Syndecan-4 signaling at a glance
Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast g...
Saved in:
Published in | Journal of cell science Vol. 126; no. Pt 17; pp. 3799 - 3804 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1–FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster. |
---|---|
AbstractList | Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster. Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster. |
Author | Elfenbein, Arye Simons, Michael |
AuthorAffiliation | Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine and Department of Cell Biology, Yale University , New Haven, CT 06520 , USA |
AuthorAffiliation_xml | – name: Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine and Department of Cell Biology, Yale University , New Haven, CT 06520 , USA |
Author_xml | – sequence: 1 givenname: Arye surname: Elfenbein fullname: Elfenbein, Arye – sequence: 2 givenname: Michael surname: Simons fullname: Simons, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23970415$$D View this record in MEDLINE/PubMed |
BookMark | eNptkFtLw0AQhRep2Iu--AMkjyJE977NiyDFGxR8UJ-XyWYTt6S7NZsW-u9NaC0qPs3AfHPOzBmjgQ_eInRO8DWhnN4sTOwbyeQRGhGuVJoRpgZohDElaSYYG6JxjAuMsaKZOkFDyjKFOREjlLxufWEN-JQn0VUeauerBNoEkqoGb-wpOi6hjvZsXyfo_eH-bfaUzl8en2d389RwztuUW8ZMabAoSgEUFya3wuSKCyGwKhXQrJDSQM6wFJJSQgthSAakBCFkPlVsgm53uqt1vrSFsb5toNarxi2h2eoATv-eePehq7DRTAnFaC9wuRdowufaxlYvXTS27r6wYR014TSb8ikXuEMvfnodTL5j6YCrHWCaEGNjywNCsO4z113mepd5B-M_sHEttC70d7r6v5UvbTqCtg |
CitedBy_id | crossref_primary_10_1002_jcp_26160 crossref_primary_10_1016_j_carpath_2017_03_008 crossref_primary_10_1016_j_cyto_2020_155173 crossref_primary_10_14245_ns_2347342_671 crossref_primary_10_1016_j_biopha_2019_109530 crossref_primary_10_1021_acsami_8b17138 crossref_primary_10_1016_j_biocel_2013_11_012 crossref_primary_10_1152_ajpcell_00048_2022 crossref_primary_10_1016_j_bcp_2018_10_023 crossref_primary_10_1152_ajpcell_00016_2016 crossref_primary_10_1038_s41467_018_04525_w crossref_primary_10_1038_s41598_019_46599_6 crossref_primary_10_1007_s13346_020_00763_y crossref_primary_10_1038_s41418_017_0050_y crossref_primary_10_1007_s10735_016_9693_0 crossref_primary_10_14814_phy2_12553 crossref_primary_10_3389_fcell_2021_716957 crossref_primary_10_1088_2516_1091_ad9dcb crossref_primary_10_1155_2022_8332825 crossref_primary_10_1002_adhm_202203307 crossref_primary_10_1002_cbin_12158 crossref_primary_10_1152_physiolgenomics_00090_2014 crossref_primary_10_1002_ctm2_605 crossref_primary_10_3389_fcell_2024_1371769 crossref_primary_10_1016_j_canlet_2016_09_004 crossref_primary_10_1186_s12964_020_00629_3 crossref_primary_10_1038_s41598_017_03701_0 crossref_primary_10_3109_03008207_2014_996702 crossref_primary_10_1161_CIRCRESAHA_121_320056 crossref_primary_10_1038_s41563_019_0567_1 crossref_primary_10_1369_0022155420977971 crossref_primary_10_1016_j_bbamcr_2015_07_011 crossref_primary_10_1039_D0SC01140A crossref_primary_10_1016_j_mcn_2017_01_001 crossref_primary_10_1038_s41418_018_0090_y crossref_primary_10_1038_s41467_019_09605_z crossref_primary_10_1002_advs_202305918 crossref_primary_10_1111_febs_14828 crossref_primary_10_1152_ajpheart_00548_2017 crossref_primary_10_1159_000370118 crossref_primary_10_1051_jbio_2016007 crossref_primary_10_1021_acs_bioconjchem_6b00082 crossref_primary_10_3389_fcell_2020_575227 crossref_primary_10_1007_s00018_021_04121_0 crossref_primary_10_1016_j_devcel_2017_09_011 crossref_primary_10_1039_C7BM00295E crossref_primary_10_3389_fcell_2020_00730 crossref_primary_10_1007_s10439_019_02353_7 crossref_primary_10_1152_japplphysiol_00323_2017 crossref_primary_10_1002_jcb_30071 crossref_primary_10_1021_acsami_5b09576 crossref_primary_10_1002_ijc_29129 crossref_primary_10_3382_ps_pew452 crossref_primary_10_1371_journal_pone_0163532 crossref_primary_10_1016_j_gde_2019_08_002 crossref_primary_10_3389_fphys_2019_01011 crossref_primary_10_1016_j_ctarc_2021_100312 crossref_primary_10_1038_cddis_2017_315 crossref_primary_10_1242_jcs_235762 crossref_primary_10_3389_fcell_2019_00135 crossref_primary_10_1088_1758_5090_ac7eeb crossref_primary_10_2217_fon_2016_0050 crossref_primary_10_1002_adhm_201600285 crossref_primary_10_1084_jem_20202595 crossref_primary_10_1007_s00418_020_01936_z crossref_primary_10_1016_j_bbrc_2016_03_112 crossref_primary_10_3389_fonc_2021_775349 crossref_primary_10_3917_heg_111_0037 crossref_primary_10_1002_jbm_b_35170 crossref_primary_10_1242_dev_140129 crossref_primary_10_1016_j_bpj_2019_07_002 crossref_primary_10_1002_1873_3468_13227 crossref_primary_10_1007_s11033_021_06768_1 crossref_primary_10_3748_wjg_v27_i4_305 crossref_primary_10_1161_ATVBAHA_120_314479 crossref_primary_10_1002_jbm_a_37024 crossref_primary_10_1038_srep42092 crossref_primary_10_3389_fcell_2022_908126 crossref_primary_10_1007_s40778_020_00182_2 crossref_primary_10_1038_s41467_018_03733_8 crossref_primary_10_3389_fcell_2023_1214787 crossref_primary_10_1007_s00424_020_02407_z crossref_primary_10_1007_s00432_022_04236_2 crossref_primary_10_7717_peerj_13783 crossref_primary_10_1111_apha_13376 crossref_primary_10_3389_fimmu_2025_1539733 crossref_primary_10_3389_fcell_2022_928510 crossref_primary_10_1002_jcb_28656 crossref_primary_10_1002_adhm_201500993 crossref_primary_10_1016_j_gep_2020_119109 crossref_primary_10_1007_s11010_014_2215_z crossref_primary_10_1021_acspolymersau_3c00009 crossref_primary_10_3389_fphar_2019_01661 crossref_primary_10_3892_ijmm_2014_1910 crossref_primary_10_1063_5_0014177 crossref_primary_10_1038_s41598_017_04199_2 |
Cites_doi | 10.1242/dev.017350 10.1074/jbc.273.40.25548 10.1002/jcp.20220 10.1016/S1097-2765(00)00073-3 10.1016/S0955-0674(00)00254-4 10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I 10.1074/jbc.M201283200 10.1016/j.jtbi.2004.10.020 10.1083/jcb.200503152 10.1074/jbc.273.13.7303 10.1016/j.biocel.2007.06.019 10.1074/jbc.M110291200 10.1083/jcb.200604035 10.1016/j.devcel.2006.03.012 10.1083/jcb.200112145 10.1083/jcb.200210176 10.1039/b614610d 10.4161/sgtp.19301 10.1242/jcs.01190 10.1016/j.devcel.2010.08.007 10.1016/j.biocel.2006.10.014 10.1074/jbc.272.18.11805 10.1021/bi992243d 10.1074/jbc.273.18.10914 10.1016/j.molcel.2008.09.010 10.1038/ncb2502 10.1016/S0021-9258(18)42715-9 10.1074/jbc.273.19.11563 10.1074/jbc.M109.098129 10.1074/jbc.M106268200 10.1074/jbc.M207123200 10.1038/nrc727 10.1091/mbc.12.2.339 10.1016/j.jmb.2005.09.087 10.1074/jbc.M605553200 10.1016/j.ceb.2009.03.007 10.1074/jbc.274.34.24417 10.1042/0264-6021:3510607 10.1126/science.8456318 10.1074/jbc.M200841200 10.1016/j.devcel.2011.08.007 10.1161/01.RES.0000101744.47866.D5 10.1126/scisignal.2002495 10.1021/bi991363i 10.1074/jbc.M208300200 10.1038/nature01817 10.1074/jbc.M202501200 10.1016/j.cellsig.2012.09.007 10.1074/jbc.275.13.9410 10.1091/mbc.E04-08-0759 10.1074/jbc.272.23.14713 10.1161/01.RES.0000159708.71142.c8 10.1016/S1097-2765(02)00549-X 10.1016/j.devcel.2010.02.016 10.1083/jcb.200610076 10.1021/bi00152a026 10.1083/jcb.200810179 10.1111/imm.12027 10.1074/jbc.M109.056945 10.1016/j.devcel.2013.01.027 10.1093/emboj/18.14.3909 10.1016/j.devcel.2005.07.011 10.1038/35046659 10.1073/pnas.0708909105 10.1074/jbc.M600806200 10.1161/01.RES.0000225283.71490.5a 10.1091/mbc.E07-12-1219 10.1073/pnas.0902639106 10.1016/0092-8674(91)90512-W 10.1016/S0092-8674(04)00003-0 |
ContentType | Journal Article |
Copyright | 2013. Published by The Company of Biologists Ltd 2013 |
Copyright_xml | – notice: 2013. Published by The Company of Biologists Ltd 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1242/jcs.124636 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
EndPage | 3804 |
ExternalDocumentID | PMC3757327 23970415 10_1242_jcs_124636 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL062289 |
GroupedDBID | --- -DZ -~X 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAYXX ABDNZ ABPPZ ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADCOW ADVGF AEILP AENEX AFFNX AFRAH AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS F5P F9R GX1 H13 HZ~ IH2 INIJC KQ8 O9- OK1 P2P R.V RCB RHI RNS SJN TN5 TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c444t-4e33cfc05df5a20dcbe5cb7455507f7a29d66cab306562212d5c19a1fa556b873 |
ISSN | 0021-9533 1477-9137 |
IngestDate | Thu Aug 21 18:12:38 EDT 2025 Fri Jul 11 07:56:07 EDT 2025 Fri Mar 14 09:28:09 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 Tue Jul 01 02:37:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-4e33cfc05df5a20dcbe5cb7455507f7a29d66cab306562212d5c19a1fa556b873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://doi.org/10.1242/jcs.124636 |
PMID | 23970415 |
PQID | 1429848450 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3757327 proquest_miscellaneous_1429848450 pubmed_primary_23970415 crossref_primary_10_1242_jcs_124636 crossref_citationtrail_10_1242_jcs_124636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bidder Building, 140 Cowley Road, Cambridge, CB4 0DL, UK |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2013 |
Publisher | The Company of Biologists |
Publisher_xml | – name: The Company of Biologists |
References | Horowitz (2021042613051341200_b26) 1998; 273 Lanahan (2021042613051341200_b37) 2010; 18 Horowitz (2021042613051341200_b27) 1999; 38 Horowitz (2021042613051341200_b28) 2002; 157 Tkachenko (2021042613051341200_b56) 2002; 277 Chung (2021042613051341200_b10) 2013; 138 Kainulainen (2021042613051341200_b33) 1998; 273 Woods (2021042613051341200_b64) 2001; 13 Fuki (2021042613051341200_b19) 2000; 351 Forsten-Williams (2021042613051341200_b18) 2005; 233 Moon (2021042613051341200_b41) 2005; 203 Bass (2021042613051341200_b3) 2007; 3 Mostafavi-Pour (2021042613051341200_b43) 2003; 161 Subramanian (2021042613051341200_b55) 1997; 272 Bass (2021042613051341200_b5) 2011; 21 Burridge (2021042613051341200_b8) 2004; 116 Schlessinger (2021042613051341200_b52) 2000; 6 Greene (2021042613051341200_b22) 2003; 278 Partovian (2021042613051341200_b50) 2008; 32 Tkachenko (2021042613051341200_b57) 2004; 117 Kan (2021042613051341200_b34) 1993; 259 Midwood (2021042613051341200_b40) 2004; 15 Tkachenko (2021042613051341200_b1000) 2005; 205 Nugent (2021042613051341200_b47) 1992; 31 Gao (2021042613051341200_b20) 2000; 184 Simons (2021042613051341200_b53) 2009; 21 Zimmermann (2021042613051341200_b69) 2005; 9 Hood (2021042613051341200_b24) 2002; 2 Murakami (2021042613051341200_b44) 2002; 277 Jean (2021042613051341200_b31) 2010; 19 Horowitz (2021042613051341200_b25) 1998; 273 Wilcox-Adelman (2021042613051341200_b63) 2002; 277 Brooks (2021042613051341200_b7) 2012; 3 Kreuger (2021042613051341200_b36) 2006; 174 Elfenbein (2021042613051341200_b15) 2009; 186 Turner (2021042613051341200_b60) 2000; 2 Alexopoulou (2021042613051341200_b1) 2007; 39 Matthews (2021042613051341200_b39) 2008; 135 Florian (2021042613051341200_b17) 2003; 93 Zimmermann (2021042613051341200_b67) 2001; 12 Haugsten (2021042613051341200_b23) 2008; 19 Tkachenko (2021042613051341200_b58) 2006; 98 Nikitovic (2021042613051341200_b46) 2007; 40 Bellin (2021042613051341200_b6) 2009; 106 Katoh (2021042613051341200_b1001) 2003; 424 Baietti (2021042613051341200_b2) 2012; 14 Volk (2021042613051341200_b61) 1999; 274 Morgan (2021042613051341200_b42) 2013; 24 Koo (2021042613051341200_b35) 2006; 355 Whiteford (2021042613051341200_b62) 2006; 281 Gopal (2021042613051341200_b21) 2010; 285 Ishiguro (2021042613051341200_b29) 2001; 276 Jastrebova (2021042613051341200_b30) 2006; 281 Oh (2021042613051341200_b48) 1997; 272 Lim (2021042613051341200_b38) 2003; 278 Zimmermann (2021042613051341200_b68) 2002; 9 Tumova (2021042613051341200_b59) 2000; 275 Yayon (2021042613051341200_b65) 1991; 64 Bass (2021042613051341200_b4) 2007; 177 Dews (2021042613051341200_b12) 2007; 104 Sperinde (2021042613051341200_b54) 2000; 39 Denhez (2021042613051341200_b11) 2002; 277 Rahmoune (2021042613051341200_b51) 1998; 273 Chittenden (2021042613051341200_b9) 2006; 10 Dovas (2021042613051341200_b13) 2010; 285 Elfenbein (2021042613051341200_b16) 2012; 5 Elenius (2021042613051341200_b14) 1992; 267 Ju (2021042613051341200_b32) 2013; 25 Zhang (2021042613051341200_b66) 2003; 284 Ng (2021042613051341200_b45) 1999; 18 Pankov (2021042613051341200_b49) 2005; 170 16807244 - J Biol Chem. 2006 Sep 15;281(37):26884-92 10406796 - EMBO J. 1999 Jul 15;18(14):3909-23 20472934 - J Biol Chem. 2010 Jul 23;285(30):23296-308 11544026 - Curr Opin Cell Biol. 2001 Oct;13(5):578-83 10911369 - J Cell Physiol. 2000 Sep;184(3):373-9 18093920 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20782-7 9516424 - J Biol Chem. 1998 Mar 27;273(13):7303-10 18851840 - Mol Cell. 2008 Oct 10;32(1):140-9 12086619 - Mol Cell. 2002 Jun;9(6):1215-25 11889131 - J Biol Chem. 2002 May 31;277(22):19946-51 10625452 - Biochemistry. 1999 Nov 30;38(48):15871-7 16139226 - Dev Cell. 2005 Sep;9(3):377-88 1556147 - J Biol Chem. 1992 Mar 25;267(9):6435-41 22660413 - Nat Cell Biol. 2012 Jul;14(7):677-85 11916978 - J Biol Chem. 2002 Jun 7;277(23):20367-71 11585825 - J Biol Chem. 2001 Dec 14;276(50):47483-8 12571249 - J Biol Chem. 2003 Apr 18;278(16):13795-802 15483051 - Mol Biol Cell. 2004 Dec;15(12):5670-7 16936286 - J Biol Chem. 2006 Oct 27;281(43):32156-63 12087088 - J Biol Chem. 2002 Sep 6;277(36):32970-7 1390674 - Biochemistry. 1992 Sep 22;31(37):8876-83 11805099 - J Biol Chem. 2002 Apr 5;277(14):12270-4 15226395 - J Cell Sci. 2004 Jul 1;117(Pt 15):3189-99 14744429 - Cell. 2004 Jan 23;116(2):167-79 12695503 - J Cell Biol. 2003 Apr 14;161(1):155-67 10734086 - J Biol Chem. 2000 Mar 31;275(13):9410-7 10446222 - J Biol Chem. 1999 Aug 20;274(34):24417-24 11030354 - Mol Cell. 2000 Sep;6(3):743-50 16129786 - J Cell Biol. 2005 Aug 29;170(5):793-802 21982645 - Dev Cell. 2011 Oct 18;21(4):681-93 22790193 - Small GTPases. 2012 Apr-Jun;3(2):73-9 17706452 - Int J Biochem Cell Biol. 2008;40(1):72-83 11146675 - Nat Cell Biol. 2000 Dec;2(12):E231-6 12493766 - J Biol Chem. 2003 Feb 28;278(9):7617-23 12011116 - J Cell Biol. 2002 May 13;157(4):715-25 12543640 - Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2078-82 11042114 - Biochem J. 2000 Nov 1;351 Pt 3:607-12 16310216 - J Mol Biol. 2006 Jan 27;355(4):651-63 9565572 - J Biol Chem. 1998 May 8;273(19):11563-9 23453597 - Dev Cell. 2013 Mar 11;24(5):472-85 12879077 - Nature. 2003 Jul 24;424(6947):461-4 15748910 - J Theor Biol. 2005 Apr 21;233(4):483-99 16675718 - Circ Res. 2006 Jun 9;98(11):1398-404 9556568 - J Biol Chem. 1998 May 1;273(18):10914-8 18480409 - Mol Biol Cell. 2008 Aug;19(8):3390-403 14563712 - Circ Res. 2003 Nov 14;93(10):e136-42 20833364 - Dev Cell. 2010 Sep 14;19(3):426-39 8456318 - Science. 1993 Mar 26;259(5103):1918-21 11179419 - Mol Biol Cell. 2001 Feb;12(2):339-50 9169435 - J Biol Chem. 1997 Jun 6;272(23):14713-20 1847668 - Cell. 1991 Feb 22;64(4):841-8 20434959 - Dev Cell. 2010 May 18;18(5):713-24 10736179 - Biochemistry. 2000 Apr 4;39(13):3788-96 19442504 - Curr Opin Cell Biol. 2009 Aug;21(4):575-81 20154082 - J Biol Chem. 2010 May 7;285(19):14247-58 18403410 - Development. 2008 May;135(10):1771-80 23113638 - Immunology. 2013 Feb;138(2):173-82 15389626 - J Cell Physiol. 2005 Apr;203(1):166-76 19458789 - Soft Matter. 2007 Jan 3;3(3):372-376 22975683 - Cell Signal. 2013 Jan;25(1):101-5 16740480 - Dev Cell. 2006 Jun;10(6):783-95 15774861 - Circ Res. 2005 Mar 18;96(5):488-500 17485492 - J Cell Biol. 2007 May 7;177(3):527-38 9115237 - J Biol Chem. 1997 May 2;272(18):11805-11 17097330 - Int J Biochem Cell Biol. 2007;39(3):505-28 12635172 - Nat Rev Cancer. 2002 Feb;2(2):91-100 16880267 - J Cell Biol. 2006 Jul 31;174(3):323-7 20080785 - Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22102-7 22569333 - Sci Signal. 2012 May 8;5(223):ra36 19581409 - J Cell Biol. 2009 Jul 13;186(1):75-83 9748216 - J Biol Chem. 1998 Oct 2;273(40):25548-51 |
References_xml | – volume: 135 start-page: 1771 year: 2008 ident: 2021042613051341200_b39 article-title: Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. publication-title: Development doi: 10.1242/dev.017350 – volume: 273 start-page: 25548 year: 1998 ident: 2021042613051341200_b26 article-title: Phosphorylation of the cytoplasmic tail of syndecan-4 regulates activation of protein kinase Calpha. publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.40.25548 – volume: 203 start-page: 166 year: 2005 ident: 2021042613051341200_b41 article-title: Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. publication-title: J. Cell. Physiol. doi: 10.1002/jcp.20220 – volume: 6 start-page: 743 year: 2000 ident: 2021042613051341200_b52 article-title: Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)00073-3 – volume: 13 start-page: 578 year: 2001 ident: 2021042613051341200_b64 article-title: Syndecan-4 and focal adhesion function. publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(00)00254-4 – volume: 184 start-page: 373 year: 2000 ident: 2021042613051341200_b20 article-title: Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration. publication-title: J. Cell. Physiol. doi: 10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I – volume: 277 start-page: 32970 year: 2002 ident: 2021042613051341200_b63 article-title: Syndecan-4 modulates focal adhesion kinase phosphorylation. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M201283200 – volume: 233 start-page: 483 year: 2005 ident: 2021042613051341200_b18 article-title: The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2004.10.020 – volume: 170 start-page: 793 year: 2005 ident: 2021042613051341200_b49 article-title: A Rac switch regulates random versus directionally persistent cell migration. publication-title: J. Cell Biol. doi: 10.1083/jcb.200503152 – volume: 273 start-page: 7303 year: 1998 ident: 2021042613051341200_b51 article-title: Interaction of heparan sulfate from mammary cells with acidic fibroblast growth factor (FGF) and basic FGF. Regulation of the activity of basic FGF by high and low affinity binding sites in heparan sulfate. publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.13.7303 – volume: 40 start-page: 72 year: 2007 ident: 2021042613051341200_b46 article-title: Chondroitin sulfate and heparan sulfate-containing proteoglycans are both partners and targets of basic fibroblast growth factor-mediated proliferation in human metastatic melanoma cell lines. publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2007.06.019 – volume: 277 start-page: 12270 year: 2002 ident: 2021042613051341200_b11 article-title: Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110291200 – volume: 174 start-page: 323 year: 2006 ident: 2021042613051341200_b36 article-title: Interactions between heparan sulfate and proteins: the concept of specificity. publication-title: J. Cell Biol. doi: 10.1083/jcb.200604035 – volume: 10 start-page: 783 year: 2006 ident: 2021042613051341200_b9 article-title: Selective regulation of arterial branching morphogenesis by synectin. publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.03.012 – volume: 157 start-page: 715 year: 2002 ident: 2021042613051341200_b28 article-title: Fibroblast growth factor-specific modulation of cellular response by syndecan-4. publication-title: J. Cell Biol. doi: 10.1083/jcb.200112145 – volume: 161 start-page: 155 year: 2003 ident: 2021042613051341200_b43 article-title: Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. publication-title: J. Cell Biol. doi: 10.1083/jcb.200210176 – volume: 3 start-page: 372 year: 2007 ident: 2021042613051341200_b3 article-title: Integrins and syndecan-4 make distinct, but critical, contributions to adhesion contact formation. publication-title: Soft Matter doi: 10.1039/b614610d – volume: 3 start-page: 73 year: 2012 ident: 2021042613051341200_b7 article-title: Syndecan-4 independently regulates multiple small GTPases to promote fibroblast migration during wound healing. publication-title: Small GTPases doi: 10.4161/sgtp.19301 – volume: 117 start-page: 3189 year: 2004 ident: 2021042613051341200_b57 article-title: Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway. publication-title: J. Cell Sci. doi: 10.1242/jcs.01190 – volume: 19 start-page: 426 year: 2010 ident: 2021042613051341200_b31 article-title: Extended-synaptotagmin-2 mediates FGF receptor endocytosis and ERK activation in vivo. publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.08.007 – volume: 39 start-page: 505 year: 2007 ident: 2021042613051341200_b1 article-title: Syndecans in wound healing, inflammation and vascular biology. publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2006.10.014 – volume: 272 start-page: 11805 year: 1997 ident: 2021042613051341200_b48 article-title: Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C. J. Biol. publication-title: Chem. doi: 10.1074/jbc.272.18.11805 – volume: 39 start-page: 3788 year: 2000 ident: 2021042613051341200_b54 article-title: Mechanisms of fibroblast growth factor 2 intracellular processing: a kinetic analysis of the role of heparan sulfate proteoglycans. publication-title: Biochemistry doi: 10.1021/bi992243d – volume: 273 start-page: 10914 year: 1998 ident: 2021042613051341200_b25 article-title: Regulation of syndecan-4 phosphorylation in vivo. publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.18.10914 – volume: 32 start-page: 140 year: 2008 ident: 2021042613051341200_b50 article-title: Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells. publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.09.010 – volume: 14 start-page: 677 year: 2012 ident: 2021042613051341200_b2 article-title: Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. publication-title: Nat. Cell Biol. doi: 10.1038/ncb2502 – volume: 267 start-page: 6435 year: 1992 ident: 2021042613051341200_b14 article-title: Growth factors induce 3T3 cells to express bFGF-binding syndecan. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42715-9 – volume: 273 start-page: 11563 year: 1998 ident: 2021042613051341200_b33 article-title: Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.19.11563 – volume: 285 start-page: 23296 year: 2010 ident: 2021042613051341200_b13 article-title: Serine 34 phosphorylation of rho guanine dissociation inhibitor (RhoGDIalpha) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.098129 – volume: 276 start-page: 47483 year: 2001 ident: 2021042613051341200_b29 article-title: Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M106268200 – volume: 278 start-page: 7617 year: 2003 ident: 2021042613051341200_b22 article-title: Syndecan-4 associates with alpha-actinin. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207123200 – volume: 2 start-page: 91 year: 2002 ident: 2021042613051341200_b24 article-title: Role of integrins in cell invasion and migration. publication-title: Nat. Rev. Cancer doi: 10.1038/nrc727 – volume: 12 start-page: 339 year: 2001 ident: 2021042613051341200_b67 article-title: Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.2.339 – volume: 355 start-page: 651 year: 2006 ident: 2021042613051341200_b35 article-title: Structural basis of syndecan-4 phosphorylation as a molecular switch to regulate signaling. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.09.087 – volume: 281 start-page: 32156 year: 2006 ident: 2021042613051341200_b62 article-title: A conserved NXIP motif is required for cell adhesion properties of the syndecan-4 ectodomain. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605553200 – volume: 21 start-page: 575 year: 2009 ident: 2021042613051341200_b53 article-title: Exosomes – vesicular carriers for intercellular communication. publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.03.007 – volume: 274 start-page: 24417 year: 1999 ident: 2021042613051341200_b61 article-title: The role of syndecan cytoplasmic domain in basic fibroblast growth factor-dependent signal transduction. publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.34.24417 – volume: 351 start-page: 607 year: 2000 ident: 2021042613051341200_b19 article-title: Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. publication-title: Biochem. J. doi: 10.1042/0264-6021:3510607 – volume: 259 start-page: 1918 year: 1993 ident: 2021042613051341200_b34 article-title: An essential heparin-binding domain in the fibroblast growth factor receptor kinase. publication-title: Science doi: 10.1126/science.8456318 – volume: 277 start-page: 19946 year: 2002 ident: 2021042613051341200_b56 article-title: Clustering induces redistribution of syndecan-4 core protein into raft membrane domains. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200841200 – volume: 21 start-page: 681 year: 2011 ident: 2021042613051341200_b5 article-title: A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.08.007 – volume: 93 start-page: e136 year: 2003 ident: 2021042613051341200_b17 article-title: Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. publication-title: Circ. Res. doi: 10.1161/01.RES.0000101744.47866.D5 – volume: 5 start-page: ra36 year: 2012 ident: 2021042613051341200_b16 article-title: Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis. publication-title: Sci. Signal. doi: 10.1126/scisignal.2002495 – volume: 38 start-page: 15871 year: 1999 ident: 2021042613051341200_b27 article-title: Phosphatidylinositol-4,5-bisphosphate mediates the interaction of syndecan-4 with protein kinase C. Biochemistry doi: 10.1021/bi991363i – volume: 278 start-page: 13795 year: 2003 ident: 2021042613051341200_b38 article-title: Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208300200 – volume: 424 start-page: 461 year: 2003 ident: 2021042613051341200_b1001 article-title: RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. publication-title: Nature doi: 10.1038/nature01817 – volume: 277 start-page: 20367 year: 2002 ident: 2021042613051341200_b44 article-title: Protein kinase C (PKC) delta regulates PKCalpha activity in a Syndecan-4-dependent manner. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202501200 – volume: 25 start-page: 101 year: 2013 ident: 2021042613051341200_b32 article-title: Syndecan 4 regulation of PDK1-dependent Akt activation. publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2012.09.007 – volume: 275 start-page: 9410 year: 2000 ident: 2021042613051341200_b59 article-title: Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences. publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.13.9410 – volume: 15 start-page: 5670 year: 2004 ident: 2021042613051341200_b40 article-title: Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E04-08-0759 – volume: 272 start-page: 14713 year: 1997 ident: 2021042613051341200_b55 article-title: Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.23.14713 – volume: 205 start-page: 488 year: 2005 ident: 2021042613051341200_b1000 article-title: Syndecans: new kids on the signaling block. publication-title: Circ. Res. doi: 10.1161/01.RES.0000159708.71142.c8 – volume: 9 start-page: 1215 year: 2002 ident: 2021042613051341200_b68 article-title: PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00549-X – volume: 18 start-page: 713 year: 2010 ident: 2021042613051341200_b37 article-title: VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.02.016 – volume: 177 start-page: 527 year: 2007 ident: 2021042613051341200_b4 article-title: Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. publication-title: J. Cell Biol. doi: 10.1083/jcb.200610076 – volume: 31 start-page: 8876 year: 1992 ident: 2021042613051341200_b47 article-title: Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperactivity. publication-title: Biochemistry doi: 10.1021/bi00152a026 – volume: 186 start-page: 75 year: 2009 ident: 2021042613051341200_b15 article-title: Suppression of RhoG activity is mediated by a syndecan 4-synectin-RhoGDI1 complex and is reversed by PKCalpha in a Rac1 activation pathway. publication-title: J. Cell Biol. doi: 10.1083/jcb.200810179 – volume: 138 start-page: 173 year: 2013 ident: 2021042613051341200_b10 article-title: The DC-HIL ligand syndecan-4 is a negative regulator of T cell alloreactivity responsible for graft-versus-host disease. publication-title: Immunology. doi: 10.1111/imm.12027 – volume: 285 start-page: 14247 year: 2010 ident: 2021042613051341200_b21 article-title: Heparan sulfate chain valency controls syndecan-4 function in cell adhesion. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.056945 – volume: 24 start-page: 472 year: 2013 ident: 2021042613051341200_b42 article-title: Syndecan-4 phosphorylation is a control point for integrin recycling. publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.01.027 – volume: 18 start-page: 3909 year: 1999 ident: 2021042613051341200_b45 article-title: PKCalpha regulates beta1 integrin-dependent cell motility through association and control of integrin traffic. publication-title: EMBO J. doi: 10.1093/emboj/18.14.3909 – volume: 9 start-page: 377 year: 2005 ident: 2021042613051341200_b69 article-title: Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. publication-title: Dev. Cell doi: 10.1016/j.devcel.2005.07.011 – volume: 2 start-page: E231 year: 2000 ident: 2021042613051341200_b60 article-title: Paxillin and focal adhesion signalling. publication-title: Nat. Cell Biol. doi: 10.1038/35046659 – volume: 104 start-page: 20782 year: 2007 ident: 2021042613051341200_b12 article-title: Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708909105 – volume: 281 start-page: 26884 year: 2006 ident: 2021042613051341200_b30 article-title: Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600806200 – volume: 98 start-page: 1398 year: 2006 ident: 2021042613051341200_b58 article-title: Syndecan-4 clustering induces cell migration in a PDZ-dependent manner. publication-title: Circ. Res. doi: 10.1161/01.RES.0000225283.71490.5a – volume: 19 start-page: 3390 year: 2008 ident: 2021042613051341200_b23 article-title: Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E07-12-1219 – volume: 106 start-page: 22102 year: 2009 ident: 2021042613051341200_b6 article-title: Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0902639106 – volume: 64 start-page: 841 year: 1991 ident: 2021042613051341200_b65 article-title: Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. publication-title: Cell doi: 10.1016/0092-8674(91)90512-W – volume: 284 start-page: H2078 year: 2003 ident: 2021042613051341200_b66 article-title: Syndecan-4 modulates basic fibroblast growth factor 2 signaling in vivo. publication-title: Am. J. Physiol. – volume: 116 start-page: 167 year: 2004 ident: 2021042613051341200_b8 article-title: Rho and Rac take center stage. publication-title: Cell doi: 10.1016/S0092-8674(04)00003-0 – reference: 9748216 - J Biol Chem. 1998 Oct 2;273(40):25548-51 – reference: 20080785 - Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22102-7 – reference: 11544026 - Curr Opin Cell Biol. 2001 Oct;13(5):578-83 – reference: 9516424 - J Biol Chem. 1998 Mar 27;273(13):7303-10 – reference: 11146675 - Nat Cell Biol. 2000 Dec;2(12):E231-6 – reference: 18851840 - Mol Cell. 2008 Oct 10;32(1):140-9 – reference: 11585825 - J Biol Chem. 2001 Dec 14;276(50):47483-8 – reference: 12695503 - J Cell Biol. 2003 Apr 14;161(1):155-67 – reference: 15774861 - Circ Res. 2005 Mar 18;96(5):488-500 – reference: 11042114 - Biochem J. 2000 Nov 1;351 Pt 3:607-12 – reference: 15226395 - J Cell Sci. 2004 Jul 1;117(Pt 15):3189-99 – reference: 12543640 - Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2078-82 – reference: 12087088 - J Biol Chem. 2002 Sep 6;277(36):32970-7 – reference: 19458789 - Soft Matter. 2007 Jan 3;3(3):372-376 – reference: 20434959 - Dev Cell. 2010 May 18;18(5):713-24 – reference: 10911369 - J Cell Physiol. 2000 Sep;184(3):373-9 – reference: 10446222 - J Biol Chem. 1999 Aug 20;274(34):24417-24 – reference: 11179419 - Mol Biol Cell. 2001 Feb;12(2):339-50 – reference: 9565572 - J Biol Chem. 1998 May 8;273(19):11563-9 – reference: 9556568 - J Biol Chem. 1998 May 1;273(18):10914-8 – reference: 23113638 - Immunology. 2013 Feb;138(2):173-82 – reference: 12571249 - J Biol Chem. 2003 Apr 18;278(16):13795-802 – reference: 17706452 - Int J Biochem Cell Biol. 2008;40(1):72-83 – reference: 12086619 - Mol Cell. 2002 Jun;9(6):1215-25 – reference: 15748910 - J Theor Biol. 2005 Apr 21;233(4):483-99 – reference: 16139226 - Dev Cell. 2005 Sep;9(3):377-88 – reference: 11030354 - Mol Cell. 2000 Sep;6(3):743-50 – reference: 18403410 - Development. 2008 May;135(10):1771-80 – reference: 1390674 - Biochemistry. 1992 Sep 22;31(37):8876-83 – reference: 16880267 - J Cell Biol. 2006 Jul 31;174(3):323-7 – reference: 18093920 - Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20782-7 – reference: 12635172 - Nat Rev Cancer. 2002 Feb;2(2):91-100 – reference: 22660413 - Nat Cell Biol. 2012 Jul;14(7):677-85 – reference: 21982645 - Dev Cell. 2011 Oct 18;21(4):681-93 – reference: 16807244 - J Biol Chem. 2006 Sep 15;281(37):26884-92 – reference: 22569333 - Sci Signal. 2012 May 8;5(223):ra36 – reference: 16740480 - Dev Cell. 2006 Jun;10(6):783-95 – reference: 16675718 - Circ Res. 2006 Jun 9;98(11):1398-404 – reference: 16936286 - J Biol Chem. 2006 Oct 27;281(43):32156-63 – reference: 10406796 - EMBO J. 1999 Jul 15;18(14):3909-23 – reference: 18480409 - Mol Biol Cell. 2008 Aug;19(8):3390-403 – reference: 12493766 - J Biol Chem. 2003 Feb 28;278(9):7617-23 – reference: 10734086 - J Biol Chem. 2000 Mar 31;275(13):9410-7 – reference: 15389626 - J Cell Physiol. 2005 Apr;203(1):166-76 – reference: 9115237 - J Biol Chem. 1997 May 2;272(18):11805-11 – reference: 17097330 - Int J Biochem Cell Biol. 2007;39(3):505-28 – reference: 14744429 - Cell. 2004 Jan 23;116(2):167-79 – reference: 20833364 - Dev Cell. 2010 Sep 14;19(3):426-39 – reference: 22975683 - Cell Signal. 2013 Jan;25(1):101-5 – reference: 17485492 - J Cell Biol. 2007 May 7;177(3):527-38 – reference: 9169435 - J Biol Chem. 1997 Jun 6;272(23):14713-20 – reference: 10625452 - Biochemistry. 1999 Nov 30;38(48):15871-7 – reference: 1556147 - J Biol Chem. 1992 Mar 25;267(9):6435-41 – reference: 15483051 - Mol Biol Cell. 2004 Dec;15(12):5670-7 – reference: 16310216 - J Mol Biol. 2006 Jan 27;355(4):651-63 – reference: 11805099 - J Biol Chem. 2002 Apr 5;277(14):12270-4 – reference: 11916978 - J Biol Chem. 2002 Jun 7;277(23):20367-71 – reference: 19581409 - J Cell Biol. 2009 Jul 13;186(1):75-83 – reference: 16129786 - J Cell Biol. 2005 Aug 29;170(5):793-802 – reference: 20472934 - J Biol Chem. 2010 Jul 23;285(30):23296-308 – reference: 14563712 - Circ Res. 2003 Nov 14;93(10):e136-42 – reference: 8456318 - Science. 1993 Mar 26;259(5103):1918-21 – reference: 22790193 - Small GTPases. 2012 Apr-Jun;3(2):73-9 – reference: 23453597 - Dev Cell. 2013 Mar 11;24(5):472-85 – reference: 11889131 - J Biol Chem. 2002 May 31;277(22):19946-51 – reference: 12011116 - J Cell Biol. 2002 May 13;157(4):715-25 – reference: 12879077 - Nature. 2003 Jul 24;424(6947):461-4 – reference: 19442504 - Curr Opin Cell Biol. 2009 Aug;21(4):575-81 – reference: 20154082 - J Biol Chem. 2010 May 7;285(19):14247-58 – reference: 1847668 - Cell. 1991 Feb 22;64(4):841-8 – reference: 10736179 - Biochemistry. 2000 Apr 4;39(13):3788-96 |
SSID | ssj0007297 |
Score | 2.498045 |
SecondaryResourceType | review_article |
Snippet | Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3799 |
SubjectTerms | Cell Membrane - metabolism Cell Movement Cell Proliferation Cell Science at a Glance Endocytosis Fibroblast Growth Factors - metabolism Humans Mechanotransduction, Cellular Platelet-Derived Growth Factor - metabolism Proto-Oncogene Proteins c-akt - metabolism rho GTP-Binding Proteins - metabolism Signal Transduction Syndecan-4 - metabolism TOR Serine-Threonine Kinases - metabolism Vascular Endothelial Growth Factor A - metabolism |
Title | Syndecan-4 signaling at a glance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23970415 https://www.proquest.com/docview/1429848450 https://pubmed.ncbi.nlm.nih.gov/PMC3757327 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF9ai9AX0da2p22J6Isc0XzsR_JYxFYKFaEK9xY2kw0ttDnR-KB_vTOZvSRXfbC-LCHZy3Izc7Mzc7_9jRB7tatTUzsZZkDVKlA6tKCTUOOoY1uVCjqU76k-uZDfZ2o2tLnrTpe05QHcPXqu5DlaxXuoVzol-x-a7V-KN_Aa9YsjahjHJ-n4521TOZRNKKeEw7Dd0XLM-O2UOnPAMspniDypWD_1W9-A3agJ6-UZBTAQ70svqExfkh4h7H2dgHo25OM6AbfBYxQBrsSdLtGSxiXBDq6hmJjiwLFDlPQXb8zELL3H5EPuC9MwIweYGu535DfTNOPmwg8cNUYG5Kjhmi41c6CMNHb5t1NZgtEScQgMm1UPITz7cZQaZdLEvBSvEswRqH3Ft9mA78Gswffr5S_luWlx4cNhWeKC9mssByYPso1_QbOjKOR8Xax5JQZf2BY2xAvXvBGrLObbtyIYLCLoLSKwbWADtohNcfH1-PzoJPQ9MEKQUrahdGkKNUSqqpVNogpKp6A0UhEPXW1skldagy0x88NIFuOQSkGc27i2SukyM-k7sdLMG_dBBBBLZWLACNM6GQOh4Mo8ilyeJy7PXDYR-wsBFOAJ4qlPyZ-CEkWUW4FyK1huE7Hbz71kWpRHZ-0s5Fig1yLrto2b3-BzDIMymUkVTcR7lmv_noVCJsIsSbyfQIzoy0-a3786ZnRvEVvP_uS2eD38dj6Klfbqxn3CqLMtP3fWdQ8PY4F2 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Syndecan-4+signaling+at+a+glance&rft.jtitle=Journal+of+cell+science&rft.au=Elfenbein%2C+Arye&rft.au=Simons%2C+Michael&rft.date=2013-09-01&rft.pub=The+Company+of+Biologists&rft.issn=0021-9533&rft.eissn=1477-9137&rft.volume=126&rft.issue=17&rft.spage=3799&rft.epage=3804&rft_id=info:doi/10.1242%2Fjcs.124636&rft_id=info%3Apmid%2F23970415&rft.externalDocID=PMC3757327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |