RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader

Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 45; no. 2; pp. 631 - 642
Main Authors Kriner, Michelle A, Groisman, Eduardo A
Format Journal Article
LanguageEnglish
Published England Oxford University Press 25.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization (rut) site on a nascent RNA by Rho's primary binding surface. However, it is presently unclear what factors determine the location of transcription termination, how RNA secondary structures influence this process and whether mechanistic differences distinguish constitutive from regulated Rho-dependent terminators. We previously demonstrated that the 5' leader mRNA of the Salmonella corA gene can adopt two mutually exclusive conformations that dictate accessibility of a rut site to Rho. We now report that the corA leader also controls two subsequent steps of Rho-dependent termination. First, the RNA conformation that presents an accessible rut site promotes pausing of RNA polymerase (RNAP) at a single Rho-dependent termination site over 100 nt downstream. Second, an additional RNA stem-loop promotes Rho activity and controls the location at which Rho-dependent termination occurs, despite having no effect on initial Rho binding to the corA leader. Thus, the multi-step nature of Rho-dependent termination may facilitate regulation of a given coding region by multiple cytoplasmic signals.
AbstractList Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization (rut) site on a nascent RNA by Rho's primary binding surface. However, it is presently unclear what factors determine the location of transcription termination, how RNA secondary structures influence this process and whether mechanistic differences distinguish constitutive from regulated Rho-dependent terminators. We previously demonstrated that the 5' leader mRNA of the Salmonella corA gene can adopt two mutually exclusive conformations that dictate accessibility of a rut site to Rho. We now report that the corA leader also controls two subsequent steps of Rho-dependent termination. First, the RNA conformation that presents an accessible rut site promotes pausing of RNA polymerase (RNAP) at a single Rho-dependent termination site over 100 nt downstream. Second, an additional RNA stem-loop promotes Rho activity and controls the location at which Rho-dependent termination occurs, despite having no effect on initial Rho binding to the corA leader. Thus, the multi-step nature of Rho-dependent termination may facilitate regulation of a given coding region by multiple cytoplasmic signals.
Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization ( rut ) site on a nascent RNA by Rho's primary binding surface. However, it is presently unclear what factors determine the location of transcription termination, how RNA secondary structures influence this process and whether mechanistic differences distinguish constitutive from regulated Rho-dependent terminators. We previously demonstrated that the 5′ leader mRNA of the Salmonella corA gene can adopt two mutually exclusive conformations that dictate accessibility of a rut site to Rho. We now report that the corA leader also controls two subsequent steps of Rho-dependent termination. First, the RNA conformation that presents an accessible rut site promotes pausing of RNA polymerase (RNAP) at a single Rho-dependent termination site over 100 nt downstream. Second, an additional RNA stem-loop promotes Rho activity and controls the location at which Rho-dependent termination occurs, despite having no effect on initial Rho binding to the corA leader. Thus, the multi-step nature of Rho-dependent termination may facilitate regulation of a given coding region by multiple cytoplasmic signals.
Author Groisman, Eduardo A
Kriner, Michelle A
Author_xml – sequence: 1
  givenname: Michelle A
  surname: Kriner
  fullname: Kriner, Michelle A
  organization: Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
– sequence: 2
  givenname: Eduardo A
  surname: Groisman
  fullname: Groisman, Eduardo A
  email: eduardo.groisman@yale.edu
  organization: Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28123036$$D View this record in MEDLINE/PubMed
BookMark eNpVUV1rFTEUDFKxt9UXf4DkUYS1ySZZkxehlPoBRaHoczg3e3JvdDdZk6wX_72ptxZ9Ooczw8wc5oycxBSRkOecvebMiIsI-WL3_aC1eUQ2XAx9J83Qn5ANE0x1nEl9Ss5K-cYYl1zJJ-S017wXTAwbcrj9dEkLuhRHyL9oqXl1dc1YaMbdOkFFWvcZsSG4FJo8vd2nbsQF44ix0pohFpfDUkOKtGKeQ4Q_-yHUfYgU6BZcuweY6HxnNiGMmJ-Sxx6mgs_u5zn5-u76y9WH7ubz-49Xlzedk1LWTunRe2DemZZXC3SjEca5rdYoNGNa-S0OatTKgWemV2pkRnvZhpIeAMQ5eXvUXdbtjKNrmTNMdslhbv_aBMH-j8Swt7v00yrB5RszNIGX9wI5_VixVDuH4nCaIGJai-V66HvdS24a9dWR6nIqJaN_sOHM3jVlW1P22FQjv_g32AP1bzXiN9oNlgM
CitedBy_id crossref_primary_10_1016_j_copbio_2018_08_007
crossref_primary_10_1007_s00239_021_10045_x
crossref_primary_10_1371_journal_pone_0291736
crossref_primary_10_7717_peerj_16962
crossref_primary_10_1080_21541264_2021_1991773
crossref_primary_10_1128_MMBR_00019_19
crossref_primary_10_1007_s00253_021_11326_7
crossref_primary_10_1371_journal_ppat_1008708
crossref_primary_10_1007_s00253_020_10430_4
crossref_primary_10_1093_nar_gkz036
crossref_primary_10_1146_annurev_micro_020518_115606
crossref_primary_10_1093_nar_gkae248
crossref_primary_10_1016_j_bbagrm_2020_194546
crossref_primary_10_1007_s10295_019_02160_y
crossref_primary_10_3382_ps_pez119
Cites_doi 10.1016/j.cell.2009.08.046
10.1074/jbc.M102444200
10.1016/j.jmb.2015.10.020
10.1101/gad.240192.114
10.1073/pnas.1515383112
10.1016/S0092-8674(03)00512-9
10.1016/S0076-6879(96)74029-6
10.1016/0022-2836(89)90288-X
10.1073/pnas.1319193111
10.1016/S1097-2765(01)00243-X
10.1016/j.ymeth.2008.10.006
10.1016/j.jmb.2012.07.027
10.1016/S0021-9258(19)83844-9
10.1021/bi700493m
10.1073/pnas.0903846106
10.1073/pnas.85.8.2538
10.1111/j.1365-2958.2010.07131.x
10.1038/nature08669
10.1016/j.molcel.2008.06.019
10.1042/BST0341062
10.1146/annurev-biochem-060815-014844
10.1016/S0021-9258(17)44767-3
10.1101/gad.196741.112
10.1038/nsb0598-393
10.1016/j.mib.2012.12.003
10.1021/bi972912s
10.1093/nar/gku690
10.1016/j.molcel.2008.12.021
10.1126/science.1251871
10.1093/nar/gkv085
10.1021/bi9729110
10.1016/j.tibs.2016.05.012
10.1073/pnas.1112211109
10.1073/pnas.83.14.5189
10.1016/S0022-2836(83)80284-8
10.1126/science.1253458
10.1016/S0021-9258(17)44704-1
10.1128/JB.182.14.3981-3988.2000
10.1074/jbc.M113.521393
ContentType Journal Article
Copyright The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
Copyright_xml – notice: The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/nar/gkw889
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 642
ExternalDocumentID 10_1093_nar_gkw889
28123036
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI049561
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFRAH
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CAG
CGR
CIDKT
CS3
CUY
CVF
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
ESTFP
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
M~E
NPM
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROX
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
AFPKN
CITATION
7X8
5PM
ID FETCH-LOGICAL-c444t-58dffa0fc923083ecd939ccb88e380085fbe65d85caf09255d098f45d054faaa3
IEDL.DBID RPM
ISSN 0305-1048
IngestDate Tue Sep 17 20:58:46 EDT 2024
Fri Oct 25 06:30:37 EDT 2024
Fri Aug 23 03:39:02 EDT 2024
Wed Oct 16 00:59:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-58dffa0fc923083ecd939ccb88e380085fbe65d85caf09255d098f45d054faaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314796/
PMID 28123036
PQID 1862282419
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5314796
proquest_miscellaneous_1862282419
crossref_primary_10_1093_nar_gkw889
pubmed_primary_28123036
PublicationCentury 2000
PublicationDate 2017-Jan-25
PublicationDateYYYYMMDD 2017-01-25
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan-25
  day: 25
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 20374491 - Mol Microbiol. 2010 May;76(3):559-75
24778260 - Proc Natl Acad Sci U S A. 2014 May 13;111(19):E1999-2007
17655325 - Biochemistry. 2007 Aug 21;46(33):9366-79
20075920 - Nature. 2010 Jan 14;463(7278):245-9
11369775 - J Biol Chem. 2001 Jul 27;276(30):28380-7
6345791 - J Mol Biol. 1983 Jun 5;166(4):557-80
9698366 - Biochemistry. 1998 Aug 11;37(32):11202-14
24926020 - Science. 2014 Jun 13;344(6189):1285-9
19914169 - Cell. 2009 Nov 13;139(4):770-9
2451828 - Proc Natl Acad Sci U S A. 1988 Apr;85(8):2538-42
9698367 - Biochemistry. 1998 Aug 11;37(32):11215-22
26630006 - Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6835-43
12859904 - Cell. 2003 Jul 11;114(1):135-46
6223930 - J Biol Chem. 1983 Aug 10;258(15):9565-74
2479756 - J Mol Biol. 1989 Nov 5;210(1):23-37
27325240 - Trends Biochem Sci. 2016 Aug;41(8):690-9
9587002 - Nat Struct Biol. 1998 May;5(5):393-9
19706412 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15406-11
17073751 - Biochem Soc Trans. 2006 Dec;34(Pt 6):1062-6
22885804 - J Mol Biol. 2012 Nov 9;423(5):664-76
23207917 - Genes Dev. 2012 Dec 1;26(23):2621-33
11389846 - Mol Cell. 2001 May;7(5):993-1001
24789973 - Science. 2014 May 30;344(6187):1042-7
6175630 - J Biol Chem. 1982 May 25;257(10):5760-6
23347833 - Curr Opin Microbiol. 2013 Apr;16(2):118-24
18948199 - Methods. 2009 Jan;47(1):37-43
24888591 - Genes Dev. 2014 Jun 1;28(11):1239-51
22431636 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5376-81
26523680 - J Mol Biol. 2015 Dec 4;427(24):3834-49
24275665 - J Biol Chem. 2014 Jan 10;289(2):1151-63
8902817 - Methods Enzymol. 1996;274:334-53
27023849 - Annu Rev Biochem. 2016 Jun 2;85:319-47
18775328 - Mol Cell. 2008 Sep 5;31(5):683-94
2145282 - J Biol Chem. 1990 Oct 25;265(30):18408-13
16554712 - J Microbiol. 2006 Feb;44(1):11-22
3523484 - Proc Natl Acad Sci U S A. 1986 Jul;83(14):5189-93
10869076 - J Bacteriol. 2000 Jul;182(14):3981-8
25662222 - Nucleic Acids Res. 2015 Feb 27;43(4):2367-77
19150431 - Mol Cell. 2009 Jan 16;33(1):97-108
25081210 - Nucleic Acids Res. 2014 Sep;42(15):9677-90
Morgan (2017012501550631000_45.2.631.9) 1983; 258
2017012501550631000_45.2.631.31
2017012501550631000_45.2.631.30
2017012501550631000_45.2.631.11
2017012501550631000_45.2.631.33
2017012501550631000_45.2.631.32
2017012501550631000_45.2.631.17
2017012501550631000_45.2.631.39
2017012501550631000_45.2.631.16
2017012501550631000_45.2.631.38
2017012501550631000_45.2.631.19
2017012501550631000_45.2.631.35
2017012501550631000_45.2.631.12
2017012501550631000_45.2.631.34
2017012501550631000_45.2.631.15
2017012501550631000_45.2.631.37
2017012501550631000_45.2.631.14
2017012501550631000_45.2.631.36
Banerjee (2017012501550631000_45.2.631.18) 2006; 44
2017012501550631000_45.2.631.8
2017012501550631000_45.2.631.7
Steinmetz (2017012501550631000_45.2.631.13) 1990; 265
Richardson (2017012501550631000_45.2.631.10) 1982; 257
2017012501550631000_45.2.631.20
2017012501550631000_45.2.631.2
2017012501550631000_45.2.631.22
2017012501550631000_45.2.631.1
2017012501550631000_45.2.631.21
2017012501550631000_45.2.631.4
2017012501550631000_45.2.631.3
2017012501550631000_45.2.631.6
2017012501550631000_45.2.631.40
2017012501550631000_45.2.631.5
2017012501550631000_45.2.631.28
2017012501550631000_45.2.631.27
2017012501550631000_45.2.631.29
2017012501550631000_45.2.631.24
2017012501550631000_45.2.631.23
2017012501550631000_45.2.631.26
2017012501550631000_45.2.631.25
References_xml – ident: 2017012501550631000_45.2.631.40
  doi: 10.1016/j.cell.2009.08.046
– ident: 2017012501550631000_45.2.631.11
  doi: 10.1074/jbc.M102444200
– ident: 2017012501550631000_45.2.631.3
  doi: 10.1016/j.jmb.2015.10.020
– ident: 2017012501550631000_45.2.631.24
  doi: 10.1101/gad.240192.114
– ident: 2017012501550631000_45.2.631.26
  doi: 10.1073/pnas.1515383112
– ident: 2017012501550631000_45.2.631.7
  doi: 10.1016/S0092-8674(03)00512-9
– ident: 2017012501550631000_45.2.631.31
  doi: 10.1016/S0076-6879(96)74029-6
– ident: 2017012501550631000_45.2.631.37
  doi: 10.1016/0022-2836(89)90288-X
– ident: 2017012501550631000_45.2.631.20
  doi: 10.1073/pnas.1319193111
– ident: 2017012501550631000_45.2.631.35
  doi: 10.1016/S1097-2765(01)00243-X
– ident: 2017012501550631000_45.2.631.30
  doi: 10.1016/j.ymeth.2008.10.006
– ident: 2017012501550631000_45.2.631.8
  doi: 10.1016/j.jmb.2012.07.027
– volume: 257
  start-page: 5760
  year: 1982
  ident: 2017012501550631000_45.2.631.10
  article-title: Activation of rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid-binding sites
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)83844-9
  contributor:
    fullname: Richardson
– ident: 2017012501550631000_45.2.631.15
  doi: 10.1021/bi700493m
– ident: 2017012501550631000_45.2.631.1
  doi: 10.1073/pnas.0903846106
– ident: 2017012501550631000_45.2.631.4
  doi: 10.1073/pnas.85.8.2538
– ident: 2017012501550631000_45.2.631.36
  doi: 10.1111/j.1365-2958.2010.07131.x
– ident: 2017012501550631000_45.2.631.16
  doi: 10.1038/nature08669
– ident: 2017012501550631000_45.2.631.21
  doi: 10.1016/j.molcel.2008.06.019
– ident: 2017012501550631000_45.2.631.19
  doi: 10.1042/BST0341062
– ident: 2017012501550631000_45.2.631.6
  doi: 10.1146/annurev-biochem-060815-014844
– volume: 265
  start-page: 18408
  year: 1990
  ident: 2017012501550631000_45.2.631.13
  article-title: A short intervening structure can block rho factor helicase action at a distance
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)44767-3
  contributor:
    fullname: Steinmetz
– ident: 2017012501550631000_45.2.631.2
  doi: 10.1101/gad.196741.112
– ident: 2017012501550631000_45.2.631.5
  doi: 10.1038/nsb0598-393
– ident: 2017012501550631000_45.2.631.17
  doi: 10.1016/j.mib.2012.12.003
– ident: 2017012501550631000_45.2.631.14
  doi: 10.1021/bi972912s
– ident: 2017012501550631000_45.2.631.27
  doi: 10.1093/nar/gku690
– ident: 2017012501550631000_45.2.631.39
  doi: 10.1016/j.molcel.2008.12.021
– ident: 2017012501550631000_45.2.631.32
  doi: 10.1126/science.1251871
– ident: 2017012501550631000_45.2.631.12
  doi: 10.1093/nar/gkv085
– ident: 2017012501550631000_45.2.631.38
  doi: 10.1021/bi9729110
– ident: 2017012501550631000_45.2.631.22
  doi: 10.1016/j.tibs.2016.05.012
– ident: 2017012501550631000_45.2.631.25
  doi: 10.1073/pnas.1112211109
– volume: 44
  start-page: 11
  year: 2006
  ident: 2017012501550631000_45.2.631.18
  article-title: Rho-dependent transcription termination: more questions than answers
  publication-title: J. Microbiol.
  contributor:
    fullname: Banerjee
– ident: 2017012501550631000_45.2.631.28
  doi: 10.1073/pnas.83.14.5189
– ident: 2017012501550631000_45.2.631.29
  doi: 10.1016/S0022-2836(83)80284-8
– ident: 2017012501550631000_45.2.631.33
  doi: 10.1126/science.1253458
– volume: 258
  start-page: 9565
  year: 1983
  ident: 2017012501550631000_45.2.631.9
  article-title: Rho-dependent termination of transcription. II. Kinetics of mRNA elongation during transcription from the bacteriophage lambda PR promoter
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)44704-1
  contributor:
    fullname: Morgan
– ident: 2017012501550631000_45.2.631.23
  doi: 10.1128/JB.182.14.3981-3988.2000
– ident: 2017012501550631000_45.2.631.34
  doi: 10.1074/jbc.M113.521393
SSID ssj0014154
Score 2.3603184
Snippet Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 631
SubjectTerms Bacterial Proteins - metabolism
Base Sequence
Binding Sites
Cation Transport Proteins - metabolism
DNA-Directed RNA Polymerases - metabolism
Gene Expression Regulation, Bacterial
Gene regulation, Chromatin and Epigenetics
Nucleic Acid Conformation
Protein Binding
Rho Factor - metabolism
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA, Messenger - metabolism
Terminator Regions, Genetic
Title RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader
URI https://www.ncbi.nlm.nih.gov/pubmed/28123036
https://search.proquest.com/docview/1862282419
https://pubmed.ncbi.nlm.nih.gov/PMC5314796
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PSxwxFA7qpb1I1baubZeIpbc4v5LZzHFZFBGUIgrehvzUxd3ssjsi_vd9SSbitreeZiCZmZDvkfe-5M33EPqpG1N7N0-YMiWh4FIJt1YQJW3JCws-3_j9jqvr-uKOXt6z-y3E0r8wIWlfyempm81P3fQx5FYu5ypLeWLZ76sJ2A0dNXW2jbbBQBNF748OwCNFzaggsUl50iRtqsyJVfbw9MK51wqFoZR-_d50SP9EmX8nS77zPuef0G4fNuJxHN4e2jJuHx2MHVDm-Sv-hUMiZ9gh30cfJqmI2wF6ubke47UnvVqsXnFUi30Gio1XsQi9wR2gaaDFLNd4YfHN44Kkyrgd7rwrSwsL7jNnwr3fwJ06LLCMes8wurn_2CzkRn9Gd-dnt5ML0tdaIIpS2hHGNUCUWwUBH0RlRummapSSnJuK-7jMSlMzzZkSNm-Ah-i84ZbChVErhKi-oB23cOYQYaEEHdVUeyEgKpXlUvHaKKuNZFrlxQCdpAlvl1FSo41H4VULCLURoQE6Tli0MGf-GEM4s3hetwWQMCCKtIA-XyM2b-9JoA7QaAO1tw5eTXuzBYwsqGr3RnX0309-Qx9L7_PzgpTsO9oBRM0PiFg6OQQ7zc-Gge8Pg7X-Aaui8yw
link.rule.ids 230,315,730,783,787,867,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4a4zAubGz86GBgBOKW5kft1DlW1aYCa4WmDe0W2Y7Nqq1u1aaaxl_PcxxPdDvBKZHsJE4-2-89-8v3AD5Xhc6dmY-Y0llE0aRG3BgRKWkynhq0-dqtd4wn-eiCfrtkl1vAwr8wDWlfyWnX3sy6dnrVcCsXMxUHnlj8YzzEfkP7RR4_gac4XhMagvR28wBtkleNakQ2KQ-qpEUvtmIZ_7q-5dyphWJjMjeDb5qkR37mQ7rkX_bnZBd-hpZ72sl1d13Lrvr9QNTxn19tD563HikZ-OIXsKXtPhwMLEbjszvyhTQc0WbxfR92hiE_3AHcnk0GZOXi6Uos74gXol1j9E6WPr-9JjV2FI0lerEic0POruZRSLpbk9pZyTBnkZaU05y7teGpJYJILyWNrZu5h900tOuXcHFyfD4cRW0ah0hRSuuI8QrRT4xCXxIdPq2qolcoJTnXCB66fEbqnFWcKWGSAkOcKim4oXhg1Agheq9g286tfgNEKEH7Oa2cxhCVynCpeK6VqbRklUrSDnwKSJYLr9ZR-l32XonQlx76DnwMIJf4zdwOibB6vl6VKcZ3GIPSFOu89qDf3yf0lg70N7rDfQUn1L1ZgiA3gt0tqIf_feUH2Bmdj0_L06-T72_hWeZciySNMvYOthFdfYSOUS3fN8PgD71DE3I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB20KdD20iXp4q4sWvQmazElU0fDrZEuMYKgAYJeBK6NkZg2bBlB-vUdkmIQp7ecJECUROkNOTPkwxuAT6rWlXPzSSl1kVB0qQkzhidSmILlBn2-dusdB9Nq_5h-PylPrpX68qR9KWZ9ez7v29mp51Yu5zKNPLH08GCMdkOHdZUulUnvwj0cs1kVE_VuAwH9UlCO8kKblEVl0nqQWr5K_5xdMOYUQ7FDhZvFt93Sf7HmTcrkNR80eQy_Y-8D9eSsv2lFX_69Iex4q897Ao-6yJSMQpOncEfbXdgbWczK55fkM_FcUb8IvwsPxrFO3B5cHE1HZO3yasVXlyQI0m4wiyerUOdekxYNRuMVvVyThSFHp4skFt9tSeu8ZZy7SEfO8edujXhmCSciSEpj7-buZeeefv0Mjidff433k66cQyIppW1SMoVWkBmJMSUGflqqelBLKRjTCCCGfkboqlSslNxkNaY6KquZoXgoqeGcD57Djl1Y_RIIl5wOK6qc1hAV0jAhWaWlUVqUSmZ5Dz5GNJtlUO1owm77oEH4mwB_Dz5EoBv8Z26nhFu92KybHPM8zEVpjm1eBOCvnhMtpgfDLZO4auAEu7evINBeuLsD9tWt73wP9w-_TJqf36Y_XsPDwkUYWZ4U5RvYQXD1W4yPWvHOj4R_LtYV8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+secondary+structures+regulate+three+steps+of+Rho-dependent+transcription+termination+within+a+bacterial+mRNA+leader&rft.jtitle=Nucleic+acids+research&rft.au=Kriner%2C+Michelle+A.&rft.au=Groisman%2C+Eduardo+A.&rft.date=2017-01-25&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=45&rft.issue=2&rft.spage=631&rft.epage=642&rft_id=info:doi/10.1093%2Fnar%2Fgkw889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkw889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon