Visualization of Dopamine Transporter Trafficking in Live Neurons by Use of Fluorescent Cocaine Analogs

The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluoresce...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 29; no. 21; pp. 6794 - 6808
Main Authors Eriksen, Jacob, Rasmussen, Soren G. F, Rasmussen, Trine Nygaard, Vaegter, Christian Bjerggaard, Cha, Joo Hwan, Zou, Mu-Fa, Newman, Amy Hauck, Gether, Ulrik
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 27.05.2009
Society for Neuroscience
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.4177-08.2009

Cover

Abstract The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2β-carbomethoxy-3β-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than ∼30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC.
AbstractList The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2β-carbomethoxy-3β-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than ∼30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC.
The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than approximately 30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC.
The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than approximately 30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC.The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than approximately 30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC.
Author Vaegter, Christian Bjerggaard
Cha, Joo Hwan
Newman, Amy Hauck
Rasmussen, Soren G. F
Rasmussen, Trine Nygaard
Zou, Mu-Fa
Gether, Ulrik
Eriksen, Jacob
Author_xml – sequence: 1
  fullname: Eriksen, Jacob
– sequence: 2
  fullname: Rasmussen, Soren G. F
– sequence: 3
  fullname: Rasmussen, Trine Nygaard
– sequence: 4
  fullname: Vaegter, Christian Bjerggaard
– sequence: 5
  fullname: Cha, Joo Hwan
– sequence: 6
  fullname: Zou, Mu-Fa
– sequence: 7
  fullname: Newman, Amy Hauck
– sequence: 8
  fullname: Gether, Ulrik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19474307$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFr1DlBKcsY8eJEwkhVUtbilatBF2uljeZZA2OvbWTrsqnr8OW8ufCyZbn_d7M-B2RA-ssEnJCYU5zlr39dHW2-nz9ZXE551SIFMo5A6iekVmsVinjQA_IDJiAtOCCH5KjEL4BgAAqXpBDWsXHDMSMdF91GJXRP9SgnU1cm3xwW9Vri8mNVzZsnR_QT_e21fV3bbtE22Sp7zC5wtE7G5L1fbIKOKHnZnQeQ412SBauVpPLqVXGdeEled4qE_DV43lMVudnN4uP6fL64nJxukxrzvmQ8gzFmpZ5znkroOEcqqqlTc24KpFVCE3ZIFDMsWxYJJAzKjKAus5LQSHPjsn7ve92XPfYTKN4ZeTW6175e-mUln9XrN7Izt3JrOQVL0Q0eP1o4N3tiGGQvY4bGaMsujHIQrCyyEQWhSd_dnpq8etvo6DYC2rvQvDY_paAnEKUTyHKKUQJpZxCjOC7f8BaDz_ziRNr83_8zR7f6G6z0x5l6JUxcUwqd7sdqySjcY2KZw87M7KT
CitedBy_id crossref_primary_10_1016_j_bios_2013_03_055
crossref_primary_10_1523_JNEUROSCI_1391_15_2015
crossref_primary_10_1016_j_mcn_2010_08_016
crossref_primary_10_1016_j_bmcl_2012_10_089
crossref_primary_10_1523_JNEUROSCI_2991_13_2014
crossref_primary_10_3390_ijms21186589
crossref_primary_10_1074_jbc_M109_083154
crossref_primary_10_1149_1945_7111_ac60ef
crossref_primary_10_1371_journal_pcbi_1012082
crossref_primary_10_1021_cn200032r
crossref_primary_10_1016_j_cbpa_2009_09_032
crossref_primary_10_1073_pnas_2309843120
crossref_primary_10_1074_jbc_M115_702050
crossref_primary_10_1093_mp_sss110
crossref_primary_10_1111_tra_12059
crossref_primary_10_1523_JNEUROSCI_3284_13_2013
crossref_primary_10_1093_sleep_34_3_341
crossref_primary_10_1371_journal_pone_0225339
crossref_primary_10_1021_acschemneuro_0c00397
crossref_primary_10_1096_fj_11_196113
crossref_primary_10_1039_D0BM00546K
crossref_primary_10_1074_jbc_M110_131003
crossref_primary_10_3389_fpls_2014_00373
crossref_primary_10_1021_cn5002057
crossref_primary_10_1172_jci_insight_151496
crossref_primary_10_1038_s41467_017_00790_3
crossref_primary_10_1038_s41531_021_00161_2
crossref_primary_10_1016_j_neuron_2022_07_011
crossref_primary_10_1016_j_nbd_2019_104633
crossref_primary_10_1016_j_crphys_2023_100106
crossref_primary_10_1523_ENEURO_0422_17_2018
crossref_primary_10_1016_j_tips_2014_11_006
crossref_primary_10_1016_j_isci_2022_105782
crossref_primary_10_1021_acschemneuro_8b00350
crossref_primary_10_1039_D1MD00072A
crossref_primary_10_1124_pr_115_012260
crossref_primary_10_3389_fncel_2021_662216
crossref_primary_10_1039_D4SC06949H
crossref_primary_10_1016_j_ejphar_2012_05_020
crossref_primary_10_1016_j_neuron_2019_03_031
crossref_primary_10_1523_ENEURO_0341_22_2023
crossref_primary_10_1007_s11064_010_0344_7
crossref_primary_10_1021_nn506408v
crossref_primary_10_1016_j_neuropharm_2015_03_033
crossref_primary_10_1021_jacsau_3c00719
crossref_primary_10_3389_fphys_2019_01375
crossref_primary_10_1016_j_biopsych_2010_06_026
crossref_primary_10_1021_jacs_0c00861
crossref_primary_10_1038_ncomms2568
crossref_primary_10_1039_D1CS00388G
crossref_primary_10_1111_j_1471_4159_2009_06474_x
crossref_primary_10_1038_ncomms10423
crossref_primary_10_1111_jnc_12240
crossref_primary_10_1172_JCI73778
crossref_primary_10_7554_eLife_32293
crossref_primary_10_2217_fnl_09_76
crossref_primary_10_3390_ijms231911054
crossref_primary_10_1111_j_1471_4159_2010_06788_x
crossref_primary_10_1111_jnc_16284
crossref_primary_10_1016_j_jim_2019_112686
crossref_primary_10_1038_s41598_017_05637_x
crossref_primary_10_1134_S1068162019040058
crossref_primary_10_1007_s11064_020_03001_6
crossref_primary_10_1016_j_drugalcdep_2015_11_014
crossref_primary_10_1113_JP281104
crossref_primary_10_1124_pr_114_010397
crossref_primary_10_1074_jbc_M113_531632
crossref_primary_10_1117_1_NPh_3_4_041808
crossref_primary_10_1111_j_1471_4159_2010_06599_x
crossref_primary_10_1074_jbc_M113_495754
crossref_primary_10_3389_fnmol_2022_1020070
crossref_primary_10_7554_eLife_39180
crossref_primary_10_1021_cn500202c
crossref_primary_10_1111_ejn_13046
crossref_primary_10_1074_jbc_RA119_007441
crossref_primary_10_1016_j_cellsig_2018_01_006
crossref_primary_10_1523_JNEUROSCI_0744_20_2020
crossref_primary_10_1523_JNEUROSCI_3885_16_2017
crossref_primary_10_1038_s41531_024_00769_0
crossref_primary_10_3389_fncel_2021_667044
crossref_primary_10_1021_ml5000806
crossref_primary_10_1021_acsnano_4c10754
crossref_primary_10_1126_sciadv_adq9793
crossref_primary_10_1016_j_ceca_2017_08_009
crossref_primary_10_1016_j_jbc_2021_100787
crossref_primary_10_1016_j_phrs_2021_105434
crossref_primary_10_1124_pr_108_000869
Cites_doi 10.1007/s00424-003-1064-5
10.1074/jbc.M306924200
10.1021/bi700429z
10.1016/j.conb.2007.05.002
10.1016/j.neuron.2007.05.030
10.1016/S0959-4388(00)00088-X
10.1111/j.1469-7793.2000.t01-2-00011.x
10.1073/pnas.0407976101
10.1074/jbc.M205058200
10.1126/science.272.5259.263
10.1124/mol.104.009092
10.1038/nature06133
10.1073/pnas.110035297
10.1021/jm050431y
10.1083/jcb.200302125
10.1016/S0896-6273(02)00979-0
10.1038/nrn1008
10.1038/35052055
10.1038/nn920
10.1002/(SICI)1096-9861(19971117)388:2<211::AID-CNE3>3.0.CO;2-4
10.1523/JNEUROSCI.16-02-00436.1996
10.1073/pnas.84.20.7334
10.1091/mbc.E06-08-0704
10.1074/jbc.274.50.35794
10.1016/S0006-3495(82)84459-7
10.1073/pnas.85.19.7346
10.1111/j.1600-0854.2005.00259.x
10.1523/JNEUROSCI.12-11-04264.1992
10.1523/JNEUROSCI.23-24-08480.2003
10.1146/annurev.pharmtox.43.050802.112309
10.1038/nbt0997-871
10.1111/j.1582-4934.2007.00083.x
10.1016/j.neuropharm.2005.08.018
10.1074/jbc.272.24.15541
10.1523/JNEUROSCI.19-18-07699.1999
10.1111/j.1471-4159.2007.04522.x
10.1083/jcb.122.3.553
10.1523/JNEUROSCI.1301-06.2006
10.1523/JNEUROSCI.1890-04.2004
10.1385/MB:29:1:47
10.1038/nn1478
10.1038/35073068
10.1080/713609214
10.1074/jbc.M500381200
10.1074/jbc.M603741200
10.2144/96201st05
10.1073/pnas.93.21.11382
10.1006/bbrc.2002.6384
10.1042/BJ20080474
10.1038/288370a0
10.1016/j.tips.2006.05.003
10.1083/jcb.108.2.389
10.1016/0955-0674(94)90074-4
10.1083/jcb.121.1.61
10.1124/jpet.103.055095
10.1523/JNEUROSCI.17-14-05255.1997
ContentType Journal Article
Copyright Copyright © 2009 Society for Neuroscience 0270-6474/09/296794-15$15.00/0 2009
Copyright_xml – notice: Copyright © 2009 Society for Neuroscience 0270-6474/09/296794-15$15.00/0 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.4177-08.2009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 6808
ExternalDocumentID PMC3849467
19474307
10_1523_JNEUROSCI_4177_08_2009
www29_21_6794
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: P01 DA 12408
– fundername: NIDA NIH HHS
  grantid: P01 DA012408
– fundername: Intramural NIH HHS
  grantid: ZIA DA000389
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c444t-43e7b185544f70d44099f1dc24a8e29e0d8de01e5e8d2444e4217300cc5871053
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:42:54 EDT 2025
Fri Sep 05 06:18:33 EDT 2025
Fri May 30 11:02:16 EDT 2025
Tue Jul 01 02:59:04 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
Tue Nov 10 19:50:58 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-43e7b185544f70d44099f1dc24a8e29e0d8de01e5e8d2444e4217300cc5871053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
J.E. and S.G.F.R. contributed equally to this work.
OpenAccessLink https://www.jneurosci.org/content/jneuro/29/21/6794.full.pdf
PMID 19474307
PQID 67286373
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3849467
proquest_miscellaneous_67286373
pubmed_primary_19474307
crossref_primary_10_1523_JNEUROSCI_4177_08_2009
crossref_citationtrail_10_1523_JNEUROSCI_4177_08_2009
highwire_smallpub1_www29_21_6794
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090527
2009-05-27
2009-May-27
PublicationDateYYYYMMDD 2009-05-27
PublicationDate_xml – month: 05
  year: 2009
  text: 20090527
  day: 27
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2009
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References 2023041303382765000_29.21.6794.38
2023041303382765000_29.21.6794.37
Garcia (2023041303382765000_29.21.6794.16) 2005; 68
2023041303382765000_29.21.6794.31
2023041303382765000_29.21.6794.34
2023041303382765000_29.21.6794.33
Melikian (2023041303382765000_29.21.6794.30) 1999; 19
2023041303382765000_29.21.6794.41
2023041303382765000_29.21.6794.47
2023041303382765000_29.21.6794.46
2023041303382765000_29.21.6794.49
2023041303382765000_29.21.6794.48
2023041303382765000_29.21.6794.43
2023041303382765000_29.21.6794.42
2023041303382765000_29.21.6794.45
2023041303382765000_29.21.6794.44
Nirenberg (2023041303382765000_29.21.6794.36) 1997; 17
2023041303382765000_29.21.6794.50
2023041303382765000_29.21.6794.52
2023041303382765000_29.21.6794.51
2023041303382765000_29.21.6794.14
2023041303382765000_29.21.6794.13
2023041303382765000_29.21.6794.15
2023041303382765000_29.21.6794.10
2023041303382765000_29.21.6794.54
2023041303382765000_29.21.6794.53
2023041303382765000_29.21.6794.12
2023041303382765000_29.21.6794.56
2023041303382765000_29.21.6794.11
2023041303382765000_29.21.6794.55
2023041303382765000_29.21.6794.18
2023041303382765000_29.21.6794.17
2023041303382765000_29.21.6794.19
Rayport (2023041303382765000_29.21.6794.39) 1992; 12
Morón (2023041303382765000_29.21.6794.32) 2003; 23
2023041303382765000_29.21.6794.1
2023041303382765000_29.21.6794.7
2023041303382765000_29.21.6794.25
2023041303382765000_29.21.6794.6
2023041303382765000_29.21.6794.24
2023041303382765000_29.21.6794.9
2023041303382765000_29.21.6794.27
2023041303382765000_29.21.6794.8
2023041303382765000_29.21.6794.26
2023041303382765000_29.21.6794.3
2023041303382765000_29.21.6794.21
2023041303382765000_29.21.6794.2
2023041303382765000_29.21.6794.20
2023041303382765000_29.21.6794.5
2023041303382765000_29.21.6794.23
2023041303382765000_29.21.6794.4
2023041303382765000_29.21.6794.22
2023041303382765000_29.21.6794.29
2023041303382765000_29.21.6794.28
Rees (2023041303382765000_29.21.6794.40) 1996; 20
Nirenberg (2023041303382765000_29.21.6794.35) 1996; 16
References_xml – ident: 2023041303382765000_29.21.6794.6
  doi: 10.1007/s00424-003-1064-5
– ident: 2023041303382765000_29.21.6794.37
  doi: 10.1074/jbc.M306924200
– ident: 2023041303382765000_29.21.6794.1
  doi: 10.1021/bi700429z
– ident: 2023041303382765000_29.21.6794.46
  doi: 10.1016/j.conb.2007.05.002
– ident: 2023041303382765000_29.21.6794.54
  doi: 10.1016/j.neuron.2007.05.030
– ident: 2023041303382765000_29.21.6794.2
  doi: 10.1016/S0959-4388(00)00088-X
– ident: 2023041303382765000_29.21.6794.4
  doi: 10.1111/j.1469-7793.2000.t01-2-00011.x
– ident: 2023041303382765000_29.21.6794.13
  doi: 10.1073/pnas.0407976101
– ident: 2023041303382765000_29.21.6794.18
  doi: 10.1074/jbc.M205058200
– ident: 2023041303382765000_29.21.6794.34
  doi: 10.1126/science.272.5259.263
– volume: 68
  start-page: 102
  year: 2005
  ident: 2023041303382765000_29.21.6794.16
  article-title: Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.104.009092
– ident: 2023041303382765000_29.21.6794.55
  doi: 10.1038/nature06133
– ident: 2023041303382765000_29.21.6794.42
  doi: 10.1073/pnas.110035297
– ident: 2023041303382765000_29.21.6794.5
  doi: 10.1021/jm050431y
– ident: 2023041303382765000_29.21.6794.50
  doi: 10.1083/jcb.200302125
– ident: 2023041303382765000_29.21.6794.3
  doi: 10.1016/S0896-6273(02)00979-0
– ident: 2023041303382765000_29.21.6794.47
  doi: 10.1038/nrn1008
– ident: 2023041303382765000_29.21.6794.53
  doi: 10.1038/35052055
– ident: 2023041303382765000_29.21.6794.24
  doi: 10.1038/nn920
– ident: 2023041303382765000_29.21.6794.20
  doi: 10.1002/(SICI)1096-9861(19971117)388:2<211::AID-CNE3>3.0.CO;2-4
– volume: 16
  start-page: 436
  year: 1996
  ident: 2023041303382765000_29.21.6794.35
  article-title: The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-02-00436.1996
– ident: 2023041303382765000_29.21.6794.12
  doi: 10.1073/pnas.84.20.7334
– ident: 2023041303382765000_29.21.6794.31
  doi: 10.1091/mbc.E06-08-0704
– ident: 2023041303382765000_29.21.6794.8
  doi: 10.1074/jbc.274.50.35794
– ident: 2023041303382765000_29.21.6794.52
  doi: 10.1016/S0006-3495(82)84459-7
– ident: 2023041303382765000_29.21.6794.43
  doi: 10.1073/pnas.85.19.7346
– ident: 2023041303382765000_29.21.6794.44
  doi: 10.1111/j.1600-0854.2005.00259.x
– volume: 12
  start-page: 4264
  year: 1992
  ident: 2023041303382765000_29.21.6794.39
  article-title: Identified postnatal mesolimbic dopamine neurons in culture: morphology and electrophysiology
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.12-11-04264.1992
– volume: 23
  start-page: 8480
  year: 2003
  ident: 2023041303382765000_29.21.6794.32
  article-title: Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-24-08480.2003
– ident: 2023041303382765000_29.21.6794.14
  doi: 10.1146/annurev.pharmtox.43.050802.112309
– ident: 2023041303382765000_29.21.6794.56
  doi: 10.1038/nbt0997-871
– ident: 2023041303382765000_29.21.6794.26
  doi: 10.1111/j.1582-4934.2007.00083.x
– ident: 2023041303382765000_29.21.6794.25
  doi: 10.1016/j.neuropharm.2005.08.018
– ident: 2023041303382765000_29.21.6794.49
  doi: 10.1074/jbc.272.24.15541
– volume: 19
  start-page: 7699
  year: 1999
  ident: 2023041303382765000_29.21.6794.30
  article-title: Membrane trafficking regulates the activity of the human dopamine transporter
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-18-07699.1999
– ident: 2023041303382765000_29.21.6794.23
  doi: 10.1111/j.1471-4159.2007.04522.x
– ident: 2023041303382765000_29.21.6794.48
  doi: 10.1083/jcb.122.3.553
– ident: 2023041303382765000_29.21.6794.45
  doi: 10.1523/JNEUROSCI.1301-06.2006
– ident: 2023041303382765000_29.21.6794.27
  doi: 10.1523/JNEUROSCI.1890-04.2004
– ident: 2023041303382765000_29.21.6794.28
  doi: 10.1385/MB:29:1:47
– ident: 2023041303382765000_29.21.6794.22
  doi: 10.1038/nn1478
– ident: 2023041303382765000_29.21.6794.29
  doi: 10.1038/35073068
– ident: 2023041303382765000_29.21.6794.10
  doi: 10.1080/713609214
– ident: 2023041303382765000_29.21.6794.51
  doi: 10.1074/jbc.M500381200
– ident: 2023041303382765000_29.21.6794.15
  doi: 10.1074/jbc.M603741200
– volume: 20
  start-page: 102
  year: 1996
  ident: 2023041303382765000_29.21.6794.40
  article-title: Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein
  publication-title: Biotechniques
  doi: 10.2144/96201st05
– ident: 2023041303382765000_29.21.6794.33
  doi: 10.1073/pnas.93.21.11382
– ident: 2023041303382765000_29.21.6794.9
  doi: 10.1006/bbrc.2002.6384
– ident: 2023041303382765000_29.21.6794.38
  doi: 10.1042/BJ20080474
– ident: 2023041303382765000_29.21.6794.11
  doi: 10.1038/288370a0
– ident: 2023041303382765000_29.21.6794.17
  doi: 10.1016/j.tips.2006.05.003
– ident: 2023041303382765000_29.21.6794.21
  doi: 10.1083/jcb.108.2.389
– ident: 2023041303382765000_29.21.6794.41
  doi: 10.1016/0955-0674(94)90074-4
– ident: 2023041303382765000_29.21.6794.19
  doi: 10.1083/jcb.121.1.61
– ident: 2023041303382765000_29.21.6794.7
  doi: 10.1124/jpet.103.055095
– volume: 17
  start-page: 5255
  year: 1997
  ident: 2023041303382765000_29.21.6794.36
  article-title: Immunogold localization of the dopamine transporter: an ultrastructural study of the rat ventral tegmental area
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-14-05255.1997
SSID ssj0007017
Score 2.292195
Snippet The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6794
SubjectTerms Alanine - genetics
Animals
Animals, Newborn
Cells, Cultured
Cocaine - analogs & derivatives
Cocaine - chemistry
Cocaine - metabolism
Dopamine - pharmacology
Dopamine Plasma Membrane Transport Proteins - genetics
Dopamine Plasma Membrane Transport Proteins - metabolism
Dopamine Uptake Inhibitors - chemistry
Dopamine Uptake Inhibitors - metabolism
Dynamins - genetics
Dynamins - metabolism
Enzyme Inhibitors - pharmacology
Fluorescence Recovery After Photobleaching - methods
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Humans
Indoles - pharmacology
Lysine - genetics
Maleimides - pharmacology
Mesencephalon - cytology
Mutation - physiology
Neurons - drug effects
Neurons - metabolism
Phorbol Esters - pharmacology
Protein Transport - drug effects
Protein Transport - physiology
rab5 GTP-Binding Proteins - genetics
rab5 GTP-Binding Proteins - metabolism
Rats
Receptors, Transferrin - genetics
Receptors, Transferrin - metabolism
Time Factors
Transfection - methods
Tyrosine 3-Monooxygenase - metabolism
Vesicular Monoamine Transport Proteins - metabolism
Title Visualization of Dopamine Transporter Trafficking in Live Neurons by Use of Fluorescent Cocaine Analogs
URI http://www.jneurosci.org/cgi/content/abstract/29/21/6794
https://www.ncbi.nlm.nih.gov/pubmed/19474307
https://www.proquest.com/docview/67286373
https://pubmed.ncbi.nlm.nih.gov/PMC3849467
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKOURKLAHxKVy6sc6ax_bqqWEEoSaoNystb0OoYmDYltR-j_4v8ys149ApAKXyPJro3xfZmd3Zr4h5G1oSSG92DF4bCcGs63IEDAzGIz5diwiS4Ye1g5_GvYvx2wwcSedzs9W1lKRh73odmddyf-gCucAV6yS_Qdk65fCCTgGfOETEIbPv8L46yzDmsjb2u2LYQm8QL8xrzXLV3iMOhE3unpljrlCSsYyzdD5LMrd_GReLFelttMRGEmBbxEpbu1kbQe2KSVTTmxLDrNmCJjWG72vMwB7GzahpGxRZPrKNUboTz0sI3_fZBdv3TLCwsSj4WYqdOV_TzUGk1PdS6TURUADdfpdrqbNbdUmho_x91IToLK7tgr0lDSTO85pY623R0pSlrXV2vT2edkt-Y85wVXaFIMhpkZen33oMYtzw_RU4WczC1aR_-Hn4GJ8dRWMzieje-S-zbmK_n_80ojQc1M1cq6_ny48h3GOd4-y7fNUOtS71jS_p-a2fJ3RI_JQ40tPSsbtk45MH5ODk1Tky8WGvqMqbVjFYw7IdIuEdJnQioS0RULaIiGdpRRJSDUJabihQEJ8tEVCqklINQmfkPHF-ejs0tDdO4yIMZYbzJE8tDALkiXcjBmDtUhixZHNhCdtX5qxF0vTki6YCvAxmQRDgc0TosiFRTzMDU_JXrpM5XNCUXfPd8MoTqRkiWMLnniWkFIVUidO3CVu9fsGkZa2xw4r8wCXuIBLUOMSMCVu72H7Vb9LjuvnfpTiLnc-QSv4gmwh5nNAywrW67XtB7YVIAe75E0FawCmGuNvIpXLIoOrttd3uNMlz0qQm0F9Bp68ybuEb8Ff34Ai8NtX0tk3JQbveMwHZ-fFnaO-JA-af94h2ctXhXwFDnUevlb0_gVLxNDa
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+dopamine+transporter+trafficking+in+live+neurons+by+use+of+fluorescent+cocaine+analogs&rft.jtitle=The+Journal+of+neuroscience&rft.au=Eriksen%2C+Jacob&rft.au=Rasmussen%2C+S%C3%B8ren+G+F&rft.au=Rasmussen%2C+Trine+Nygaard&rft.au=Vaegter%2C+Christian+Bjerggaard&rft.date=2009-05-27&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=29&rft.issue=21&rft.spage=6794&rft_id=info:doi/10.1523%2FJNEUROSCI.4177-08.2009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon