FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2
(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-...
Saved in:
Published in | Pharmaceuticals (Basel, Switzerland) Vol. 13; no. 12; p. 443 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
04.12.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | (1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients. |
---|---|
AbstractList | (1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients. (1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC 50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients. (1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients. (1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients. |
Author | Mahmoud, Dina B. Taweel, Ahmed El El-Shesheny, Rabeh Kamel, Mina Nabil Moatasim, Yassmin A. M. M. Elshaier, Yaseen Mahrous, Noura Abbas, Hisham Kayed, Ahmed E. Shehata, Mahmoud Kandeil, Ahmed Gomaa, Mokhtar R. Ali, Mohamed A. Kutkat, Omnia Mostafa, Ahmed Mahmoud, Sara H. Rashad, Adel A. Sayes, Mohamed El GabAllah, Mohamed Kayali, Ghazi |
AuthorAffiliation | 5 Pharmaceutics Department, National Organization for Drug Control and Research, Giza 12654, Egypt; dina_bahaa2007@yahoo.com 7 Human Link, Baabda 1109, Lebanon 3 Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; aaa396@drexel.edu 4 Department of Microbiology and Immunology, Zagazig University, Zagazig 44519, Egypt; hishamabbas2008@gmail.com 6 Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA 1 Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; Ahmed.Kandeil@human-link.org (A.K.); Omnia.Abdelaziz@human-link.org (O.K.); Yasmin.Moatasim@human-link.org (Y.M.); Mahmoud.Shehata@human-link.org (M.S.); Mokhtar.Rizk@human-link.org (M.R.G.); noura.mahrous1995@gmail.com (N.M.); Sarah.Hussein@human-link.org (S.H.M.); gaballah09@gmail.com (M.G.); Ahmed.Nageh@human-link.org (A.E.T.); Ahmed.Elsayed@human-link.org (A.E.K.); mina |
AuthorAffiliation_xml | – name: 5 Pharmaceutics Department, National Organization for Drug Control and Research, Giza 12654, Egypt; dina_bahaa2007@yahoo.com – name: 7 Human Link, Baabda 1109, Lebanon – name: 2 Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt; yaseen.elshaier@fop.usc.edu.eg – name: 3 Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; aaa396@drexel.edu – name: 4 Department of Microbiology and Immunology, Zagazig University, Zagazig 44519, Egypt; hishamabbas2008@gmail.com – name: 6 Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA – name: 1 Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; Ahmed.Kandeil@human-link.org (A.K.); Omnia.Abdelaziz@human-link.org (O.K.); Yasmin.Moatasim@human-link.org (Y.M.); Mahmoud.Shehata@human-link.org (M.S.); Mokhtar.Rizk@human-link.org (M.R.G.); noura.mahrous1995@gmail.com (N.M.); Sarah.Hussein@human-link.org (S.H.M.); gaballah09@gmail.com (M.G.); Ahmed.Nageh@human-link.org (A.E.T.); Ahmed.Elsayed@human-link.org (A.E.K.); minanabil56@yahoo.com (M.N.K.); mohameddiaaelsayes@outlook.com (M.E.S.); ra_eny@yahoo.com (R.E.-S.) |
Author_xml | – sequence: 1 givenname: Ahmed orcidid: 0000-0002-2878-5714 surname: Mostafa fullname: Mostafa, Ahmed – sequence: 2 givenname: Ahmed orcidid: 0000-0003-3253-6961 surname: Kandeil fullname: Kandeil, Ahmed – sequence: 3 givenname: Yaseen surname: A. M. M. Elshaier fullname: A. M. M. Elshaier, Yaseen – sequence: 4 givenname: Omnia orcidid: 0000-0003-2256-2816 surname: Kutkat fullname: Kutkat, Omnia – sequence: 5 givenname: Yassmin orcidid: 0000-0003-2159-2511 surname: Moatasim fullname: Moatasim, Yassmin – sequence: 6 givenname: Adel A. orcidid: 0000-0001-6113-0333 surname: Rashad fullname: Rashad, Adel A. – sequence: 7 givenname: Mahmoud orcidid: 0000-0001-7556-9398 surname: Shehata fullname: Shehata, Mahmoud – sequence: 8 givenname: Mokhtar R. surname: Gomaa fullname: Gomaa, Mokhtar R. – sequence: 9 givenname: Noura surname: Mahrous fullname: Mahrous, Noura – sequence: 10 givenname: Sara H. surname: Mahmoud fullname: Mahmoud, Sara H. – sequence: 11 givenname: Mohamed surname: GabAllah fullname: GabAllah, Mohamed – sequence: 12 givenname: Hisham orcidid: 0000-0002-2429-327X surname: Abbas fullname: Abbas, Hisham – sequence: 13 givenname: Ahmed El surname: Taweel fullname: Taweel, Ahmed El – sequence: 14 givenname: Ahmed E. surname: Kayed fullname: Kayed, Ahmed E. – sequence: 15 givenname: Mina Nabil surname: Kamel fullname: Kamel, Mina Nabil – sequence: 16 givenname: Mohamed El surname: Sayes fullname: Sayes, Mohamed El – sequence: 17 givenname: Dina B. orcidid: 0000-0001-6554-4250 surname: Mahmoud fullname: Mahmoud, Dina B. – sequence: 18 givenname: Rabeh orcidid: 0000-0002-8798-2240 surname: El-Shesheny fullname: El-Shesheny, Rabeh – sequence: 19 givenname: Ghazi surname: Kayali fullname: Kayali, Ghazi – sequence: 20 givenname: Mohamed A. orcidid: 0000-0002-5615-3212 surname: Ali fullname: Ali, Mohamed A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33291642$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAQgC1URB9w4QcgH1GlgF9JnAtStKVlpUogClwtx49dV1k72M6i_ff1sqW0iJNH42--scZzCo588AaA1xi9o7RD76c1ppggxugzcIIZYRUnrD16FB-D05RuEapbzPALcEwp6XDDyAmIlxd91U9TDFuj4UWcVwn-cnkNv4RsfIZLD3-4HAPsfXZbF-UIe7WP8g7KlXQ-ZXhjtiaakp-zgV9NmgqWQ9zBm53XMWwMXIQYvCzlc4LkJXhu5ZjMq_vzDHy__Pht8am6_ny1XPTXlWKM5arGkuq2tYOkg5IK1UQrrWus6o4gzqy2eCDcaFI3TSebDnPGue10OxhN69bSM7A8eHWQt2KKbiPjTgTpxO9EiCshY3ZqNMLUiltOkC0jYg3Ve5ltuEWdHCjHurg-HFzTPGyMVmU0ZRRPpE9vvFuLVdiKtm1wx0kRvL0XxPBzNimLjUvKjKP0JsxJENbwpsWEoYK-edzrocmfTyvA-QFQMaQUjX1AMBL7jRB_N6LA6B9YuSyzC_t3uvF_JXdYnLl3 |
CitedBy_id | crossref_primary_10_3390_vaccines11020228 crossref_primary_10_1016_j_eclinm_2022_101310 crossref_primary_10_3390_antibiotics10111278 crossref_primary_10_3390_pharmaceutics13030307 crossref_primary_10_1080_03007995_2024_2424422 crossref_primary_10_1016_j_heliyon_2025_e41894 crossref_primary_10_1016_j_psj_2023_103404 crossref_primary_10_2139_ssrn_3937568 crossref_primary_10_1557_s43579_024_00607_7 crossref_primary_10_1177_08927057241259757 crossref_primary_10_1016_j_compbiomed_2021_105149 crossref_primary_10_1016_j_ejmech_2024_116671 crossref_primary_10_1126_sciadv_abo5400 crossref_primary_10_1371_journal_pone_0312866 crossref_primary_10_1007_s00228_023_03486_4 crossref_primary_10_3390_pathogens10060758 crossref_primary_10_1080_10406638_2024_2413429 crossref_primary_10_3390_v13040558 crossref_primary_10_1080_07391102_2023_2250479 crossref_primary_10_1208_s12249_021_02197_2 crossref_primary_10_3390_cells11091408 crossref_primary_10_1002_cmdc_202100476 crossref_primary_10_3390_ijms232416116 crossref_primary_10_1016_j_heliyon_2021_e07962 crossref_primary_10_36106_ijar_5200917 crossref_primary_10_2147_IJN_S423251 crossref_primary_10_4167_jbv_2022_52_4_149 crossref_primary_10_3390_ph17020198 crossref_primary_10_1016_j_ijbiomac_2023_124844 crossref_primary_10_1186_s12866_022_02684_x crossref_primary_10_3390_ph14101059 crossref_primary_10_3390_life14080960 crossref_primary_10_1016_j_mam_2022_101151 crossref_primary_10_1039_D2RA00905F crossref_primary_10_3390_molecules26216559 crossref_primary_10_1016_j_jddst_2022_103921 crossref_primary_10_1038_s41598_022_17573_6 crossref_primary_10_3390_ph14030178 crossref_primary_10_1016_j_heliyon_2024_e39839 crossref_primary_10_1186_s42269_023_01136_4 crossref_primary_10_1016_j_jconrel_2023_07_016 crossref_primary_10_7759_cureus_34310 crossref_primary_10_1007_s11224_022_02048_1 crossref_primary_10_1080_14786419_2024_2335361 crossref_primary_10_1016_j_jsps_2022_09_014 crossref_primary_10_2217_fmb_2021_0008 crossref_primary_10_3390_microorganisms10071284 crossref_primary_10_1021_acsomega_2c04867 crossref_primary_10_1016_j_colsurfb_2021_112063 crossref_primary_10_1038_s41598_022_17082_6 crossref_primary_10_2147_IDR_S362823 crossref_primary_10_1016_j_bbrep_2021_100969 crossref_primary_10_1371_journal_pone_0282729 crossref_primary_10_1016_j_molstruc_2024_138424 crossref_primary_10_3390_plants11151914 crossref_primary_10_1016_j_jgeb_2023_100334 crossref_primary_10_1155_2024_5548871 crossref_primary_10_3390_ijms232012235 crossref_primary_10_3390_ijms26030939 crossref_primary_10_3390_ph14121313 crossref_primary_10_3390_life14020233 crossref_primary_10_3390_ijms22169057 crossref_primary_10_1155_2022_8539918 crossref_primary_10_1021_acs_analchem_2c05464 crossref_primary_10_1016_j_ejmech_2023_115380 crossref_primary_10_3762_bjoc_17_126 crossref_primary_10_1016_j_bioorg_2021_105466 crossref_primary_10_1016_j_bioorg_2021_105587 crossref_primary_10_3390_plants11050663 crossref_primary_10_1016_j_bioorg_2025_108218 crossref_primary_10_3390_molecules26123772 crossref_primary_10_1016_j_ebiom_2022_104148 crossref_primary_10_1016_j_molstruc_2024_137517 crossref_primary_10_1016_j_molliq_2022_120292 crossref_primary_10_1186_s43141_023_00520_x crossref_primary_10_1039_D4RA04728A crossref_primary_10_3390_ijms231911861 crossref_primary_10_1097_JS9_0000000000000101 crossref_primary_10_1007_s00705_022_05646_w crossref_primary_10_3390_molecules26195844 crossref_primary_10_1039_D2RA04600H crossref_primary_10_1080_03601234_2024_2357465 crossref_primary_10_1038_s41598_023_27954_0 crossref_primary_10_1039_D3MD00056G crossref_primary_10_1002_ptr_7486 crossref_primary_10_3390_microorganisms11112777 crossref_primary_10_1080_13102818_2022_2158133 crossref_primary_10_1016_j_bioorg_2021_105117 crossref_primary_10_1038_s41598_022_09809_2 crossref_primary_10_3389_fpubh_2022_847695 crossref_primary_10_3390_pharmaceutics16101288 crossref_primary_10_3390_chemosensors10020047 crossref_primary_10_1039_D1RA04576H crossref_primary_10_1016_j_jddst_2024_106196 crossref_primary_10_1186_s12863_022_01040_2 crossref_primary_10_1016_j_imu_2021_100787 crossref_primary_10_1016_j_bioorg_2021_105363 crossref_primary_10_3390_vaccines9111317 crossref_primary_10_1186_s12906_023_04303_2 crossref_primary_10_1186_s12866_023_03018_1 crossref_primary_10_1016_j_molstruc_2022_134690 crossref_primary_10_1002_ctd2_204 crossref_primary_10_1016_j_colsurfb_2023_113703 crossref_primary_10_3390_ph15101184 crossref_primary_10_1038_s41401_023_01071_0 crossref_primary_10_1016_j_heliyon_2023_e17177 crossref_primary_10_1016_j_ijbiomac_2024_134715 crossref_primary_10_2174_2772432817666220601162006 crossref_primary_10_3390_ph15030351 crossref_primary_10_4103_epj_epj_94_23 crossref_primary_10_1016_j_bmcl_2021_128099 crossref_primary_10_1039_D4RA03298E crossref_primary_10_1007_s11095_021_03112_x crossref_primary_10_3390_pathogens10050623 crossref_primary_10_1016_j_bioorg_2021_105131 crossref_primary_10_1016_j_virusres_2023_199105 crossref_primary_10_1177_11779322231171777 crossref_primary_10_3390_ph14100954 crossref_primary_10_2147_AABC_S304649 crossref_primary_10_3390_ph16091247 |
Cites_doi | 10.1038/s41422-020-0282-0 10.2807/1560-7917.ES.2020.25.10.2000180 10.1016/j.jhep.2019.02.014 10.1021/acs.jmedchem.0c00524 10.1016/j.chom.2015.09.013 10.1056/NEJMoa1211721 10.1186/s43141-020-00055-5 10.1038/s41598-020-70143-6 10.1136/bmj.m1983 10.1128/AAC.17.5.865 10.1136/annrheumdis-2020-217598 10.1016/0022-1759(83)90303-4 10.1038/s41586-020-2223-y 10.1126/science.abb2507 10.1128/AAC.00394-19 10.1038/ncomms15092 10.1039/D0RA05265E 10.1038/emi.2014.88 10.1128/9781555819439 10.1007/s000180050432 10.1016/B978-0-12-803109-4.00004-0 10.1016/j.ddtec.2010.11.003 10.1128/AAC.46.9.2854-2864.2002 10.1111/irv.12421 10.3390/microorganisms8070991 10.3332/ecancer.2020.1023 10.1126/science.abb3405 10.1016/S2055-6640(20)30017-0 10.1080/22221751.2020.1719902 10.1136/bmj.m1185 10.1074/jbc.M115.651463 10.1016/S2666-5247(20)30009-4 10.1078/094471103322331467 10.1021/jm201705f 10.1056/NEJMoa2001017 10.1038/nrd.2018.168 10.1021/acsinfecdis.0c00052 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/ph13120443 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access资源_DOAJ |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1424-8247 |
ExternalDocumentID | oai_doaj_org_article_e5c8f820f005463d9184f68f09ab381d PMC7761982 33291642 10_3390_ph13120443 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Egyptian Academy of Scientific Research & Technology (ASRT), "Ideation Fund" program grantid: 7303 – fundername: National Research Centre grantid: MP120801 – fundername: NIAID NIH HHS grantid: HHSN272201400006C |
GroupedDBID | --- 2WC 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACGFO ACIHN ACUHS ADBBV AEAQA AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HYE IHR KQ8 M2O M48 MK0 MODMG M~E OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS 3V. NPM 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c444t-51a3d77fba3bcac052dcdd51c592084fdf1b28ed25669a6918488f9d7bed357f3 |
IEDL.DBID | M48 |
ISSN | 1424-8247 |
IngestDate | Wed Aug 27 01:28:38 EDT 2025 Thu Aug 21 18:11:11 EDT 2025 Fri Jul 11 13:34:10 EDT 2025 Thu Jan 02 22:41:25 EST 2025 Thu Apr 24 22:57:39 EDT 2025 Tue Jul 01 04:13:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | COVID-19 SARS-CoV-2 drug repurposing virtual screening antiviral |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-51a3d77fba3bcac052dcdd51c592084fdf1b28ed25669a6918488f9d7bed357f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed equally to this work. |
ORCID | 0000-0002-2429-327X 0000-0002-5615-3212 0000-0001-6113-0333 0000-0002-8798-2240 0000-0002-2878-5714 0000-0001-6554-4250 0000-0003-3253-6961 0000-0001-7556-9398 0000-0003-2256-2816 0000-0003-2159-2511 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ph13120443 |
PMID | 33291642 |
PQID | 2468671240 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e5c8f820f005463d9184f68f09ab381d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7761982 proquest_miscellaneous_2468671240 pubmed_primary_33291642 crossref_primary_10_3390_ph13120443 crossref_citationtrail_10_3390_ph13120443 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201204 |
PublicationDateYYYYMMDD | 2020-12-04 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201204 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Pharmaceuticals (Basel, Switzerland) |
PublicationTitleAlternate | Pharmaceuticals (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Mosmann (ref_37) 1983; 65 Allam (ref_16) 2020; 10 Wong (ref_3) 2015; 18 Schultes (ref_19) 2010; 7 Zaki (ref_4) 2012; 367 Cox (ref_14) 2020; 1 ref_13 Kouznetsova (ref_31) 2014; 3 Xu (ref_28) 2020; 6 ref_30 Wrapp (ref_18) 2020; 367 Zhu (ref_5) 2020; 382 Wang (ref_26) 2020; 30 Zhang (ref_40) 1995; 20 Chan (ref_8) 2020; 9 ref_38 Mizumoto (ref_6) 2020; 25 Little (ref_12) 2020; 368 Hayden (ref_39) 1980; 17 Hsu (ref_15) 2020; 369 Schuhmacher (ref_42) 2003; 10 Touret (ref_29) 2020; 10 Singlas (ref_21) 1995; 43 Jin (ref_17) 2020; 582 ref_23 Mair (ref_32) 2017; 11 Mahmoud (ref_9) 2020; 18 Astani (ref_35) 2015; 70 ref_1 Westover (ref_36) 2020; 12 ref_2 Norman (ref_22) 2020; 63 Tomar (ref_24) 2015; 290 Zhang (ref_43) 2020; 368 Amin (ref_34) 1999; 56 Russell (ref_11) 2020; 14 Jabeen (ref_20) 2012; 55 Pepperrell (ref_27) 2020; 6 Karl (ref_33) 2016; 8 Pushpakom (ref_10) 2019; 18 Kuo (ref_41) 2002; 46 ref_7 Yuan (ref_25) 2017; 8 |
References_xml | – ident: ref_7 – volume: 30 start-page: 269 year: 2020 ident: ref_26 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-ncov) in vitro publication-title: Cell Res. doi: 10.1038/s41422-020-0282-0 – volume: 25 start-page: 2000180 year: 2020 ident: ref_6 article-title: Estimating the asymptomatic proportion of coronavirus disease 2019 (covid-19) cases on board the diamond princess cruise ship, yokohama, Japan, 2020 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2020.25.10.2000180 – ident: ref_23 doi: 10.1016/j.jhep.2019.02.014 – volume: 43 start-page: 505 year: 1995 ident: ref_21 article-title: clinical pharmacokinetics of azithromycin publication-title: Pathol. Biol. – volume: 63 start-page: 11397 year: 2020 ident: ref_22 article-title: Drug induced liver injury (dili). Mechanisms and medicinal chemistry avoidance/mitigation strategies publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.0c00524 – volume: 18 start-page: 398 year: 2015 ident: ref_3 article-title: Mers, sars, and ebola: The role of super-spreaders in infectious disease publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.09.013 – volume: 367 start-page: 1814 year: 2012 ident: ref_4 article-title: Isolation of a novel coronavirus from a man with pneumonia in saudi arabia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 18 start-page: 35 year: 2020 ident: ref_9 article-title: Drug repurposing of nitazoxanide: Can it be an effective therapy for covid-19? publication-title: J. Genet. Eng. Biotechnol. doi: 10.1186/s43141-020-00055-5 – volume: 10 start-page: 13093 year: 2020 ident: ref_29 article-title: In vitro screening of a fda approved chemical library reveals potential inhibitors of sars-cov-2 replication publication-title: Sci. Rep. doi: 10.1038/s41598-020-70143-6 – volume: 369 start-page: m1983 year: 2020 ident: ref_15 article-title: How covid-19 is accelerating the threat of antimicrobial resistance publication-title: BMJ doi: 10.1136/bmj.m1983 – volume: 17 start-page: 865 year: 1980 ident: ref_39 article-title: Plaque inhibition assay for drug susceptibility testing of influenza viruses publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.17.5.865 – ident: ref_13 doi: 10.1136/annrheumdis-2020-217598 – volume: 65 start-page: 55 year: 1983 ident: ref_37 article-title: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(83)90303-4 – volume: 20 start-page: 556 year: 1995 ident: ref_40 article-title: Antiviral activity of tannin from the pericarp of punica granatum l. Against genital herpes virus in vitro publication-title: Zhongguo Zhong Yao Za Zhi – volume: 582 start-page: 289 year: 2020 ident: ref_17 article-title: Structure of mpro from sars-cov-2 and discovery of its inhibitors publication-title: Nature doi: 10.1038/s41586-020-2223-y – volume: 367 start-page: 1260 year: 2020 ident: ref_18 article-title: Cryo-em structure of the 2019-ncov spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 8 start-page: 142 year: 2016 ident: ref_33 article-title: D, L-Lysine acetylsalicylate+ glycine impairs coronavirus replication publication-title: J. Antivir. Antiretrovir. – ident: ref_30 doi: 10.1128/AAC.00394-19 – volume: 8 start-page: 15092 year: 2017 ident: ref_25 article-title: Cryo-em structures of mers-cov and sars-cov spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 10 start-page: 29983 year: 2020 ident: ref_16 article-title: An in silico perception for newly isolated flavonoids from peach fruit as privileged avenue for a countermeasure outbreak of covid-19 publication-title: RSC Adv. doi: 10.1039/D0RA05265E – volume: 3 start-page: e84 year: 2014 ident: ref_31 article-title: Identification of 53 compounds that block ebola virus-like particle entry via a repurposing screen of approved drugs publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2014.88 – ident: ref_1 doi: 10.1128/9781555819439 – volume: 56 start-page: 305 year: 1999 ident: ref_34 article-title: The pleiotropic functions of aspirin: Mechanisms of action publication-title: Cell. Mol. Life Sci. doi: 10.1007/s000180050432 – volume: 12 start-page: e10501 year: 2020 ident: ref_36 article-title: In vitro virucidal effect of intranasally delivered chlorpheniramine maleate compound against severe acute respiratory syndrome coronavirus 2 publication-title: Cureus – ident: ref_38 doi: 10.1016/B978-0-12-803109-4.00004-0 – volume: 7 start-page: e157 year: 2010 ident: ref_19 article-title: Ligand efficiency as a guide in fragment hit selection and optimization publication-title: Drug Discov. Today Technol. doi: 10.1016/j.ddtec.2010.11.003 – volume: 70 start-page: 331 year: 2015 ident: ref_35 article-title: Piroxicam inhibits herpes simplex virus type 1 infection in vitro publication-title: Die Pharm. – volume: 46 start-page: 2854 year: 2002 ident: ref_41 article-title: Samarangenin b from limonium sinense suppresses herpes simplex virus type 1 replication in vero cells by regulation of viral macromolecular synthesis publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.46.9.2854-2864.2002 – volume: 11 start-page: 85 year: 2017 ident: ref_32 article-title: Antiviral activity of aspirin against rna viruses of the respiratory tract-an in vitro study publication-title: Influenza Respir. Viruses doi: 10.1111/irv.12421 – ident: ref_2 doi: 10.3390/microorganisms8070991 – volume: 14 start-page: 1023 year: 2020 ident: ref_11 article-title: Covid-19 and treatment with nsaids and corticosteroids: Should we be limiting their use in the clinical setting? publication-title: Ecancermedicalscience doi: 10.3332/ecancer.2020.1023 – volume: 368 start-page: 409 year: 2020 ident: ref_43 article-title: Crystal structure of sars-cov-2 main protease provides a basis for design of improved α-ketoamide inhibitors publication-title: Science doi: 10.1126/science.abb3405 – volume: 6 start-page: 52 year: 2020 ident: ref_27 article-title: Review of safety and minimum pricing of nitazoxanide for potential treatment of covid-19 publication-title: J. Virus Erad. doi: 10.1016/S2055-6640(20)30017-0 – volume: 9 start-page: 221 year: 2020 ident: ref_8 article-title: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting wuhan publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1719902 – volume: 368 start-page: m1185 year: 2020 ident: ref_12 article-title: Non-steroidal anti-inflammatory drugs and covid-19 publication-title: BMJ doi: 10.1136/bmj.m1185 – volume: 290 start-page: 19403 year: 2015 ident: ref_24 article-title: Ligand-induced dimerization of middle east respiratory syndrome (mers) coronavirus nsp5 protease (3clpro): Implications for nsp5 regulation and the development of antivirals publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.651463 – volume: 1 start-page: e11 year: 2020 ident: ref_14 article-title: Co-infections: Potentially lethal and unexplored in covid-19 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(20)30009-4 – volume: 10 start-page: 504 year: 2003 ident: ref_42 article-title: Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro publication-title: Phytomedicine doi: 10.1078/094471103322331467 – volume: 55 start-page: 3261 year: 2012 ident: ref_20 article-title: Structure–activity relationships, ligand efficiency, and lipophilic efficiency profiles of benzophenone-type inhibitors of the multidrug transporter p-glycoprotein publication-title: J. Med. Chem. doi: 10.1021/jm201705f – volume: 382 start-page: 727 year: 2020 ident: ref_5 article-title: A novel coronavirus from patients with pneumonia in china, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 18 start-page: 41 year: 2019 ident: ref_10 article-title: Drug repurposing: Progress, challenges and recommendations publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.168 – volume: 6 start-page: 909 year: 2020 ident: ref_28 article-title: Broad spectrum antiviral agent niclosamide and its therapeutic potential publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.0c00052 |
SSID | ssj0057141 |
Score | 2.5385854 |
Snippet | (1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 443 |
SubjectTerms | antiviral COVID-19 drug repurposing SARS-CoV-2 virtual screening |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K33WTFoWWQCEmtt4-bpMsaQ9laZKSm9EzWQje4LUL-fcdWd7dbAn00qssIzEz0nwjjb5B6DMJVKky6Jw4WeQsEJUbJgwsPMeDNAW1YWD7_CHOLtn3K371oNRXzAlL9MBJcEeeWxXATYUILgR1FYQkQahQVNqAt3Fx9wWftwqm0h7MZcnKREZKIag_urspaUkKxuiW-xlY-h-Dln9nSD5wOdPn6NmIFfEkzfEFeuKbl-hglsim7w_xxebt1PIQH-DZhob6_hVqpyeTfBIpw397h0_a_nqJ46krni0AJ3f4W4N_zbt2gSdNrCDRxpFsqiWB9bWeA27E5x4s3UN733n8c3Mrj89HogN8HBkQNPzeLzF5jS6npxfHZ_lYYSG3jLEu56WmTspgNDVW24ITZ53jpeUVKUDOLpSGKO8AF4lKiyh7pULlpPGOchnoG7TTLBr_DmHpjTNCC105ygBWKWIsFd5UjihtpcvQl5XgazvSj8cqGLc1hCFRSfVGSRn6tO57l0g3Hu31Nepv3SMSZQ8NYD71aD71v8wnQ_sr7dewsOJtiW78ol_WhInI_QeIJ0NvkzWsh6KUAKxmJENyy0625rL9pZnfDOTdMp4bKfL-f0x-Fz0lMfyP2TVsD-10be8_AEbqzMdhOfwBWD0SfA priority: 102 providerName: Directory of Open Access Journals |
Title | FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33291642 https://www.proquest.com/docview/2468671240 https://pubmed.ncbi.nlm.nih.gov/PMC7761982 https://doaj.org/article/e5c8f820f005463d9184f68f09ab381d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ba9swFBZdC6Mvo7tn3YLGRmFQr7YkW_LDGOkldIOV0Dajb0bXNFDsznbG8u93ZDvJUrJXWbJsnXPQd3T5PoQ-EkeFiJwMiOFhwBwRgWKJgsAzseMqpNo1bJ8XyfmYfb-Jb7bQQr-zG8BqY2rn9aTG5d3nP7_mXyHgv_iME1L2o_vbiEYkZIw-QjswI3GvZPCDLXcTYt4qWPpLXYEgjLc0pQ_a7qLHlBJAS4yszVENlf8m_PnwGOU_89JwDz3pACUetB7wFG3Z_Bk6GLWM1PNDfL26YFUd4gM8WnFVz5-jcng6CAaeV_y3Nfi0nE0q7Jdm8agAMF3jbzn-Oa3LAg9yLzNR-p50KziB5UROAVziKwvhYKF8Vlt8udq6x1cdGwI-8TQJEprPKkxeoPHw7PrkPOhkGALNGKuDOJLUcO6UpEpLHcbEaGPiSMcpCQVzxkWKCGsAPCWpTFLIGYVwqeHKGhpzR1-i7bzI7WuEuVVGJTKRqaEMsJcgStPEqtQQITU3PfRpMfCZ7jjKvVTGXQa5irdXtrJXD31Y1r1vmTk21jr29lvW8GzaTUFRTrIuODMba-EACjkPYBNq_C-4RLgwlQoQDXzW-4X1M4g-v6Uic1vMqoywxBMEAizqoVetNyy7WnhTD_E1P1n7lvUn-fS2YfjmfnFJkDf_fec-2iU-8ffnathbtF2XM_sO0FGt-mjn-OxidNlvVhf6TSD8BSMAEI0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FDA-Approved+Drugs+with+Potent+In+Vitro+Antiviral+Activity+against+Severe+Acute+Respiratory+Syndrome+Coronavirus+2&rft.jtitle=Pharmaceuticals+%28Basel%2C+Switzerland%29&rft.au=Mostafa%2C+Ahmed&rft.au=Kandeil%2C+Ahmed&rft.au=A+M+M+Elshaier%2C+Yaseen&rft.au=Kutkat%2C+Omnia&rft.date=2020-12-04&rft.issn=1424-8247&rft.eissn=1424-8247&rft.volume=13&rft.issue=12&rft_id=info:doi/10.3390%2Fph13120443&rft_id=info%3Apmid%2F33291642&rft.externalDocID=33291642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8247&client=summon |