RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader
Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition...
Saved in:
Published in | Nucleic acids research Vol. 45; no. 2; pp. 631 - 642 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
25.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization (rut) site on a nascent RNA by Rho's primary binding surface. However, it is presently unclear what factors determine the location of transcription termination, how RNA secondary structures influence this process and whether mechanistic differences distinguish constitutive from regulated Rho-dependent terminators. We previously demonstrated that the 5' leader mRNA of the Salmonella corA gene can adopt two mutually exclusive conformations that dictate accessibility of a rut site to Rho. We now report that the corA leader also controls two subsequent steps of Rho-dependent termination. First, the RNA conformation that presents an accessible rut site promotes pausing of RNA polymerase (RNAP) at a single Rho-dependent termination site over 100 nt downstream. Second, an additional RNA stem-loop promotes Rho activity and controls the location at which Rho-dependent termination occurs, despite having no effect on initial Rho binding to the corA leader. Thus, the multi-step nature of Rho-dependent termination may facilitate regulation of a given coding region by multiple cytoplasmic signals. |
---|---|
AbstractList | Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization (rut) site on a nascent RNA by Rho's primary binding surface. However, it is presently unclear what factors determine the location of transcription termination, how RNA secondary structures influence this process and whether mechanistic differences distinguish constitutive from regulated Rho-dependent terminators. We previously demonstrated that the 5' leader mRNA of the Salmonella corA gene can adopt two mutually exclusive conformations that dictate accessibility of a rut site to Rho. We now report that the corA leader also controls two subsequent steps of Rho-dependent termination. First, the RNA conformation that presents an accessible rut site promotes pausing of RNA polymerase (RNAP) at a single Rho-dependent termination site over 100 nt downstream. Second, an additional RNA stem-loop promotes Rho activity and controls the location at which Rho-dependent termination occurs, despite having no effect on initial Rho binding to the corA leader. Thus, the multi-step nature of Rho-dependent termination may facilitate regulation of a given coding region by multiple cytoplasmic signals. Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can also terminate transcription within leader regions to implement regulatory decisions. Rho-dependent termination requires initial recognition of a Rho utilization ( rut ) site on a nascent RNA by Rho's primary binding surface. However, it is presently unclear what factors determine the location of transcription termination, how RNA secondary structures influence this process and whether mechanistic differences distinguish constitutive from regulated Rho-dependent terminators. We previously demonstrated that the 5′ leader mRNA of the Salmonella corA gene can adopt two mutually exclusive conformations that dictate accessibility of a rut site to Rho. We now report that the corA leader also controls two subsequent steps of Rho-dependent termination. First, the RNA conformation that presents an accessible rut site promotes pausing of RNA polymerase (RNAP) at a single Rho-dependent termination site over 100 nt downstream. Second, an additional RNA stem-loop promotes Rho activity and controls the location at which Rho-dependent termination occurs, despite having no effect on initial Rho binding to the corA leader. Thus, the multi-step nature of Rho-dependent termination may facilitate regulation of a given coding region by multiple cytoplasmic signals. |
Author | Groisman, Eduardo A Kriner, Michelle A |
Author_xml | – sequence: 1 givenname: Michelle A surname: Kriner fullname: Kriner, Michelle A organization: Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA – sequence: 2 givenname: Eduardo A surname: Groisman fullname: Groisman, Eduardo A email: eduardo.groisman@yale.edu organization: Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28123036$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUV1rFTEUDFKxt9UXf4DkUYS1ySZZkxehlPoBRaHoczg3e3JvdDdZk6wX_72ptxZ9Ooczw8wc5oycxBSRkOecvebMiIsI-WL3_aC1eUQ2XAx9J83Qn5ANE0x1nEl9Ss5K-cYYl1zJJ-S017wXTAwbcrj9dEkLuhRHyL9oqXl1dc1YaMbdOkFFWvcZsSG4FJo8vd2nbsQF44ix0pohFpfDUkOKtGKeQ4Q_-yHUfYgU6BZcuweY6HxnNiGMmJ-Sxx6mgs_u5zn5-u76y9WH7ubz-49Xlzedk1LWTunRe2DemZZXC3SjEca5rdYoNGNa-S0OatTKgWemV2pkRnvZhpIeAMQ5eXvUXdbtjKNrmTNMdslhbv_aBMH-j8Swt7v00yrB5RszNIGX9wI5_VixVDuH4nCaIGJai-V66HvdS24a9dWR6nIqJaN_sOHM3jVlW1P22FQjv_g32AP1bzXiN9oNlgM |
CitedBy_id | crossref_primary_10_1016_j_copbio_2018_08_007 crossref_primary_10_1007_s00239_021_10045_x crossref_primary_10_1371_journal_pone_0291736 crossref_primary_10_7717_peerj_16962 crossref_primary_10_1080_21541264_2021_1991773 crossref_primary_10_1128_MMBR_00019_19 crossref_primary_10_1007_s00253_021_11326_7 crossref_primary_10_1371_journal_ppat_1008708 crossref_primary_10_1007_s00253_020_10430_4 crossref_primary_10_1093_nar_gkz036 crossref_primary_10_1146_annurev_micro_020518_115606 crossref_primary_10_1093_nar_gkae248 crossref_primary_10_1016_j_bbagrm_2020_194546 crossref_primary_10_1007_s10295_019_02160_y crossref_primary_10_3382_ps_pez119 |
Cites_doi | 10.1016/j.cell.2009.08.046 10.1074/jbc.M102444200 10.1016/j.jmb.2015.10.020 10.1101/gad.240192.114 10.1073/pnas.1515383112 10.1016/S0092-8674(03)00512-9 10.1016/S0076-6879(96)74029-6 10.1016/0022-2836(89)90288-X 10.1073/pnas.1319193111 10.1016/S1097-2765(01)00243-X 10.1016/j.ymeth.2008.10.006 10.1016/j.jmb.2012.07.027 10.1016/S0021-9258(19)83844-9 10.1021/bi700493m 10.1073/pnas.0903846106 10.1073/pnas.85.8.2538 10.1111/j.1365-2958.2010.07131.x 10.1038/nature08669 10.1016/j.molcel.2008.06.019 10.1042/BST0341062 10.1146/annurev-biochem-060815-014844 10.1016/S0021-9258(17)44767-3 10.1101/gad.196741.112 10.1038/nsb0598-393 10.1016/j.mib.2012.12.003 10.1021/bi972912s 10.1093/nar/gku690 10.1016/j.molcel.2008.12.021 10.1126/science.1251871 10.1093/nar/gkv085 10.1021/bi9729110 10.1016/j.tibs.2016.05.012 10.1073/pnas.1112211109 10.1073/pnas.83.14.5189 10.1016/S0022-2836(83)80284-8 10.1126/science.1253458 10.1016/S0021-9258(17)44704-1 10.1128/JB.182.14.3981-3988.2000 10.1074/jbc.M113.521393 |
ContentType | Journal Article |
Copyright | The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017 |
Copyright_xml | – notice: The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/nar/gkw889 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 642 |
ExternalDocumentID | 10_1093_nar_gkw889 28123036 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI049561 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFRAH AFULF AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL CAG CGR CIDKT CS3 CUY CVF CZ4 DIK DU5 D~K E3Z EBD EBS ECM EIF EJD EMOBN ESTFP F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M49 M~E NPM NU- OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROX ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAYXX AFPKN CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c444t-58dffa0fc923083ecd939ccb88e380085fbe65d85caf09255d098f45d054faaa3 |
IEDL.DBID | RPM |
ISSN | 0305-1048 |
IngestDate | Tue Sep 17 20:58:46 EDT 2024 Fri Oct 25 06:30:37 EDT 2024 Fri Aug 23 03:39:02 EDT 2024 Wed Oct 16 00:59:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-58dffa0fc923083ecd939ccb88e380085fbe65d85caf09255d098f45d054faaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5314796/ |
PMID | 28123036 |
PQID | 1862282419 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5314796 proquest_miscellaneous_1862282419 crossref_primary_10_1093_nar_gkw889 pubmed_primary_28123036 |
PublicationCentury | 2000 |
PublicationDate | 2017-Jan-25 |
PublicationDateYYYYMMDD | 2017-01-25 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-Jan-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 20374491 - Mol Microbiol. 2010 May;76(3):559-75 24778260 - Proc Natl Acad Sci U S A. 2014 May 13;111(19):E1999-2007 17655325 - Biochemistry. 2007 Aug 21;46(33):9366-79 20075920 - Nature. 2010 Jan 14;463(7278):245-9 11369775 - J Biol Chem. 2001 Jul 27;276(30):28380-7 6345791 - J Mol Biol. 1983 Jun 5;166(4):557-80 9698366 - Biochemistry. 1998 Aug 11;37(32):11202-14 24926020 - Science. 2014 Jun 13;344(6189):1285-9 19914169 - Cell. 2009 Nov 13;139(4):770-9 2451828 - Proc Natl Acad Sci U S A. 1988 Apr;85(8):2538-42 9698367 - Biochemistry. 1998 Aug 11;37(32):11215-22 26630006 - Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6835-43 12859904 - Cell. 2003 Jul 11;114(1):135-46 6223930 - J Biol Chem. 1983 Aug 10;258(15):9565-74 2479756 - J Mol Biol. 1989 Nov 5;210(1):23-37 27325240 - Trends Biochem Sci. 2016 Aug;41(8):690-9 9587002 - Nat Struct Biol. 1998 May;5(5):393-9 19706412 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15406-11 17073751 - Biochem Soc Trans. 2006 Dec;34(Pt 6):1062-6 22885804 - J Mol Biol. 2012 Nov 9;423(5):664-76 23207917 - Genes Dev. 2012 Dec 1;26(23):2621-33 11389846 - Mol Cell. 2001 May;7(5):993-1001 24789973 - Science. 2014 May 30;344(6187):1042-7 6175630 - J Biol Chem. 1982 May 25;257(10):5760-6 23347833 - Curr Opin Microbiol. 2013 Apr;16(2):118-24 18948199 - Methods. 2009 Jan;47(1):37-43 24888591 - Genes Dev. 2014 Jun 1;28(11):1239-51 22431636 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5376-81 26523680 - J Mol Biol. 2015 Dec 4;427(24):3834-49 24275665 - J Biol Chem. 2014 Jan 10;289(2):1151-63 8902817 - Methods Enzymol. 1996;274:334-53 27023849 - Annu Rev Biochem. 2016 Jun 2;85:319-47 18775328 - Mol Cell. 2008 Sep 5;31(5):683-94 2145282 - J Biol Chem. 1990 Oct 25;265(30):18408-13 16554712 - J Microbiol. 2006 Feb;44(1):11-22 3523484 - Proc Natl Acad Sci U S A. 1986 Jul;83(14):5189-93 10869076 - J Bacteriol. 2000 Jul;182(14):3981-8 25662222 - Nucleic Acids Res. 2015 Feb 27;43(4):2367-77 19150431 - Mol Cell. 2009 Jan 16;33(1):97-108 25081210 - Nucleic Acids Res. 2014 Sep;42(15):9677-90 Morgan (2017012501550631000_45.2.631.9) 1983; 258 2017012501550631000_45.2.631.31 2017012501550631000_45.2.631.30 2017012501550631000_45.2.631.11 2017012501550631000_45.2.631.33 2017012501550631000_45.2.631.32 2017012501550631000_45.2.631.17 2017012501550631000_45.2.631.39 2017012501550631000_45.2.631.16 2017012501550631000_45.2.631.38 2017012501550631000_45.2.631.19 2017012501550631000_45.2.631.35 2017012501550631000_45.2.631.12 2017012501550631000_45.2.631.34 2017012501550631000_45.2.631.15 2017012501550631000_45.2.631.37 2017012501550631000_45.2.631.14 2017012501550631000_45.2.631.36 Banerjee (2017012501550631000_45.2.631.18) 2006; 44 2017012501550631000_45.2.631.8 2017012501550631000_45.2.631.7 Steinmetz (2017012501550631000_45.2.631.13) 1990; 265 Richardson (2017012501550631000_45.2.631.10) 1982; 257 2017012501550631000_45.2.631.20 2017012501550631000_45.2.631.2 2017012501550631000_45.2.631.22 2017012501550631000_45.2.631.1 2017012501550631000_45.2.631.21 2017012501550631000_45.2.631.4 2017012501550631000_45.2.631.3 2017012501550631000_45.2.631.6 2017012501550631000_45.2.631.40 2017012501550631000_45.2.631.5 2017012501550631000_45.2.631.28 2017012501550631000_45.2.631.27 2017012501550631000_45.2.631.29 2017012501550631000_45.2.631.24 2017012501550631000_45.2.631.23 2017012501550631000_45.2.631.26 2017012501550631000_45.2.631.25 |
References_xml | – ident: 2017012501550631000_45.2.631.40 doi: 10.1016/j.cell.2009.08.046 – ident: 2017012501550631000_45.2.631.11 doi: 10.1074/jbc.M102444200 – ident: 2017012501550631000_45.2.631.3 doi: 10.1016/j.jmb.2015.10.020 – ident: 2017012501550631000_45.2.631.24 doi: 10.1101/gad.240192.114 – ident: 2017012501550631000_45.2.631.26 doi: 10.1073/pnas.1515383112 – ident: 2017012501550631000_45.2.631.7 doi: 10.1016/S0092-8674(03)00512-9 – ident: 2017012501550631000_45.2.631.31 doi: 10.1016/S0076-6879(96)74029-6 – ident: 2017012501550631000_45.2.631.37 doi: 10.1016/0022-2836(89)90288-X – ident: 2017012501550631000_45.2.631.20 doi: 10.1073/pnas.1319193111 – ident: 2017012501550631000_45.2.631.35 doi: 10.1016/S1097-2765(01)00243-X – ident: 2017012501550631000_45.2.631.30 doi: 10.1016/j.ymeth.2008.10.006 – ident: 2017012501550631000_45.2.631.8 doi: 10.1016/j.jmb.2012.07.027 – volume: 257 start-page: 5760 year: 1982 ident: 2017012501550631000_45.2.631.10 article-title: Activation of rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid-binding sites publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)83844-9 contributor: fullname: Richardson – ident: 2017012501550631000_45.2.631.15 doi: 10.1021/bi700493m – ident: 2017012501550631000_45.2.631.1 doi: 10.1073/pnas.0903846106 – ident: 2017012501550631000_45.2.631.4 doi: 10.1073/pnas.85.8.2538 – ident: 2017012501550631000_45.2.631.36 doi: 10.1111/j.1365-2958.2010.07131.x – ident: 2017012501550631000_45.2.631.16 doi: 10.1038/nature08669 – ident: 2017012501550631000_45.2.631.21 doi: 10.1016/j.molcel.2008.06.019 – ident: 2017012501550631000_45.2.631.19 doi: 10.1042/BST0341062 – ident: 2017012501550631000_45.2.631.6 doi: 10.1146/annurev-biochem-060815-014844 – volume: 265 start-page: 18408 year: 1990 ident: 2017012501550631000_45.2.631.13 article-title: A short intervening structure can block rho factor helicase action at a distance publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)44767-3 contributor: fullname: Steinmetz – ident: 2017012501550631000_45.2.631.2 doi: 10.1101/gad.196741.112 – ident: 2017012501550631000_45.2.631.5 doi: 10.1038/nsb0598-393 – ident: 2017012501550631000_45.2.631.17 doi: 10.1016/j.mib.2012.12.003 – ident: 2017012501550631000_45.2.631.14 doi: 10.1021/bi972912s – ident: 2017012501550631000_45.2.631.27 doi: 10.1093/nar/gku690 – ident: 2017012501550631000_45.2.631.39 doi: 10.1016/j.molcel.2008.12.021 – ident: 2017012501550631000_45.2.631.32 doi: 10.1126/science.1251871 – ident: 2017012501550631000_45.2.631.12 doi: 10.1093/nar/gkv085 – ident: 2017012501550631000_45.2.631.38 doi: 10.1021/bi9729110 – ident: 2017012501550631000_45.2.631.22 doi: 10.1016/j.tibs.2016.05.012 – ident: 2017012501550631000_45.2.631.25 doi: 10.1073/pnas.1112211109 – volume: 44 start-page: 11 year: 2006 ident: 2017012501550631000_45.2.631.18 article-title: Rho-dependent transcription termination: more questions than answers publication-title: J. Microbiol. contributor: fullname: Banerjee – ident: 2017012501550631000_45.2.631.28 doi: 10.1073/pnas.83.14.5189 – ident: 2017012501550631000_45.2.631.29 doi: 10.1016/S0022-2836(83)80284-8 – ident: 2017012501550631000_45.2.631.33 doi: 10.1126/science.1253458 – volume: 258 start-page: 9565 year: 1983 ident: 2017012501550631000_45.2.631.9 article-title: Rho-dependent termination of transcription. II. Kinetics of mRNA elongation during transcription from the bacteriophage lambda PR promoter publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)44704-1 contributor: fullname: Morgan – ident: 2017012501550631000_45.2.631.23 doi: 10.1128/JB.182.14.3981-3988.2000 – ident: 2017012501550631000_45.2.631.34 doi: 10.1074/jbc.M113.521393 |
SSID | ssj0014154 |
Score | 2.3603184 |
Snippet | Transcription termination events in bacteria often require the RNA helicase Rho. Typically, Rho promotes termination at the end of coding sequences, but it can... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 631 |
SubjectTerms | Bacterial Proteins - metabolism Base Sequence Binding Sites Cation Transport Proteins - metabolism DNA-Directed RNA Polymerases - metabolism Gene Expression Regulation, Bacterial Gene regulation, Chromatin and Epigenetics Nucleic Acid Conformation Protein Binding Rho Factor - metabolism RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA, Bacterial - metabolism RNA, Messenger - chemistry RNA, Messenger - genetics RNA, Messenger - metabolism Terminator Regions, Genetic |
Title | RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28123036 https://search.proquest.com/docview/1862282419 https://pubmed.ncbi.nlm.nih.gov/PMC5314796 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PSxwxFA7qpb1I1baubZeIpbc4v5LZzHFZFBGUIgrehvzUxd3ssjsi_vd9SSbitreeZiCZmZDvkfe-5M33EPqpG1N7N0-YMiWh4FIJt1YQJW3JCws-3_j9jqvr-uKOXt6z-y3E0r8wIWlfyempm81P3fQx5FYu5ypLeWLZ76sJ2A0dNXW2jbbBQBNF748OwCNFzaggsUl50iRtqsyJVfbw9MK51wqFoZR-_d50SP9EmX8nS77zPuef0G4fNuJxHN4e2jJuHx2MHVDm-Sv-hUMiZ9gh30cfJqmI2wF6ubke47UnvVqsXnFUi30Gio1XsQi9wR2gaaDFLNd4YfHN44Kkyrgd7rwrSwsL7jNnwr3fwJ06LLCMes8wurn_2CzkRn9Gd-dnt5ML0tdaIIpS2hHGNUCUWwUBH0RlRummapSSnJuK-7jMSlMzzZkSNm-Ah-i84ZbChVErhKi-oB23cOYQYaEEHdVUeyEgKpXlUvHaKKuNZFrlxQCdpAlvl1FSo41H4VULCLURoQE6Tli0MGf-GEM4s3hetwWQMCCKtIA-XyM2b-9JoA7QaAO1tw5eTXuzBYwsqGr3RnX0309-Qx9L7_PzgpTsO9oBRM0PiFg6OQQ7zc-Gge8Pg7X-Aaui8yw |
link.rule.ids | 230,315,730,783,787,867,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4a4zAubGz86GBgBOKW5kft1DlW1aYCa4WmDe0W2Y7Nqq1u1aaaxl_PcxxPdDvBKZHsJE4-2-89-8v3AD5Xhc6dmY-Y0llE0aRG3BgRKWkynhq0-dqtd4wn-eiCfrtkl1vAwr8wDWlfyWnX3sy6dnrVcCsXMxUHnlj8YzzEfkP7RR4_gac4XhMagvR28wBtkleNakQ2KQ-qpEUvtmIZ_7q-5dyphWJjMjeDb5qkR37mQ7rkX_bnZBd-hpZ72sl1d13Lrvr9QNTxn19tD563HikZ-OIXsKXtPhwMLEbjszvyhTQc0WbxfR92hiE_3AHcnk0GZOXi6Uos74gXol1j9E6WPr-9JjV2FI0lerEic0POruZRSLpbk9pZyTBnkZaU05y7teGpJYJILyWNrZu5h900tOuXcHFyfD4cRW0ah0hRSuuI8QrRT4xCXxIdPq2qolcoJTnXCB66fEbqnFWcKWGSAkOcKim4oXhg1Agheq9g286tfgNEKEH7Oa2cxhCVynCpeK6VqbRklUrSDnwKSJYLr9ZR-l32XonQlx76DnwMIJf4zdwOibB6vl6VKcZ3GIPSFOu89qDf3yf0lg70N7rDfQUn1L1ZgiA3gt0tqIf_feUH2Bmdj0_L06-T72_hWeZciySNMvYOthFdfYSOUS3fN8PgD71DE3I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB20KdD20iXp4q4sWvQmazElU0fDrZEuMYKgAYJeBK6NkZg2bBlB-vUdkmIQp7ecJECUROkNOTPkwxuAT6rWlXPzSSl1kVB0qQkzhidSmILlBn2-dusdB9Nq_5h-PylPrpX68qR9KWZ9ez7v29mp51Yu5zKNPLH08GCMdkOHdZUulUnvwj0cs1kVE_VuAwH9UlCO8kKblEVl0nqQWr5K_5xdMOYUQ7FDhZvFt93Sf7HmTcrkNR80eQy_Y-8D9eSsv2lFX_69Iex4q897Ao-6yJSMQpOncEfbXdgbWczK55fkM_FcUb8IvwsPxrFO3B5cHE1HZO3yasVXlyQI0m4wiyerUOdekxYNRuMVvVyThSFHp4skFt9tSeu8ZZy7SEfO8edujXhmCSciSEpj7-buZeeefv0Mjidff433k66cQyIppW1SMoVWkBmJMSUGflqqelBLKRjTCCCGfkboqlSslNxkNaY6KquZoXgoqeGcD57Djl1Y_RIIl5wOK6qc1hAV0jAhWaWlUVqUSmZ5Dz5GNJtlUO1owm77oEH4mwB_Dz5EoBv8Z26nhFu92KybHPM8zEVpjm1eBOCvnhMtpgfDLZO4auAEu7evINBeuLsD9tWt73wP9w-_TJqf36Y_XsPDwkUYWZ4U5RvYQXD1W4yPWvHOj4R_LtYV8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+secondary+structures+regulate+three+steps+of+Rho-dependent+transcription+termination+within+a+bacterial+mRNA+leader&rft.jtitle=Nucleic+acids+research&rft.au=Kriner%2C+Michelle+A.&rft.au=Groisman%2C+Eduardo+A.&rft.date=2017-01-25&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=45&rft.issue=2&rft.spage=631&rft.epage=642&rft_id=info:doi/10.1093%2Fnar%2Fgkw889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkw889 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |