On the Pareto optimality of variance reduction simulation techniques in structural reliability
•Trade-off between error and effort of variance reduction algorithms is discussed.•Multi-objective stochastic optimization framework is adopted to study the trade-off.•Six benchmark reliability problems of increasing complexity are analyzed.•Pareto sets for four variance reduction algorithms obtaine...
Saved in:
Published in | Structural safety Vol. 53; pp. 57 - 74 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-4730 1879-3355 |
DOI | 10.1016/j.strusafe.2015.01.001 |
Cover
Abstract | •Trade-off between error and effort of variance reduction algorithms is discussed.•Multi-objective stochastic optimization framework is adopted to study the trade-off.•Six benchmark reliability problems of increasing complexity are analyzed.•Pareto sets for four variance reduction algorithms obtained for each problem.•Best algorithm, limits of performance, optimal design variables are discussed for each.
Estimation of low failure probabilities in high dimensional structural reliability problems generally involves a trade-off between computational effort and accuracy of the estimate, whether efficient sampling techniques have been employed or not. While a substantial effort continues to be made by the community to develop and benchmark new and efficient sampling schemes, the limits of performance of a given algorithm, e.g., what is the best attainable accuracy of the method for a fixed computational effort and if that is good enough, have not received comparable attention. However, such insights could prove valuable in making the right choice in solving a computationally demanding reliability problem. In a multi-objective stochastic optimization formulation, these questions yield the so-called Pareto front or the set of non-dominated solutions: solutions that cannot be further improved without worsening at least one objective. Posteriori user defined preferences can then be applied to rank members of the Pareto set and obtain the best strategy. We take up two classes of variance-reducing algorithms – importance sampling (IS) and subset simulations (SS) – and apply them to a range of benchmarked reliability problems of various size and complexity to bring out the issue of optimality and trade-off between accuracy and effort. The design variables are variously of categorical, discrete as well as continuous types and the stochastic multi-objective optimization without recourse is solved using Genetic Algorithms. In each case, we ascertain the best possible accuracies that a given method can achieve and identify the corresponding design variables. We find that the proposal pdf does have an effect on the efficiency of SS, the FORM design point is not always the best sampling location in IS and setting the sensitivity parameter associated with Adaptive Importance Sampling at 0.5 does not guarantee optimal performance. In addition to this the benefits of using SS for high dimensional problems are reinforced. We also show that the Pareto fronts corresponding to different methods can intersect indicating that more is not always better and different solution techniques for the same problem may be required in different computational regimes. |
---|---|
AbstractList | Estimation of low failure probabilities in high dimensional structural reliability problems generally involves a trade-off between computational effort and accuracy of the estimate, whether efficient sampling techniques have been employed or not. While a substantial effort continues to be made by the community to develop and benchmark new and efficient sampling schemes, the limits of performance of a given algorithm, e.g., what is the best attainable accuracy of the method for a fixed computational effort and if that is good enough, have not received comparable attention. We find that the proposal pdf does have an effect on the efficiency of S5, the FORM design point is not always the best sampling location in IS and setting the sensitivity parameter associated with Adaptive Importance Sampling at 0.5 does not guarantee optimal performance. We also show that the Pareto fronts corresponding to different methods can intersect indicating that more is not always better and different solution techniques for the same problem may be required in different computational regimes. •Trade-off between error and effort of variance reduction algorithms is discussed.•Multi-objective stochastic optimization framework is adopted to study the trade-off.•Six benchmark reliability problems of increasing complexity are analyzed.•Pareto sets for four variance reduction algorithms obtained for each problem.•Best algorithm, limits of performance, optimal design variables are discussed for each. Estimation of low failure probabilities in high dimensional structural reliability problems generally involves a trade-off between computational effort and accuracy of the estimate, whether efficient sampling techniques have been employed or not. While a substantial effort continues to be made by the community to develop and benchmark new and efficient sampling schemes, the limits of performance of a given algorithm, e.g., what is the best attainable accuracy of the method for a fixed computational effort and if that is good enough, have not received comparable attention. However, such insights could prove valuable in making the right choice in solving a computationally demanding reliability problem. In a multi-objective stochastic optimization formulation, these questions yield the so-called Pareto front or the set of non-dominated solutions: solutions that cannot be further improved without worsening at least one objective. Posteriori user defined preferences can then be applied to rank members of the Pareto set and obtain the best strategy. We take up two classes of variance-reducing algorithms – importance sampling (IS) and subset simulations (SS) – and apply them to a range of benchmarked reliability problems of various size and complexity to bring out the issue of optimality and trade-off between accuracy and effort. The design variables are variously of categorical, discrete as well as continuous types and the stochastic multi-objective optimization without recourse is solved using Genetic Algorithms. In each case, we ascertain the best possible accuracies that a given method can achieve and identify the corresponding design variables. We find that the proposal pdf does have an effect on the efficiency of SS, the FORM design point is not always the best sampling location in IS and setting the sensitivity parameter associated with Adaptive Importance Sampling at 0.5 does not guarantee optimal performance. In addition to this the benefits of using SS for high dimensional problems are reinforced. We also show that the Pareto fronts corresponding to different methods can intersect indicating that more is not always better and different solution techniques for the same problem may be required in different computational regimes. |
Author | Sen, Debarshi Bhattacharya, Baidurya |
Author_xml | – sequence: 1 givenname: Debarshi surname: Sen fullname: Sen, Debarshi – sequence: 2 givenname: Baidurya surname: Bhattacharya fullname: Bhattacharya, Baidurya email: baidurya@civil.iitkgp.ernet.in |
BookMark | eNqFkU1rGzEQhkVIIE6avxD22MtuNSvth6CHFtM0gYBzaK4RWmlEZNYrV9Ia8u8j28klF59GMM_7Mjy6IueTn5CQW6AVUGh_rKuYwhyVxaqm0FQUKkrhjCyg70TJWNOck0UGu5J3jF6SqxjXlNKmr_sFeVlNRXrF4kkFTL7w2-Q2anTprfC22Kng1KSxCGhmnZyfiug286gOz4T6dXL_Z4yFy4t8g05zUGOmR6cGt2_5Ri6sGiPefMxr8nz359_yvnxc_X1Y_n4sNec8lY22wJSoNRrTDkoMRgM3fW-tVUIMvWI1dMipGSwqOxgEaxjnra4HYQcr2DX5fuzdBr-_KMmNixrHUU3o5yiho0B7YDU_jbYC6r5hAjLaHlEdfIwBrdyGrCe8SaBy716u5ad7uXcvKcjsPgd_fglqlw7WUlBuPB3_dYxjVrZzGGTUDvNHGBdQJ2m8O1XxDjS6qx8 |
CitedBy_id | crossref_primary_10_1016_j_strusafe_2020_102050 crossref_primary_10_1061_JBENF2_BEENG_6189 crossref_primary_10_1016_j_nucengdes_2024_113820 crossref_primary_10_1016_j_probengmech_2023_103479 crossref_primary_10_1080_19648189_2019_1570871 crossref_primary_10_1109_ACCESS_2020_3008778 |
Cites_doi | 10.1145/1830483.1830609 10.1016/S0266-8920(98)00009-5 10.1061/(ASCE)0733-9399(1992)118:6(1146) 10.1145/272991.272995 10.1016/S0167-4730(99)00014-4 10.1109/4235.996017 10.1016/j.strusafe.2006.07.008 10.1016/j.probengmech.2004.09.001 10.1016/j.strusafe.2006.07.003 10.1016/j.probengmech.2010.11.008 10.1016/S0167-4730(02)00047-4 10.1007/s10479-006-6169-8 10.1016/j.probengmech.2004.05.001 10.1016/S0266-8920(01)00019-4 10.1016/j.strusafe.2006.07.010 10.1016/j.probengmech.2007.12.026 10.1098/rspa.2005.1504 10.1016/j.strusafe.2007.10.002 10.1061/(ASCE)0733-9399(2003)129:8(901) 10.1016/S0951-8339(00)00024-1 10.1016/0167-4730(87)90004-X 10.1016/j.cma.2004.05.028 10.1115/1.4002459 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7T2 C1K 7SM 8FD FR3 KR7 |
DOI | 10.1016/j.strusafe.2015.01.001 |
DatabaseName | CrossRef Health and Safety Science Abstracts (Full archive) Environmental Sciences and Pollution Management Earthquake Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Health & Safety Science Abstracts Environmental Sciences and Pollution Management Earthquake Engineering Abstracts Civil Engineering Abstracts Engineering Research Database Technology Research Database |
DatabaseTitleList | Earthquake Engineering Abstracts Health & Safety Science Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3355 |
EndPage | 74 |
ExternalDocumentID | 10_1016_j_strusafe_2015_01_001 S0167473015000028 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7T2 C1K EFKBS 7SM 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c444t-5cf13a92cedd6ba9bdc14d88fffa99b8a3217e40dbfeafbde1fd3446c2b9fbf93 |
IEDL.DBID | AIKHN |
ISSN | 0167-4730 |
IngestDate | Thu Sep 04 20:06:27 EDT 2025 Thu Sep 04 18:50:14 EDT 2025 Tue Jul 01 00:59:30 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Fri Feb 23 02:33:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Subset simulation Multi-objective Stochastic optimization Pareto optimal set Variance reduction Importance sampling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-5cf13a92cedd6ba9bdc14d88fffa99b8a3217e40dbfeafbde1fd3446c2b9fbf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1691285391 |
PQPubID | 23462 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1701081324 proquest_miscellaneous_1691285391 crossref_primary_10_1016_j_strusafe_2015_01_001 crossref_citationtrail_10_1016_j_strusafe_2015_01_001 elsevier_sciencedirect_doi_10_1016_j_strusafe_2015_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Structural safety |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Kiureghian (b0005) 1989 Schueller GI, Pradlwarter HJ, Koutsourelakis PS. A comparative study of reliability estimation procedures for high dimensions. In: 16th ASCE engineering mechanics conference. Seattle: University of Washington; 2003. Au, Beck (b0130) 2003 Linderoth, Shapiro, Wright (b0145) 2006 “Random”. What’s this fuss about true randomness? Retrieved from 2012 [accessed: 29 May 2013]. Au, Ching, Beck (b0125) 2007; 29 Ang, Ang, Tang (b0095) 1992; 118 Andersson (b0155) 2000 Marler, Arora (b0150) 2009 Deb, Pratap, Agarwal, Meyarivan (b0165) 2002; 6 Pradlwarter, Schueller (b0065) 1999; 14 Au, Beck (b0110) 2001; 16 Ching, Au, Beck (b0115) 2005; 194 Schueller, Pradlwarter (b0010) 2007; 29 Ching, Au, Beck (b0120) 2005; 20 Au, Beck (b0100) 1999; 21 Katafygiotis, Zuev (b0140) 2008; 23 Katafygiotis, Cheung (b0070) 2007; 29 Matsumoto, Nishimura (b0045) 1998; 8 Tulshyan R, Arora R, Deb K, Dutta J. Investigating EA solutions for approximate KKT conditions in smooth problems. In: GECCO’ 10. Portland, Oregon, USA; 2010. Grooteman (b0170) 2008; 30 Manohar, Gupta (b0055) 2003 Ross (b0090) 2006 Bhattacharya, Basu, Ma (b0015) 2001; 14 Zuev, Katafygiotis (b0135) 2011; 26 Koutsourelakis, Pradlwarter, Schueller (b0050) 2004; 19 Schueller, Stix (b0060) 1987; 4 Kahn, Marshall (b0085) 1953; 1 Au, Beck (b0105) 2003; 25 Schueller, Pradlwarter, Beck, Au, Katafygiotis, Ghanem (b0075) 2005 Adhikari (b0030) 2005; 2005 Melchers (b0080) 1999 Ching (b0020) 2011 Zhang, Du (b0025) 2010; 132 Koutsourelakis (10.1016/j.strusafe.2015.01.001_b0050) 2004; 19 Pradlwarter (10.1016/j.strusafe.2015.01.001_b0065) 1999; 14 Ross (10.1016/j.strusafe.2015.01.001_b0090) 2006 Melchers (10.1016/j.strusafe.2015.01.001_b0080) 1999 10.1016/j.strusafe.2015.01.001_b0040 Katafygiotis (10.1016/j.strusafe.2015.01.001_b0140) 2008; 23 10.1016/j.strusafe.2015.01.001_b0160 Liu (10.1016/j.strusafe.2015.01.001_b0005) 1989 Manohar (10.1016/j.strusafe.2015.01.001_b0055) 2003 Ching (10.1016/j.strusafe.2015.01.001_b0115) 2005; 194 Zuev (10.1016/j.strusafe.2015.01.001_b0135) 2011; 26 Schueller (10.1016/j.strusafe.2015.01.001_b0010) 2007; 29 Zhang (10.1016/j.strusafe.2015.01.001_b0025) 2010; 132 Kahn (10.1016/j.strusafe.2015.01.001_b0085) 1953; 1 Au (10.1016/j.strusafe.2015.01.001_b0105) 2003; 25 Schueller (10.1016/j.strusafe.2015.01.001_b0060) 1987; 4 Grooteman (10.1016/j.strusafe.2015.01.001_b0170) 2008; 30 Matsumoto (10.1016/j.strusafe.2015.01.001_b0045) 1998; 8 Deb (10.1016/j.strusafe.2015.01.001_b0165) 2002; 6 Adhikari (10.1016/j.strusafe.2015.01.001_b0030) 2005; 2005 Ang (10.1016/j.strusafe.2015.01.001_b0095) 1992; 118 Marler (10.1016/j.strusafe.2015.01.001_b0150) 2009 Ching (10.1016/j.strusafe.2015.01.001_b0020) 2011 10.1016/j.strusafe.2015.01.001_b0035 Andersson (10.1016/j.strusafe.2015.01.001_b0155) 2000 Au (10.1016/j.strusafe.2015.01.001_b0130) 2003 Bhattacharya (10.1016/j.strusafe.2015.01.001_b0015) 2001; 14 Schueller (10.1016/j.strusafe.2015.01.001_b0075) 2005 Au (10.1016/j.strusafe.2015.01.001_b0100) 1999; 21 Katafygiotis (10.1016/j.strusafe.2015.01.001_b0070) 2007; 29 Au (10.1016/j.strusafe.2015.01.001_b0125) 2007; 29 Au (10.1016/j.strusafe.2015.01.001_b0110) 2001; 16 Linderoth (10.1016/j.strusafe.2015.01.001_b0145) 2006 Ching (10.1016/j.strusafe.2015.01.001_b0120) 2005; 20 |
References_xml | – volume: 23 start-page: 208 year: 2008 end-page: 218 ident: b0140 article-title: Geometric insight into the challenges of solving high-dimensional reliability problems publication-title: Probab Eng Mech – year: 2000 ident: b0155 article-title: A survey of multiobjective optimization in engineering design – start-page: 215 year: 2006 end-page: 241 ident: b0145 article-title: The empirical behavior of sampling methods for stochastic programming publication-title: Ann Oper Res – volume: 132 year: 2010 ident: b0025 article-title: A second-order reliability method with first-order efficiency publication-title: J Mech Des ASME – reference: >; 2012 [accessed: 29 May 2013]. – year: 2009 ident: b0150 article-title: Multi-objective optimization: concepts and methods for engineering – start-page: 901 year: 2003 end-page: 917 ident: b0130 article-title: Subset simulation and its application to seismic risk based dynamic analysis publication-title: J Eng Mech Div ASCE – volume: 1 start-page: 263 year: 1953 end-page: 278 ident: b0085 article-title: Methods of reducing sample size in Monte Carlo Computations publication-title: J Oper Res Soc Am – volume: 26 start-page: 405 year: 2011 end-page: 412 ident: b0135 article-title: Modified Metropolis–Hastings algorithm with delayed rejection publication-title: Probab Eng Mech – year: 2005 ident: b0075 article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview publication-title: EURODYN 2005 – volume: 29 start-page: 183 year: 2007 end-page: 193 ident: b0125 article-title: Application of subset simulation methods to reliability benchmark problems publication-title: Struct Saf – reference: Tulshyan R, Arora R, Deb K, Dutta J. Investigating EA solutions for approximate KKT conditions in smooth problems. In: GECCO’ 10. Portland, Oregon, USA; 2010. – year: 1989 ident: b0005 article-title: Finite element reliability methods for geometrically nonlinear stochastic structures – volume: 25 start-page: 139 year: 2003 end-page: 163 ident: b0105 article-title: Important sampling in high dimensions publication-title: Struct Saf – volume: 29 start-page: 194 year: 2007 end-page: 207 ident: b0070 article-title: Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study publication-title: Struct Saf – volume: 14 start-page: 37 year: 2001 end-page: 58 ident: b0015 article-title: Developing target reliability for novel structures: the case of the Mobile Offshore Base publication-title: Mar Struct – volume: 2005 start-page: 3141 year: 2005 end-page: 3158 ident: b0030 article-title: Asymptotic distribution method for structural reliability analysis in high dimensions publication-title: Proc R Soc A – reference: “Random”. What’s this fuss about true randomness? Retrieved from: < – year: 1999 ident: b0080 article-title: Structural reliability analysis and prediction – year: 2011 ident: b0020 article-title: Practical Monte Carlo based reliability analysis and design methods for geotechnical problems publication-title: Applications of Monte Carlo method in science and engineering – volume: 29 start-page: 167 year: 2007 end-page: 182 ident: b0010 article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview publication-title: Struct Saf – volume: 8 start-page: 3 year: 1998 end-page: 30 ident: b0045 article-title: Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator publication-title: ACM Trans Model Comput Simul – volume: 14 start-page: 213 year: 1999 end-page: 227 ident: b0065 article-title: Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation publication-title: Probab Eng Mech – volume: 19 start-page: 409 year: 2004 end-page: 417 ident: b0050 article-title: Reliability of structures in high dimensions, part I: algorithms and applications publication-title: Probab Eng Mech – volume: 4 start-page: 293 year: 1987 end-page: 309 ident: b0060 article-title: A critical appraisal of methods to determine failure probabilities publication-title: Struct Saf – volume: 118 start-page: 1146 year: 1992 end-page: 1163 ident: b0095 article-title: Optimal importance sampling density estimator publication-title: J Eng Mech Div ASCE – volume: 194 start-page: 1557 year: 2005 end-page: 1579 ident: b0115 article-title: Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting publication-title: Comput Methods Appl Mech Eng – volume: 20 start-page: 199 year: 2005 end-page: 214 ident: b0120 article-title: Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation publication-title: Probab Eng Mech – volume: 30 start-page: 533 year: 2008 end-page: 542 ident: b0170 article-title: Adaptive radial-based importance sampling method for structural reliability publication-title: Struct Saf – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0165 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – reference: Schueller GI, Pradlwarter HJ, Koutsourelakis PS. A comparative study of reliability estimation procedures for high dimensions. In: 16th ASCE engineering mechanics conference. Seattle: University of Washington; 2003. – year: 2006 ident: b0090 article-title: Simulation – volume: 21 start-page: 135 year: 1999 end-page: 158 ident: b0100 article-title: A new adaptive importance sampling scheme for reliability calculations publication-title: Struct Saf – year: 2003 ident: b0055 article-title: Modeling and evaluation of structural reliability: current status and future directions publication-title: Research reviews in structural engineering – volume: 16 start-page: 263 year: 2001 end-page: 277 ident: b0110 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab Eng Mech – ident: 10.1016/j.strusafe.2015.01.001_b0160 doi: 10.1145/1830483.1830609 – volume: 14 start-page: 213 year: 1999 ident: 10.1016/j.strusafe.2015.01.001_b0065 article-title: Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation publication-title: Probab Eng Mech doi: 10.1016/S0266-8920(98)00009-5 – volume: 118 start-page: 1146 issue: 6 year: 1992 ident: 10.1016/j.strusafe.2015.01.001_b0095 article-title: Optimal importance sampling density estimator publication-title: J Eng Mech Div ASCE doi: 10.1061/(ASCE)0733-9399(1992)118:6(1146) – volume: 8 start-page: 3 year: 1998 ident: 10.1016/j.strusafe.2015.01.001_b0045 article-title: Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator publication-title: ACM Trans Model Comput Simul doi: 10.1145/272991.272995 – ident: 10.1016/j.strusafe.2015.01.001_b0035 – year: 2005 ident: 10.1016/j.strusafe.2015.01.001_b0075 article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview – volume: 1 start-page: 263 year: 1953 ident: 10.1016/j.strusafe.2015.01.001_b0085 article-title: Methods of reducing sample size in Monte Carlo Computations publication-title: J Oper Res Soc Am – volume: 21 start-page: 135 year: 1999 ident: 10.1016/j.strusafe.2015.01.001_b0100 article-title: A new adaptive importance sampling scheme for reliability calculations publication-title: Struct Saf doi: 10.1016/S0167-4730(99)00014-4 – year: 2009 ident: 10.1016/j.strusafe.2015.01.001_b0150 – year: 2011 ident: 10.1016/j.strusafe.2015.01.001_b0020 article-title: Practical Monte Carlo based reliability analysis and design methods for geotechnical problems – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.strusafe.2015.01.001_b0165 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 29 start-page: 183 year: 2007 ident: 10.1016/j.strusafe.2015.01.001_b0125 article-title: Application of subset simulation methods to reliability benchmark problems publication-title: Struct Saf doi: 10.1016/j.strusafe.2006.07.008 – volume: 20 start-page: 199 year: 2005 ident: 10.1016/j.strusafe.2015.01.001_b0120 article-title: Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2004.09.001 – volume: 29 start-page: 194 year: 2007 ident: 10.1016/j.strusafe.2015.01.001_b0070 article-title: Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study publication-title: Struct Saf doi: 10.1016/j.strusafe.2006.07.003 – year: 1989 ident: 10.1016/j.strusafe.2015.01.001_b0005 – ident: 10.1016/j.strusafe.2015.01.001_b0040 – volume: 26 start-page: 405 year: 2011 ident: 10.1016/j.strusafe.2015.01.001_b0135 article-title: Modified Metropolis–Hastings algorithm with delayed rejection publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2010.11.008 – volume: 25 start-page: 139 year: 2003 ident: 10.1016/j.strusafe.2015.01.001_b0105 article-title: Important sampling in high dimensions publication-title: Struct Saf doi: 10.1016/S0167-4730(02)00047-4 – start-page: 215 year: 2006 ident: 10.1016/j.strusafe.2015.01.001_b0145 article-title: The empirical behavior of sampling methods for stochastic programming publication-title: Ann Oper Res doi: 10.1007/s10479-006-6169-8 – year: 2006 ident: 10.1016/j.strusafe.2015.01.001_b0090 – year: 2003 ident: 10.1016/j.strusafe.2015.01.001_b0055 article-title: Modeling and evaluation of structural reliability: current status and future directions – year: 2000 ident: 10.1016/j.strusafe.2015.01.001_b0155 – volume: 19 start-page: 409 year: 2004 ident: 10.1016/j.strusafe.2015.01.001_b0050 article-title: Reliability of structures in high dimensions, part I: algorithms and applications publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2004.05.001 – volume: 16 start-page: 263 year: 2001 ident: 10.1016/j.strusafe.2015.01.001_b0110 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab Eng Mech doi: 10.1016/S0266-8920(01)00019-4 – volume: 29 start-page: 167 year: 2007 ident: 10.1016/j.strusafe.2015.01.001_b0010 article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview publication-title: Struct Saf doi: 10.1016/j.strusafe.2006.07.010 – volume: 23 start-page: 208 year: 2008 ident: 10.1016/j.strusafe.2015.01.001_b0140 article-title: Geometric insight into the challenges of solving high-dimensional reliability problems publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2007.12.026 – volume: 2005 start-page: 3141 year: 2005 ident: 10.1016/j.strusafe.2015.01.001_b0030 article-title: Asymptotic distribution method for structural reliability analysis in high dimensions publication-title: Proc R Soc A doi: 10.1098/rspa.2005.1504 – volume: 30 start-page: 533 year: 2008 ident: 10.1016/j.strusafe.2015.01.001_b0170 article-title: Adaptive radial-based importance sampling method for structural reliability publication-title: Struct Saf doi: 10.1016/j.strusafe.2007.10.002 – start-page: 901 year: 2003 ident: 10.1016/j.strusafe.2015.01.001_b0130 article-title: Subset simulation and its application to seismic risk based dynamic analysis publication-title: J Eng Mech Div ASCE doi: 10.1061/(ASCE)0733-9399(2003)129:8(901) – volume: 14 start-page: 37 year: 2001 ident: 10.1016/j.strusafe.2015.01.001_b0015 article-title: Developing target reliability for novel structures: the case of the Mobile Offshore Base publication-title: Mar Struct doi: 10.1016/S0951-8339(00)00024-1 – volume: 4 start-page: 293 year: 1987 ident: 10.1016/j.strusafe.2015.01.001_b0060 article-title: A critical appraisal of methods to determine failure probabilities publication-title: Struct Saf doi: 10.1016/0167-4730(87)90004-X – volume: 194 start-page: 1557 year: 2005 ident: 10.1016/j.strusafe.2015.01.001_b0115 article-title: Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2004.05.028 – year: 1999 ident: 10.1016/j.strusafe.2015.01.001_b0080 – volume: 132 year: 2010 ident: 10.1016/j.strusafe.2015.01.001_b0025 article-title: A second-order reliability method with first-order efficiency publication-title: J Mech Des ASME doi: 10.1115/1.4002459 |
SSID | ssj0005828 |
Score | 2.1046872 |
Snippet | •Trade-off between error and effort of variance reduction algorithms is discussed.•Multi-objective stochastic optimization framework is adopted to study the... Estimation of low failure probabilities in high dimensional structural reliability problems generally involves a trade-off between computational effort and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 57 |
SubjectTerms | Accuracy Algorithms Computation Failure Importance sampling Multi-objective Pareto optimal set Pareto optimality Proposals Sampling Stochastic optimization Structural reliability Subset simulation Variance reduction |
Title | On the Pareto optimality of variance reduction simulation techniques in structural reliability |
URI | https://dx.doi.org/10.1016/j.strusafe.2015.01.001 https://www.proquest.com/docview/1691285391 https://www.proquest.com/docview/1701081324 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS_QwEB90vehBfOLjc4ngte62TbvNURZlfaDiAzwZkiaBLtqKqx98F__2b6ZNfSF68Ng2A2FmMg86-f0AdpQWgjuFTU7f5gHPuQgyjefREPp5jjWs0_WA7Gk6uuZHN8nNFAzbuzA0VuljfxPT62jt3_S8NnsPRdG7rAfoyUEJ0x_T5DTMRLFIkw7M7B0ej07fJj2ymmK1gfhGgXcXhce7BNM6UY4QM8MGwdPzw3yRoz5F6zoFHSzAvK8d2V6zvUWYsuUSzL1DFFyG27OSYUnHzom8tmIVBoT7utJmlWN_sS8mI7NHwmsli7BJce_5u9grmuuEFfihxpUlTA5cfVc0aN7_VuD6YP9qOAo8hUKQc86fgiR3YaxEhNo0qVZCmzzkJsucc0oInakYWxLL-0Y7q5w2NnQmxg4xj7Rw2ol4FTplVdo1YFmkiG1yEHOT8NRGOoyNsGaQ6LQfmdCsQ9IqTeYeX5xoLu5kO0g2lq2yJSlb9kOaqFuH3qvcQ4Ow8aOEaG0iP_iKxDTwo-x2a0SJB4n-jqjSVs8TSahBERYv4rs1A2xfM2zg-cYv9rAJs_TUTLL9gQ4usVtY2jzpLkzvvoRddODhxcl51zvyf5yo_xM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6rHtSD-MT1GcFr7bZNu81RxGXVdRVcwZMhaRLosrbiroIXf7szfSyriB68NhMIM5N50C_fEHIsFefMSmhyWiZxWMK4Eyu4jxrZzxOoYa0qALL9qHvPLh_ChwY5q9_CIKyyiv1lTC-idfXFrbTpPqepe1cA6NFBkdMf0uQcWWBh0EZc38nHDM4jLgaslgTfID7zTHh4giStY2mRL9Mr-Tur6TA_ZKhvsbpIQJ1VslJVjvS0PNwaaZhsnSzP8AlukMebjEJBR29xdG1OcwgHT0WdTXNL36ArRhPTF2RrRXvQcfpUTe-iUy7XMU1hoWCVRUYOkB6lJZf3-ya575wPzrpONUDBSRhjEydMrBdI7oMudaQkVzrxmI5ja63kXMUygIbEsJZW1kirtPGsDqA_THzFrbI82CLzWZ6ZbUJjX-KsyXbAdMgi4ysv0Nzodqiilq893SRhrTSRVOziOORiJGoY2VDUyhaobNHyEE_XJO5033PJr_HnDl7bRHzxFAFJ4M-9R7URBVwj_DciM5O_jgVyBvlQuvDfZNrQvMbQvrOdf5zhkCx2B9c90bvoX-2SJVwpMW17ZB7EzT4UORN1UDjxJ9nh_kk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Pareto+optimality+of+variance+reduction+simulation+techniques+in+structural+reliability&rft.jtitle=Structural+safety&rft.au=Sen%2C+Debarshi&rft.au=Bhattacharya%2C+Baidurya&rft.date=2015-03-01&rft.issn=0167-4730&rft.volume=53&rft.spage=57&rft.epage=74&rft_id=info:doi/10.1016%2Fj.strusafe.2015.01.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_strusafe_2015_01_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon |