Visualization of Dopamine Transporter Trafficking in Live Neurons by Use of Fluorescent Cocaine Analogs
The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluoresce...
Saved in:
Published in | The Journal of neuroscience Vol. 29; no. 21; pp. 6794 - 6808 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
27.05.2009
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.4177-08.2009 |
Cover
Abstract | The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2β-carbomethoxy-3β-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than ∼30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC. |
---|---|
AbstractList | The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2β-carbomethoxy-3β-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than ∼30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC. The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than approximately 30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC. The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than approximately 30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC.The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than approximately 30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC. |
Author | Vaegter, Christian Bjerggaard Cha, Joo Hwan Newman, Amy Hauck Rasmussen, Soren G. F Rasmussen, Trine Nygaard Zou, Mu-Fa Gether, Ulrik Eriksen, Jacob |
Author_xml | – sequence: 1 fullname: Eriksen, Jacob – sequence: 2 fullname: Rasmussen, Soren G. F – sequence: 3 fullname: Rasmussen, Trine Nygaard – sequence: 4 fullname: Vaegter, Christian Bjerggaard – sequence: 5 fullname: Cha, Joo Hwan – sequence: 6 fullname: Zou, Mu-Fa – sequence: 7 fullname: Newman, Amy Hauck – sequence: 8 fullname: Gether, Ulrik |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19474307$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFr1DlBKcsY8eJEwkhVUtbilatBF2uljeZZA2OvbWTrsqnr8OW8ufCyZbn_d7M-B2RA-ssEnJCYU5zlr39dHW2-nz9ZXE551SIFMo5A6iekVmsVinjQA_IDJiAtOCCH5KjEL4BgAAqXpBDWsXHDMSMdF91GJXRP9SgnU1cm3xwW9Vri8mNVzZsnR_QT_e21fV3bbtE22Sp7zC5wtE7G5L1fbIKOKHnZnQeQ412SBauVpPLqVXGdeEled4qE_DV43lMVudnN4uP6fL64nJxukxrzvmQ8gzFmpZ5znkroOEcqqqlTc24KpFVCE3ZIFDMsWxYJJAzKjKAus5LQSHPjsn7ve92XPfYTKN4ZeTW6175e-mUln9XrN7Izt3JrOQVL0Q0eP1o4N3tiGGQvY4bGaMsujHIQrCyyEQWhSd_dnpq8etvo6DYC2rvQvDY_paAnEKUTyHKKUQJpZxCjOC7f8BaDz_ziRNr83_8zR7f6G6z0x5l6JUxcUwqd7sdqySjcY2KZw87M7KT |
CitedBy_id | crossref_primary_10_1016_j_bios_2013_03_055 crossref_primary_10_1523_JNEUROSCI_1391_15_2015 crossref_primary_10_1016_j_mcn_2010_08_016 crossref_primary_10_1016_j_bmcl_2012_10_089 crossref_primary_10_1523_JNEUROSCI_2991_13_2014 crossref_primary_10_3390_ijms21186589 crossref_primary_10_1074_jbc_M109_083154 crossref_primary_10_1149_1945_7111_ac60ef crossref_primary_10_1371_journal_pcbi_1012082 crossref_primary_10_1021_cn200032r crossref_primary_10_1016_j_cbpa_2009_09_032 crossref_primary_10_1073_pnas_2309843120 crossref_primary_10_1074_jbc_M115_702050 crossref_primary_10_1093_mp_sss110 crossref_primary_10_1111_tra_12059 crossref_primary_10_1523_JNEUROSCI_3284_13_2013 crossref_primary_10_1093_sleep_34_3_341 crossref_primary_10_1371_journal_pone_0225339 crossref_primary_10_1021_acschemneuro_0c00397 crossref_primary_10_1096_fj_11_196113 crossref_primary_10_1039_D0BM00546K crossref_primary_10_1074_jbc_M110_131003 crossref_primary_10_3389_fpls_2014_00373 crossref_primary_10_1021_cn5002057 crossref_primary_10_1172_jci_insight_151496 crossref_primary_10_1038_s41467_017_00790_3 crossref_primary_10_1038_s41531_021_00161_2 crossref_primary_10_1016_j_neuron_2022_07_011 crossref_primary_10_1016_j_nbd_2019_104633 crossref_primary_10_1016_j_crphys_2023_100106 crossref_primary_10_1523_ENEURO_0422_17_2018 crossref_primary_10_1016_j_tips_2014_11_006 crossref_primary_10_1016_j_isci_2022_105782 crossref_primary_10_1021_acschemneuro_8b00350 crossref_primary_10_1039_D1MD00072A crossref_primary_10_1124_pr_115_012260 crossref_primary_10_3389_fncel_2021_662216 crossref_primary_10_1039_D4SC06949H crossref_primary_10_1016_j_ejphar_2012_05_020 crossref_primary_10_1016_j_neuron_2019_03_031 crossref_primary_10_1523_ENEURO_0341_22_2023 crossref_primary_10_1007_s11064_010_0344_7 crossref_primary_10_1021_nn506408v crossref_primary_10_1016_j_neuropharm_2015_03_033 crossref_primary_10_1021_jacsau_3c00719 crossref_primary_10_3389_fphys_2019_01375 crossref_primary_10_1016_j_biopsych_2010_06_026 crossref_primary_10_1021_jacs_0c00861 crossref_primary_10_1038_ncomms2568 crossref_primary_10_1039_D1CS00388G crossref_primary_10_1111_j_1471_4159_2009_06474_x crossref_primary_10_1038_ncomms10423 crossref_primary_10_1111_jnc_12240 crossref_primary_10_1172_JCI73778 crossref_primary_10_7554_eLife_32293 crossref_primary_10_2217_fnl_09_76 crossref_primary_10_3390_ijms231911054 crossref_primary_10_1111_j_1471_4159_2010_06788_x crossref_primary_10_1111_jnc_16284 crossref_primary_10_1016_j_jim_2019_112686 crossref_primary_10_1038_s41598_017_05637_x crossref_primary_10_1134_S1068162019040058 crossref_primary_10_1007_s11064_020_03001_6 crossref_primary_10_1016_j_drugalcdep_2015_11_014 crossref_primary_10_1113_JP281104 crossref_primary_10_1124_pr_114_010397 crossref_primary_10_1074_jbc_M113_531632 crossref_primary_10_1117_1_NPh_3_4_041808 crossref_primary_10_1111_j_1471_4159_2010_06599_x crossref_primary_10_1074_jbc_M113_495754 crossref_primary_10_3389_fnmol_2022_1020070 crossref_primary_10_7554_eLife_39180 crossref_primary_10_1021_cn500202c crossref_primary_10_1111_ejn_13046 crossref_primary_10_1074_jbc_RA119_007441 crossref_primary_10_1016_j_cellsig_2018_01_006 crossref_primary_10_1523_JNEUROSCI_0744_20_2020 crossref_primary_10_1523_JNEUROSCI_3885_16_2017 crossref_primary_10_1038_s41531_024_00769_0 crossref_primary_10_3389_fncel_2021_667044 crossref_primary_10_1021_ml5000806 crossref_primary_10_1021_acsnano_4c10754 crossref_primary_10_1126_sciadv_adq9793 crossref_primary_10_1016_j_ceca_2017_08_009 crossref_primary_10_1016_j_jbc_2021_100787 crossref_primary_10_1016_j_phrs_2021_105434 crossref_primary_10_1124_pr_108_000869 |
Cites_doi | 10.1007/s00424-003-1064-5 10.1074/jbc.M306924200 10.1021/bi700429z 10.1016/j.conb.2007.05.002 10.1016/j.neuron.2007.05.030 10.1016/S0959-4388(00)00088-X 10.1111/j.1469-7793.2000.t01-2-00011.x 10.1073/pnas.0407976101 10.1074/jbc.M205058200 10.1126/science.272.5259.263 10.1124/mol.104.009092 10.1038/nature06133 10.1073/pnas.110035297 10.1021/jm050431y 10.1083/jcb.200302125 10.1016/S0896-6273(02)00979-0 10.1038/nrn1008 10.1038/35052055 10.1038/nn920 10.1002/(SICI)1096-9861(19971117)388:2<211::AID-CNE3>3.0.CO;2-4 10.1523/JNEUROSCI.16-02-00436.1996 10.1073/pnas.84.20.7334 10.1091/mbc.E06-08-0704 10.1074/jbc.274.50.35794 10.1016/S0006-3495(82)84459-7 10.1073/pnas.85.19.7346 10.1111/j.1600-0854.2005.00259.x 10.1523/JNEUROSCI.12-11-04264.1992 10.1523/JNEUROSCI.23-24-08480.2003 10.1146/annurev.pharmtox.43.050802.112309 10.1038/nbt0997-871 10.1111/j.1582-4934.2007.00083.x 10.1016/j.neuropharm.2005.08.018 10.1074/jbc.272.24.15541 10.1523/JNEUROSCI.19-18-07699.1999 10.1111/j.1471-4159.2007.04522.x 10.1083/jcb.122.3.553 10.1523/JNEUROSCI.1301-06.2006 10.1523/JNEUROSCI.1890-04.2004 10.1385/MB:29:1:47 10.1038/nn1478 10.1038/35073068 10.1080/713609214 10.1074/jbc.M500381200 10.1074/jbc.M603741200 10.2144/96201st05 10.1073/pnas.93.21.11382 10.1006/bbrc.2002.6384 10.1042/BJ20080474 10.1038/288370a0 10.1016/j.tips.2006.05.003 10.1083/jcb.108.2.389 10.1016/0955-0674(94)90074-4 10.1083/jcb.121.1.61 10.1124/jpet.103.055095 10.1523/JNEUROSCI.17-14-05255.1997 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Society for Neuroscience 0270-6474/09/296794-15$15.00/0 2009 |
Copyright_xml | – notice: Copyright © 2009 Society for Neuroscience 0270-6474/09/296794-15$15.00/0 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.4177-08.2009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 6808 |
ExternalDocumentID | PMC3849467 19474307 10_1523_JNEUROSCI_4177_08_2009 www29_21_6794 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: P01 DA 12408 – fundername: NIDA NIH HHS grantid: P01 DA012408 – fundername: Intramural NIH HHS grantid: ZIA DA000389 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c444t-43e7b185544f70d44099f1dc24a8e29e0d8de01e5e8d2444e4217300cc5871053 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:42:54 EDT 2025 Fri Sep 05 06:18:33 EDT 2025 Fri May 30 11:02:16 EDT 2025 Tue Jul 01 02:59:04 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 Tue Nov 10 19:50:58 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-43e7b185544f70d44099f1dc24a8e29e0d8de01e5e8d2444e4217300cc5871053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 J.E. and S.G.F.R. contributed equally to this work. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/29/21/6794.full.pdf |
PMID | 19474307 |
PQID | 67286373 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3849467 proquest_miscellaneous_67286373 pubmed_primary_19474307 crossref_primary_10_1523_JNEUROSCI_4177_08_2009 crossref_citationtrail_10_1523_JNEUROSCI_4177_08_2009 highwire_smallpub1_www29_21_6794 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090527 2009-05-27 2009-May-27 |
PublicationDateYYYYMMDD | 2009-05-27 |
PublicationDate_xml | – month: 05 year: 2009 text: 20090527 day: 27 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2009 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | 2023041303382765000_29.21.6794.38 2023041303382765000_29.21.6794.37 Garcia (2023041303382765000_29.21.6794.16) 2005; 68 2023041303382765000_29.21.6794.31 2023041303382765000_29.21.6794.34 2023041303382765000_29.21.6794.33 Melikian (2023041303382765000_29.21.6794.30) 1999; 19 2023041303382765000_29.21.6794.41 2023041303382765000_29.21.6794.47 2023041303382765000_29.21.6794.46 2023041303382765000_29.21.6794.49 2023041303382765000_29.21.6794.48 2023041303382765000_29.21.6794.43 2023041303382765000_29.21.6794.42 2023041303382765000_29.21.6794.45 2023041303382765000_29.21.6794.44 Nirenberg (2023041303382765000_29.21.6794.36) 1997; 17 2023041303382765000_29.21.6794.50 2023041303382765000_29.21.6794.52 2023041303382765000_29.21.6794.51 2023041303382765000_29.21.6794.14 2023041303382765000_29.21.6794.13 2023041303382765000_29.21.6794.15 2023041303382765000_29.21.6794.10 2023041303382765000_29.21.6794.54 2023041303382765000_29.21.6794.53 2023041303382765000_29.21.6794.12 2023041303382765000_29.21.6794.56 2023041303382765000_29.21.6794.11 2023041303382765000_29.21.6794.55 2023041303382765000_29.21.6794.18 2023041303382765000_29.21.6794.17 2023041303382765000_29.21.6794.19 Rayport (2023041303382765000_29.21.6794.39) 1992; 12 Morón (2023041303382765000_29.21.6794.32) 2003; 23 2023041303382765000_29.21.6794.1 2023041303382765000_29.21.6794.7 2023041303382765000_29.21.6794.25 2023041303382765000_29.21.6794.6 2023041303382765000_29.21.6794.24 2023041303382765000_29.21.6794.9 2023041303382765000_29.21.6794.27 2023041303382765000_29.21.6794.8 2023041303382765000_29.21.6794.26 2023041303382765000_29.21.6794.3 2023041303382765000_29.21.6794.21 2023041303382765000_29.21.6794.2 2023041303382765000_29.21.6794.20 2023041303382765000_29.21.6794.5 2023041303382765000_29.21.6794.23 2023041303382765000_29.21.6794.4 2023041303382765000_29.21.6794.22 2023041303382765000_29.21.6794.29 2023041303382765000_29.21.6794.28 Rees (2023041303382765000_29.21.6794.40) 1996; 20 Nirenberg (2023041303382765000_29.21.6794.35) 1996; 16 |
References_xml | – ident: 2023041303382765000_29.21.6794.6 doi: 10.1007/s00424-003-1064-5 – ident: 2023041303382765000_29.21.6794.37 doi: 10.1074/jbc.M306924200 – ident: 2023041303382765000_29.21.6794.1 doi: 10.1021/bi700429z – ident: 2023041303382765000_29.21.6794.46 doi: 10.1016/j.conb.2007.05.002 – ident: 2023041303382765000_29.21.6794.54 doi: 10.1016/j.neuron.2007.05.030 – ident: 2023041303382765000_29.21.6794.2 doi: 10.1016/S0959-4388(00)00088-X – ident: 2023041303382765000_29.21.6794.4 doi: 10.1111/j.1469-7793.2000.t01-2-00011.x – ident: 2023041303382765000_29.21.6794.13 doi: 10.1073/pnas.0407976101 – ident: 2023041303382765000_29.21.6794.18 doi: 10.1074/jbc.M205058200 – ident: 2023041303382765000_29.21.6794.34 doi: 10.1126/science.272.5259.263 – volume: 68 start-page: 102 year: 2005 ident: 2023041303382765000_29.21.6794.16 article-title: Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution publication-title: Mol Pharmacol doi: 10.1124/mol.104.009092 – ident: 2023041303382765000_29.21.6794.55 doi: 10.1038/nature06133 – ident: 2023041303382765000_29.21.6794.42 doi: 10.1073/pnas.110035297 – ident: 2023041303382765000_29.21.6794.5 doi: 10.1021/jm050431y – ident: 2023041303382765000_29.21.6794.50 doi: 10.1083/jcb.200302125 – ident: 2023041303382765000_29.21.6794.3 doi: 10.1016/S0896-6273(02)00979-0 – ident: 2023041303382765000_29.21.6794.47 doi: 10.1038/nrn1008 – ident: 2023041303382765000_29.21.6794.53 doi: 10.1038/35052055 – ident: 2023041303382765000_29.21.6794.24 doi: 10.1038/nn920 – ident: 2023041303382765000_29.21.6794.20 doi: 10.1002/(SICI)1096-9861(19971117)388:2<211::AID-CNE3>3.0.CO;2-4 – volume: 16 start-page: 436 year: 1996 ident: 2023041303382765000_29.21.6794.35 article-title: The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-02-00436.1996 – ident: 2023041303382765000_29.21.6794.12 doi: 10.1073/pnas.84.20.7334 – ident: 2023041303382765000_29.21.6794.31 doi: 10.1091/mbc.E06-08-0704 – ident: 2023041303382765000_29.21.6794.8 doi: 10.1074/jbc.274.50.35794 – ident: 2023041303382765000_29.21.6794.52 doi: 10.1016/S0006-3495(82)84459-7 – ident: 2023041303382765000_29.21.6794.43 doi: 10.1073/pnas.85.19.7346 – ident: 2023041303382765000_29.21.6794.44 doi: 10.1111/j.1600-0854.2005.00259.x – volume: 12 start-page: 4264 year: 1992 ident: 2023041303382765000_29.21.6794.39 article-title: Identified postnatal mesolimbic dopamine neurons in culture: morphology and electrophysiology publication-title: J Neurosci doi: 10.1523/JNEUROSCI.12-11-04264.1992 – volume: 23 start-page: 8480 year: 2003 ident: 2023041303382765000_29.21.6794.32 article-title: Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-24-08480.2003 – ident: 2023041303382765000_29.21.6794.14 doi: 10.1146/annurev.pharmtox.43.050802.112309 – ident: 2023041303382765000_29.21.6794.56 doi: 10.1038/nbt0997-871 – ident: 2023041303382765000_29.21.6794.26 doi: 10.1111/j.1582-4934.2007.00083.x – ident: 2023041303382765000_29.21.6794.25 doi: 10.1016/j.neuropharm.2005.08.018 – ident: 2023041303382765000_29.21.6794.49 doi: 10.1074/jbc.272.24.15541 – volume: 19 start-page: 7699 year: 1999 ident: 2023041303382765000_29.21.6794.30 article-title: Membrane trafficking regulates the activity of the human dopamine transporter publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-18-07699.1999 – ident: 2023041303382765000_29.21.6794.23 doi: 10.1111/j.1471-4159.2007.04522.x – ident: 2023041303382765000_29.21.6794.48 doi: 10.1083/jcb.122.3.553 – ident: 2023041303382765000_29.21.6794.45 doi: 10.1523/JNEUROSCI.1301-06.2006 – ident: 2023041303382765000_29.21.6794.27 doi: 10.1523/JNEUROSCI.1890-04.2004 – ident: 2023041303382765000_29.21.6794.28 doi: 10.1385/MB:29:1:47 – ident: 2023041303382765000_29.21.6794.22 doi: 10.1038/nn1478 – ident: 2023041303382765000_29.21.6794.29 doi: 10.1038/35073068 – ident: 2023041303382765000_29.21.6794.10 doi: 10.1080/713609214 – ident: 2023041303382765000_29.21.6794.51 doi: 10.1074/jbc.M500381200 – ident: 2023041303382765000_29.21.6794.15 doi: 10.1074/jbc.M603741200 – volume: 20 start-page: 102 year: 1996 ident: 2023041303382765000_29.21.6794.40 article-title: Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein publication-title: Biotechniques doi: 10.2144/96201st05 – ident: 2023041303382765000_29.21.6794.33 doi: 10.1073/pnas.93.21.11382 – ident: 2023041303382765000_29.21.6794.9 doi: 10.1006/bbrc.2002.6384 – ident: 2023041303382765000_29.21.6794.38 doi: 10.1042/BJ20080474 – ident: 2023041303382765000_29.21.6794.11 doi: 10.1038/288370a0 – ident: 2023041303382765000_29.21.6794.17 doi: 10.1016/j.tips.2006.05.003 – ident: 2023041303382765000_29.21.6794.21 doi: 10.1083/jcb.108.2.389 – ident: 2023041303382765000_29.21.6794.41 doi: 10.1016/0955-0674(94)90074-4 – ident: 2023041303382765000_29.21.6794.19 doi: 10.1083/jcb.121.1.61 – ident: 2023041303382765000_29.21.6794.7 doi: 10.1124/jpet.103.055095 – volume: 17 start-page: 5255 year: 1997 ident: 2023041303382765000_29.21.6794.36 article-title: Immunogold localization of the dopamine transporter: an ultrastructural study of the rat ventral tegmental area publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-14-05255.1997 |
SSID | ssj0007017 |
Score | 2.292195 |
Snippet | The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6794 |
SubjectTerms | Alanine - genetics Animals Animals, Newborn Cells, Cultured Cocaine - analogs & derivatives Cocaine - chemistry Cocaine - metabolism Dopamine - pharmacology Dopamine Plasma Membrane Transport Proteins - genetics Dopamine Plasma Membrane Transport Proteins - metabolism Dopamine Uptake Inhibitors - chemistry Dopamine Uptake Inhibitors - metabolism Dynamins - genetics Dynamins - metabolism Enzyme Inhibitors - pharmacology Fluorescence Recovery After Photobleaching - methods Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Humans Indoles - pharmacology Lysine - genetics Maleimides - pharmacology Mesencephalon - cytology Mutation - physiology Neurons - drug effects Neurons - metabolism Phorbol Esters - pharmacology Protein Transport - drug effects Protein Transport - physiology rab5 GTP-Binding Proteins - genetics rab5 GTP-Binding Proteins - metabolism Rats Receptors, Transferrin - genetics Receptors, Transferrin - metabolism Time Factors Transfection - methods Tyrosine 3-Monooxygenase - metabolism Vesicular Monoamine Transport Proteins - metabolism |
Title | Visualization of Dopamine Transporter Trafficking in Live Neurons by Use of Fluorescent Cocaine Analogs |
URI | http://www.jneurosci.org/cgi/content/abstract/29/21/6794 https://www.ncbi.nlm.nih.gov/pubmed/19474307 https://www.proquest.com/docview/67286373 https://pubmed.ncbi.nlm.nih.gov/PMC3849467 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKOURKLAHxKVy6sc6ax_bqqWEEoSaoNystb0OoYmDYltR-j_4v8ys149ApAKXyPJro3xfZmd3Zr4h5G1oSSG92DF4bCcGs63IEDAzGIz5diwiS4Ye1g5_GvYvx2wwcSedzs9W1lKRh73odmddyf-gCucAV6yS_Qdk65fCCTgGfOETEIbPv8L46yzDmsjb2u2LYQm8QL8xrzXLV3iMOhE3unpljrlCSsYyzdD5LMrd_GReLFelttMRGEmBbxEpbu1kbQe2KSVTTmxLDrNmCJjWG72vMwB7GzahpGxRZPrKNUboTz0sI3_fZBdv3TLCwsSj4WYqdOV_TzUGk1PdS6TURUADdfpdrqbNbdUmho_x91IToLK7tgr0lDSTO85pY623R0pSlrXV2vT2edkt-Y85wVXaFIMhpkZen33oMYtzw_RU4WczC1aR_-Hn4GJ8dRWMzieje-S-zbmK_n_80ojQc1M1cq6_ny48h3GOd4-y7fNUOtS71jS_p-a2fJ3RI_JQ40tPSsbtk45MH5ODk1Tky8WGvqMqbVjFYw7IdIuEdJnQioS0RULaIiGdpRRJSDUJabihQEJ8tEVCqklINQmfkPHF-ejs0tDdO4yIMZYbzJE8tDALkiXcjBmDtUhixZHNhCdtX5qxF0vTki6YCvAxmQRDgc0TosiFRTzMDU_JXrpM5XNCUXfPd8MoTqRkiWMLnniWkFIVUidO3CVu9fsGkZa2xw4r8wCXuIBLUOMSMCVu72H7Vb9LjuvnfpTiLnc-QSv4gmwh5nNAywrW67XtB7YVIAe75E0FawCmGuNvIpXLIoOrttd3uNMlz0qQm0F9Bp68ybuEb8Ff34Ai8NtX0tk3JQbveMwHZ-fFnaO-JA-af94h2ctXhXwFDnUevlb0_gVLxNDa |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+dopamine+transporter+trafficking+in+live+neurons+by+use+of+fluorescent+cocaine+analogs&rft.jtitle=The+Journal+of+neuroscience&rft.au=Eriksen%2C+Jacob&rft.au=Rasmussen%2C+S%C3%B8ren+G+F&rft.au=Rasmussen%2C+Trine+Nygaard&rft.au=Vaegter%2C+Christian+Bjerggaard&rft.date=2009-05-27&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=29&rft.issue=21&rft.spage=6794&rft_id=info:doi/10.1523%2FJNEUROSCI.4177-08.2009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |