Multi-Hypergraph Learning-Based Brain Functional Connectivity Analysis in fMRI Data

Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-int...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 5; pp. 1746 - 1758
Main Authors Xiao, Li, Wang, Junqi, Kassani, Peyman H., Zhang, Yipu, Bai, Yuntong, Stephen, Julia M., Wilson, Tony W., Calhoun, Vince D., Wang, Yu-Ping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals' learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson's correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study.
AbstractList Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals’ learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson’s correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study.
Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals' learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson's correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study.Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for the classification of neurodegenerative diseases. Each edge of a hypergraph (called hyperedge) can connect any number of brain regions-of-interest (ROIs) instead of only two ROIs, and thus characterizes high-order relations among multiple ROIs that cannot be uncovered by a simple graph in the traditional graph based FCN construction methods. Unlike the existing hypergraph based methods where all hyperedges are assumed to have equal weights and only certain topological features are extracted from the hypergraphs, we propose a hypergraph learning based method for FCN construction in this paper. Specifically, we first generate hyperedges from fMRI time series based on sparse representation, then employ hypergraph learning to adaptively learn hyperedge weights, and finally define a hypergraph similarity matrix to represent the FCN. In our proposed method, weighting hyperedges results in better discriminative FCNs across subjects, and the defined hypergraph similarity matrix can better reveal the overall structure of brain network than using those hypergraph topological features. Moreover, we propose a multi-hypergraph learning based method by integrating multi-paradigm fMRI data, where the hyperedge weights associated with each fMRI paradigm are jointly learned and then a unified hypergraph similarity matrix is computed to represent the FCN. We validate the effectiveness of the proposed method on the Philadelphia Neurodevelopmental Cohort dataset for the classification of individuals' learning ability from three paradigms of fMRI data. Experimental results demonstrate that our proposed approach outperforms the traditional graph based methods (i.e., Pearson's correlation and partial correlation with the graphical Lasso) and the existing unweighted hypergraph based methods, which sheds light on how to optimize estimation of FCNs for cognitive and behavioral study.
Author Wang, Junqi
Kassani, Peyman H.
Zhang, Yipu
Stephen, Julia M.
Bai, Yuntong
Xiao, Li
Wilson, Tony W.
Calhoun, Vince D.
Wang, Yu-Ping
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0001-7108-8378
  surname: Xiao
  fullname: Xiao, Li
  email: lxiao1@tulane.edu
  organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
– sequence: 2
  givenname: Junqi
  surname: Wang
  fullname: Wang, Junqi
  organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
– sequence: 3
  givenname: Peyman H.
  surname: Kassani
  fullname: Kassani, Peyman H.
  organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
– sequence: 4
  givenname: Yipu
  orcidid: 0000-0003-3326-2093
  surname: Zhang
  fullname: Zhang, Yipu
  organization: School of Electronics and Control Engineering, Chang'an University, Xi'an, China
– sequence: 5
  givenname: Yuntong
  orcidid: 0000-0002-8916-3679
  surname: Bai
  fullname: Bai, Yuntong
  organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
– sequence: 6
  givenname: Julia M.
  orcidid: 0000-0003-2486-747X
  surname: Stephen
  fullname: Stephen, Julia M.
  organization: Mind Research Network, Albuquerque, NM, USA
– sequence: 7
  givenname: Tony W.
  orcidid: 0000-0002-5053-8306
  surname: Wilson
  fullname: Wilson, Tony W.
  organization: Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
– sequence: 8
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Mind Research Network, Albuquerque, NM, USA
– sequence: 9
  givenname: Yu-Ping
  orcidid: 0000-0001-9340-5864
  surname: Wang
  fullname: Wang, Yu-Ping
  email: wyp@tulane.edu
  organization: Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31796393$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r2zAYxkXpaNOs98GgGHbZxak-LMu6FNqsXQMJha2D3sRrRU5VHCmT7EL--8okC1sPOwlJv-d5P54zdOy8Mwh9InhCCJaXj4vZhGIiJ1RygaU4QiPCeZVTXjwdoxGmosoxLukpOovxBWNScCxP0CkjQpZMshH6uejbzub3240JqwCb52xuIDjrVvkNRLPMbgJYl931TnfWO2izqXfOpMur7bbZdXrZRhuzxDSLH7PsG3TwEX1ooI3mfH-O0a-728fpfT5_-D6bXs9zXRRFl3ModI15ZYASrJsadCUoIWC4ZBSY4E1BpaxrUS9rLXA9TCh1tUwsLxgwNkZXO99NX6_NUhvXBWjVJtg1hK3yYNW_P84-q5V_VYKJUiaPMfq6Nwj-d29ip9Y2atO24Izvo6KMkrIkjNOEfnmHvvg-pOkHSgpJMC0Hw4u_Ozq08mffCcA7QAcfYzDNASFYDZGqFKkaIlX7SJOkfCfRtoMhjDSTbf8n_LwTWmPMoU4lSUXTht8AJ1at2w
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TAI_2024_3450658
crossref_primary_10_3389_fnagi_2022_893250
crossref_primary_10_1109_TMI_2022_3161828
crossref_primary_10_1016_j_jocs_2022_101905
crossref_primary_10_1109_ACCESS_2023_3276989
crossref_primary_10_1002_hbm_25410
crossref_primary_10_1016_j_compbiomed_2024_108069
crossref_primary_10_1016_j_sigpro_2024_109538
crossref_primary_10_1109_LSP_2020_3023587
crossref_primary_10_3390_rs12203456
crossref_primary_10_15212_RADSCI_2023_0008
crossref_primary_10_1109_TETCI_2024_3386612
crossref_primary_10_1109_TMI_2024_3412399
crossref_primary_10_3390_diagnostics12112632
crossref_primary_10_1016_j_metrad_2023_100046
crossref_primary_10_1109_TBME_2021_3122813
crossref_primary_10_3390_brainsci14080738
crossref_primary_10_1002_hbm_26218
crossref_primary_10_1016_j_compbiomed_2024_108051
crossref_primary_10_1016_j_media_2024_103144
crossref_primary_10_1016_j_brainresbull_2024_111177
crossref_primary_10_1109_TNSE_2023_3273184
crossref_primary_10_32604_iasc_2022_026346
crossref_primary_10_1038_s44184_023_00050_x
crossref_primary_10_1109_TBME_2020_3022335
crossref_primary_10_1109_TBME_2021_3127173
crossref_primary_10_1109_TCYB_2023_3344641
crossref_primary_10_3390_machines12080574
crossref_primary_10_1016_j_eng_2024_04_017
crossref_primary_10_1109_TMI_2021_3110829
crossref_primary_10_3389_fnagi_2023_1052783
crossref_primary_10_1016_j_eswa_2022_119389
crossref_primary_10_1109_TMI_2023_3325261
crossref_primary_10_1109_TPAMI_2024_3524377
crossref_primary_10_1016_j_cmpb_2024_108479
crossref_primary_10_1109_TNSRE_2023_3333952
crossref_primary_10_1109_TPAMI_2020_3039374
crossref_primary_10_3389_fmed_2024_1496573
crossref_primary_10_1088_1741_2552_acb088
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1109_JBHI_2022_3220545
crossref_primary_10_1109_TIP_2023_3307975
crossref_primary_10_1109_TCBB_2021_3137498
crossref_primary_10_3389_fnins_2023_1174080
Cites_doi 10.1109/TMM.2014.2298216
10.3389/neuro.09.017.2009
10.1371/journal.pone.0068910
10.1093/biostatistics/kxm045
10.1016/j.neuroimage.2011.05.055
10.1109/TAFFC.2016.2628787
10.1016/j.media.2016.03.003
10.1016/j.neuroimage.2011.10.015
10.1016/j.neuron.2014.09.007
10.1016/j.neuroimage.2019.01.069
10.1007/s11682-018-9899-8
10.1016/j.neuroimage.2014.06.077
10.1109/JBHI.2017.2732287
10.1098/rstb.2005.1634
10.1016/j.bpsc.2015.12.005
10.3389/fnhum.2010.00192
10.1214/aos/1176344136
10.1016/j.neuroimage.2005.07.036
10.1093/cercor/bhr269
10.1523/JNEUROSCI.3127-11.2011
10.1016/j.media.2018.11.006
10.1016/j.neuroimage.2008.02.036
10.1109/TIP.2012.2199502
10.1016/j.euroneuro.2010.03.008
10.1109/TBME.2013.2284195
10.1016/j.neuron.2014.10.015
10.1093/bioinformatics/btw485
10.1002/hbm.22864
10.1038/nrn2575
10.1016/j.neubiorev.2016.08.035
10.1109/TMI.2019.2928790
10.1038/s41467-018-04920-3
10.3389/fninf.2018.00025
10.1038/jcbfm.1993.4
10.1006/nimg.2001.0978
10.1098/rsta.2009.0082
10.1073/pnas.1113148109
10.1016/j.neuroimage.2013.07.064
10.1016/j.bandc.2008.04.010
10.1007/s11682-014-9292-1
10.1093/bioinformatics/bty911
10.1016/j.tics.2012.03.008
10.1109/TMI.2014.2340816
10.1080/87565640701190841
10.2307/1932409
10.1109/TITB.2008.923773
10.1109/TMI.2017.2715285
10.1002/hbm.22373
10.17791/jcs.2011.12.2.151
10.1073/pnas.1019641108
10.1111/j.1749-6632.2010.05888.x
10.1016/j.neuroimage.2014.04.009
10.1093/cercor/2.6.435-a
10.1126/science.1948051
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2019.2957097
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1758
ExternalDocumentID PMC7376954
31796393
10_1109_TMI_2019_2957097
8918259
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NSF
  grantid: 1539067
  funderid: 10.13039/501100008982
– fundername: NIH
  grantid: R01GM109068; R01MH104680; R01MH107354; R01AR059781; R01EB006841; R01EB005846; R01MH103220; R01MH116782; P20GM103472
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB005846
– fundername: NIAMS NIH HHS
  grantid: R01 AR059781
– fundername: NIMH NIH HHS
  grantid: R01 MH118695
– fundername: NIGMS NIH HHS
  grantid: P20 GM103472
– fundername: NIMH NIH HHS
  grantid: R01 MH104680
– fundername: NIMH NIH HHS
  grantid: R01 MH116782
– fundername: NIGMS NIH HHS
  grantid: R01 GM109068
– fundername: NIGMS NIH HHS
  grantid: P20 GM130447
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIMH NIH HHS
  grantid: R01 MH121101
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c444t-5a4cb058ea210cfbac87211ae5932a375f4299bb7bdbc70b57099c8d0cf543a33
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:04:19 EDT 2025
Fri Jul 11 16:44:24 EDT 2025
Mon Jun 30 06:37:26 EDT 2025
Thu Apr 03 07:03:35 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Tue Jul 01 03:16:03 EDT 2025
Wed Aug 27 02:30:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-5a4cb058ea210cfbac87211ae5932a375f4299bb7bdbc70b57099c8d0cf543a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3326-2093
0000-0002-5053-8306
0000-0001-7108-8378
0000-0001-9340-5864
0000-0002-8916-3679
0000-0003-2486-747X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7376954
PMID 31796393
PQID 2397910264
PQPubID 85460
PageCount 13
ParticipantIDs pubmed_primary_31796393
crossref_primary_10_1109_TMI_2019_2957097
crossref_citationtrail_10_1109_TMI_2019_2957097
proquest_miscellaneous_2321661352
proquest_journals_2397910264
ieee_primary_8918259
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
wilkinson (ref35) 2006
berge (ref28) 1976
ref51
ref50
zhou (ref41) 2007
ref46
ref48
ref47
ref42
ref44
ref43
ref49
çetin (ref33) 2014; 97
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
grant (ref45) 2013
References_xml – ident: ref36
  doi: 10.1109/TMM.2014.2298216
– ident: ref9
  doi: 10.3389/neuro.09.017.2009
– ident: ref48
  doi: 10.1371/journal.pone.0068910
– ident: ref17
  doi: 10.1093/biostatistics/kxm045
– ident: ref32
  doi: 10.1016/j.neuroimage.2011.05.055
– ident: ref37
  doi: 10.1109/TAFFC.2016.2628787
– ident: ref26
  doi: 10.1016/j.media.2016.03.003
– ident: ref15
  doi: 10.1016/j.neuroimage.2011.10.015
– ident: ref3
  doi: 10.1016/j.neuron.2014.09.007
– ident: ref16
  doi: 10.1016/j.neuroimage.2019.01.069
– ident: ref39
  doi: 10.1007/s11682-018-9899-8
– ident: ref57
  doi: 10.1016/j.neuroimage.2014.06.077
– ident: ref38
  doi: 10.1109/JBHI.2017.2732287
– ident: ref19
  doi: 10.1098/rstb.2005.1634
– ident: ref30
  doi: 10.1016/j.bpsc.2015.12.005
– ident: ref44
  doi: 10.3389/fnhum.2010.00192
– ident: ref46
  doi: 10.1214/aos/1176344136
– ident: ref49
  doi: 10.1016/j.neuroimage.2005.07.036
– ident: ref5
  doi: 10.1093/cercor/bhr269
– ident: ref22
  doi: 10.1523/JNEUROSCI.3127-11.2011
– ident: ref27
  doi: 10.1016/j.media.2018.11.006
– ident: ref51
  doi: 10.1016/j.neuroimage.2008.02.036
– ident: ref40
  doi: 10.1109/TIP.2012.2199502
– ident: ref10
  doi: 10.1016/j.euroneuro.2010.03.008
– ident: ref11
  doi: 10.1109/TBME.2013.2284195
– ident: ref7
  doi: 10.1016/j.neuron.2014.10.015
– ident: ref31
  doi: 10.1093/bioinformatics/btw485
– ident: ref52
  doi: 10.1002/hbm.22864
– ident: ref13
  doi: 10.1038/nrn2575
– ident: ref2
  doi: 10.1016/j.neubiorev.2016.08.035
– ident: ref58
  doi: 10.1109/TMI.2019.2928790
– ident: ref8
  doi: 10.1038/s41467-018-04920-3
– ident: ref25
  doi: 10.3389/fninf.2018.00025
– year: 2013
  ident: ref45
  publication-title: CVX Matlab software for disciplined convex programming version 2 0 beta
– ident: ref18
  doi: 10.1038/jcbfm.1993.4
– ident: ref42
  doi: 10.1006/nimg.2001.0978
– ident: ref23
  doi: 10.1098/rsta.2009.0082
– ident: ref14
  doi: 10.1073/pnas.1113148109
– ident: ref34
  doi: 10.1016/j.neuroimage.2013.07.064
– ident: ref50
  doi: 10.1016/j.bandc.2008.04.010
– ident: ref43
  doi: 10.1007/s11682-014-9292-1
– ident: ref24
  doi: 10.1093/bioinformatics/bty911
– ident: ref20
  doi: 10.1016/j.tics.2012.03.008
– ident: ref4
  doi: 10.1109/TMI.2014.2340816
– ident: ref55
  doi: 10.1080/87565640701190841
– ident: ref47
  doi: 10.2307/1932409
– ident: ref29
  doi: 10.1109/TITB.2008.923773
– ident: ref56
  doi: 10.1109/TMI.2017.2715285
– ident: ref12
  doi: 10.1002/hbm.22373
– ident: ref54
  doi: 10.17791/jcs.2011.12.2.151
– year: 2006
  ident: ref35
  publication-title: Wide Range Achievement Test 4 (WRAT4)
– ident: ref21
  doi: 10.1073/pnas.1019641108
– ident: ref6
  doi: 10.1111/j.1749-6632.2010.05888.x
– volume: 97
  start-page: 117
  year: 2014
  ident: ref33
  article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.009
– ident: ref53
  doi: 10.1093/cercor/2.6.435-a
– start-page: 1601
  year: 2007
  ident: ref41
  article-title: Learning with hypergraphs: Clustering, classification, and embedding
  publication-title: Proc Adv Neural Inf Process Syst
– year: 1976
  ident: ref28
  publication-title: Graphs Hypergraphs
– ident: ref1
  doi: 10.1126/science.1948051
SSID ssj0014509
Score 2.5798135
Snippet Recently, a hypergraph constructed from functional magnetic resonance imaging (fMRI) was utilized to explore brain functional connectivity networks (FCNs) for...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1746
SubjectTerms Brain
Brain - diagnostic imaging
Brain mapping
Classification
Cognitive ability
Cohort Studies
Connectivity analysis
Construction methods
Correlation
Data fusion
Feature extraction
functional connectivity
Functional magnetic resonance imaging
functional MRI
Graph theory
Graphs
Humans
hypergraph
Learning
learning ability
Learning systems
Magnetic Resonance Imaging
Methods
Neural networks
Neurodegenerative diseases
Neuroimaging
Similarity
similarity matrix
Sparse matrices
Time series analysis
Topology
Title Multi-Hypergraph Learning-Based Brain Functional Connectivity Analysis in fMRI Data
URI https://ieeexplore.ieee.org/document/8918259
https://www.ncbi.nlm.nih.gov/pubmed/31796393
https://www.proquest.com/docview/2397910264
https://www.proquest.com/docview/2321661352
https://pubmed.ncbi.nlm.nih.gov/PMC7376954
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB3BHip6AAoUAtvKlbggkd3g2HF8BNrVUml7KCBxi2zHaREoiyB74esZ20m0IFT1FsmTyPHYnjee8RuAQ0SgpswSFWf8xMbM8jzWXPssCzQPptRlYPv8lU2v2c8bfrMCx_1dGGutTz6zI_foY_nl3CzcUdk4l4iGuVyFVXTcwl2tPmLAeEjnoI4xNsloF5JM5PhqduFyuOSISi48vdOSCfI1Vd6Dl2-zJJfMzmQDZl2HQ7bJ3WjR6JF5fsPl-L9_tAnrLf4kp2HCfIIVW2_BxyVWwi34MGvj7dtw6e_nxlN0Vh89tTVp-Vj_xGdo_kpy5ipMkAkax3CmSHzijAklKUjHeEJQppr9viDfVaN24Hry4-p8GrdlGGLDGGtirpjRCc-tQvfQVFqZ3LmNynLEfioVvHI2TWuhS21Eot0YS5OXKMtZqtL0MwzqeW33gNDcVqKqdCakZPQkU6xMLM6WSlU0MVJEMO40U5iWo9yVyrgvvK-SyAJ1WThdFq0uIzjq33gI_Bz_kN12Gujl2sGPYNgpv2gX8FNBXbwTwVfGIvjWN-PSc_EUVdv5wsngLyAc4jSC3TBX-m8jLMOtTaYRiFezqBdwtN6vW-rbv57eW-CeLznbf7-3B7BGncvvcy6HMGgeF_YL4qJGf_UL4gWwWwoW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VVoJyoNACDRQwEhckspt17Dg-0pbVLjQ9wFbqLbIdB6pWWdRmL3w9YzuJtlWFuEXyJHI8Y8-zZ_wG4AMiUFNliYozPrExszyPNdc-ywLdg6l0Fdg-T7PZGft6zs834NNwF8Za65PP7Mg9-lh-tTQrd1Q2ziWiYS4fwBb6fT4Jt7WGmAHjIaGDOs7YJKN9UDKR40Uxd1lcckQlF57gac0J-aoq9wHMu3mSa45nugNF3-WQb3I5WrV6ZP7cYXP83396Ck86BEo-B5N5Bhu22YXHa7yEu_Cw6CLue_DD39CNZ7hdvfbk1qRjZP0ZH6IDrMihqzFBpugew6ki8akzJhSlID3nCUGZuvg-J8eqVc_hbPplcTSLu0IMsWGMtTFXzOiE51bhBtHUWpncbRyV5Yj-VCp47bya1kJX2ohEuzGWJq9QlrNUpekL2GyWjd0HQnNbi7rWmZCS0UmmWJVYtJda1TQxUkQw7jVTmo6l3BXLuCr9biWRJeqydLosO11G8HF443dg6PiH7J7TwCDXDX4EB73yy24K35TURTwRfmUsgvdDM04-F1FRjV2unAz-AgIiTiN4GWxl-DYCM1zcZBqBuGVFg4Aj9r7d0lz88gTfAld9ydmr-3v7Dh7NFsVJeTI__fYatqk7APAZmAew2V6v7BtESa1-6yfHX64uDV8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Hypergraph+Learning-Based+Brain+Functional+Connectivity+Analysis+in+fMRI+Data&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Xiao%2C+Li&rft.au=Wang%2C+Junqi&rft.au=Kassani%2C+Peyman+H&rft.au=Zhang%2C+Yipu&rft.date=2020-05-01&rft.eissn=1558-254X&rft.volume=39&rft.issue=5&rft.spage=1746&rft_id=info:doi/10.1109%2FTMI.2019.2957097&rft_id=info%3Apmid%2F31796393&rft.externalDocID=31796393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon