Transverse-energy-energy correlations in deep inelastic scattering
A bstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effecti...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 11; pp. 1 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2020
Springer Nature B.V Springer Berlin SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N
3
LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider. |
---|---|
AbstractList | Abstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N3LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider. Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N 3 LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider. Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N3LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider. A bstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N 3 LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider. |
ArticleNumber | 51 |
Author | Vitev, Ivan Li, Hai Tao Zhu, Yu Jiao |
Author_xml | – sequence: 1 givenname: Hai Tao orcidid: 0000-0003-0682-2868 surname: Li fullname: Li, Hai Tao email: haitaoli@lanl.gov organization: Los Alamos National Laboratory, Theoretical Division – sequence: 2 givenname: Ivan surname: Vitev fullname: Vitev, Ivan organization: Los Alamos National Laboratory, Theoretical Division – sequence: 3 givenname: Yu Jiao surname: Zhu fullname: Zhu, Yu Jiao organization: Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University |
BackLink | https://www.osti.gov/servlets/purl/1807869$$D View this record in Osti.gov |
BookMark | eNp9UU1PHDEMjRBIfPXMddVeymGK8zHJ5NgiKCAkONBz5Ml4llltk20SKvHvm2VQW1Uqp2dZ79nPfodsN8RAjJ1w-MQBzNnN1cU95x8FCDiFlu-wAw7CNp0ydvevep8d5rwC4C23cMC-PCQM-SelTA0FSsvnV1j4mBKtsUwx5MUUFgPRpmJt5TL5RfZYCqUpLI_Z3ojrTO9e8Yh9u7x4OL9qbu--Xp9_vm28Uqo0EgwSWTmoQY1qQOyUlp3uLREMyhipuRDt0KMd257Io5BcE0fwI8qqkkfsep47RFy5TZq-Y3p2ESf30ohp6TBVa2tyhgC86PtOa6tawXvLtbeopeh93QV11vt5VqzHuOynQv7RxxDIF8c7MJ22lfRhJm1S_PFEubhVfEqh3uiEMlIJw8XW1tnM8inmnGj8bY2D2ybj5mTcNhlXk6mK9h9F3f_y6JJwWr-hg1mXN9u_U_rj53-SX_Wuojk |
CitedBy_id | crossref_primary_10_1007_JHEP08_2024_227 crossref_primary_10_1007_JHEP02_2021_210 crossref_primary_10_1007_JHEP03_2025_088 crossref_primary_10_1007_JHEP06_2022_111 crossref_primary_10_1007_JHEP09_2022_199 crossref_primary_10_1007_JHEP05_2024_066 crossref_primary_10_1007_JHEP07_2021_121 crossref_primary_10_1103_PhysRevD_109_094012 crossref_primary_10_1103_PhysRevD_109_096004 crossref_primary_10_1007_JHEP10_2023_187 crossref_primary_10_1007_JHEP03_2024_153 crossref_primary_10_1007_JHEP11_2021_026 crossref_primary_10_1007_JHEP08_2022_280 crossref_primary_10_1103_PhysRevD_110_014045 crossref_primary_10_1007_JHEP08_2021_022 crossref_primary_10_1103_PhysRevD_103_094005 crossref_primary_10_1103_PhysRevD_107_114002 crossref_primary_10_1103_PhysRevD_107_114008 crossref_primary_10_1103_PhysRevLett_126_252001 crossref_primary_10_1007_JHEP08_2022_233 crossref_primary_10_1007_JHEP03_2024_142 crossref_primary_10_1103_PhysRevLett_129_162001 crossref_primary_10_1007_JHEP09_2024_072 crossref_primary_10_1007_JHEP01_2025_029 crossref_primary_10_1103_PhysRevLett_130_091901 |
Cites_doi | 10.1007/JHEP08(2018)160 10.1103/PhysRevLett.109.242003 10.1103/PhysRevD.63.114020 10.1016/j.nuclphysb.2014.04.019 10.1007/JHEP06(2010)094 10.1016/S0550-3213(02)00687-9 10.1140/epjc/s10052-015-3318-8 10.1007/JHEP06(2011)080 10.1016/j.cpc.2008.01.036 10.1088/1126-6708/2000/02/001 10.1103/PhysRevLett.87.082001 10.1088/1126-6708/1999/07/012 10.1103/PhysRevD.63.014006 10.1007/JHEP10(2019)031 10.1007/JHEP01(2020)025 10.1007/JHEP03(2016)168 10.1007/JHEP10(2019)083 10.1088/0954-3899/30/5/R01 10.1140/epjc/s10052-019-7528-3 10.1007/JHEP01(2020)008 10.1016/j.cpc.2015.01.024 10.1016/0550-3213(82)90453-9 10.1016/j.physletb.2015.09.064 10.1007/JHEP09(2016)004 10.1103/PhysRevD.65.054022 10.1088/1126-6708/2002/08/032 10.22323/1.247.0142 10.1016/0370-2693(84)90283-1 10.1007/JHEP06(2014)155 10.1088/0954-3899/43/2/023001 10.1103/PhysRevD.100.014009 10.1140/epjc/s10052-015-3397-6 10.1016/j.physletb.2006.02.007 10.1007/JHEP06(2019)037 10.1103/PhysRevD.93.033006 10.1016/S0370-2693(01)00902-9 10.1016/j.physletb.2019.04.052 10.1103/PhysRevLett.102.212002 10.1103/PhysRevLett.120.102001 10.1007/JHEP01(2020)040 10.1007/s100520200915 10.1016/j.nuclphysb.2014.04.020 10.1103/PhysRevLett.41.1585 10.1088/1126-6708/2007/01/076 10.1103/PhysRevLett.112.071601 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – sequence: 0 name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
DOI | 10.1007/JHEP11(2020)051 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_7e00c2bb86694521b916c9a632bcd470 1807869 10_1007_JHEP11_2020_051 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AAYZJ AHBXF OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c444t-307aee93d4d4f4daa846386b9ee0d477361225dba9f5beeca2316e1a0cfa33d43 |
IEDL.DBID | C6C |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:30:07 EDT 2025 Thu Dec 05 06:25:34 EST 2024 Fri Jul 25 02:32:12 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 00:58:57 EDT 2025 Fri Feb 21 02:49:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Deep Inelastic Scattering (Phenomenology) QCD Phenomenology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-307aee93d4d4f4daa846386b9ee0d477361225dba9f5beeca2316e1a0cfa33d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 LA-UR-20-28010 USDOE Laboratory Directed Research and Development (LDRD) Program 89233218CNA000001; AC52-06NA25396; 11975200 |
ORCID | 0000-0003-0682-2868 0000000306822868 0000000151000113 |
OpenAccessLink | https://doi.org/10.1007/JHEP11(2020)051 |
PQID | 2473427124 |
PQPubID | 2034718 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e00c2bb86694521b916c9a632bcd470 osti_scitechconnect_1807869 proquest_journals_2473427124 crossref_primary_10_1007_JHEP11_2020_051 crossref_citationtrail_10_1007_JHEP11_2020_051 springer_journals_10_1007_JHEP11_2020_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Berlin SpringerOpen |
Publisher_xml | – sequence: 0 name: Springer Berlin – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | H1 collaboration, Measurement of event shape variables in deep-inelastic scattering at HERA, Eur. Phys. J. C46 (2006) 343 [hep-ex/0512014] [INSPIRE]. NagyZTrócsányiZThree-jet event-shapes in lepton-proton scattering at next-to-leading order accuracyPhys. Lett. B20066344982006PhLB..634..498N[hep-ph/0511328] [INSPIRE] ZEUS collaboration, Event shapes in deep inelastic scattering at HERA, Nucl. Phys. B767 (2007) 1 [hep-ex/0604032] [INSPIRE]. HennJMSokatchevEYanKZhiboedovAEnergy-energy correlation in N = 4 super Yang-Mills theory at next-to-next-to-leading orderPhys. Rev. D20191002019PhRvD.100c6010H4018809[arXiv:1903.05314] [INSPIRE] GehrmannTLubbertTYangLLTransverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark casePhys. Rev. Lett.20121092012PhRvL.109x2003G[arXiv:1209.0682] [INSPIRE] LiHTVitevIJet charge modification in dense QCD matterPhys. Rev. D20201012020PhRvD.101g6020L[arXiv:1908.06979] [INSPIRE] ZEUS collaboration, Event shape analysis of deep inelastic scattering events with a large rapidity gap at HERA, Phys. Lett. B421 (1998) 368 [hep-ex/9710027] [INSPIRE]. M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE]. KorchemskyGPEnergy correlations in the end-point regionJHEP2020010082020JHEP...01..008K40883111434.81105[arXiv:1905.01444] [INSPIRE] D. Graudenz, Disaster++: version 1.0, hep-ph/9710244 [INSPIRE]. LuoM-XYangT-ZZhuHXZhuYJQuark transverse parton distribution at the next-to-next-to-next-to-leading orderPhys. Rev. Lett.20201242020PhRvL.124i2001L[arXiv:1912.05778] [INSPIRE] KangZ-BLiuXMantryS1-jettiness DIS event shape: NNLL+NLO resultsPhys. Rev. D2014902014PhRvD..90a4041K[arXiv:1312.0301] [INSPIRE] GehrmannTGloverEWNHuberTIkizlerliNStuderusCCalculation of the quark and gluon form factors to three loops in QCDJHEP2010060942010JHEP...06..094G1288.81146[arXiv:1004.3653] [INSPIRE] BuckleyALHAPDF6: parton density access in the LHC precision eraEur. Phys. J. C2015751322015EPJC...75..132B[arXiv:1412.7420] [INSPIRE] BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAEnergy-energy correlations in N = 4 supersymmetric Yang-Mills theoryPhys. Rev. Lett.20141122014PhRvL.112g1601B1323.81056[arXiv:1311.6800] [INSPIRE] EchevarriaMGScimemiIVladimirovAUnpolarized transverse momentum dependent parton distribution and fragmentation functions at next-to-next-to-leading orderJHEP2016090042016JHEP...09..004E35579071390.81168[arXiv:1604.07869] [INSPIRE] BenekeMChapovskyAPDiehlMFeldmannTSoft collinear effective theory and heavy to light currents beyond leading powerNucl. Phys. B20026434312002NuPhB.643..431B0998.81538[hep-ph/0206152] [INSPIRE] BecherTNeubertMPecjakBDFactorization and momentum-space resummation in deep-inelastic scatteringJHEP2007010762007JHEP...01..076B[hep-ph/0607228] [INSPIRE] NagyZTrócsányiZMultijet cross-sections in deep inelastic scattering at next-to-leading orderPhys. Rev. Lett.2001872001PhRvL..87h2001N[hep-ph/0104315] [INSPIRE] GehrmannTLuebbertTYangLLCalculation of the transverse parton distribution functions at next-to-next-to-leading orderJHEP2014061552014JHEP...06..155G[arXiv:1403.6451] [INSPIRE] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [Erratum ibid.510 (1998) 503] [hep-ph/9605323] [INSPIRE]. M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev. D93 (2016) 011502 [Erratum ibid.94 (2016) 099904] [arXiv:1509.06392] [INSPIRE]. DasguptaMSalamGPResummation of the jet broadening in DISEur. Phys. J. C2002242132002EPJC...24..213D[hep-ph/0110213] [INSPIRE] SjöstrandTMrennaSSkandsPZA brief introduction to PYTHIA 8.1Comput. Phys. Commun.20081788522008CoPhC.178..852S1196.81038[arXiv:0710.3820] [INSPIRE] BashamCBrownLSEllisSDLoveSTEnergy correlations in electron-positron annihilation: testing QCDPhys. Rev. Lett.19784115851978PhRvL..41.1585B[INSPIRE] DixonLJLuoM-XShtabovenkoVYangT-ZZhuHXAnalytical computation of energy-energy correlation at next-to-leading order in QCDPhys. Rev. Lett.20181202018PhRvL.120j2001D[arXiv:1801.03219] [INSPIRE] DasguptaMSalamGPEvent shapes in e+e−annihilation and deep inelastic scatteringJ. Phys. G2004302004JPhG...30R.143D[hep-ph/0312283] [INSPIRE] OvanesyanGVitevIAn effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlungJHEP2011060802011JHEP...06..080O1298.81403[arXiv:1103.1074] [INSPIRE] BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAEvent shapes in N = 4 super-Yang-Mills theoryNucl. Phys. B20148842062014NuPhB.884..206B32148821323.81056[arXiv:1309.1424] [INSPIRE] DixonLJMoultIZhuHXCollinear limit of the energy-energy correlatorPhys. Rev. D20191002019PhRvD.100a4009D4014087[arXiv:1905.01310] [INSPIRE] MoultIZhuHXSimplicity from recoil: the three-loop soft function and factorization for the energy-energy correlationJHEP2018081602018JHEP...08..160M[arXiv:1801.02627] [INSPIRE] AliABarreiroFLlorenteJWangWTransverse energy-energy correlations in next-to-leading order in αsat the LHCPhys. Rev. D2012862012PhRvD..86k4017A[arXiv:1205.1689] [INSPIRE] SjöstrandTAn introduction to PYTHIA 8.2Comput. Phys. Commun.20151911592015CoPhC.191..159S1344.81029[arXiv:1410.3012] [INSPIRE] GaoALiHTMoultIZhuHXPrecision QCD event shapes at hadron colliders: the transverse energy-energy correlator in the back-to-back limitPhys. Rev. Lett.20191232019PhRvL.123f2001G[arXiv:1901.04497] [INSPIRE] BecherTNeubertMInfrared singularities of scattering amplitudes and N3LL resummation for n-jet processesJHEP2020010252020JHEP...01..025B1434.81135[arXiv:1908.11379] [INSPIRE] E.C. Aschenauer et al., eRHIC design study: an electron-ion collider at BNL, arXiv:1409.1633 [INSPIRE]. D. Kang and T. Maji, Toward precision jet event shape for future electron-ion collider, PoS(LC2019)061 (2019) [arXiv:1912.10656] [INSPIRE]. LuoM-XWangXXuXYangLLYangT-ZZhuHXTransverse parton distribution and fragmentation functions at NNLO: the quark caseJHEP2019100832019JHEP...10..083L[arXiv:1908.03831] [INSPIRE] AntonelliVDasguptaMSalamGPResummation of thrust distributions in DISJHEP2000020012000JHEP...02..001A[hep-ph/9912488] [INSPIRE] BaikovPAChetyrkinKGSmirnovAVSmirnovVASteinhauserMQuark and gluon form factors to three loopsPhys. Rev. Lett.20091022009PhRvL.102u2002B[arXiv:0902.3519] [INSPIRE] DokshitzerYLMarchesiniGWebberBRNonperturbative effects in the energy energy correlationJHEP1999070121999JHEP...07..012D[hep-ph/9905339] [INSPIRE] SunPIsaacsonJYuanCPYuanFNonperturbative functions for SIDIS and Drell-Yan processesInt. J. Mod. Phys. A2018332018IJMPA..3341006S[arXiv:1406.3073] [INSPIRE] LiHTVitevIInverting the mass hierarchy of jet quenching effects with prompt b-jet substructurePhys. Lett. B20197932592019PhLB..793..259L[arXiv:1801.00008] [INSPIRE] LuoM-XShtabovenkoVYangT-ZZhuHXAnalytic next-to-leading order calculation of energy-energy correlation in gluon-initiated Higgs decaysJHEP2019060372019JHEP...06..037L[arXiv:1903.07277] [INSPIRE] KangZ-BRingerFVitevIEffective field theory approach to open heavy flavor production in heavy-ion collisionsJHEP2017031462017JHEP...03..146K[arXiv:1610.02043] [INSPIRE] ZEUS collaboration, Measurement of event shapes in deep inelastic scattering at HERA, Eur. Phys. J. C27 (2003) 531 [hep-ex/0211040] [INSPIRE]. BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAFrom correlation functions to event shapesNucl. Phys. B20148843052014NuPhB.884..305B32148851323.81084[arXiv:1309.0769] [INSPIRE] LuoM-XYangT-ZZhuHXZhuYJTransverse parton distribution and fragmentation functions at NNLO: the gluon caseJHEP2020010402020JHEP...01..040L[arXiv:1909.13820] [INSPIRE] D. Kang, C. Lee and I.W. Stewart, DIS event shape at N3LL, PoS(DIS2015)142 (2015) [INSPIRE]. DulatSNew parton distribution functions from a global analysis of quantum chromodynamicsPhys. Rev. D2016932016PhRvD..93c3006D[arXiv:1506.07443] [INSPIRE] BauerCWFlemingSPirjolDStewartIWAn effective field theory for collinear and soft gluons: heavy to light decaysPhys. Rev. D2001631140202001PhRvD..63k4020B[hep-ph/0011336] [INSPIRE] ProkudinASunPYuanFScheme dependence and transverse momentum distribution interpretation of Collins-Soper-Sterman resummationPhys. Lett. B20157505332015PhLB..750..533P1364.81236[arXiv:1505.05588] [INSPIRE] NNPDF collaboration, Parton distributions for the LHC run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. LübbertTOredssonJStahlhofenMRapidity renormalized TMD soft and beam functions at two loopsJHEP2016031682016JHEP...03..168L[arXiv:1602.01829] [INSPIRE] LiHTVitevIInclusive heavy flavor jet production with semi-inclusive jet functions: from proton to heavy-ion collisionsJHEP2019071482019JHEP...07..148L[arXiv:1811.07905] [INSPIRE] DasguptaMSalamGPResummed event shape variables in DISJHEP2002080322002JHEP...08..032D[hep-ph/0208073] [INSPIRE] GehrmannTHussAMoJNiehuesJSecond-order QCD corrections to event shape distributions in deep inelastic scatteringEur. Phys. J. C20197910222019EPJC...79.1022G[arXiv:1909.02760] [INSPIRE] AliAPietarinenEStirlingWTransverse energy-energy correlations: a test of perturbative QCD for the proton-anti-proton colliderPhys. Lett. B19841414471984PhLB..141..447A[INSPIRE] Gutierrez-ReyesDScimemiIWaalewijnWJZoppiLTransverse momentum dependent distributions in e+e−and semi-inclusive deep-inelastic scattering using jetsJHEP2019100312019JHEP...10..031G4059663[arXiv:1904.04259] [INSPIRE] BauerCWFlemingSLukeMESumming Sudakov logarithms in B → Xsγ in effective field theoryPhys. Rev. D2000632001PhRvD..63a4006B[hep-ph/0005275] [INSPIRE] LiXA new heavy flavor program for the future electron-ion colliderEPJ Web Conf.2020235[arXiv:2002.05880] [INSPIRE] H1 collaboration, Measurement of event shape variables in deep inelastic ep scattering, Phys. Lett. B406 (1997) 256 [hep-ex/9706002] [INSPIRE]. BauerCWPirjolDStewartIWSoft collinear factorization in effective field theoryPhys. Rev. D2002650540222002PhRvD..65e4022B[hep-ph/0109045] [INSPIRE] LiYNeillDZhuHXAn T Becher (14167_CR72) 2020; 01 YL Dokshitzer (14167_CR63) 1999; 07 A Ali (14167_CR18) 1984; 141 14167_CR53 14167_CR10 14167_CR11 M Beneke (14167_CR38) 2002; 643 T Lübbert (14167_CR45) 2016; 03 LJ Dixon (14167_CR20) 2018; 120 T Sjöstrand (14167_CR60) 2015; 191 T Gehrmann (14167_CR43) 2012; 109 M-X Luo (14167_CR39) 2019; 10 14167_CR48 A Buckley (14167_CR58) 2015; 75 M Dasgupta (14167_CR8) 2004; 30 S Dulat (14167_CR55) 2016; 93 PA Baikov (14167_CR51) 2009; 102 T Gehrmann (14167_CR4) 2019; 79 Y Li (14167_CR42) 2020; 960 P Sun (14167_CR64) 2018; 33 M-X Luo (14167_CR40) 2020; 01 CW Bauer (14167_CR35) 2001; 516 T Gehrmann (14167_CR52) 2010; 06 JC Collins (14167_CR62) 1982; 197 V Antonelli (14167_CR5) 2000; 02 LA Harland-Lang (14167_CR56) 2015; 75 M Dasgupta (14167_CR7) 2002; 08 14167_CR16 C Basham (14167_CR19) 1978; 41 14167_CR17 HT Li (14167_CR71) 2020; 101 14167_CR12 14167_CR13 14167_CR57 14167_CR14 14167_CR15 CW Bauer (14167_CR34) 2002; 65 Z-B Kang (14167_CR68) 2017; 03 G Ovanesyan (14167_CR67) 2011; 06 A Prokudin (14167_CR65) 2015; 750 Z Nagy (14167_CR61) 2006; 634 14167_CR30 Z Nagy (14167_CR3) 2001; 87 14167_CR33 Z-B Kang (14167_CR9) 2014; 90 T Becher (14167_CR50) 2007; 01 M-X Luo (14167_CR21) 2019; 06 T Gehrmann (14167_CR44) 2014; 06 14167_CR28 14167_CR1 M Dasgupta (14167_CR6) 2002; 24 14167_CR2 I Moult (14167_CR26) 2018; 08 AV Belitsky (14167_CR23) 2014; 884 Y Li (14167_CR49) 2017; 118 AV Belitsky (14167_CR24) 2014; 112 HT Li (14167_CR70) 2019; 793 JM Henn (14167_CR25) 2019; 100 M-X Luo (14167_CR47) 2020; 124 HT Li (14167_CR69) 2019; 07 A Ali (14167_CR31) 2012; 86 CW Bauer (14167_CR37) 2000; 63 AV Belitsky (14167_CR22) 2014; 884 CW Bauer (14167_CR36) 2001; 63 LJ Dixon (14167_CR27) 2019; 100 A Gao (14167_CR32) 2019; 123 D Gutierrez-Reyes (14167_CR41) 2019; 10 J Butterworth (14167_CR54) 2016; 43 T Sjöstrand (14167_CR59) 2008; 178 X Li (14167_CR66) 2020; 235 GP Korchemsky (14167_CR29) 2020; 01 MG Echevarria (14167_CR46) 2016; 09 |
References_xml | – reference: D. Graudenz, Disaster++: version 1.0, hep-ph/9710244 [INSPIRE]. – reference: KorchemskyGPEnergy correlations in the end-point regionJHEP2020010082020JHEP...01..008K40883111434.81105[arXiv:1905.01444] [INSPIRE] – reference: LiXA new heavy flavor program for the future electron-ion colliderEPJ Web Conf.2020235[arXiv:2002.05880] [INSPIRE] – reference: BashamCBrownLSEllisSDLoveSTEnergy correlations in electron-positron annihilation: testing QCDPhys. Rev. Lett.19784115851978PhRvL..41.1585B[INSPIRE] – reference: ButterworthJPDF4LHC recommendations for LHC run IIJ. Phys. G2016432016JPhG...43b3001B[arXiv:1510.03865] [INSPIRE] – reference: D. Kang and T. Maji, Toward precision jet event shape for future electron-ion collider, PoS(LC2019)061 (2019) [arXiv:1912.10656] [INSPIRE]. – reference: AliABarreiroFLlorenteJWangWTransverse energy-energy correlations in next-to-leading order in αsat the LHCPhys. Rev. D2012862012PhRvD..86k4017A[arXiv:1205.1689] [INSPIRE] – reference: Gutierrez-ReyesDScimemiIWaalewijnWJZoppiLTransverse momentum dependent distributions in e+e−and semi-inclusive deep-inelastic scattering using jetsJHEP2019100312019JHEP...10..031G4059663[arXiv:1904.04259] [INSPIRE] – reference: ProkudinASunPYuanFScheme dependence and transverse momentum distribution interpretation of Collins-Soper-Sterman resummationPhys. Lett. B20157505332015PhLB..750..533P1364.81236[arXiv:1505.05588] [INSPIRE] – reference: BenekeMChapovskyAPDiehlMFeldmannTSoft collinear effective theory and heavy to light currents beyond leading powerNucl. Phys. B20026434312002NuPhB.643..431B0998.81538[hep-ph/0206152] [INSPIRE] – reference: LiYNeillDZhuHXAn exponential regulator for rapidity divergencesNucl. Phys. B20209604164557[arXiv:1604.00392] [INSPIRE] – reference: KangZ-BRingerFVitevIEffective field theory approach to open heavy flavor production in heavy-ion collisionsJHEP2017031462017JHEP...03..146K[arXiv:1610.02043] [INSPIRE] – reference: LiHTVitevIInverting the mass hierarchy of jet quenching effects with prompt b-jet substructurePhys. Lett. B20197932592019PhLB..793..259L[arXiv:1801.00008] [INSPIRE] – reference: LiHTVitevIInclusive heavy flavor jet production with semi-inclusive jet functions: from proton to heavy-ion collisionsJHEP2019071482019JHEP...07..148L[arXiv:1811.07905] [INSPIRE] – reference: SunPIsaacsonJYuanCPYuanFNonperturbative functions for SIDIS and Drell-Yan processesInt. J. Mod. Phys. A2018332018IJMPA..3341006S[arXiv:1406.3073] [INSPIRE] – reference: DasguptaMSalamGPResummed event shape variables in DISJHEP2002080322002JHEP...08..032D[hep-ph/0208073] [INSPIRE] – reference: H1 collaboration, Investigation of power corrections to event shape variables measured in deep inelastic scattering, Eur. Phys. J. C14 (2000) 255 [Erratum ibid.18 (2000) 417] [hep-ex/9912052] [INSPIRE]. – reference: LuoM-XWangXXuXYangLLYangT-ZZhuHXTransverse parton distribution and fragmentation functions at NNLO: the quark caseJHEP2019100832019JHEP...10..083L[arXiv:1908.03831] [INSPIRE] – reference: AntonelliVDasguptaMSalamGPResummation of thrust distributions in DISJHEP2000020012000JHEP...02..001A[hep-ph/9912488] [INSPIRE] – reference: SjöstrandTAn introduction to PYTHIA 8.2Comput. Phys. Commun.20151911592015CoPhC.191..159S1344.81029[arXiv:1410.3012] [INSPIRE] – reference: KangZ-BLiuXMantryS1-jettiness DIS event shape: NNLL+NLO resultsPhys. Rev. D2014902014PhRvD..90a4041K[arXiv:1312.0301] [INSPIRE] – reference: HennJMSokatchevEYanKZhiboedovAEnergy-energy correlation in N = 4 super Yang-Mills theory at next-to-next-to-leading orderPhys. Rev. D20191002019PhRvD.100c6010H4018809[arXiv:1903.05314] [INSPIRE] – reference: NNPDF collaboration, Parton distributions for the LHC run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE]. – reference: BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAFrom correlation functions to event shapesNucl. Phys. B20148843052014NuPhB.884..305B32148851323.81084[arXiv:1309.0769] [INSPIRE] – reference: E.C. Aschenauer et al., eRHIC design study: an electron-ion collider at BNL, arXiv:1409.1633 [INSPIRE]. – reference: M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE]. – reference: BauerCWPirjolDStewartIWSoft collinear factorization in effective field theoryPhys. Rev. D2002650540222002PhRvD..65e4022B[hep-ph/0109045] [INSPIRE] – reference: LuoM-XYangT-ZZhuHXZhuYJQuark transverse parton distribution at the next-to-next-to-next-to-leading orderPhys. Rev. Lett.20201242020PhRvL.124i2001L[arXiv:1912.05778] [INSPIRE] – reference: ZEUS collaboration, Measurement of event shapes in deep inelastic scattering at HERA, Eur. Phys. J. C27 (2003) 531 [hep-ex/0211040] [INSPIRE]. – reference: BaikovPAChetyrkinKGSmirnovAVSmirnovVASteinhauserMQuark and gluon form factors to three loopsPhys. Rev. Lett.20091022009PhRvL.102u2002B[arXiv:0902.3519] [INSPIRE] – reference: NagyZTrócsányiZThree-jet event-shapes in lepton-proton scattering at next-to-leading order accuracyPhys. Lett. B20066344982006PhLB..634..498N[hep-ph/0511328] [INSPIRE] – reference: D. Kang, C. Lee and I.W. Stewart, DIS event shape at N3LL, PoS(DIS2015)142 (2015) [INSPIRE]. – reference: DokshitzerYLMarchesiniGWebberBRNonperturbative effects in the energy energy correlationJHEP1999070121999JHEP...07..012D[hep-ph/9905339] [INSPIRE] – reference: GehrmannTGloverEWNHuberTIkizlerliNStuderusCCalculation of the quark and gluon form factors to three loops in QCDJHEP2010060942010JHEP...06..094G1288.81146[arXiv:1004.3653] [INSPIRE] – reference: Harland-LangLAMartinADMotylinskiPThorneRSParton distributions in the LHC era: MMHT 2014 PDFsEur. Phys. J. C2015752042015EPJC...75..204H[arXiv:1412.3989] [INSPIRE] – reference: MoultIZhuHXSimplicity from recoil: the three-loop soft function and factorization for the energy-energy correlationJHEP2018081602018JHEP...08..160M[arXiv:1801.02627] [INSPIRE] – reference: GaoALiHTMoultIZhuHXPrecision QCD event shapes at hadron colliders: the transverse energy-energy correlator in the back-to-back limitPhys. Rev. Lett.20191232019PhRvL.123f2001G[arXiv:1901.04497] [INSPIRE] – reference: NagyZTrócsányiZMultijet cross-sections in deep inelastic scattering at next-to-leading orderPhys. Rev. Lett.2001872001PhRvL..87h2001N[hep-ph/0104315] [INSPIRE] – reference: H1 collaboration, Measurement of event shape variables in deep-inelastic scattering at HERA, Eur. Phys. J. C46 (2006) 343 [hep-ex/0512014] [INSPIRE]. – reference: AliAPietarinenEStirlingWTransverse energy-energy correlations: a test of perturbative QCD for the proton-anti-proton colliderPhys. Lett. B19841414471984PhLB..141..447A[INSPIRE] – reference: GehrmannTLubbertTYangLLTransverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark casePhys. Rev. Lett.20121092012PhRvL.109x2003G[arXiv:1209.0682] [INSPIRE] – reference: LiYZhuHXBootstrapping rapidity anomalous dimensions for transverse-momentum resummationPhys. Rev. Lett.20171182017PhRvL.118b2004L[arXiv:1604.01404] [INSPIRE] – reference: H. Chen, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Analytic continuation and reciprocity relation for collinear splitting in QCD, arXiv:2006.10534 [INSPIRE]. – reference: BecherTNeubertMPecjakBDFactorization and momentum-space resummation in deep-inelastic scatteringJHEP2007010762007JHEP...01..076B[hep-ph/0607228] [INSPIRE] – reference: ZEUS collaboration, Event shapes in deep inelastic scattering at HERA, Nucl. Phys. B767 (2007) 1 [hep-ex/0604032] [INSPIRE]. – reference: S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [Erratum ibid.510 (1998) 503] [hep-ph/9605323] [INSPIRE]. – reference: BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAEnergy-energy correlations in N = 4 supersymmetric Yang-Mills theoryPhys. Rev. Lett.20141122014PhRvL.112g1601B1323.81056[arXiv:1311.6800] [INSPIRE] – reference: A. Gao, H.T. Li, I. Moult and H.X. Zhu, Hadron collider dijet event shapes at next-to-next-to-next-to-leading logarithm, in preparation. – reference: LuoM-XYangT-ZZhuHXZhuYJTransverse parton distribution and fragmentation functions at NNLO: the gluon caseJHEP2020010402020JHEP...01..040L[arXiv:1909.13820] [INSPIRE] – reference: EchevarriaMGScimemiIVladimirovAUnpolarized transverse momentum dependent parton distribution and fragmentation functions at next-to-next-to-leading orderJHEP2016090042016JHEP...09..004E35579071390.81168[arXiv:1604.07869] [INSPIRE] – reference: LiHTVitevIJet charge modification in dense QCD matterPhys. Rev. D20201012020PhRvD.101g6020L[arXiv:1908.06979] [INSPIRE] – reference: LuoM-XShtabovenkoVYangT-ZZhuHXAnalytic next-to-leading order calculation of energy-energy correlation in gluon-initiated Higgs decaysJHEP2019060372019JHEP...06..037L[arXiv:1903.07277] [INSPIRE] – reference: CollinsJCSoperDEBack-to-back jets: Fourier transform from B to k-transverseNucl. Phys. B19821974461982NuPhB.197..446C[INSPIRE] – reference: BuckleyALHAPDF6: parton density access in the LHC precision eraEur. Phys. J. C2015751322015EPJC...75..132B[arXiv:1412.7420] [INSPIRE] – reference: BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAEvent shapes in N = 4 super-Yang-Mills theoryNucl. Phys. B20148842062014NuPhB.884..206B32148821323.81056[arXiv:1309.1424] [INSPIRE] – reference: LübbertTOredssonJStahlhofenMRapidity renormalized TMD soft and beam functions at two loopsJHEP2016031682016JHEP...03..168L[arXiv:1602.01829] [INSPIRE] – reference: BauerCWFlemingSLukeMESumming Sudakov logarithms in B → Xsγ in effective field theoryPhys. Rev. D2000632001PhRvD..63a4006B[hep-ph/0005275] [INSPIRE] – reference: DasguptaMSalamGPResummation of the jet broadening in DISEur. Phys. J. C2002242132002EPJC...24..213D[hep-ph/0110213] [INSPIRE] – reference: ZEUS collaboration, Event shape analysis of deep inelastic scattering events with a large rapidity gap at HERA, Phys. Lett. B421 (1998) 368 [hep-ex/9710027] [INSPIRE]. – reference: BauerCWFlemingSPirjolDStewartIWAn effective field theory for collinear and soft gluons: heavy to light decaysPhys. Rev. D2001631140202001PhRvD..63k4020B[hep-ph/0011336] [INSPIRE] – reference: DasguptaMSalamGPEvent shapes in e+e−annihilation and deep inelastic scatteringJ. Phys. G2004302004JPhG...30R.143D[hep-ph/0312283] [INSPIRE] – reference: SjöstrandTMrennaSSkandsPZA brief introduction to PYTHIA 8.1Comput. Phys. Commun.20081788522008CoPhC.178..852S1196.81038[arXiv:0710.3820] [INSPIRE] – reference: OvanesyanGVitevIAn effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlungJHEP2011060802011JHEP...06..080O1298.81403[arXiv:1103.1074] [INSPIRE] – reference: M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev. D93 (2016) 011502 [Erratum ibid.94 (2016) 099904] [arXiv:1509.06392] [INSPIRE]. – reference: BauerCWStewartIWInvariant operators in collinear effective theoryPhys. Lett. B20015161342001PhLB..516..134B0971.81569[hep-ph/0107001] [INSPIRE] – reference: GehrmannTLuebbertTYangLLCalculation of the transverse parton distribution functions at next-to-next-to-leading orderJHEP2014061552014JHEP...06..155G[arXiv:1403.6451] [INSPIRE] – reference: DixonLJLuoM-XShtabovenkoVYangT-ZZhuHXAnalytical computation of energy-energy correlation at next-to-leading order in QCDPhys. Rev. Lett.20181202018PhRvL.120j2001D[arXiv:1801.03219] [INSPIRE] – reference: DixonLJMoultIZhuHXCollinear limit of the energy-energy correlatorPhys. Rev. D20191002019PhRvD.100a4009D4014087[arXiv:1905.01310] [INSPIRE] – reference: H1 collaboration, Measurement of event shape variables in deep inelastic ep scattering, Phys. Lett. B406 (1997) 256 [hep-ex/9706002] [INSPIRE]. – reference: DulatSNew parton distribution functions from a global analysis of quantum chromodynamicsPhys. Rev. D2016932016PhRvD..93c3006D[arXiv:1506.07443] [INSPIRE] – reference: GehrmannTHussAMoJNiehuesJSecond-order QCD corrections to event shape distributions in deep inelastic scatteringEur. Phys. J. C20197910222019EPJC...79.1022G[arXiv:1909.02760] [INSPIRE] – reference: BecherTNeubertMInfrared singularities of scattering amplitudes and N3LL resummation for n-jet processesJHEP2020010252020JHEP...01..025B1434.81135[arXiv:1908.11379] [INSPIRE] – ident: 14167_CR16 – volume: 08 start-page: 160 year: 2018 ident: 14167_CR26 publication-title: JHEP doi: 10.1007/JHEP08(2018)160 – volume: 33 year: 2018 ident: 14167_CR64 publication-title: Int. J. Mod. Phys. A – volume: 109 year: 2012 ident: 14167_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.242003 – volume: 63 start-page: 114020 year: 2001 ident: 14167_CR36 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.63.114020 – ident: 14167_CR12 – volume: 884 start-page: 206 year: 2014 ident: 14167_CR23 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2014.04.019 – volume: 06 start-page: 094 year: 2010 ident: 14167_CR52 publication-title: JHEP doi: 10.1007/JHEP06(2010)094 – ident: 14167_CR1 – volume: 643 start-page: 431 year: 2002 ident: 14167_CR38 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)00687-9 – volume: 75 start-page: 132 year: 2015 ident: 14167_CR58 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3318-8 – volume: 06 start-page: 080 year: 2011 ident: 14167_CR67 publication-title: JHEP doi: 10.1007/JHEP06(2011)080 – volume: 178 start-page: 852 year: 2008 ident: 14167_CR59 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.01.036 – volume: 02 start-page: 001 year: 2000 ident: 14167_CR5 publication-title: JHEP doi: 10.1088/1126-6708/2000/02/001 – volume: 87 year: 2001 ident: 14167_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.082001 – volume: 07 start-page: 012 year: 1999 ident: 14167_CR63 publication-title: JHEP doi: 10.1088/1126-6708/1999/07/012 – volume: 63 year: 2000 ident: 14167_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.63.014006 – volume: 10 start-page: 031 year: 2019 ident: 14167_CR41 publication-title: JHEP doi: 10.1007/JHEP10(2019)031 – volume: 960 year: 2020 ident: 14167_CR42 publication-title: Nucl. Phys. B – volume: 01 start-page: 025 year: 2020 ident: 14167_CR72 publication-title: JHEP doi: 10.1007/JHEP01(2020)025 – volume: 100 year: 2019 ident: 14167_CR25 publication-title: Phys. Rev. D – volume: 03 start-page: 168 year: 2016 ident: 14167_CR45 publication-title: JHEP doi: 10.1007/JHEP03(2016)168 – ident: 14167_CR15 – volume: 10 start-page: 083 year: 2019 ident: 14167_CR39 publication-title: JHEP doi: 10.1007/JHEP10(2019)083 – volume: 30 year: 2004 ident: 14167_CR8 publication-title: J. Phys. G doi: 10.1088/0954-3899/30/5/R01 – volume: 124 year: 2020 ident: 14167_CR47 publication-title: Phys. Rev. Lett. – volume: 79 start-page: 1022 year: 2019 ident: 14167_CR4 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7528-3 – volume: 01 start-page: 008 year: 2020 ident: 14167_CR29 publication-title: JHEP doi: 10.1007/JHEP01(2020)008 – volume: 191 start-page: 159 year: 2015 ident: 14167_CR60 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.01.024 – volume: 101 year: 2020 ident: 14167_CR71 publication-title: Phys. Rev. D – ident: 14167_CR57 – volume: 118 year: 2017 ident: 14167_CR49 publication-title: Phys. Rev. Lett. – volume: 197 start-page: 446 year: 1982 ident: 14167_CR62 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(82)90453-9 – ident: 14167_CR53 – volume: 90 year: 2014 ident: 14167_CR9 publication-title: Phys. Rev. D – volume: 07 start-page: 148 year: 2019 ident: 14167_CR69 publication-title: JHEP – ident: 14167_CR2 – volume: 750 start-page: 533 year: 2015 ident: 14167_CR65 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2015.09.064 – volume: 09 start-page: 004 year: 2016 ident: 14167_CR46 publication-title: JHEP doi: 10.1007/JHEP09(2016)004 – ident: 14167_CR14 – volume: 65 start-page: 054022 year: 2002 ident: 14167_CR34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.054022 – volume: 08 start-page: 032 year: 2002 ident: 14167_CR7 publication-title: JHEP doi: 10.1088/1126-6708/2002/08/032 – ident: 14167_CR11 doi: 10.22323/1.247.0142 – volume: 141 start-page: 447 year: 1984 ident: 14167_CR18 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(84)90283-1 – ident: 14167_CR10 – ident: 14167_CR33 – volume: 03 start-page: 146 year: 2017 ident: 14167_CR68 publication-title: JHEP – ident: 14167_CR28 – volume: 06 start-page: 155 year: 2014 ident: 14167_CR44 publication-title: JHEP doi: 10.1007/JHEP06(2014)155 – volume: 43 year: 2016 ident: 14167_CR54 publication-title: J. Phys. G doi: 10.1088/0954-3899/43/2/023001 – volume: 100 year: 2019 ident: 14167_CR27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.014009 – volume: 75 start-page: 204 year: 2015 ident: 14167_CR56 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3397-6 – volume: 86 year: 2012 ident: 14167_CR31 publication-title: Phys. Rev. D – volume: 634 start-page: 498 year: 2006 ident: 14167_CR61 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2006.02.007 – volume: 06 start-page: 037 year: 2019 ident: 14167_CR21 publication-title: JHEP doi: 10.1007/JHEP06(2019)037 – volume: 93 year: 2016 ident: 14167_CR55 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.033006 – ident: 14167_CR17 – volume: 516 start-page: 134 year: 2001 ident: 14167_CR35 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(01)00902-9 – ident: 14167_CR13 – volume: 235 year: 2020 ident: 14167_CR66 publication-title: EPJ Web Conf. – volume: 123 year: 2019 ident: 14167_CR32 publication-title: Phys. Rev. Lett. – volume: 793 start-page: 259 year: 2019 ident: 14167_CR70 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.04.052 – volume: 102 year: 2009 ident: 14167_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.212002 – volume: 120 year: 2018 ident: 14167_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.102001 – volume: 01 start-page: 040 year: 2020 ident: 14167_CR40 publication-title: JHEP doi: 10.1007/JHEP01(2020)040 – ident: 14167_CR30 – volume: 24 start-page: 213 year: 2002 ident: 14167_CR6 publication-title: Eur. Phys. J. C doi: 10.1007/s100520200915 – volume: 884 start-page: 305 year: 2014 ident: 14167_CR22 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2014.04.020 – volume: 41 start-page: 1585 year: 1978 ident: 14167_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.41.1585 – volume: 01 start-page: 076 year: 2007 ident: 14167_CR50 publication-title: JHEP doi: 10.1088/1126-6708/2007/01/076 – volume: 112 year: 2014 ident: 14167_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.071601 – ident: 14167_CR48 |
SSID | ssj0015190 |
Score | 2.5321743 |
Snippet | A
bstract
Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate... Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the... Abstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Atomic, Nuclear and Particle Physics Classical and Quantum Gravitation Convolution Correlation Cross-sections Deep Inelastic Scattering (Phenomenology) Distribution functions Elementary Particles Energy High energy physics Inelastic scattering Leptons Mathematical analysis Partons Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QCD Phenomenology Quantum chromodynamics Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSzYhEJcIgi7RJ21f7KFDHbZ01XU9VhQPQdGhoJvo7AhBPEXP8_7_7-ju9gXRpZPgqiszyvxGx98wdhiNxEYHW9lW80pp7SsPsa2AbEknowQu0kPhm9tm8qCuH_Xjp1RfKSaspwfuBXdqkHOoQ2ibxiqyNYHwDFjfyDpAp0z21snmjc7UcH9AuISPRD7cnF5PLu-EOCJHnx9zLb7YoEzVT8ULbakvMPPbzWg2OFerbGVAiuVZP8M1toDTdbaUIzZhtsHOs5VJQRVYYX7ANxQlpIQbQ4hb-TQtO8RXKqkqcTKXM8iUmvTPTfZwdXl_MamGhAgVKKXm6ZzII1rZqU5F1XlP4EG2TbCInGRhJMGVWnfB26gDIngCbw0KzyF6Sb3kFlucvkxxm5XctxJ8a9rYaRpJWozCgBeqFpF8NF-wk1FEDga28JS04tmNPMe9TF2SqSOZFuzovcNrT5Txc9PzJPP3ZonhOleQ3t2gd_eb3gu2mzTmCCgktltIYUEwdyLx5ze2YHujIt2wKWeuVkaq2tAqLNjxqNyPzz_MducvZrvLltN4_SPGPbY4f_uH-4Rm5uEgL9z_OEruTA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RaxwhEB7SC4W-lCZt6TZp2Ic-JA_buKuu-lR65cIRaAilgbyJjloK5e6Su_7_jnvuhRTSJ8FVd3dGnU8dvwH4mBSPvfSmMVqyRkjpGodJN0i2JPDEkbX5ovC3q35-Iy5v5W3ZcFsXt8pxThwm6rDEvEd-3gnFRaeoic-ruyZHjcqnqyWExjPYpylY6wnsT2dX19935wiET9hI6MPU-eV8dt22p7TgZ2dMto9s0UDZT8mShtYjuPnPCelgeC5ewcuCGOsvWxUfwF5cHMLzwXMT169hOlib7FwRmzhc5CtJjTnwRnF1q38t6hDjilLKytzM9RoHak165xu4uZj9-DpvSmCEBoUQm7xf5GI0PIggkgjOEYjguvcmRhaEUpxgSyeDdyZJHyM6AnF9bB3D5DjV4m9hslgu4juomdMcnVY6BUktcRNTq9C1omsTrdVcBZ9GEVksrOE5eMVvO_Idb2Vqs0wtybSC012F1ZYw4-mi0yzzXbHMdD1kLO9_2jJwrIqMYee97nsjCGt4wrNoXM87j_SvrIKjrDFLgCGz3mJ2D8KNbTOPfm8qOB4VacvgXNuHrlTB2ajch8dPfO37_zd1BC9yye01xWOYbO7_xA-EVzb-pHTKv50L59o priority: 102 providerName: ProQuest |
Title | Transverse-energy-energy correlations in deep inelastic scattering |
URI | https://link.springer.com/article/10.1007/JHEP11(2020)051 https://www.proquest.com/docview/2473427124 https://www.osti.gov/servlets/purl/1807869 https://doaj.org/article/7e00c2bb86694521b916c9a632bcd470 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ahEIvoU_qJF186CE5uJWsl3XMLrtdAg2hdCE3IckjKJRNyG7_f0dae0tScujFsmXJjxmL-WTNfAPwKRmBWgXb2E6xRirlGx9T10SyJb1IIjKeA4W_XenlSl7eqJuBJCnHwjxav_9yuZxfc35GU3R2znKo9KHiwuQcDTM92y8XEAxhI2_Pv50emJzCzE_FLY2gB6jy0UJosS-LV3A0AMP6YqfJ1_AM12_gRXHQjJu3MC1GJftQYIMlXm8o6pjzawwebfXPdd0j3lFJVZmCud7EwqBJ93wHq8X8x2zZDPkPmiil3ObfQh7Ril72Msnee8IKotPBIrJeGiMInbSqD94mFRCjJ6ymkXsWkxfUS7yHg_XtGj9AzXwnou9Ml3pFVxIWEzfRc9nyRFMyX8HnUUQuDuTgOUfFLzfSGu9k6rJMHcm0grN9h7sdL8bTTadZ5vtmmdC6VJCe3TA-nEHGYhtCp7WVBCkCwdZovRZtiPSurIKTrDFHuCCT28bsBRS3jme6fG0rOB0V6YYxuHGtNEK2hj66Cs5H5f49_cTTHv9H2xN4mXd3oYmncLC9_40fCaNswwSed4uvEziczq-uv9PRrJWT8s1Oyqyftqv24g_A9-Ma |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNNWyAHkNpDqB07cXJAiEKX7VMcWqk348cEIaHdbXcR4k_xG5nJY6silVtPlhzbScaP-WzPfAPwujEKy8LXWV0VItNF4TIXmioLpEuialQQkh2Fj0_K8Zk-OC_OV-DP4AvDZpXDmtgu1HEa-Ix8J9dG6dxQE-9nFxlHjeLb1SGERjcsDvH3L9qyzd_tf6L-fZPno73Tj-OsjyqQBa31gg9bHGKtoo660dE50sCqKn2NKKI2RpHOz4voXd0UHjE4QkAlSidC4xTVUtTuHbirFWly9kwffV7eWhAaEgN9kDA7B-O9L1Ju5YTItkUhr2m-NkAAJVOayNfA7T_3sa2aGz2Chz0-TT90A-oxrODkCdxr7UTD_CnstrqNTTkww9ZtsE_SwGE-esO69PskjYgzSimLmaDTeWiJPOmdz-DsVgT2HFYn0wmuQSpcpYKrTNXEglpSNTbSBCd1LhvaGboE3g4isqHnKOdQGT_swK7cydSyTC3JNIGtZYVZR89xc9FdlvmyGPNqtxnTy2-2n6bWoBAh974qy1oTsvGEnkPtSpX7QP8qEtjgHrMET5hjN7AxUlhYyaz9ZZ3A5tCRtl8K5vZq4CawPXTu1eMbvnb9_029gvvj0-Mje7R_crgBD7hW5yC5CauLy5_4gpDSwr9sh2cKX297PvwF6nEklQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKp5q2gI5gNQewjqxHceHqmLprrYtrFaISr0Zx7EREtrddrdC_DV-HTN5bFWkcuvJkmM7yfgxn-2ZbwDeBsV9Lkud6EKyREhpE-tCkTjUJRUP3LGUHIU_T_LxuTi9kBcb8KfzhSGzym5NrBfqau7ojLyfCcVFprCJfmjNIqbHo6PFZUIRpOimtQun0QyRM__7F27flocnx9jX77JsNPz6cZy0EQYSJ4RY0cGL9V7zSlQiiMpa1Ma8yEvtPauEUhz1fyar0uogS--dRTSU-9QyFyzHWhzbfQCbinZFPdgcDCfTL-s7DMRGrCMTYqp_Oh5O03Q_Q3x2wGR6Sw_W4QIwmeO0vgV1_7mdrZXe6AlstWg1_tAMr6ew4WfP4GFtNeqWz2FQazoy7PCJr50I2yR2FPSjNbOLf8ziyvsFpphFvNDx0tW0nvjOF3B-LyJ7Cb3ZfOa3IWa24M4WqgiVxJa49iFVzqYiSwPuE20E7zsRGdcyllPgjJ-m41puZGpIpgZlGsH-usKiIeu4u-iAZL4uRizbdcb86rtpJ61RnjGXlWWR51ogzikRSzttc56VDv-VRbBLPWYQrBDjriPTJLcyKXH45zqCva4jTbswLM3NMI7goOvcm8d3fO3O_5t6A49wLphPJ5OzXXhMlRpvyT3ora6u_SuETavydTs-Y_h231PiL2chKic |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transverse-energy-energy+correlations+in+deep+inelastic+scattering&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Li%2C+Hai+Tao&rft.au=Vitev%2C+Ivan+Mateev&rft.au=Zhu%2C+Yu+Jiao&rft.date=2020-11-01&rft.pub=Springer+Berlin&rft.issn=1029-8479&rft.volume=2020&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282020%29051&rft.externalDocID=1807869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |