Syndecan-4 signaling at a glance

Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast g...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 126; no. Pt 17; pp. 3799 - 3804
Main Authors Elfenbein, Arye, Simons, Michael
Format Journal Article
LanguageEnglish
Published England The Company of Biologists 01.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1–FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.
AbstractList Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.
Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.
Author Elfenbein, Arye
Simons, Michael
AuthorAffiliation Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine and Department of Cell Biology, Yale University , New Haven, CT 06520 , USA
AuthorAffiliation_xml – name: Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine and Department of Cell Biology, Yale University , New Haven, CT 06520 , USA
Author_xml – sequence: 1
  givenname: Arye
  surname: Elfenbein
  fullname: Elfenbein, Arye
– sequence: 2
  givenname: Michael
  surname: Simons
  fullname: Simons, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23970415$$D View this record in MEDLINE/PubMed
BookMark eNptkFtLw0AQhRep2Iu--AMkjyJE977NiyDFGxR8UJ-XyWYTt6S7NZsW-u9NaC0qPs3AfHPOzBmjgQ_eInRO8DWhnN4sTOwbyeQRGhGuVJoRpgZohDElaSYYG6JxjAuMsaKZOkFDyjKFOREjlLxufWEN-JQn0VUeauerBNoEkqoGb-wpOi6hjvZsXyfo_eH-bfaUzl8en2d389RwztuUW8ZMabAoSgEUFya3wuSKCyGwKhXQrJDSQM6wFJJSQgthSAakBCFkPlVsgm53uqt1vrSFsb5toNarxi2h2eoATv-eePehq7DRTAnFaC9wuRdowufaxlYvXTS27r6wYR014TSb8ikXuEMvfnodTL5j6YCrHWCaEGNjywNCsO4z113mepd5B-M_sHEttC70d7r6v5UvbTqCtg
CitedBy_id crossref_primary_10_1002_jcp_26160
crossref_primary_10_1016_j_carpath_2017_03_008
crossref_primary_10_1016_j_cyto_2020_155173
crossref_primary_10_14245_ns_2347342_671
crossref_primary_10_1016_j_biopha_2019_109530
crossref_primary_10_1021_acsami_8b17138
crossref_primary_10_1016_j_biocel_2013_11_012
crossref_primary_10_1152_ajpcell_00048_2022
crossref_primary_10_1016_j_bcp_2018_10_023
crossref_primary_10_1152_ajpcell_00016_2016
crossref_primary_10_1038_s41467_018_04525_w
crossref_primary_10_1038_s41598_019_46599_6
crossref_primary_10_1007_s13346_020_00763_y
crossref_primary_10_1038_s41418_017_0050_y
crossref_primary_10_1007_s10735_016_9693_0
crossref_primary_10_14814_phy2_12553
crossref_primary_10_3389_fcell_2021_716957
crossref_primary_10_1088_2516_1091_ad9dcb
crossref_primary_10_1155_2022_8332825
crossref_primary_10_1002_adhm_202203307
crossref_primary_10_1002_cbin_12158
crossref_primary_10_1152_physiolgenomics_00090_2014
crossref_primary_10_1002_ctm2_605
crossref_primary_10_3389_fcell_2024_1371769
crossref_primary_10_1016_j_canlet_2016_09_004
crossref_primary_10_1186_s12964_020_00629_3
crossref_primary_10_1038_s41598_017_03701_0
crossref_primary_10_3109_03008207_2014_996702
crossref_primary_10_1161_CIRCRESAHA_121_320056
crossref_primary_10_1038_s41563_019_0567_1
crossref_primary_10_1369_0022155420977971
crossref_primary_10_1016_j_bbamcr_2015_07_011
crossref_primary_10_1039_D0SC01140A
crossref_primary_10_1016_j_mcn_2017_01_001
crossref_primary_10_1038_s41418_018_0090_y
crossref_primary_10_1038_s41467_019_09605_z
crossref_primary_10_1002_advs_202305918
crossref_primary_10_1111_febs_14828
crossref_primary_10_1152_ajpheart_00548_2017
crossref_primary_10_1159_000370118
crossref_primary_10_1051_jbio_2016007
crossref_primary_10_1021_acs_bioconjchem_6b00082
crossref_primary_10_3389_fcell_2020_575227
crossref_primary_10_1007_s00018_021_04121_0
crossref_primary_10_1016_j_devcel_2017_09_011
crossref_primary_10_1039_C7BM00295E
crossref_primary_10_3389_fcell_2020_00730
crossref_primary_10_1007_s10439_019_02353_7
crossref_primary_10_1152_japplphysiol_00323_2017
crossref_primary_10_1002_jcb_30071
crossref_primary_10_1021_acsami_5b09576
crossref_primary_10_1002_ijc_29129
crossref_primary_10_3382_ps_pew452
crossref_primary_10_1371_journal_pone_0163532
crossref_primary_10_1016_j_gde_2019_08_002
crossref_primary_10_3389_fphys_2019_01011
crossref_primary_10_1016_j_ctarc_2021_100312
crossref_primary_10_1038_cddis_2017_315
crossref_primary_10_1242_jcs_235762
crossref_primary_10_3389_fcell_2019_00135
crossref_primary_10_1088_1758_5090_ac7eeb
crossref_primary_10_2217_fon_2016_0050
crossref_primary_10_1002_adhm_201600285
crossref_primary_10_1084_jem_20202595
crossref_primary_10_1007_s00418_020_01936_z
crossref_primary_10_1016_j_bbrc_2016_03_112
crossref_primary_10_3389_fonc_2021_775349
crossref_primary_10_3917_heg_111_0037
crossref_primary_10_1002_jbm_b_35170
crossref_primary_10_1242_dev_140129
crossref_primary_10_1016_j_bpj_2019_07_002
crossref_primary_10_1002_1873_3468_13227
crossref_primary_10_1007_s11033_021_06768_1
crossref_primary_10_3748_wjg_v27_i4_305
crossref_primary_10_1161_ATVBAHA_120_314479
crossref_primary_10_1002_jbm_a_37024
crossref_primary_10_1038_srep42092
crossref_primary_10_3389_fcell_2022_908126
crossref_primary_10_1007_s40778_020_00182_2
crossref_primary_10_1038_s41467_018_03733_8
crossref_primary_10_3389_fcell_2023_1214787
crossref_primary_10_1007_s00424_020_02407_z
crossref_primary_10_1007_s00432_022_04236_2
crossref_primary_10_7717_peerj_13783
crossref_primary_10_1111_apha_13376
crossref_primary_10_3389_fimmu_2025_1539733
crossref_primary_10_3389_fcell_2022_928510
crossref_primary_10_1002_jcb_28656
crossref_primary_10_1002_adhm_201500993
crossref_primary_10_1016_j_gep_2020_119109
crossref_primary_10_1007_s11010_014_2215_z
crossref_primary_10_1021_acspolymersau_3c00009
crossref_primary_10_3389_fphar_2019_01661
crossref_primary_10_3892_ijmm_2014_1910
crossref_primary_10_1063_5_0014177
crossref_primary_10_1038_s41598_017_04199_2
Cites_doi 10.1242/dev.017350
10.1074/jbc.273.40.25548
10.1002/jcp.20220
10.1016/S1097-2765(00)00073-3
10.1016/S0955-0674(00)00254-4
10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I
10.1074/jbc.M201283200
10.1016/j.jtbi.2004.10.020
10.1083/jcb.200503152
10.1074/jbc.273.13.7303
10.1016/j.biocel.2007.06.019
10.1074/jbc.M110291200
10.1083/jcb.200604035
10.1016/j.devcel.2006.03.012
10.1083/jcb.200112145
10.1083/jcb.200210176
10.1039/b614610d
10.4161/sgtp.19301
10.1242/jcs.01190
10.1016/j.devcel.2010.08.007
10.1016/j.biocel.2006.10.014
10.1074/jbc.272.18.11805
10.1021/bi992243d
10.1074/jbc.273.18.10914
10.1016/j.molcel.2008.09.010
10.1038/ncb2502
10.1016/S0021-9258(18)42715-9
10.1074/jbc.273.19.11563
10.1074/jbc.M109.098129
10.1074/jbc.M106268200
10.1074/jbc.M207123200
10.1038/nrc727
10.1091/mbc.12.2.339
10.1016/j.jmb.2005.09.087
10.1074/jbc.M605553200
10.1016/j.ceb.2009.03.007
10.1074/jbc.274.34.24417
10.1042/0264-6021:3510607
10.1126/science.8456318
10.1074/jbc.M200841200
10.1016/j.devcel.2011.08.007
10.1161/01.RES.0000101744.47866.D5
10.1126/scisignal.2002495
10.1021/bi991363i
10.1074/jbc.M208300200
10.1038/nature01817
10.1074/jbc.M202501200
10.1016/j.cellsig.2012.09.007
10.1074/jbc.275.13.9410
10.1091/mbc.E04-08-0759
10.1074/jbc.272.23.14713
10.1161/01.RES.0000159708.71142.c8
10.1016/S1097-2765(02)00549-X
10.1016/j.devcel.2010.02.016
10.1083/jcb.200610076
10.1021/bi00152a026
10.1083/jcb.200810179
10.1111/imm.12027
10.1074/jbc.M109.056945
10.1016/j.devcel.2013.01.027
10.1093/emboj/18.14.3909
10.1016/j.devcel.2005.07.011
10.1038/35046659
10.1073/pnas.0708909105
10.1074/jbc.M600806200
10.1161/01.RES.0000225283.71490.5a
10.1091/mbc.E07-12-1219
10.1073/pnas.0902639106
10.1016/0092-8674(91)90512-W
10.1016/S0092-8674(04)00003-0
ContentType Journal Article
Copyright 2013. Published by The Company of Biologists Ltd 2013
Copyright_xml – notice: 2013. Published by The Company of Biologists Ltd 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1242/jcs.124636
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9137
EndPage 3804
ExternalDocumentID PMC3757327
23970415
10_1242_jcs_124636
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL062289
GroupedDBID ---
-DZ
-~X
0R~
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAYXX
ABDNZ
ABPPZ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADCOW
ADVGF
AEILP
AENEX
AFFNX
AFRAH
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
F5P
F9R
GX1
H13
HZ~
IH2
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
RNS
SJN
TN5
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c444t-4e33cfc05df5a20dcbe5cb7455507f7a29d66cab306562212d5c19a1fa556b873
ISSN 0021-9533
1477-9137
IngestDate Thu Aug 21 18:12:38 EDT 2025
Fri Jul 11 07:56:07 EDT 2025
Fri Mar 14 09:28:09 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
Tue Jul 01 02:37:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-4e33cfc05df5a20dcbe5cb7455507f7a29d66cab306562212d5c19a1fa556b873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.1242/jcs.124636
PMID 23970415
PQID 1429848450
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3757327
proquest_miscellaneous_1429848450
pubmed_primary_23970415
crossref_primary_10_1242_jcs_124636
crossref_citationtrail_10_1242_jcs_124636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bidder Building, 140 Cowley Road, Cambridge, CB4 0DL, UK
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2013
Publisher The Company of Biologists
Publisher_xml – name: The Company of Biologists
References Horowitz (2021042613051341200_b26) 1998; 273
Lanahan (2021042613051341200_b37) 2010; 18
Horowitz (2021042613051341200_b27) 1999; 38
Horowitz (2021042613051341200_b28) 2002; 157
Tkachenko (2021042613051341200_b56) 2002; 277
Chung (2021042613051341200_b10) 2013; 138
Kainulainen (2021042613051341200_b33) 1998; 273
Woods (2021042613051341200_b64) 2001; 13
Fuki (2021042613051341200_b19) 2000; 351
Forsten-Williams (2021042613051341200_b18) 2005; 233
Moon (2021042613051341200_b41) 2005; 203
Bass (2021042613051341200_b3) 2007; 3
Mostafavi-Pour (2021042613051341200_b43) 2003; 161
Subramanian (2021042613051341200_b55) 1997; 272
Bass (2021042613051341200_b5) 2011; 21
Burridge (2021042613051341200_b8) 2004; 116
Schlessinger (2021042613051341200_b52) 2000; 6
Greene (2021042613051341200_b22) 2003; 278
Partovian (2021042613051341200_b50) 2008; 32
Tkachenko (2021042613051341200_b57) 2004; 117
Kan (2021042613051341200_b34) 1993; 259
Midwood (2021042613051341200_b40) 2004; 15
Tkachenko (2021042613051341200_b1000) 2005; 205
Nugent (2021042613051341200_b47) 1992; 31
Gao (2021042613051341200_b20) 2000; 184
Simons (2021042613051341200_b53) 2009; 21
Zimmermann (2021042613051341200_b69) 2005; 9
Hood (2021042613051341200_b24) 2002; 2
Murakami (2021042613051341200_b44) 2002; 277
Jean (2021042613051341200_b31) 2010; 19
Horowitz (2021042613051341200_b25) 1998; 273
Wilcox-Adelman (2021042613051341200_b63) 2002; 277
Brooks (2021042613051341200_b7) 2012; 3
Kreuger (2021042613051341200_b36) 2006; 174
Elfenbein (2021042613051341200_b15) 2009; 186
Turner (2021042613051341200_b60) 2000; 2
Alexopoulou (2021042613051341200_b1) 2007; 39
Matthews (2021042613051341200_b39) 2008; 135
Florian (2021042613051341200_b17) 2003; 93
Zimmermann (2021042613051341200_b67) 2001; 12
Haugsten (2021042613051341200_b23) 2008; 19
Tkachenko (2021042613051341200_b58) 2006; 98
Nikitovic (2021042613051341200_b46) 2007; 40
Bellin (2021042613051341200_b6) 2009; 106
Katoh (2021042613051341200_b1001) 2003; 424
Baietti (2021042613051341200_b2) 2012; 14
Volk (2021042613051341200_b61) 1999; 274
Morgan (2021042613051341200_b42) 2013; 24
Koo (2021042613051341200_b35) 2006; 355
Whiteford (2021042613051341200_b62) 2006; 281
Gopal (2021042613051341200_b21) 2010; 285
Ishiguro (2021042613051341200_b29) 2001; 276
Jastrebova (2021042613051341200_b30) 2006; 281
Oh (2021042613051341200_b48) 1997; 272
Lim (2021042613051341200_b38) 2003; 278
Zimmermann (2021042613051341200_b68) 2002; 9
Tumova (2021042613051341200_b59) 2000; 275
Yayon (2021042613051341200_b65) 1991; 64
Bass (2021042613051341200_b4) 2007; 177
Dews (2021042613051341200_b12) 2007; 104
Sperinde (2021042613051341200_b54) 2000; 39
Denhez (2021042613051341200_b11) 2002; 277
Rahmoune (2021042613051341200_b51) 1998; 273
Chittenden (2021042613051341200_b9) 2006; 10
Dovas (2021042613051341200_b13) 2010; 285
Elfenbein (2021042613051341200_b16) 2012; 5
Elenius (2021042613051341200_b14) 1992; 267
Ju (2021042613051341200_b32) 2013; 25
Zhang (2021042613051341200_b66) 2003; 284
Ng (2021042613051341200_b45) 1999; 18
Pankov (2021042613051341200_b49) 2005; 170
16807244 - J Biol Chem. 2006 Sep 15;281(37):26884-92
10406796 - EMBO J. 1999 Jul 15;18(14):3909-23
20472934 - J Biol Chem. 2010 Jul 23;285(30):23296-308
11544026 - Curr Opin Cell Biol. 2001 Oct;13(5):578-83
10911369 - J Cell Physiol. 2000 Sep;184(3):373-9
18093920 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20782-7
9516424 - J Biol Chem. 1998 Mar 27;273(13):7303-10
18851840 - Mol Cell. 2008 Oct 10;32(1):140-9
12086619 - Mol Cell. 2002 Jun;9(6):1215-25
11889131 - J Biol Chem. 2002 May 31;277(22):19946-51
10625452 - Biochemistry. 1999 Nov 30;38(48):15871-7
16139226 - Dev Cell. 2005 Sep;9(3):377-88
1556147 - J Biol Chem. 1992 Mar 25;267(9):6435-41
22660413 - Nat Cell Biol. 2012 Jul;14(7):677-85
11916978 - J Biol Chem. 2002 Jun 7;277(23):20367-71
11585825 - J Biol Chem. 2001 Dec 14;276(50):47483-8
12571249 - J Biol Chem. 2003 Apr 18;278(16):13795-802
15483051 - Mol Biol Cell. 2004 Dec;15(12):5670-7
16936286 - J Biol Chem. 2006 Oct 27;281(43):32156-63
12087088 - J Biol Chem. 2002 Sep 6;277(36):32970-7
1390674 - Biochemistry. 1992 Sep 22;31(37):8876-83
11805099 - J Biol Chem. 2002 Apr 5;277(14):12270-4
15226395 - J Cell Sci. 2004 Jul 1;117(Pt 15):3189-99
14744429 - Cell. 2004 Jan 23;116(2):167-79
12695503 - J Cell Biol. 2003 Apr 14;161(1):155-67
10734086 - J Biol Chem. 2000 Mar 31;275(13):9410-7
10446222 - J Biol Chem. 1999 Aug 20;274(34):24417-24
11030354 - Mol Cell. 2000 Sep;6(3):743-50
16129786 - J Cell Biol. 2005 Aug 29;170(5):793-802
21982645 - Dev Cell. 2011 Oct 18;21(4):681-93
22790193 - Small GTPases. 2012 Apr-Jun;3(2):73-9
17706452 - Int J Biochem Cell Biol. 2008;40(1):72-83
11146675 - Nat Cell Biol. 2000 Dec;2(12):E231-6
12493766 - J Biol Chem. 2003 Feb 28;278(9):7617-23
12011116 - J Cell Biol. 2002 May 13;157(4):715-25
12543640 - Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2078-82
11042114 - Biochem J. 2000 Nov 1;351 Pt 3:607-12
16310216 - J Mol Biol. 2006 Jan 27;355(4):651-63
9565572 - J Biol Chem. 1998 May 8;273(19):11563-9
23453597 - Dev Cell. 2013 Mar 11;24(5):472-85
12879077 - Nature. 2003 Jul 24;424(6947):461-4
15748910 - J Theor Biol. 2005 Apr 21;233(4):483-99
16675718 - Circ Res. 2006 Jun 9;98(11):1398-404
9556568 - J Biol Chem. 1998 May 1;273(18):10914-8
18480409 - Mol Biol Cell. 2008 Aug;19(8):3390-403
14563712 - Circ Res. 2003 Nov 14;93(10):e136-42
20833364 - Dev Cell. 2010 Sep 14;19(3):426-39
8456318 - Science. 1993 Mar 26;259(5103):1918-21
11179419 - Mol Biol Cell. 2001 Feb;12(2):339-50
9169435 - J Biol Chem. 1997 Jun 6;272(23):14713-20
1847668 - Cell. 1991 Feb 22;64(4):841-8
20434959 - Dev Cell. 2010 May 18;18(5):713-24
10736179 - Biochemistry. 2000 Apr 4;39(13):3788-96
19442504 - Curr Opin Cell Biol. 2009 Aug;21(4):575-81
20154082 - J Biol Chem. 2010 May 7;285(19):14247-58
18403410 - Development. 2008 May;135(10):1771-80
23113638 - Immunology. 2013 Feb;138(2):173-82
15389626 - J Cell Physiol. 2005 Apr;203(1):166-76
19458789 - Soft Matter. 2007 Jan 3;3(3):372-376
22975683 - Cell Signal. 2013 Jan;25(1):101-5
16740480 - Dev Cell. 2006 Jun;10(6):783-95
15774861 - Circ Res. 2005 Mar 18;96(5):488-500
17485492 - J Cell Biol. 2007 May 7;177(3):527-38
9115237 - J Biol Chem. 1997 May 2;272(18):11805-11
17097330 - Int J Biochem Cell Biol. 2007;39(3):505-28
12635172 - Nat Rev Cancer. 2002 Feb;2(2):91-100
16880267 - J Cell Biol. 2006 Jul 31;174(3):323-7
20080785 - Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22102-7
22569333 - Sci Signal. 2012 May 8;5(223):ra36
19581409 - J Cell Biol. 2009 Jul 13;186(1):75-83
9748216 - J Biol Chem. 1998 Oct 2;273(40):25548-51
References_xml – volume: 135
  start-page: 1771
  year: 2008
  ident: 2021042613051341200_b39
  article-title: Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA.
  publication-title: Development
  doi: 10.1242/dev.017350
– volume: 273
  start-page: 25548
  year: 1998
  ident: 2021042613051341200_b26
  article-title: Phosphorylation of the cytoplasmic tail of syndecan-4 regulates activation of protein kinase Calpha.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.40.25548
– volume: 203
  start-page: 166
  year: 2005
  ident: 2021042613051341200_b41
  article-title: Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.20220
– volume: 6
  start-page: 743
  year: 2000
  ident: 2021042613051341200_b52
  article-title: Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization.
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)00073-3
– volume: 13
  start-page: 578
  year: 2001
  ident: 2021042613051341200_b64
  article-title: Syndecan-4 and focal adhesion function.
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(00)00254-4
– volume: 184
  start-page: 373
  year: 2000
  ident: 2021042613051341200_b20
  article-title: Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration.
  publication-title: J. Cell. Physiol.
  doi: 10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I
– volume: 277
  start-page: 32970
  year: 2002
  ident: 2021042613051341200_b63
  article-title: Syndecan-4 modulates focal adhesion kinase phosphorylation.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M201283200
– volume: 233
  start-page: 483
  year: 2005
  ident: 2021042613051341200_b18
  article-title: The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling.
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2004.10.020
– volume: 170
  start-page: 793
  year: 2005
  ident: 2021042613051341200_b49
  article-title: A Rac switch regulates random versus directionally persistent cell migration.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200503152
– volume: 273
  start-page: 7303
  year: 1998
  ident: 2021042613051341200_b51
  article-title: Interaction of heparan sulfate from mammary cells with acidic fibroblast growth factor (FGF) and basic FGF. Regulation of the activity of basic FGF by high and low affinity binding sites in heparan sulfate.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.13.7303
– volume: 40
  start-page: 72
  year: 2007
  ident: 2021042613051341200_b46
  article-title: Chondroitin sulfate and heparan sulfate-containing proteoglycans are both partners and targets of basic fibroblast growth factor-mediated proliferation in human metastatic melanoma cell lines.
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2007.06.019
– volume: 277
  start-page: 12270
  year: 2002
  ident: 2021042613051341200_b11
  article-title: Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110291200
– volume: 174
  start-page: 323
  year: 2006
  ident: 2021042613051341200_b36
  article-title: Interactions between heparan sulfate and proteins: the concept of specificity.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200604035
– volume: 10
  start-page: 783
  year: 2006
  ident: 2021042613051341200_b9
  article-title: Selective regulation of arterial branching morphogenesis by synectin.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.03.012
– volume: 157
  start-page: 715
  year: 2002
  ident: 2021042613051341200_b28
  article-title: Fibroblast growth factor-specific modulation of cellular response by syndecan-4.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200112145
– volume: 161
  start-page: 155
  year: 2003
  ident: 2021042613051341200_b43
  article-title: Integrin-specific signaling pathways controlling focal adhesion formation and cell migration.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200210176
– volume: 3
  start-page: 372
  year: 2007
  ident: 2021042613051341200_b3
  article-title: Integrins and syndecan-4 make distinct, but critical, contributions to adhesion contact formation.
  publication-title: Soft Matter
  doi: 10.1039/b614610d
– volume: 3
  start-page: 73
  year: 2012
  ident: 2021042613051341200_b7
  article-title: Syndecan-4 independently regulates multiple small GTPases to promote fibroblast migration during wound healing.
  publication-title: Small GTPases
  doi: 10.4161/sgtp.19301
– volume: 117
  start-page: 3189
  year: 2004
  ident: 2021042613051341200_b57
  article-title: Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01190
– volume: 19
  start-page: 426
  year: 2010
  ident: 2021042613051341200_b31
  article-title: Extended-synaptotagmin-2 mediates FGF receptor endocytosis and ERK activation in vivo.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.08.007
– volume: 39
  start-page: 505
  year: 2007
  ident: 2021042613051341200_b1
  article-title: Syndecans in wound healing, inflammation and vascular biology.
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2006.10.014
– volume: 272
  start-page: 11805
  year: 1997
  ident: 2021042613051341200_b48
  article-title: Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C. J. Biol.
  publication-title: Chem.
  doi: 10.1074/jbc.272.18.11805
– volume: 39
  start-page: 3788
  year: 2000
  ident: 2021042613051341200_b54
  article-title: Mechanisms of fibroblast growth factor 2 intracellular processing: a kinetic analysis of the role of heparan sulfate proteoglycans.
  publication-title: Biochemistry
  doi: 10.1021/bi992243d
– volume: 273
  start-page: 10914
  year: 1998
  ident: 2021042613051341200_b25
  article-title: Regulation of syndecan-4 phosphorylation in vivo.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.18.10914
– volume: 32
  start-page: 140
  year: 2008
  ident: 2021042613051341200_b50
  article-title: Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.09.010
– volume: 14
  start-page: 677
  year: 2012
  ident: 2021042613051341200_b2
  article-title: Syndecan-syntenin-ALIX regulates the biogenesis of exosomes.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2502
– volume: 267
  start-page: 6435
  year: 1992
  ident: 2021042613051341200_b14
  article-title: Growth factors induce 3T3 cells to express bFGF-binding syndecan.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42715-9
– volume: 273
  start-page: 11563
  year: 1998
  ident: 2021042613051341200_b33
  article-title: Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.19.11563
– volume: 285
  start-page: 23296
  year: 2010
  ident: 2021042613051341200_b13
  article-title: Serine 34 phosphorylation of rho guanine dissociation inhibitor (RhoGDIalpha) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.098129
– volume: 276
  start-page: 47483
  year: 2001
  ident: 2021042613051341200_b29
  article-title: Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M106268200
– volume: 278
  start-page: 7617
  year: 2003
  ident: 2021042613051341200_b22
  article-title: Syndecan-4 associates with alpha-actinin.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207123200
– volume: 2
  start-page: 91
  year: 2002
  ident: 2021042613051341200_b24
  article-title: Role of integrins in cell invasion and migration.
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc727
– volume: 12
  start-page: 339
  year: 2001
  ident: 2021042613051341200_b67
  article-title: Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.2.339
– volume: 355
  start-page: 651
  year: 2006
  ident: 2021042613051341200_b35
  article-title: Structural basis of syndecan-4 phosphorylation as a molecular switch to regulate signaling.
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.09.087
– volume: 281
  start-page: 32156
  year: 2006
  ident: 2021042613051341200_b62
  article-title: A conserved NXIP motif is required for cell adhesion properties of the syndecan-4 ectodomain.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605553200
– volume: 21
  start-page: 575
  year: 2009
  ident: 2021042613051341200_b53
  article-title: Exosomes – vesicular carriers for intercellular communication.
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.03.007
– volume: 274
  start-page: 24417
  year: 1999
  ident: 2021042613051341200_b61
  article-title: The role of syndecan cytoplasmic domain in basic fibroblast growth factor-dependent signal transduction.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.34.24417
– volume: 351
  start-page: 607
  year: 2000
  ident: 2021042613051341200_b19
  article-title: Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts.
  publication-title: Biochem. J.
  doi: 10.1042/0264-6021:3510607
– volume: 259
  start-page: 1918
  year: 1993
  ident: 2021042613051341200_b34
  article-title: An essential heparin-binding domain in the fibroblast growth factor receptor kinase.
  publication-title: Science
  doi: 10.1126/science.8456318
– volume: 277
  start-page: 19946
  year: 2002
  ident: 2021042613051341200_b56
  article-title: Clustering induces redistribution of syndecan-4 core protein into raft membrane domains.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M200841200
– volume: 21
  start-page: 681
  year: 2011
  ident: 2021042613051341200_b5
  article-title: A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.08.007
– volume: 93
  start-page: e136
  year: 2003
  ident: 2021042613051341200_b17
  article-title: Heparan sulfate proteoglycan is a mechanosensor on endothelial cells.
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000101744.47866.D5
– volume: 5
  start-page: ra36
  year: 2012
  ident: 2021042613051341200_b16
  article-title: Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis.
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002495
– volume: 38
  start-page: 15871
  year: 1999
  ident: 2021042613051341200_b27
  article-title: Phosphatidylinositol-4,5-bisphosphate mediates the interaction of syndecan-4 with protein kinase C. Biochemistry
  doi: 10.1021/bi991363i
– volume: 278
  start-page: 13795
  year: 2003
  ident: 2021042613051341200_b38
  article-title: Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M208300200
– volume: 424
  start-page: 461
  year: 2003
  ident: 2021042613051341200_b1001
  article-title: RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo.
  publication-title: Nature
  doi: 10.1038/nature01817
– volume: 277
  start-page: 20367
  year: 2002
  ident: 2021042613051341200_b44
  article-title: Protein kinase C (PKC) delta regulates PKCalpha activity in a Syndecan-4-dependent manner.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202501200
– volume: 25
  start-page: 101
  year: 2013
  ident: 2021042613051341200_b32
  article-title: Syndecan 4 regulation of PDK1-dependent Akt activation.
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2012.09.007
– volume: 275
  start-page: 9410
  year: 2000
  ident: 2021042613051341200_b59
  article-title: Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.13.9410
– volume: 15
  start-page: 5670
  year: 2004
  ident: 2021042613051341200_b40
  article-title: Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E04-08-0759
– volume: 272
  start-page: 14713
  year: 1997
  ident: 2021042613051341200_b55
  article-title: Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.23.14713
– volume: 205
  start-page: 488
  year: 2005
  ident: 2021042613051341200_b1000
  article-title: Syndecans: new kids on the signaling block.
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000159708.71142.c8
– volume: 9
  start-page: 1215
  year: 2002
  ident: 2021042613051341200_b68
  article-title: PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane.
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00549-X
– volume: 18
  start-page: 713
  year: 2010
  ident: 2021042613051341200_b37
  article-title: VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.02.016
– volume: 177
  start-page: 527
  year: 2007
  ident: 2021042613051341200_b4
  article-title: Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200610076
– volume: 31
  start-page: 8876
  year: 1992
  ident: 2021042613051341200_b47
  article-title: Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperactivity.
  publication-title: Biochemistry
  doi: 10.1021/bi00152a026
– volume: 186
  start-page: 75
  year: 2009
  ident: 2021042613051341200_b15
  article-title: Suppression of RhoG activity is mediated by a syndecan 4-synectin-RhoGDI1 complex and is reversed by PKCalpha in a Rac1 activation pathway.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200810179
– volume: 138
  start-page: 173
  year: 2013
  ident: 2021042613051341200_b10
  article-title: The DC-HIL ligand syndecan-4 is a negative regulator of T cell alloreactivity responsible for graft-versus-host disease.
  publication-title: Immunology.
  doi: 10.1111/imm.12027
– volume: 285
  start-page: 14247
  year: 2010
  ident: 2021042613051341200_b21
  article-title: Heparan sulfate chain valency controls syndecan-4 function in cell adhesion.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.056945
– volume: 24
  start-page: 472
  year: 2013
  ident: 2021042613051341200_b42
  article-title: Syndecan-4 phosphorylation is a control point for integrin recycling.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2013.01.027
– volume: 18
  start-page: 3909
  year: 1999
  ident: 2021042613051341200_b45
  article-title: PKCalpha regulates beta1 integrin-dependent cell motility through association and control of integrin traffic.
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.14.3909
– volume: 9
  start-page: 377
  year: 2005
  ident: 2021042613051341200_b69
  article-title: Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2005.07.011
– volume: 2
  start-page: E231
  year: 2000
  ident: 2021042613051341200_b60
  article-title: Paxillin and focal adhesion signalling.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35046659
– volume: 104
  start-page: 20782
  year: 2007
  ident: 2021042613051341200_b12
  article-title: Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708909105
– volume: 281
  start-page: 26884
  year: 2006
  ident: 2021042613051341200_b30
  article-title: Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M600806200
– volume: 98
  start-page: 1398
  year: 2006
  ident: 2021042613051341200_b58
  article-title: Syndecan-4 clustering induces cell migration in a PDZ-dependent manner.
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000225283.71490.5a
– volume: 19
  start-page: 3390
  year: 2008
  ident: 2021042613051341200_b23
  article-title: Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E07-12-1219
– volume: 106
  start-page: 22102
  year: 2009
  ident: 2021042613051341200_b6
  article-title: Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0902639106
– volume: 64
  start-page: 841
  year: 1991
  ident: 2021042613051341200_b65
  article-title: Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor.
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90512-W
– volume: 284
  start-page: H2078
  year: 2003
  ident: 2021042613051341200_b66
  article-title: Syndecan-4 modulates basic fibroblast growth factor 2 signaling in vivo.
  publication-title: Am. J. Physiol.
– volume: 116
  start-page: 167
  year: 2004
  ident: 2021042613051341200_b8
  article-title: Rho and Rac take center stage.
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00003-0
– reference: 9748216 - J Biol Chem. 1998 Oct 2;273(40):25548-51
– reference: 20080785 - Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22102-7
– reference: 11544026 - Curr Opin Cell Biol. 2001 Oct;13(5):578-83
– reference: 9516424 - J Biol Chem. 1998 Mar 27;273(13):7303-10
– reference: 11146675 - Nat Cell Biol. 2000 Dec;2(12):E231-6
– reference: 18851840 - Mol Cell. 2008 Oct 10;32(1):140-9
– reference: 11585825 - J Biol Chem. 2001 Dec 14;276(50):47483-8
– reference: 12695503 - J Cell Biol. 2003 Apr 14;161(1):155-67
– reference: 15774861 - Circ Res. 2005 Mar 18;96(5):488-500
– reference: 11042114 - Biochem J. 2000 Nov 1;351 Pt 3:607-12
– reference: 15226395 - J Cell Sci. 2004 Jul 1;117(Pt 15):3189-99
– reference: 12543640 - Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2078-82
– reference: 12087088 - J Biol Chem. 2002 Sep 6;277(36):32970-7
– reference: 19458789 - Soft Matter. 2007 Jan 3;3(3):372-376
– reference: 20434959 - Dev Cell. 2010 May 18;18(5):713-24
– reference: 10911369 - J Cell Physiol. 2000 Sep;184(3):373-9
– reference: 10446222 - J Biol Chem. 1999 Aug 20;274(34):24417-24
– reference: 11179419 - Mol Biol Cell. 2001 Feb;12(2):339-50
– reference: 9565572 - J Biol Chem. 1998 May 8;273(19):11563-9
– reference: 9556568 - J Biol Chem. 1998 May 1;273(18):10914-8
– reference: 23113638 - Immunology. 2013 Feb;138(2):173-82
– reference: 12571249 - J Biol Chem. 2003 Apr 18;278(16):13795-802
– reference: 17706452 - Int J Biochem Cell Biol. 2008;40(1):72-83
– reference: 12086619 - Mol Cell. 2002 Jun;9(6):1215-25
– reference: 15748910 - J Theor Biol. 2005 Apr 21;233(4):483-99
– reference: 16139226 - Dev Cell. 2005 Sep;9(3):377-88
– reference: 11030354 - Mol Cell. 2000 Sep;6(3):743-50
– reference: 18403410 - Development. 2008 May;135(10):1771-80
– reference: 1390674 - Biochemistry. 1992 Sep 22;31(37):8876-83
– reference: 16880267 - J Cell Biol. 2006 Jul 31;174(3):323-7
– reference: 18093920 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20782-7
– reference: 12635172 - Nat Rev Cancer. 2002 Feb;2(2):91-100
– reference: 22660413 - Nat Cell Biol. 2012 Jul;14(7):677-85
– reference: 21982645 - Dev Cell. 2011 Oct 18;21(4):681-93
– reference: 16807244 - J Biol Chem. 2006 Sep 15;281(37):26884-92
– reference: 22569333 - Sci Signal. 2012 May 8;5(223):ra36
– reference: 16740480 - Dev Cell. 2006 Jun;10(6):783-95
– reference: 16675718 - Circ Res. 2006 Jun 9;98(11):1398-404
– reference: 16936286 - J Biol Chem. 2006 Oct 27;281(43):32156-63
– reference: 10406796 - EMBO J. 1999 Jul 15;18(14):3909-23
– reference: 18480409 - Mol Biol Cell. 2008 Aug;19(8):3390-403
– reference: 12493766 - J Biol Chem. 2003 Feb 28;278(9):7617-23
– reference: 10734086 - J Biol Chem. 2000 Mar 31;275(13):9410-7
– reference: 15389626 - J Cell Physiol. 2005 Apr;203(1):166-76
– reference: 9115237 - J Biol Chem. 1997 May 2;272(18):11805-11
– reference: 17097330 - Int J Biochem Cell Biol. 2007;39(3):505-28
– reference: 14744429 - Cell. 2004 Jan 23;116(2):167-79
– reference: 20833364 - Dev Cell. 2010 Sep 14;19(3):426-39
– reference: 22975683 - Cell Signal. 2013 Jan;25(1):101-5
– reference: 17485492 - J Cell Biol. 2007 May 7;177(3):527-38
– reference: 9169435 - J Biol Chem. 1997 Jun 6;272(23):14713-20
– reference: 10625452 - Biochemistry. 1999 Nov 30;38(48):15871-7
– reference: 1556147 - J Biol Chem. 1992 Mar 25;267(9):6435-41
– reference: 15483051 - Mol Biol Cell. 2004 Dec;15(12):5670-7
– reference: 16310216 - J Mol Biol. 2006 Jan 27;355(4):651-63
– reference: 11805099 - J Biol Chem. 2002 Apr 5;277(14):12270-4
– reference: 11916978 - J Biol Chem. 2002 Jun 7;277(23):20367-71
– reference: 19581409 - J Cell Biol. 2009 Jul 13;186(1):75-83
– reference: 16129786 - J Cell Biol. 2005 Aug 29;170(5):793-802
– reference: 20472934 - J Biol Chem. 2010 Jul 23;285(30):23296-308
– reference: 14563712 - Circ Res. 2003 Nov 14;93(10):e136-42
– reference: 8456318 - Science. 1993 Mar 26;259(5103):1918-21
– reference: 22790193 - Small GTPases. 2012 Apr-Jun;3(2):73-9
– reference: 23453597 - Dev Cell. 2013 Mar 11;24(5):472-85
– reference: 11889131 - J Biol Chem. 2002 May 31;277(22):19946-51
– reference: 12011116 - J Cell Biol. 2002 May 13;157(4):715-25
– reference: 12879077 - Nature. 2003 Jul 24;424(6947):461-4
– reference: 19442504 - Curr Opin Cell Biol. 2009 Aug;21(4):575-81
– reference: 20154082 - J Biol Chem. 2010 May 7;285(19):14247-58
– reference: 1847668 - Cell. 1991 Feb 22;64(4):841-8
– reference: 10736179 - Biochemistry. 2000 Apr 4;39(13):3788-96
SSID ssj0007297
Score 2.498045
SecondaryResourceType review_article
Snippet Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3799
SubjectTerms Cell Membrane - metabolism
Cell Movement
Cell Proliferation
Cell Science at a Glance
Endocytosis
Fibroblast Growth Factors - metabolism
Humans
Mechanotransduction, Cellular
Platelet-Derived Growth Factor - metabolism
Proto-Oncogene Proteins c-akt - metabolism
rho GTP-Binding Proteins - metabolism
Signal Transduction
Syndecan-4 - metabolism
TOR Serine-Threonine Kinases - metabolism
Vascular Endothelial Growth Factor A - metabolism
Title Syndecan-4 signaling at a glance
URI https://www.ncbi.nlm.nih.gov/pubmed/23970415
https://www.proquest.com/docview/1429848450
https://pubmed.ncbi.nlm.nih.gov/PMC3757327
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF9ai9AX0da2p22J6Isc0XzsR_JYxFYKFaEK9xY2kw0ttDnR-KB_vTOZvSRXfbC-LCHZy3Izc7Mzc7_9jRB7tatTUzsZZkDVKlA6tKCTUOOoY1uVCjqU76k-uZDfZ2o2tLnrTpe05QHcPXqu5DlaxXuoVzol-x-a7V-KN_Aa9YsjahjHJ-n4521TOZRNKKeEw7Dd0XLM-O2UOnPAMspniDypWD_1W9-A3agJ6-UZBTAQ70svqExfkh4h7H2dgHo25OM6AbfBYxQBrsSdLtGSxiXBDq6hmJjiwLFDlPQXb8zELL3H5EPuC9MwIweYGu535DfTNOPmwg8cNUYG5Kjhmi41c6CMNHb5t1NZgtEScQgMm1UPITz7cZQaZdLEvBSvEswRqH3Ft9mA78Gswffr5S_luWlx4cNhWeKC9mssByYPso1_QbOjKOR8Xax5JQZf2BY2xAvXvBGrLObbtyIYLCLoLSKwbWADtohNcfH1-PzoJPQ9MEKQUrahdGkKNUSqqpVNogpKp6A0UhEPXW1skldagy0x88NIFuOQSkGc27i2SukyM-k7sdLMG_dBBBBLZWLACNM6GQOh4Mo8ilyeJy7PXDYR-wsBFOAJ4qlPyZ-CEkWUW4FyK1huE7Hbz71kWpRHZ-0s5Fig1yLrto2b3-BzDIMymUkVTcR7lmv_noVCJsIsSbyfQIzoy0-a3786ZnRvEVvP_uS2eD38dj6Klfbqxn3CqLMtP3fWdQ8PY4F2
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Syndecan-4+signaling+at+a+glance&rft.jtitle=Journal+of+cell+science&rft.au=Elfenbein%2C+Arye&rft.au=Simons%2C+Michael&rft.date=2013-09-01&rft.pub=The+Company+of+Biologists&rft.issn=0021-9533&rft.eissn=1477-9137&rft.volume=126&rft.issue=17&rft.spage=3799&rft.epage=3804&rft_id=info:doi/10.1242%2Fjcs.124636&rft_id=info%3Apmid%2F23970415&rft.externalDocID=PMC3757327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon