006
“Random”. What’s this fuss about true randomness? Retrieved from
2012 [accessed: 29 May 2013].
Au, Ching, Beck (b0125) 2007; 29
Ang, Ang, Tang (b0095) 1992; 118
Andersson (b0155) 2000
Marler, Arora (b0150) 2009
Deb, Pratap, Agarwal, Meyarivan (b0165) 2002; 6
Pradlwarter, Schueller (b0065) 1999; 14
Au, Beck (b0110) 2001; 16
Ching, Au, Beck (b0115) 2005; 194
Schueller, Pradlwarter (b0010) 2007; 29
Ching, Au, Beck (b0120) 2005; 20
Au, Beck (b0100) 1999; 21
Katafygiotis, Zuev (b0140) 2008; 23
Katafygiotis, Cheung (b0070) 2007; 29
Matsumoto, Nishimura (b0045) 1998; 8
Tulshyan R, Arora R, Deb K, Dutta J. Investigating EA solutions for approximate KKT conditions in smooth problems. In: GECCO’ 10. Portland, Oregon, USA; 2010.
Grooteman (b0170) 2008; 30
Manohar, Gupta (b0055) 2003
Ross (b0090) 2006
Bhattacharya, Basu, Ma (b0015) 2001; 14
Zuev, Katafygiotis (b0135) 2011; 26
Koutsourelakis, Pradlwarter, Schueller (b0050) 2004; 19
Schueller, Stix (b0060) 1987; 4
Kahn, Marshall (b0085) 1953; 1
Au, Beck (b0105) 2003; 25
Schueller, Pradlwarter, Beck, Au, Katafygiotis, Ghanem (b0075) 2005
Adhikari (b0030) 2005; 2005
Melchers (b0080) 1999
Ching (b0020) 2011
Zhang, Du (b0025) 2010; 132
Koutsourelakis (10.1016/j.strusafe.2015.01.001_b0050) 2004; 19
Pradlwarter (10.1016/j.strusafe.2015.01.001_b0065) 1999; 14
Ross (10.1016/j.strusafe.2015.01.001_b0090) 2006
Melchers (10.1016/j.strusafe.2015.01.001_b0080) 1999
10.1016/j.strusafe.2015.01.001_b0040
Katafygiotis (10.1016/j.strusafe.2015.01.001_b0140) 2008; 23
10.1016/j.strusafe.2015.01.001_b0160
Liu (10.1016/j.strusafe.2015.01.001_b0005) 1989
Manohar (10.1016/j.strusafe.2015.01.001_b0055) 2003
Ching (10.1016/j.strusafe.2015.01.001_b0115) 2005; 194
Zuev (10.1016/j.strusafe.2015.01.001_b0135) 2011; 26
Schueller (10.1016/j.strusafe.2015.01.001_b0010) 2007; 29
Zhang (10.1016/j.strusafe.2015.01.001_b0025) 2010; 132
Kahn (10.1016/j.strusafe.2015.01.001_b0085) 1953; 1
Au (10.1016/j.strusafe.2015.01.001_b0105) 2003; 25
Schueller (10.1016/j.strusafe.2015.01.001_b0060) 1987; 4
Grooteman (10.1016/j.strusafe.2015.01.001_b0170) 2008; 30
Matsumoto (10.1016/j.strusafe.2015.01.001_b0045) 1998; 8
Deb (10.1016/j.strusafe.2015.01.001_b0165) 2002; 6
Adhikari (10.1016/j.strusafe.2015.01.001_b0030) 2005; 2005
Ang (10.1016/j.strusafe.2015.01.001_b0095) 1992; 118
Marler (10.1016/j.strusafe.2015.01.001_b0150) 2009
Ching (10.1016/j.strusafe.2015.01.001_b0020) 2011
10.1016/j.strusafe.2015.01.001_b0035
Andersson (10.1016/j.strusafe.2015.01.001_b0155) 2000
Au (10.1016/j.strusafe.2015.01.001_b0130) 2003
Bhattacharya (10.1016/j.strusafe.2015.01.001_b0015) 2001; 14
Schueller (10.1016/j.strusafe.2015.01.001_b0075) 2005
Au (10.1016/j.strusafe.2015.01.001_b0100) 1999; 21
Katafygiotis (10.1016/j.strusafe.2015.01.001_b0070) 2007; 29
Au (10.1016/j.strusafe.2015.01.001_b0125) 2007; 29
Au (10.1016/j.strusafe.2015.01.001_b0110) 2001; 16
Linderoth (10.1016/j.strusafe.2015.01.001_b0145) 2006
Ching (10.1016/j.strusafe.2015.01.001_b0120) 2005; 20
References_xml – volume: 23
  start-page: 208
  year: 2008
  end-page: 218
  ident: b0140
  article-title: Geometric insight into the challenges of solving high-dimensional reliability problems
  publication-title: Probab Eng Mech
– year: 2000
  ident: b0155
  article-title: A survey of multiobjective optimization in engineering design
– start-page: 215
  year: 2006
  end-page: 241
  ident: b0145
  article-title: The empirical behavior of sampling methods for stochastic programming
  publication-title: Ann Oper Res
– volume: 132
  year: 2010
  ident: b0025
  article-title: A second-order reliability method with first-order efficiency
  publication-title: J Mech Des ASME
– reference: >; 2012 [accessed: 29 May 2013].
– year: 2009
  ident: b0150
  article-title: Multi-objective optimization: concepts and methods for engineering
– start-page: 901
  year: 2003
  end-page: 917
  ident: b0130
  article-title: Subset simulation and its application to seismic risk based dynamic analysis
  publication-title: J Eng Mech Div ASCE
– volume: 1
  start-page: 263
  year: 1953
  end-page: 278
  ident: b0085
  article-title: Methods of reducing sample size in Monte Carlo Computations
  publication-title: J Oper Res Soc Am
– volume: 26
  start-page: 405
  year: 2011
  end-page: 412
  ident: b0135
  article-title: Modified Metropolis–Hastings algorithm with delayed rejection
  publication-title: Probab Eng Mech
– year: 2005
  ident: b0075
  article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview
  publication-title: EURODYN 2005
– volume: 29
  start-page: 183
  year: 2007
  end-page: 193
  ident: b0125
  article-title: Application of subset simulation methods to reliability benchmark problems
  publication-title: Struct Saf
– reference: Tulshyan R, Arora R, Deb K, Dutta J. Investigating EA solutions for approximate KKT conditions in smooth problems. In: GECCO’ 10. Portland, Oregon, USA; 2010.
– year: 1989
  ident: b0005
  article-title: Finite element reliability methods for geometrically nonlinear stochastic structures
– volume: 25
  start-page: 139
  year: 2003
  end-page: 163
  ident: b0105
  article-title: Important sampling in high dimensions
  publication-title: Struct Saf
– volume: 29
  start-page: 194
  year: 2007
  end-page: 207
  ident: b0070
  article-title: Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study
  publication-title: Struct Saf
– volume: 14
  start-page: 37
  year: 2001
  end-page: 58
  ident: b0015
  article-title: Developing target reliability for novel structures: the case of the Mobile Offshore Base
  publication-title: Mar Struct
– volume: 2005
  start-page: 3141
  year: 2005
  end-page: 3158
  ident: b0030
  article-title: Asymptotic distribution method for structural reliability analysis in high dimensions
  publication-title: Proc R Soc A
– reference: “Random”. What’s this fuss about true randomness? Retrieved from: <
– year: 1999
  ident: b0080
  article-title: Structural reliability analysis and prediction
– year: 2011
  ident: b0020
  article-title: Practical Monte Carlo based reliability analysis and design methods for geotechnical problems
  publication-title: Applications of Monte Carlo method in science and engineering
– volume: 29
  start-page: 167
  year: 2007
  end-page: 182
  ident: b0010
  article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview
  publication-title: Struct Saf
– volume: 8
  start-page: 3
  year: 1998
  end-page: 30
  ident: b0045
  article-title: Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator
  publication-title: ACM Trans Model Comput Simul
– volume: 14
  start-page: 213
  year: 1999
  end-page: 227
  ident: b0065
  article-title: Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation
  publication-title: Probab Eng Mech
– volume: 19
  start-page: 409
  year: 2004
  end-page: 417
  ident: b0050
  article-title: Reliability of structures in high dimensions, part I: algorithms and applications
  publication-title: Probab Eng Mech
– volume: 4
  start-page: 293
  year: 1987
  end-page: 309
  ident: b0060
  article-title: A critical appraisal of methods to determine failure probabilities
  publication-title: Struct Saf
– volume: 118
  start-page: 1146
  year: 1992
  end-page: 1163
  ident: b0095
  article-title: Optimal importance sampling density estimator
  publication-title: J Eng Mech Div ASCE
– volume: 194
  start-page: 1557
  year: 2005
  end-page: 1579
  ident: b0115
  article-title: Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting
  publication-title: Comput Methods Appl Mech Eng
– volume: 20
  start-page: 199
  year: 2005
  end-page: 214
  ident: b0120
  article-title: Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation
  publication-title: Probab Eng Mech
– volume: 30
  start-page: 533
  year: 2008
  end-page: 542
  ident: b0170
  article-title: Adaptive radial-based importance sampling method for structural reliability
  publication-title: Struct Saf
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0165
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– reference: Schueller GI, Pradlwarter HJ, Koutsourelakis PS. A comparative study of reliability estimation procedures for high dimensions. In: 16th ASCE engineering mechanics conference. Seattle: University of Washington; 2003.
– year: 2006
  ident: b0090
  article-title: Simulation
– volume: 21
  start-page: 135
  year: 1999
  end-page: 158
  ident: b0100
  article-title: A new adaptive importance sampling scheme for reliability calculations
  publication-title: Struct Saf
– year: 2003
  ident: b0055
  article-title: Modeling and evaluation of structural reliability: current status and future directions
  publication-title: Research reviews in structural engineering
– volume: 16
  start-page: 263
  year: 2001
  end-page: 277
  ident: b0110
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probab Eng Mech
– ident: 10.1016/j.strusafe.2015.01.001_b0160
  doi: 10.1145/1830483.1830609
– volume: 14
  start-page: 213
  year: 1999
  ident: 10.1016/j.strusafe.2015.01.001_b0065
  article-title: Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation
  publication-title: Probab Eng Mech
  doi: 10.1016/S0266-8920(98)00009-5
– volume: 118
  start-page: 1146
  issue: 6
  year: 1992
  ident: 10.1016/j.strusafe.2015.01.001_b0095
  article-title: Optimal importance sampling density estimator
  publication-title: J Eng Mech Div ASCE
  doi: 10.1061/(ASCE)0733-9399(1992)118:6(1146)
– volume: 8
  start-page: 3
  year: 1998
  ident: 10.1016/j.strusafe.2015.01.001_b0045
  article-title: Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator
  publication-title: ACM Trans Model Comput Simul
  doi: 10.1145/272991.272995
– ident: 10.1016/j.strusafe.2015.01.001_b0035
– year: 2005
  ident: 10.1016/j.strusafe.2015.01.001_b0075
  article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview
– volume: 1
  start-page: 263
  year: 1953
  ident: 10.1016/j.strusafe.2015.01.001_b0085
  article-title: Methods of reducing sample size in Monte Carlo Computations
  publication-title: J Oper Res Soc Am
– volume: 21
  start-page: 135
  year: 1999
  ident: 10.1016/j.strusafe.2015.01.001_b0100
  article-title: A new adaptive importance sampling scheme for reliability calculations
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(99)00014-4
– year: 2009
  ident: 10.1016/j.strusafe.2015.01.001_b0150
– year: 2011
  ident: 10.1016/j.strusafe.2015.01.001_b0020
  article-title: Practical Monte Carlo based reliability analysis and design methods for geotechnical problems
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.strusafe.2015.01.001_b0165
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 29
  start-page: 183
  year: 2007
  ident: 10.1016/j.strusafe.2015.01.001_b0125
  article-title: Application of subset simulation methods to reliability benchmark problems
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2006.07.008
– volume: 20
  start-page: 199
  year: 2005
  ident: 10.1016/j.strusafe.2015.01.001_b0120
  article-title: Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2004.09.001
– volume: 29
  start-page: 194
  year: 2007
  ident: 10.1016/j.strusafe.2015.01.001_b0070
  article-title: Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2006.07.003
– year: 1989
  ident: 10.1016/j.strusafe.2015.01.001_b0005
– ident: 10.1016/j.strusafe.2015.01.001_b0040
– volume: 26
  start-page: 405
  year: 2011
  ident: 10.1016/j.strusafe.2015.01.001_b0135
  article-title: Modified Metropolis–Hastings algorithm with delayed rejection
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2010.11.008
– volume: 25
  start-page: 139
  year: 2003
  ident: 10.1016/j.strusafe.2015.01.001_b0105
  article-title: Important sampling in high dimensions
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(02)00047-4
– start-page: 215
  year: 2006
  ident: 10.1016/j.strusafe.2015.01.001_b0145
  article-title: The empirical behavior of sampling methods for stochastic programming
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-006-6169-8
– year: 2006
  ident: 10.1016/j.strusafe.2015.01.001_b0090
– year: 2003
  ident: 10.1016/j.strusafe.2015.01.001_b0055
  article-title: Modeling and evaluation of structural reliability: current status and future directions
– year: 2000
  ident: 10.1016/j.strusafe.2015.01.001_b0155
– volume: 19
  start-page: 409
  year: 2004
  ident: 10.1016/j.strusafe.2015.01.001_b0050
  article-title: Reliability of structures in high dimensions, part I: algorithms and applications
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2004.05.001
– volume: 16
  start-page: 263
  year: 2001
  ident: 10.1016/j.strusafe.2015.01.001_b0110
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probab Eng Mech
  doi: 10.1016/S0266-8920(01)00019-4
– volume: 29
  start-page: 167
  year: 2007
  ident: 10.1016/j.strusafe.2015.01.001_b0010
  article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2006.07.010
– volume: 23
  start-page: 208
  year: 2008
  ident: 10.1016/j.strusafe.2015.01.001_b0140
  article-title: Geometric insight into the challenges of solving high-dimensional reliability problems
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2007.12.026
– volume: 2005
  start-page: 3141
  year: 2005
  ident: 10.1016/j.strusafe.2015.01.001_b0030
  article-title: Asymptotic distribution method for structural reliability analysis in high dimensions
  publication-title: Proc R Soc A
  doi: 10.1098/rspa.2005.1504
– volume: 30
  start-page: 533
  year: 2008
  ident: 10.1016/j.strusafe.2015.01.001_b0170
  article-title: Adaptive radial-based importance sampling method for structural reliability
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2007.10.002
– start-page: 901
  year: 2003
  ident: 10.1016/j.strusafe.2015.01.001_b0130
  article-title: Subset simulation and its application to seismic risk based dynamic analysis
  publication-title: J Eng Mech Div ASCE
  doi: 10.1061/(ASCE)0733-9399(2003)129:8(901)
– volume: 14
  start-page: 37
  year: 2001
  ident: 10.1016/j.strusafe.2015.01.001_b0015
  article-title: Developing target reliability for novel structures: the case of the Mobile Offshore Base
  publication-title: Mar Struct
  doi: 10.1016/S0951-8339(00)00024-1
– volume: 4
  start-page: 293
  year: 1987
  ident: 10.1016/j.strusafe.2015.01.001_b0060
  article-title: A critical appraisal of methods to determine failure probabilities
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(87)90004-X
– volume: 194
  start-page: 1557
  year: 2005
  ident: 10.1016/j.strusafe.2015.01.001_b0115
  article-title: Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.05.028
– year: 1999
  ident: 10.1016/j.strusafe.2015.01.001_b0080
– volume: 132
  year: 2010
  ident: 10.1016/j.strusafe.2015.01.001_b0025
  article-title: A second-order reliability method with first-order efficiency
  publication-title: J Mech Des ASME
  doi: 10.1115/1.4002459
SSID ssj0005828
Score 2.1046872
Snippet •Trade-off between error and effort of variance reduction algorithms is discussed.•Multi-objective stochastic optimization framework is adopted to study the...
Estimation of low failure probabilities in high dimensional structural reliability problems generally involves a trade-off between computational effort and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms Accuracy
Algorithms
Computation
Failure
Importance sampling
Multi-objective
Pareto optimal set
Pareto optimality
Proposals
Sampling
Stochastic optimization
Structural reliability
Subset simulation
Variance reduction
Title On the Pareto optimality of variance reduction simulation techniques in structural reliability
URI https://dx.doi.org/10.1016/j.strusafe.2015.01.001
https://www.proquest.com/docview/1691285391
https://www.proquest.com/docview/1701081324
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS_QwEB90vehBfOLjc4ngte62TbvNURZlfaDiAzwZkiaBLtqKqx98F__2b6ZNfSF68Ng2A2FmMg86-f0AdpQWgjuFTU7f5gHPuQgyjefREPp5jjWs0_WA7Gk6uuZHN8nNFAzbuzA0VuljfxPT62jt3_S8NnsPRdG7rAfoyUEJ0x_T5DTMRLFIkw7M7B0ej07fJj2ymmK1gfhGgXcXhce7BNM6UY4QM8MGwdPzw3yRoz5F6zoFHSzAvK8d2V6zvUWYsuUSzL1DFFyG27OSYUnHzom8tmIVBoT7utJmlWN_sS8mI7NHwmsli7BJce_5u9grmuuEFfihxpUlTA5cfVc0aN7_VuD6YP9qOAo8hUKQc86fgiR3YaxEhNo0qVZCmzzkJsucc0oInakYWxLL-0Y7q5w2NnQmxg4xj7Rw2ol4FTplVdo1YFmkiG1yEHOT8NRGOoyNsGaQ6LQfmdCsQ9IqTeYeX5xoLu5kO0g2lq2yJSlb9kOaqFuH3qvcQ4Ow8aOEaG0iP_iKxDTwo-x2a0SJB4n-jqjSVs8TSahBERYv4rs1A2xfM2zg-cYv9rAJs_TUTLL9gQ4usVtY2jzpLkzvvoRddODhxcl51zvyf5yo_xM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6rHtSD-MT1GcFr7bZNu81RxGXVdRVcwZMhaRLosrbiroIXf7szfSyriB68NhMIM5N50C_fEHIsFefMSmhyWiZxWMK4Eyu4jxrZzxOoYa0qALL9qHvPLh_ChwY5q9_CIKyyiv1lTC-idfXFrbTpPqepe1cA6NFBkdMf0uQcWWBh0EZc38nHDM4jLgaslgTfID7zTHh4giStY2mRL9Mr-Tur6TA_ZKhvsbpIQJ1VslJVjvS0PNwaaZhsnSzP8AlukMebjEJBR29xdG1OcwgHT0WdTXNL36ArRhPTF2RrRXvQcfpUTe-iUy7XMU1hoWCVRUYOkB6lJZf3-ya575wPzrpONUDBSRhjEydMrBdI7oMudaQkVzrxmI5ja63kXMUygIbEsJZW1kirtPGsDqA_THzFrbI82CLzWZ6ZbUJjX-KsyXbAdMgi4ysv0Nzodqiilq893SRhrTSRVOziOORiJGoY2VDUyhaobNHyEE_XJO5033PJr_HnDl7bRHzxFAFJ4M-9R7URBVwj_DciM5O_jgVyBvlQuvDfZNrQvMbQvrOdf5zhkCx2B9c90bvoX-2SJVwpMW17ZB7EzT4UORN1UDjxJ9nh_kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Pareto+optimality+of+variance+reduction+simulation+techniques+in+structural+reliability&rft.jtitle=Structural+safety&rft.au=Sen%2C+Debarshi&rft.au=Bhattacharya%2C+Baidurya&rft.date=2015-03-01&rft.issn=0167-4730&rft.volume=53&rft.spage=57&rft.epage=74&rft_id=info:doi/10.1016%2Fj.strusafe.2015.01.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_strusafe_2015_01_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon