Multi-Hypergraph Learning-Based Brain Functional Connectivity Analysis in fMRI Data
Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-int...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 39; no. 5; pp. 1746 - 1758 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals' learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson's correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study. |
---|---|
AbstractList | Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals’ learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson’s correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study. Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals' learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson's correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study.Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals' learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson's correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study. |
Author | Wang, Junqi Kassani, Peyman H. Zhang, Yipu Stephen, Julia M. Bai, Yuntong Xiao, Li Wilson, Tony W. Calhoun, Vince D. Wang, Yu-Ping |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0001-7108-8378 surname: Xiao fullname: Xiao, Li email: lxiao1@tulane.edu organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA – sequence: 2 givenname: Junqi surname: Wang fullname: Wang, Junqi organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA – sequence: 3 givenname: Peyman H. surname: Kassani fullname: Kassani, Peyman H. organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA – sequence: 4 givenname: Yipu orcidid: 0000-0003-3326-2093 surname: Zhang fullname: Zhang, Yipu organization: School of Electronics and Control Engineering, Chang'an University, Xi'an, China – sequence: 5 givenname: Yuntong orcidid: 0000-0002-8916-3679 surname: Bai fullname: Bai, Yuntong organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA – sequence: 6 givenname: Julia M. orcidid: 0000-0003-2486-747X surname: Stephen fullname: Stephen, Julia M. organization: Mind Research Network, Albuquerque, NM, USA – sequence: 7 givenname: Tony W. orcidid: 0000-0002-5053-8306 surname: Wilson fullname: Wilson, Tony W. organization: Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA – sequence: 8 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: Mind Research Network, Albuquerque, NM, USA – sequence: 9 givenname: Yu-Ping orcidid: 0000-0001-9340-5864 surname: Wang fullname: Wang, Yu-Ping email: wyp@tulane.edu organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31796393$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1r2zAYxkXpaNOs98GgGHbZxak-LMu6FNqsXQMJha2D3sRrRU5VHCmT7EL--8okC1sPOwlJv-d5P54zdOy8Mwh9InhCCJaXj4vZhGIiJ1RygaU4QiPCeZVTXjwdoxGmosoxLukpOovxBWNScCxP0CkjQpZMshH6uejbzub3240JqwCb52xuIDjrVvkNRLPMbgJYl931TnfWO2izqXfOpMur7bbZdXrZRhuzxDSLH7PsG3TwEX1ooI3mfH-O0a-728fpfT5_-D6bXs9zXRRFl3ModI15ZYASrJsadCUoIWC4ZBSY4E1BpaxrUS9rLXA9TCh1tUwsLxgwNkZXO99NX6_NUhvXBWjVJtg1hK3yYNW_P84-q5V_VYKJUiaPMfq6Nwj-d29ip9Y2atO24Izvo6KMkrIkjNOEfnmHvvg-pOkHSgpJMC0Hw4u_Ozq08mffCcA7QAcfYzDNASFYDZGqFKkaIlX7SJOkfCfRtoMhjDSTbf8n_LwTWmPMoU4lSUXTht8AJ1at2w |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1109_TAI_2024_3450658 crossref_primary_10_3389_fnagi_2022_893250 crossref_primary_10_1109_TMI_2022_3161828 crossref_primary_10_1016_j_jocs_2022_101905 crossref_primary_10_1109_ACCESS_2023_3276989 crossref_primary_10_1002_hbm_25410 crossref_primary_10_1016_j_compbiomed_2024_108069 crossref_primary_10_1016_j_sigpro_2024_109538 crossref_primary_10_1109_LSP_2020_3023587 crossref_primary_10_3390_rs12203456 crossref_primary_10_15212_RADSCI_2023_0008 crossref_primary_10_1109_TETCI_2024_3386612 crossref_primary_10_1109_TMI_2024_3412399 crossref_primary_10_3390_diagnostics12112632 crossref_primary_10_1016_j_metrad_2023_100046 crossref_primary_10_1109_TBME_2021_3122813 crossref_primary_10_3390_brainsci14080738 crossref_primary_10_1002_hbm_26218 crossref_primary_10_1016_j_compbiomed_2024_108051 crossref_primary_10_1016_j_media_2024_103144 crossref_primary_10_1016_j_brainresbull_2024_111177 crossref_primary_10_1109_TNSE_2023_3273184 crossref_primary_10_32604_iasc_2022_026346 crossref_primary_10_1038_s44184_023_00050_x crossref_primary_10_1109_TBME_2020_3022335 crossref_primary_10_1109_TBME_2021_3127173 crossref_primary_10_1109_TCYB_2023_3344641 crossref_primary_10_3390_machines12080574 crossref_primary_10_1016_j_eng_2024_04_017 crossref_primary_10_1109_TMI_2021_3110829 crossref_primary_10_3389_fnagi_2023_1052783 crossref_primary_10_1016_j_eswa_2022_119389 crossref_primary_10_1109_TMI_2023_3325261 crossref_primary_10_1109_TPAMI_2024_3524377 crossref_primary_10_1016_j_cmpb_2024_108479 crossref_primary_10_1109_TNSRE_2023_3333952 crossref_primary_10_1109_TPAMI_2020_3039374 crossref_primary_10_3389_fmed_2024_1496573 crossref_primary_10_1088_1741_2552_acb088 crossref_primary_10_1016_j_tins_2024_05_011 crossref_primary_10_1109_JBHI_2022_3220545 crossref_primary_10_1109_TIP_2023_3307975 crossref_primary_10_1109_TCBB_2021_3137498 crossref_primary_10_3389_fnins_2023_1174080 |
Cites_doi | 10.1109/TMM.2014.2298216 10.3389/neuro.09.017.2009 10.1371/journal.pone.0068910 10.1093/biostatistics/kxm045 10.1016/j.neuroimage.2011.05.055 10.1109/TAFFC.2016.2628787 10.1016/j.media.2016.03.003 10.1016/j.neuroimage.2011.10.015 10.1016/j.neuron.2014.09.007 10.1016/j.neuroimage.2019.01.069 10.1007/s11682-018-9899-8 10.1016/j.neuroimage.2014.06.077 10.1109/JBHI.2017.2732287 10.1098/rstb.2005.1634 10.1016/j.bpsc.2015.12.005 10.3389/fnhum.2010.00192 10.1214/aos/1176344136 10.1016/j.neuroimage.2005.07.036 10.1093/cercor/bhr269 10.1523/JNEUROSCI.3127-11.2011 10.1016/j.media.2018.11.006 10.1016/j.neuroimage.2008.02.036 10.1109/TIP.2012.2199502 10.1016/j.euroneuro.2010.03.008 10.1109/TBME.2013.2284195 10.1016/j.neuron.2014.10.015 10.1093/bioinformatics/btw485 10.1002/hbm.22864 10.1038/nrn2575 10.1016/j.neubiorev.2016.08.035 10.1109/TMI.2019.2928790 10.1038/s41467-018-04920-3 10.3389/fninf.2018.00025 10.1038/jcbfm.1993.4 10.1006/nimg.2001.0978 10.1098/rsta.2009.0082 10.1073/pnas.1113148109 10.1016/j.neuroimage.2013.07.064 10.1016/j.bandc.2008.04.010 10.1007/s11682-014-9292-1 10.1093/bioinformatics/bty911 10.1016/j.tics.2012.03.008 10.1109/TMI.2014.2340816 10.1080/87565640701190841 10.2307/1932409 10.1109/TITB.2008.923773 10.1109/TMI.2017.2715285 10.1002/hbm.22373 10.17791/jcs.2011.12.2.151 10.1073/pnas.1019641108 10.1111/j.1749-6632.2010.05888.x 10.1016/j.neuroimage.2014.04.009 10.1093/cercor/2.6.435-a 10.1126/science.1948051 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TMI.2019.2957097 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1758 |
ExternalDocumentID | PMC7376954 31796393 10_1109_TMI_2019_2957097 8918259 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NSF grantid: 1539067 funderid: 10.13039/501100008982 – fundername: NIH grantid: R01GM109068; R01MH104680; R01MH107354; R01AR059781; R01EB006841; R01EB005846; R01MH103220; R01MH116782; P20GM103472 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB005846 – fundername: NIAMS NIH HHS grantid: R01 AR059781 – fundername: NIMH NIH HHS grantid: R01 MH118695 – fundername: NIGMS NIH HHS grantid: P20 GM103472 – fundername: NIMH NIH HHS grantid: R01 MH104680 – fundername: NIMH NIH HHS grantid: R01 MH116782 – fundername: NIGMS NIH HHS grantid: R01 GM109068 – fundername: NIGMS NIH HHS grantid: P20 GM130447 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIMH NIH HHS grantid: R01 MH121101 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c444t-5a4cb058ea210cfbac87211ae5932a375f4299bb7bdbc70b57099c8d0cf543a33 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:04:19 EDT 2025 Fri Jul 11 16:44:24 EDT 2025 Mon Jun 30 06:37:26 EDT 2025 Thu Apr 03 07:03:35 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 03:16:03 EDT 2025 Wed Aug 27 02:30:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-5a4cb058ea210cfbac87211ae5932a375f4299bb7bdbc70b57099c8d0cf543a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3326-2093 0000-0002-5053-8306 0000-0001-7108-8378 0000-0001-9340-5864 0000-0002-8916-3679 0000-0003-2486-747X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7376954 |
PMID | 31796393 |
PQID | 2397910264 |
PQPubID | 85460 |
PageCount | 13 |
ParticipantIDs | pubmed_primary_31796393 crossref_primary_10_1109_TMI_2019_2957097 crossref_citationtrail_10_1109_TMI_2019_2957097 proquest_miscellaneous_2321661352 proquest_journals_2397910264 ieee_primary_8918259 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 wilkinson (ref35) 2006 berge (ref28) 1976 ref51 ref50 zhou (ref41) 2007 ref46 ref48 ref47 ref42 ref44 ref43 ref49 çetin (ref33) 2014; 97 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 grant (ref45) 2013 |
References_xml | – ident: ref36 doi: 10.1109/TMM.2014.2298216 – ident: ref9 doi: 10.3389/neuro.09.017.2009 – ident: ref48 doi: 10.1371/journal.pone.0068910 – ident: ref17 doi: 10.1093/biostatistics/kxm045 – ident: ref32 doi: 10.1016/j.neuroimage.2011.05.055 – ident: ref37 doi: 10.1109/TAFFC.2016.2628787 – ident: ref26 doi: 10.1016/j.media.2016.03.003 – ident: ref15 doi: 10.1016/j.neuroimage.2011.10.015 – ident: ref3 doi: 10.1016/j.neuron.2014.09.007 – ident: ref16 doi: 10.1016/j.neuroimage.2019.01.069 – ident: ref39 doi: 10.1007/s11682-018-9899-8 – ident: ref57 doi: 10.1016/j.neuroimage.2014.06.077 – ident: ref38 doi: 10.1109/JBHI.2017.2732287 – ident: ref19 doi: 10.1098/rstb.2005.1634 – ident: ref30 doi: 10.1016/j.bpsc.2015.12.005 – ident: ref44 doi: 10.3389/fnhum.2010.00192 – ident: ref46 doi: 10.1214/aos/1176344136 – ident: ref49 doi: 10.1016/j.neuroimage.2005.07.036 – ident: ref5 doi: 10.1093/cercor/bhr269 – ident: ref22 doi: 10.1523/JNEUROSCI.3127-11.2011 – ident: ref27 doi: 10.1016/j.media.2018.11.006 – ident: ref51 doi: 10.1016/j.neuroimage.2008.02.036 – ident: ref40 doi: 10.1109/TIP.2012.2199502 – ident: ref10 doi: 10.1016/j.euroneuro.2010.03.008 – ident: ref11 doi: 10.1109/TBME.2013.2284195 – ident: ref7 doi: 10.1016/j.neuron.2014.10.015 – ident: ref31 doi: 10.1093/bioinformatics/btw485 – ident: ref52 doi: 10.1002/hbm.22864 – ident: ref13 doi: 10.1038/nrn2575 – ident: ref2 doi: 10.1016/j.neubiorev.2016.08.035 – ident: ref58 doi: 10.1109/TMI.2019.2928790 – ident: ref8 doi: 10.1038/s41467-018-04920-3 – ident: ref25 doi: 10.3389/fninf.2018.00025 – year: 2013 ident: ref45 publication-title: CVX Matlab software for disciplined convex programming version 2 0 beta – ident: ref18 doi: 10.1038/jcbfm.1993.4 – ident: ref42 doi: 10.1006/nimg.2001.0978 – ident: ref23 doi: 10.1098/rsta.2009.0082 – ident: ref14 doi: 10.1073/pnas.1113148109 – ident: ref34 doi: 10.1016/j.neuroimage.2013.07.064 – ident: ref50 doi: 10.1016/j.bandc.2008.04.010 – ident: ref43 doi: 10.1007/s11682-014-9292-1 – ident: ref24 doi: 10.1093/bioinformatics/bty911 – ident: ref20 doi: 10.1016/j.tics.2012.03.008 – ident: ref4 doi: 10.1109/TMI.2014.2340816 – ident: ref55 doi: 10.1080/87565640701190841 – ident: ref47 doi: 10.2307/1932409 – ident: ref29 doi: 10.1109/TITB.2008.923773 – ident: ref56 doi: 10.1109/TMI.2017.2715285 – ident: ref12 doi: 10.1002/hbm.22373 – ident: ref54 doi: 10.17791/jcs.2011.12.2.151 – year: 2006 ident: ref35 publication-title: Wide Range Achievement Test 4 (WRAT4) – ident: ref21 doi: 10.1073/pnas.1019641108 – ident: ref6 doi: 10.1111/j.1749-6632.2010.05888.x – volume: 97 start-page: 117 year: 2014 ident: ref33 article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.009 – ident: ref53 doi: 10.1093/cercor/2.6.435-a – start-page: 1601 year: 2007 ident: ref41 article-title: Learning with hypergraphs: Clustering, classification, and embedding publication-title: Proc Adv Neural Inf Process Syst – year: 1976 ident: ref28 publication-title: Graphs Hypergraphs – ident: ref1 doi: 10.1126/science.1948051 |
SSID | ssj0014509 |
Score | 2.5798135 |
Snippet | Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1746 |
SubjectTerms | Brain Brain - diagnostic imaging Brain mapping Classification Cognitive ability Cohort Studies Connectivity analysis Construction methods Correlation Data fusion Feature extraction functional connectivity Functional magnetic resonance imaging functional MRI Graph theory Graphs Humans hypergraph Learning learning ability Learning systems Magnetic Resonance Imaging Methods Neural networks Neurodegenerative diseases Neuroimaging Similarity similarity matrix Sparse matrices Time series analysis Topology |
Title | Multi-Hypergraph Learning-Based Brain Functional Connectivity Analysis in fMRI Data |
URI | https://ieeexplore.ieee.org/document/8918259 https://www.ncbi.nlm.nih.gov/pubmed/31796393 https://www.proquest.com/docview/2397910264 https://www.proquest.com/docview/2321661352 https://pubmed.ncbi.nlm.nih.gov/PMC7376954 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB3BHip6AAoUAtvKlbggkd3g2HF8BNrVUml7KCBxi2zHaREoiyB74esZ20m0IFT1FsmTyPHYnjee8RuAQ0SgpswSFWf8xMbM8jzWXPssCzQPptRlYPv8lU2v2c8bfrMCx_1dGGutTz6zI_foY_nl3CzcUdk4l4iGuVyFVXTcwl2tPmLAeEjnoI4xNsloF5JM5PhqduFyuOSISi48vdOSCfI1Vd6Dl2-zJJfMzmQDZl2HQ7bJ3WjR6JF5fsPl-L9_tAnrLf4kp2HCfIIVW2_BxyVWwi34MGvj7dtw6e_nxlN0Vh89tTVp-Vj_xGdo_kpy5ipMkAkax3CmSHzijAklKUjHeEJQppr9viDfVaN24Hry4-p8GrdlGGLDGGtirpjRCc-tQvfQVFqZ3LmNynLEfioVvHI2TWuhS21Eot0YS5OXKMtZqtL0MwzqeW33gNDcVqKqdCakZPQkU6xMLM6WSlU0MVJEMO40U5iWo9yVyrgvvK-SyAJ1WThdFq0uIzjq33gI_Bz_kN12Gujl2sGPYNgpv2gX8FNBXbwTwVfGIvjWN-PSc_EUVdv5wsngLyAc4jSC3TBX-m8jLMOtTaYRiFezqBdwtN6vW-rbv57eW-CeLznbf7-3B7BGncvvcy6HMGgeF_YL4qJGf_UL4gWwWwoW |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VVoJyoNACDRQwEhckspt17Dg-0pbVLjQ9wFbqLbIdB6pWWdRmL3w9YzuJtlWFuEXyJHI8Y8-zZ_wG4AMiUFNliYozPrExszyPNdc-ywLdg6l0Fdg-T7PZGft6zs834NNwF8Za65PP7Mg9-lh-tTQrd1Q2ziWiYS4fwBb6fT4Jt7WGmAHjIaGDOs7YJKN9UDKR40Uxd1lcckQlF57gac0J-aoq9wHMu3mSa45nugNF3-WQb3I5WrV6ZP7cYXP83396Ck86BEo-B5N5Bhu22YXHa7yEu_Cw6CLue_DD39CNZ7hdvfbk1qRjZP0ZH6IDrMihqzFBpugew6ki8akzJhSlID3nCUGZuvg-J8eqVc_hbPplcTSLu0IMsWGMtTFXzOiE51bhBtHUWpncbRyV5Yj-VCp47bya1kJX2ohEuzGWJq9QlrNUpekL2GyWjd0HQnNbi7rWmZCS0UmmWJVYtJda1TQxUkQw7jVTmo6l3BXLuCr9biWRJeqydLosO11G8HF443dg6PiH7J7TwCDXDX4EB73yy24K35TURTwRfmUsgvdDM04-F1FRjV2unAz-AgIiTiN4GWxl-DYCM1zcZBqBuGVFg4Aj9r7d0lz88gTfAld9ydmr-3v7Dh7NFsVJeTI__fYatqk7APAZmAew2V6v7BtESa1-6yfHX64uDV8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Hypergraph+Learning-Based+Brain+Functional+Connectivity+Analysis+in+fMRI+Data&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Xiao%2C+Li&rft.au=Wang%2C+Junqi&rft.au=Kassani%2C+Peyman+H&rft.au=Zhang%2C+Yipu&rft.date=2020-05-01&rft.eissn=1558-254X&rft.volume=39&rft.issue=5&rft.spage=1746&rft_id=info:doi/10.1109%2FTMI.2019.2957097&rft_id=info%3Apmid%2F31796393&rft.externalDocID=31796393 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |