FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2

(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-...

Full description

Saved in:
Bibliographic Details
Published inPharmaceuticals (Basel, Switzerland) Vol. 13; no. 12; p. 443
Main Authors Mostafa, Ahmed, Kandeil, Ahmed, A. M. M. Elshaier, Yaseen, Kutkat, Omnia, Moatasim, Yassmin, Rashad, Adel A., Shehata, Mahmoud, Gomaa, Mokhtar R., Mahrous, Noura, Mahmoud, Sara H., GabAllah, Mohamed, Abbas, Hisham, Taweel, Ahmed El, Kayed, Ahmed E., Kamel, Mina Nabil, Sayes, Mohamed El, Mahmoud, Dina B., El-Shesheny, Rabeh, Kayali, Ghazi, Ali, Mohamed A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 04.12.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract (1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.
AbstractList (1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.
(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC 50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.
(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.
(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.
Author Mahmoud, Dina B.
Taweel, Ahmed El
El-Shesheny, Rabeh
Kamel, Mina Nabil
Moatasim, Yassmin
A. M. M. Elshaier, Yaseen
Mahrous, Noura
Abbas, Hisham
Kayed, Ahmed E.
Shehata, Mahmoud
Kandeil, Ahmed
Gomaa, Mokhtar R.
Ali, Mohamed A.
Kutkat, Omnia
Mostafa, Ahmed
Mahmoud, Sara H.
Rashad, Adel A.
Sayes, Mohamed El
GabAllah, Mohamed
Kayali, Ghazi
AuthorAffiliation 5 Pharmaceutics Department, National Organization for Drug Control and Research, Giza 12654, Egypt; dina_bahaa2007@yahoo.com
7 Human Link, Baabda 1109, Lebanon
3 Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; aaa396@drexel.edu
4 Department of Microbiology and Immunology, Zagazig University, Zagazig 44519, Egypt; hishamabbas2008@gmail.com
6 Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
1 Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; Ahmed.Kandeil@human-link.org (A.K.); Omnia.Abdelaziz@human-link.org (O.K.); Yasmin.Moatasim@human-link.org (Y.M.); Mahmoud.Shehata@human-link.org (M.S.); Mokhtar.Rizk@human-link.org (M.R.G.); noura.mahrous1995@gmail.com (N.M.); Sarah.Hussein@human-link.org (S.H.M.); gaballah09@gmail.com (M.G.); Ahmed.Nageh@human-link.org (A.E.T.); Ahmed.Elsayed@human-link.org (A.E.K.); mina
AuthorAffiliation_xml – name: 5 Pharmaceutics Department, National Organization for Drug Control and Research, Giza 12654, Egypt; dina_bahaa2007@yahoo.com
– name: 7 Human Link, Baabda 1109, Lebanon
– name: 2 Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt; yaseen.elshaier@fop.usc.edu.eg
– name: 3 Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; aaa396@drexel.edu
– name: 4 Department of Microbiology and Immunology, Zagazig University, Zagazig 44519, Egypt; hishamabbas2008@gmail.com
– name: 6 Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
– name: 1 Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; Ahmed.Kandeil@human-link.org (A.K.); Omnia.Abdelaziz@human-link.org (O.K.); Yasmin.Moatasim@human-link.org (Y.M.); Mahmoud.Shehata@human-link.org (M.S.); Mokhtar.Rizk@human-link.org (M.R.G.); noura.mahrous1995@gmail.com (N.M.); Sarah.Hussein@human-link.org (S.H.M.); gaballah09@gmail.com (M.G.); Ahmed.Nageh@human-link.org (A.E.T.); Ahmed.Elsayed@human-link.org (A.E.K.); minanabil56@yahoo.com (M.N.K.); mohameddiaaelsayes@outlook.com (M.E.S.); ra_eny@yahoo.com (R.E.-S.)
Author_xml – sequence: 1
  givenname: Ahmed
  orcidid: 0000-0002-2878-5714
  surname: Mostafa
  fullname: Mostafa, Ahmed
– sequence: 2
  givenname: Ahmed
  orcidid: 0000-0003-3253-6961
  surname: Kandeil
  fullname: Kandeil, Ahmed
– sequence: 3
  givenname: Yaseen
  surname: A. M. M. Elshaier
  fullname: A. M. M. Elshaier, Yaseen
– sequence: 4
  givenname: Omnia
  orcidid: 0000-0003-2256-2816
  surname: Kutkat
  fullname: Kutkat, Omnia
– sequence: 5
  givenname: Yassmin
  orcidid: 0000-0003-2159-2511
  surname: Moatasim
  fullname: Moatasim, Yassmin
– sequence: 6
  givenname: Adel A.
  orcidid: 0000-0001-6113-0333
  surname: Rashad
  fullname: Rashad, Adel A.
– sequence: 7
  givenname: Mahmoud
  orcidid: 0000-0001-7556-9398
  surname: Shehata
  fullname: Shehata, Mahmoud
– sequence: 8
  givenname: Mokhtar R.
  surname: Gomaa
  fullname: Gomaa, Mokhtar R.
– sequence: 9
  givenname: Noura
  surname: Mahrous
  fullname: Mahrous, Noura
– sequence: 10
  givenname: Sara H.
  surname: Mahmoud
  fullname: Mahmoud, Sara H.
– sequence: 11
  givenname: Mohamed
  surname: GabAllah
  fullname: GabAllah, Mohamed
– sequence: 12
  givenname: Hisham
  orcidid: 0000-0002-2429-327X
  surname: Abbas
  fullname: Abbas, Hisham
– sequence: 13
  givenname: Ahmed El
  surname: Taweel
  fullname: Taweel, Ahmed El
– sequence: 14
  givenname: Ahmed E.
  surname: Kayed
  fullname: Kayed, Ahmed E.
– sequence: 15
  givenname: Mina Nabil
  surname: Kamel
  fullname: Kamel, Mina Nabil
– sequence: 16
  givenname: Mohamed El
  surname: Sayes
  fullname: Sayes, Mohamed El
– sequence: 17
  givenname: Dina B.
  orcidid: 0000-0001-6554-4250
  surname: Mahmoud
  fullname: Mahmoud, Dina B.
– sequence: 18
  givenname: Rabeh
  orcidid: 0000-0002-8798-2240
  surname: El-Shesheny
  fullname: El-Shesheny, Rabeh
– sequence: 19
  givenname: Ghazi
  surname: Kayali
  fullname: Kayali, Ghazi
– sequence: 20
  givenname: Mohamed A.
  orcidid: 0000-0002-5615-3212
  surname: Ali
  fullname: Ali, Mohamed A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33291642$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAQgC1URB9w4QcgH1GlgF9JnAtStKVlpUogClwtx49dV1k72M6i_ff1sqW0iJNH42--scZzCo588AaA1xi9o7RD76c1ppggxugzcIIZYRUnrD16FB-D05RuEapbzPALcEwp6XDDyAmIlxd91U9TDFuj4UWcVwn-cnkNv4RsfIZLD3-4HAPsfXZbF-UIe7WP8g7KlXQ-ZXhjtiaakp-zgV9NmgqWQ9zBm53XMWwMXIQYvCzlc4LkJXhu5ZjMq_vzDHy__Pht8am6_ny1XPTXlWKM5arGkuq2tYOkg5IK1UQrrWus6o4gzqy2eCDcaFI3TSebDnPGue10OxhN69bSM7A8eHWQt2KKbiPjTgTpxO9EiCshY3ZqNMLUiltOkC0jYg3Ve5ltuEWdHCjHurg-HFzTPGyMVmU0ZRRPpE9vvFuLVdiKtm1wx0kRvL0XxPBzNimLjUvKjKP0JsxJENbwpsWEoYK-edzrocmfTyvA-QFQMaQUjX1AMBL7jRB_N6LA6B9YuSyzC_t3uvF_JXdYnLl3
CitedBy_id crossref_primary_10_3390_vaccines11020228
crossref_primary_10_1016_j_eclinm_2022_101310
crossref_primary_10_3390_antibiotics10111278
crossref_primary_10_3390_pharmaceutics13030307
crossref_primary_10_1080_03007995_2024_2424422
crossref_primary_10_1016_j_heliyon_2025_e41894
crossref_primary_10_1016_j_psj_2023_103404
crossref_primary_10_2139_ssrn_3937568
crossref_primary_10_1557_s43579_024_00607_7
crossref_primary_10_1177_08927057241259757
crossref_primary_10_1016_j_compbiomed_2021_105149
crossref_primary_10_1016_j_ejmech_2024_116671
crossref_primary_10_1126_sciadv_abo5400
crossref_primary_10_1371_journal_pone_0312866
crossref_primary_10_1007_s00228_023_03486_4
crossref_primary_10_3390_pathogens10060758
crossref_primary_10_1080_10406638_2024_2413429
crossref_primary_10_3390_v13040558
crossref_primary_10_1080_07391102_2023_2250479
crossref_primary_10_1208_s12249_021_02197_2
crossref_primary_10_3390_cells11091408
crossref_primary_10_1002_cmdc_202100476
crossref_primary_10_3390_ijms232416116
crossref_primary_10_1016_j_heliyon_2021_e07962
crossref_primary_10_36106_ijar_5200917
crossref_primary_10_2147_IJN_S423251
crossref_primary_10_4167_jbv_2022_52_4_149
crossref_primary_10_3390_ph17020198
crossref_primary_10_1016_j_ijbiomac_2023_124844
crossref_primary_10_1186_s12866_022_02684_x
crossref_primary_10_3390_ph14101059
crossref_primary_10_3390_life14080960
crossref_primary_10_1016_j_mam_2022_101151
crossref_primary_10_1039_D2RA00905F
crossref_primary_10_3390_molecules26216559
crossref_primary_10_1016_j_jddst_2022_103921
crossref_primary_10_1038_s41598_022_17573_6
crossref_primary_10_3390_ph14030178
crossref_primary_10_1016_j_heliyon_2024_e39839
crossref_primary_10_1186_s42269_023_01136_4
crossref_primary_10_1016_j_jconrel_2023_07_016
crossref_primary_10_7759_cureus_34310
crossref_primary_10_1007_s11224_022_02048_1
crossref_primary_10_1080_14786419_2024_2335361
crossref_primary_10_1016_j_jsps_2022_09_014
crossref_primary_10_2217_fmb_2021_0008
crossref_primary_10_3390_microorganisms10071284
crossref_primary_10_1021_acsomega_2c04867
crossref_primary_10_1016_j_colsurfb_2021_112063
crossref_primary_10_1038_s41598_022_17082_6
crossref_primary_10_2147_IDR_S362823
crossref_primary_10_1016_j_bbrep_2021_100969
crossref_primary_10_1371_journal_pone_0282729
crossref_primary_10_1016_j_molstruc_2024_138424
crossref_primary_10_3390_plants11151914
crossref_primary_10_1016_j_jgeb_2023_100334
crossref_primary_10_1155_2024_5548871
crossref_primary_10_3390_ijms232012235
crossref_primary_10_3390_ijms26030939
crossref_primary_10_3390_ph14121313
crossref_primary_10_3390_life14020233
crossref_primary_10_3390_ijms22169057
crossref_primary_10_1155_2022_8539918
crossref_primary_10_1021_acs_analchem_2c05464
crossref_primary_10_1016_j_ejmech_2023_115380
crossref_primary_10_3762_bjoc_17_126
crossref_primary_10_1016_j_bioorg_2021_105466
crossref_primary_10_1016_j_bioorg_2021_105587
crossref_primary_10_3390_plants11050663
crossref_primary_10_1016_j_bioorg_2025_108218
crossref_primary_10_3390_molecules26123772
crossref_primary_10_1016_j_ebiom_2022_104148
crossref_primary_10_1016_j_molstruc_2024_137517
crossref_primary_10_1016_j_molliq_2022_120292
crossref_primary_10_1186_s43141_023_00520_x
crossref_primary_10_1039_D4RA04728A
crossref_primary_10_3390_ijms231911861
crossref_primary_10_1097_JS9_0000000000000101
crossref_primary_10_1007_s00705_022_05646_w
crossref_primary_10_3390_molecules26195844
crossref_primary_10_1039_D2RA04600H
crossref_primary_10_1080_03601234_2024_2357465
crossref_primary_10_1038_s41598_023_27954_0
crossref_primary_10_1039_D3MD00056G
crossref_primary_10_1002_ptr_7486
crossref_primary_10_3390_microorganisms11112777
crossref_primary_10_1080_13102818_2022_2158133
crossref_primary_10_1016_j_bioorg_2021_105117
crossref_primary_10_1038_s41598_022_09809_2
crossref_primary_10_3389_fpubh_2022_847695
crossref_primary_10_3390_pharmaceutics16101288
crossref_primary_10_3390_chemosensors10020047
crossref_primary_10_1039_D1RA04576H
crossref_primary_10_1016_j_jddst_2024_106196
crossref_primary_10_1186_s12863_022_01040_2
crossref_primary_10_1016_j_imu_2021_100787
crossref_primary_10_1016_j_bioorg_2021_105363
crossref_primary_10_3390_vaccines9111317
crossref_primary_10_1186_s12906_023_04303_2
crossref_primary_10_1186_s12866_023_03018_1
crossref_primary_10_1016_j_molstruc_2022_134690
crossref_primary_10_1002_ctd2_204
crossref_primary_10_1016_j_colsurfb_2023_113703
crossref_primary_10_3390_ph15101184
crossref_primary_10_1038_s41401_023_01071_0
crossref_primary_10_1016_j_heliyon_2023_e17177
crossref_primary_10_1016_j_ijbiomac_2024_134715
crossref_primary_10_2174_2772432817666220601162006
crossref_primary_10_3390_ph15030351
crossref_primary_10_4103_epj_epj_94_23
crossref_primary_10_1016_j_bmcl_2021_128099
crossref_primary_10_1039_D4RA03298E
crossref_primary_10_1007_s11095_021_03112_x
crossref_primary_10_3390_pathogens10050623
crossref_primary_10_1016_j_bioorg_2021_105131
crossref_primary_10_1016_j_virusres_2023_199105
crossref_primary_10_1177_11779322231171777
crossref_primary_10_3390_ph14100954
crossref_primary_10_2147_AABC_S304649
crossref_primary_10_3390_ph16091247
Cites_doi 10.1038/s41422-020-0282-0
10.2807/1560-7917.ES.2020.25.10.2000180
10.1016/j.jhep.2019.02.014
10.1021/acs.jmedchem.0c00524
10.1016/j.chom.2015.09.013
10.1056/NEJMoa1211721
10.1186/s43141-020-00055-5
10.1038/s41598-020-70143-6
10.1136/bmj.m1983
10.1128/AAC.17.5.865
10.1136/annrheumdis-2020-217598
10.1016/0022-1759(83)90303-4
10.1038/s41586-020-2223-y
10.1126/science.abb2507
10.1128/AAC.00394-19
10.1038/ncomms15092
10.1039/D0RA05265E
10.1038/emi.2014.88
10.1128/9781555819439
10.1007/s000180050432
10.1016/B978-0-12-803109-4.00004-0
10.1016/j.ddtec.2010.11.003
10.1128/AAC.46.9.2854-2864.2002
10.1111/irv.12421
10.3390/microorganisms8070991
10.3332/ecancer.2020.1023
10.1126/science.abb3405
10.1016/S2055-6640(20)30017-0
10.1080/22221751.2020.1719902
10.1136/bmj.m1185
10.1074/jbc.M115.651463
10.1016/S2666-5247(20)30009-4
10.1078/094471103322331467
10.1021/jm201705f
10.1056/NEJMoa2001017
10.1038/nrd.2018.168
10.1021/acsinfecdis.0c00052
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/ph13120443
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1424-8247
ExternalDocumentID oai_doaj_org_article_e5c8f820f005463d9184f68f09ab381d
PMC7761982
33291642
10_3390_ph13120443
Genre Journal Article
GrantInformation_xml – fundername: Egyptian Academy of Scientific Research & Technology (ASRT), "Ideation Fund" program
  grantid: 7303
– fundername: National Research Centre
  grantid: MP120801
– fundername: NIAID NIH HHS
  grantid: HHSN272201400006C
GroupedDBID ---
2WC
53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACUHS
ADBBV
AEAQA
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HH5
HYE
IHR
KQ8
M2O
M48
MK0
MODMG
M~E
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TUS
3V.
NPM
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c444t-51a3d77fba3bcac052dcdd51c592084fdf1b28ed25669a6918488f9d7bed357f3
IEDL.DBID M48
ISSN 1424-8247
IngestDate Wed Aug 27 01:28:38 EDT 2025
Thu Aug 21 18:11:11 EDT 2025
Fri Jul 11 13:34:10 EDT 2025
Thu Jan 02 22:41:25 EST 2025
Thu Apr 24 22:57:39 EDT 2025
Tue Jul 01 04:13:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords COVID-19
SARS-CoV-2
drug repurposing
virtual screening
antiviral
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-51a3d77fba3bcac052dcdd51c592084fdf1b28ed25669a6918488f9d7bed357f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed equally to this work.
ORCID 0000-0002-2429-327X
0000-0002-5615-3212
0000-0001-6113-0333
0000-0002-8798-2240
0000-0002-2878-5714
0000-0001-6554-4250
0000-0003-3253-6961
0000-0001-7556-9398
0000-0003-2256-2816
0000-0003-2159-2511
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ph13120443
PMID 33291642
PQID 2468671240
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e5c8f820f005463d9184f68f09ab381d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7761982
proquest_miscellaneous_2468671240
pubmed_primary_33291642
crossref_primary_10_3390_ph13120443
crossref_citationtrail_10_3390_ph13120443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201204
PublicationDateYYYYMMDD 2020-12-04
PublicationDate_xml – month: 12
  year: 2020
  text: 20201204
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Pharmaceuticals (Basel, Switzerland)
PublicationTitleAlternate Pharmaceuticals (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Mosmann (ref_37) 1983; 65
Allam (ref_16) 2020; 10
Wong (ref_3) 2015; 18
Schultes (ref_19) 2010; 7
Zaki (ref_4) 2012; 367
Cox (ref_14) 2020; 1
ref_13
Kouznetsova (ref_31) 2014; 3
Xu (ref_28) 2020; 6
ref_30
Wrapp (ref_18) 2020; 367
Zhu (ref_5) 2020; 382
Wang (ref_26) 2020; 30
Zhang (ref_40) 1995; 20
Chan (ref_8) 2020; 9
ref_38
Mizumoto (ref_6) 2020; 25
Little (ref_12) 2020; 368
Hayden (ref_39) 1980; 17
Hsu (ref_15) 2020; 369
Schuhmacher (ref_42) 2003; 10
Touret (ref_29) 2020; 10
Singlas (ref_21) 1995; 43
Jin (ref_17) 2020; 582
ref_23
Mair (ref_32) 2017; 11
Mahmoud (ref_9) 2020; 18
Astani (ref_35) 2015; 70
ref_1
Westover (ref_36) 2020; 12
ref_2
Norman (ref_22) 2020; 63
Tomar (ref_24) 2015; 290
Zhang (ref_43) 2020; 368
Amin (ref_34) 1999; 56
Russell (ref_11) 2020; 14
Jabeen (ref_20) 2012; 55
Pepperrell (ref_27) 2020; 6
Karl (ref_33) 2016; 8
Pushpakom (ref_10) 2019; 18
Kuo (ref_41) 2002; 46
ref_7
Yuan (ref_25) 2017; 8
References_xml – ident: ref_7
– volume: 30
  start-page: 269
  year: 2020
  ident: ref_26
  article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-ncov) in vitro
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-0282-0
– volume: 25
  start-page: 2000180
  year: 2020
  ident: ref_6
  article-title: Estimating the asymptomatic proportion of coronavirus disease 2019 (covid-19) cases on board the diamond princess cruise ship, yokohama, Japan, 2020
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.10.2000180
– ident: ref_23
  doi: 10.1016/j.jhep.2019.02.014
– volume: 43
  start-page: 505
  year: 1995
  ident: ref_21
  article-title: clinical pharmacokinetics of azithromycin
  publication-title: Pathol. Biol.
– volume: 63
  start-page: 11397
  year: 2020
  ident: ref_22
  article-title: Drug induced liver injury (dili). Mechanisms and medicinal chemistry avoidance/mitigation strategies
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.0c00524
– volume: 18
  start-page: 398
  year: 2015
  ident: ref_3
  article-title: Mers, sars, and ebola: The role of super-spreaders in infectious disease
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.09.013
– volume: 367
  start-page: 1814
  year: 2012
  ident: ref_4
  article-title: Isolation of a novel coronavirus from a man with pneumonia in saudi arabia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211721
– volume: 18
  start-page: 35
  year: 2020
  ident: ref_9
  article-title: Drug repurposing of nitazoxanide: Can it be an effective therapy for covid-19?
  publication-title: J. Genet. Eng. Biotechnol.
  doi: 10.1186/s43141-020-00055-5
– volume: 10
  start-page: 13093
  year: 2020
  ident: ref_29
  article-title: In vitro screening of a fda approved chemical library reveals potential inhibitors of sars-cov-2 replication
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70143-6
– volume: 369
  start-page: m1983
  year: 2020
  ident: ref_15
  article-title: How covid-19 is accelerating the threat of antimicrobial resistance
  publication-title: BMJ
  doi: 10.1136/bmj.m1983
– volume: 17
  start-page: 865
  year: 1980
  ident: ref_39
  article-title: Plaque inhibition assay for drug susceptibility testing of influenza viruses
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.17.5.865
– ident: ref_13
  doi: 10.1136/annrheumdis-2020-217598
– volume: 65
  start-page: 55
  year: 1983
  ident: ref_37
  article-title: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(83)90303-4
– volume: 20
  start-page: 556
  year: 1995
  ident: ref_40
  article-title: Antiviral activity of tannin from the pericarp of punica granatum l. Against genital herpes virus in vitro
  publication-title: Zhongguo Zhong Yao Za Zhi
– volume: 582
  start-page: 289
  year: 2020
  ident: ref_17
  article-title: Structure of mpro from sars-cov-2 and discovery of its inhibitors
  publication-title: Nature
  doi: 10.1038/s41586-020-2223-y
– volume: 367
  start-page: 1260
  year: 2020
  ident: ref_18
  article-title: Cryo-em structure of the 2019-ncov spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 8
  start-page: 142
  year: 2016
  ident: ref_33
  article-title: D, L-Lysine acetylsalicylate+ glycine impairs coronavirus replication
  publication-title: J. Antivir. Antiretrovir.
– ident: ref_30
  doi: 10.1128/AAC.00394-19
– volume: 8
  start-page: 15092
  year: 2017
  ident: ref_25
  article-title: Cryo-em structures of mers-cov and sars-cov spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15092
– volume: 10
  start-page: 29983
  year: 2020
  ident: ref_16
  article-title: An in silico perception for newly isolated flavonoids from peach fruit as privileged avenue for a countermeasure outbreak of covid-19
  publication-title: RSC Adv.
  doi: 10.1039/D0RA05265E
– volume: 3
  start-page: e84
  year: 2014
  ident: ref_31
  article-title: Identification of 53 compounds that block ebola virus-like particle entry via a repurposing screen of approved drugs
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/emi.2014.88
– ident: ref_1
  doi: 10.1128/9781555819439
– volume: 56
  start-page: 305
  year: 1999
  ident: ref_34
  article-title: The pleiotropic functions of aspirin: Mechanisms of action
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s000180050432
– volume: 12
  start-page: e10501
  year: 2020
  ident: ref_36
  article-title: In vitro virucidal effect of intranasally delivered chlorpheniramine maleate compound against severe acute respiratory syndrome coronavirus 2
  publication-title: Cureus
– ident: ref_38
  doi: 10.1016/B978-0-12-803109-4.00004-0
– volume: 7
  start-page: e157
  year: 2010
  ident: ref_19
  article-title: Ligand efficiency as a guide in fragment hit selection and optimization
  publication-title: Drug Discov. Today Technol.
  doi: 10.1016/j.ddtec.2010.11.003
– volume: 70
  start-page: 331
  year: 2015
  ident: ref_35
  article-title: Piroxicam inhibits herpes simplex virus type 1 infection in vitro
  publication-title: Die Pharm.
– volume: 46
  start-page: 2854
  year: 2002
  ident: ref_41
  article-title: Samarangenin b from limonium sinense suppresses herpes simplex virus type 1 replication in vero cells by regulation of viral macromolecular synthesis
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.46.9.2854-2864.2002
– volume: 11
  start-page: 85
  year: 2017
  ident: ref_32
  article-title: Antiviral activity of aspirin against rna viruses of the respiratory tract-an in vitro study
  publication-title: Influenza Respir. Viruses
  doi: 10.1111/irv.12421
– ident: ref_2
  doi: 10.3390/microorganisms8070991
– volume: 14
  start-page: 1023
  year: 2020
  ident: ref_11
  article-title: Covid-19 and treatment with nsaids and corticosteroids: Should we be limiting their use in the clinical setting?
  publication-title: Ecancermedicalscience
  doi: 10.3332/ecancer.2020.1023
– volume: 368
  start-page: 409
  year: 2020
  ident: ref_43
  article-title: Crystal structure of sars-cov-2 main protease provides a basis for design of improved α-ketoamide inhibitors
  publication-title: Science
  doi: 10.1126/science.abb3405
– volume: 6
  start-page: 52
  year: 2020
  ident: ref_27
  article-title: Review of safety and minimum pricing of nitazoxanide for potential treatment of covid-19
  publication-title: J. Virus Erad.
  doi: 10.1016/S2055-6640(20)30017-0
– volume: 9
  start-page: 221
  year: 2020
  ident: ref_8
  article-title: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting wuhan
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1719902
– volume: 368
  start-page: m1185
  year: 2020
  ident: ref_12
  article-title: Non-steroidal anti-inflammatory drugs and covid-19
  publication-title: BMJ
  doi: 10.1136/bmj.m1185
– volume: 290
  start-page: 19403
  year: 2015
  ident: ref_24
  article-title: Ligand-induced dimerization of middle east respiratory syndrome (mers) coronavirus nsp5 protease (3clpro): Implications for nsp5 regulation and the development of antivirals
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.651463
– volume: 1
  start-page: e11
  year: 2020
  ident: ref_14
  article-title: Co-infections: Potentially lethal and unexplored in covid-19
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(20)30009-4
– volume: 10
  start-page: 504
  year: 2003
  ident: ref_42
  article-title: Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro
  publication-title: Phytomedicine
  doi: 10.1078/094471103322331467
– volume: 55
  start-page: 3261
  year: 2012
  ident: ref_20
  article-title: Structure–activity relationships, ligand efficiency, and lipophilic efficiency profiles of benzophenone-type inhibitors of the multidrug transporter p-glycoprotein
  publication-title: J. Med. Chem.
  doi: 10.1021/jm201705f
– volume: 382
  start-page: 727
  year: 2020
  ident: ref_5
  article-title: A novel coronavirus from patients with pneumonia in china, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 18
  start-page: 41
  year: 2019
  ident: ref_10
  article-title: Drug repurposing: Progress, challenges and recommendations
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2018.168
– volume: 6
  start-page: 909
  year: 2020
  ident: ref_28
  article-title: Broad spectrum antiviral agent niclosamide and its therapeutic potential
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.0c00052
SSID ssj0057141
Score 2.5385854
Snippet (1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 443
SubjectTerms antiviral
COVID-19
drug repurposing
SARS-CoV-2
virtual screening
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K33WTFoWWQCEmtt4-bpMsaQ9laZKSm9EzWQje4LUL-fcdWd7dbAn00qssIzEz0nwjjb5B6DMJVKky6Jw4WeQsEJUbJgwsPMeDNAW1YWD7_CHOLtn3K371oNRXzAlL9MBJcEeeWxXATYUILgR1FYQkQahQVNqAt3Fx9wWftwqm0h7MZcnKREZKIag_urspaUkKxuiW-xlY-h-Dln9nSD5wOdPn6NmIFfEkzfEFeuKbl-hglsim7w_xxebt1PIQH-DZhob6_hVqpyeTfBIpw397h0_a_nqJ46krni0AJ3f4W4N_zbt2gSdNrCDRxpFsqiWB9bWeA27E5x4s3UN733n8c3Mrj89HogN8HBkQNPzeLzF5jS6npxfHZ_lYYSG3jLEu56WmTspgNDVW24ITZ53jpeUVKUDOLpSGKO8AF4lKiyh7pULlpPGOchnoG7TTLBr_DmHpjTNCC105ygBWKWIsFd5UjihtpcvQl5XgazvSj8cqGLc1hCFRSfVGSRn6tO57l0g3Hu31Nepv3SMSZQ8NYD71aD71v8wnQ_sr7dewsOJtiW78ol_WhInI_QeIJ0NvkzWsh6KUAKxmJENyy0625rL9pZnfDOTdMp4bKfL-f0x-Fz0lMfyP2TVsD-10be8_AEbqzMdhOfwBWD0SfA
  priority: 102
  providerName: Directory of Open Access Journals
Title FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2
URI https://www.ncbi.nlm.nih.gov/pubmed/33291642
https://www.proquest.com/docview/2468671240
https://pubmed.ncbi.nlm.nih.gov/PMC7761982
https://doaj.org/article/e5c8f820f005463d9184f68f09ab381d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ba9swFBZdC6Mvo7tn3YLGRmFQr7YkW_LDGOkldIOV0Dajb0bXNFDsznbG8u93ZDvJUrJXWbJsnXPQd3T5PoQ-EkeFiJwMiOFhwBwRgWKJgsAzseMqpNo1bJ8XyfmYfb-Jb7bQQr-zG8BqY2rn9aTG5d3nP7_mXyHgv_iME1L2o_vbiEYkZIw-QjswI3GvZPCDLXcTYt4qWPpLXYEgjLc0pQ_a7qLHlBJAS4yszVENlf8m_PnwGOU_89JwDz3pACUetB7wFG3Z_Bk6GLWM1PNDfL26YFUd4gM8WnFVz5-jcng6CAaeV_y3Nfi0nE0q7Jdm8agAMF3jbzn-Oa3LAg9yLzNR-p50KziB5UROAVziKwvhYKF8Vlt8udq6x1cdGwI-8TQJEprPKkxeoPHw7PrkPOhkGALNGKuDOJLUcO6UpEpLHcbEaGPiSMcpCQVzxkWKCGsAPCWpTFLIGYVwqeHKGhpzR1-i7bzI7WuEuVVGJTKRqaEMsJcgStPEqtQQITU3PfRpMfCZ7jjKvVTGXQa5irdXtrJXD31Y1r1vmTk21jr29lvW8GzaTUFRTrIuODMba-EACjkPYBNq_C-4RLgwlQoQDXzW-4X1M4g-v6Uic1vMqoywxBMEAizqoVetNyy7WnhTD_E1P1n7lvUn-fS2YfjmfnFJkDf_fec-2iU-8ffnathbtF2XM_sO0FGt-mjn-OxidNlvVhf6TSD8BSMAEI0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FDA-Approved+Drugs+with+Potent+In+Vitro+Antiviral+Activity+against+Severe+Acute+Respiratory+Syndrome+Coronavirus+2&rft.jtitle=Pharmaceuticals+%28Basel%2C+Switzerland%29&rft.au=Mostafa%2C+Ahmed&rft.au=Kandeil%2C+Ahmed&rft.au=A+M+M+Elshaier%2C+Yaseen&rft.au=Kutkat%2C+Omnia&rft.date=2020-12-04&rft.issn=1424-8247&rft.eissn=1424-8247&rft.volume=13&rft.issue=12&rft_id=info:doi/10.3390%2Fph13120443&rft_id=info%3Apmid%2F33291642&rft.externalDocID=33291642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8247&client=summon