Transverse-energy-energy correlations in deep inelastic scattering

A bstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effecti...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 11; pp. 1 - 16
Main Authors Li, Hai Tao, Vitev, Ivan, Zhu, Yu Jiao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Springer Nature B.V
Springer Berlin
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N 3 LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider.
AbstractList Abstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N3LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider.
Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N 3 LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider.
Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N3LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider.
A bstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N 3 LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider.
ArticleNumber 51
Author Vitev, Ivan
Li, Hai Tao
Zhu, Yu Jiao
Author_xml – sequence: 1
  givenname: Hai Tao
  orcidid: 0000-0003-0682-2868
  surname: Li
  fullname: Li, Hai Tao
  email: haitaoli@lanl.gov
  organization: Los Alamos National Laboratory, Theoretical Division
– sequence: 2
  givenname: Ivan
  surname: Vitev
  fullname: Vitev, Ivan
  organization: Los Alamos National Laboratory, Theoretical Division
– sequence: 3
  givenname: Yu Jiao
  surname: Zhu
  fullname: Zhu, Yu Jiao
  organization: Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University
BackLink https://www.osti.gov/servlets/purl/1807869$$D View this record in Osti.gov
BookMark eNp9UU1PHDEMjRBIfPXMddVeymGK8zHJ5NgiKCAkONBz5Ml4llltk20SKvHvm2VQW1Uqp2dZ79nPfodsN8RAjJ1w-MQBzNnN1cU95x8FCDiFlu-wAw7CNp0ydvevep8d5rwC4C23cMC-PCQM-SelTA0FSsvnV1j4mBKtsUwx5MUUFgPRpmJt5TL5RfZYCqUpLI_Z3ojrTO9e8Yh9u7x4OL9qbu--Xp9_vm28Uqo0EgwSWTmoQY1qQOyUlp3uLREMyhipuRDt0KMd257Io5BcE0fwI8qqkkfsep47RFy5TZq-Y3p2ESf30ohp6TBVa2tyhgC86PtOa6tawXvLtbeopeh93QV11vt5VqzHuOynQv7RxxDIF8c7MJ22lfRhJm1S_PFEubhVfEqh3uiEMlIJw8XW1tnM8inmnGj8bY2D2ybj5mTcNhlXk6mK9h9F3f_y6JJwWr-hg1mXN9u_U_rj53-SX_Wuojk
CitedBy_id crossref_primary_10_1007_JHEP08_2024_227
crossref_primary_10_1007_JHEP02_2021_210
crossref_primary_10_1007_JHEP03_2025_088
crossref_primary_10_1007_JHEP06_2022_111
crossref_primary_10_1007_JHEP09_2022_199
crossref_primary_10_1007_JHEP05_2024_066
crossref_primary_10_1007_JHEP07_2021_121
crossref_primary_10_1103_PhysRevD_109_094012
crossref_primary_10_1103_PhysRevD_109_096004
crossref_primary_10_1007_JHEP10_2023_187
crossref_primary_10_1007_JHEP03_2024_153
crossref_primary_10_1007_JHEP11_2021_026
crossref_primary_10_1007_JHEP08_2022_280
crossref_primary_10_1103_PhysRevD_110_014045
crossref_primary_10_1007_JHEP08_2021_022
crossref_primary_10_1103_PhysRevD_103_094005
crossref_primary_10_1103_PhysRevD_107_114002
crossref_primary_10_1103_PhysRevD_107_114008
crossref_primary_10_1103_PhysRevLett_126_252001
crossref_primary_10_1007_JHEP08_2022_233
crossref_primary_10_1007_JHEP03_2024_142
crossref_primary_10_1103_PhysRevLett_129_162001
crossref_primary_10_1007_JHEP09_2024_072
crossref_primary_10_1007_JHEP01_2025_029
crossref_primary_10_1103_PhysRevLett_130_091901
Cites_doi 10.1007/JHEP08(2018)160
10.1103/PhysRevLett.109.242003
10.1103/PhysRevD.63.114020
10.1016/j.nuclphysb.2014.04.019
10.1007/JHEP06(2010)094
10.1016/S0550-3213(02)00687-9
10.1140/epjc/s10052-015-3318-8
10.1007/JHEP06(2011)080
10.1016/j.cpc.2008.01.036
10.1088/1126-6708/2000/02/001
10.1103/PhysRevLett.87.082001
10.1088/1126-6708/1999/07/012
10.1103/PhysRevD.63.014006
10.1007/JHEP10(2019)031
10.1007/JHEP01(2020)025
10.1007/JHEP03(2016)168
10.1007/JHEP10(2019)083
10.1088/0954-3899/30/5/R01
10.1140/epjc/s10052-019-7528-3
10.1007/JHEP01(2020)008
10.1016/j.cpc.2015.01.024
10.1016/0550-3213(82)90453-9
10.1016/j.physletb.2015.09.064
10.1007/JHEP09(2016)004
10.1103/PhysRevD.65.054022
10.1088/1126-6708/2002/08/032
10.22323/1.247.0142
10.1016/0370-2693(84)90283-1
10.1007/JHEP06(2014)155
10.1088/0954-3899/43/2/023001
10.1103/PhysRevD.100.014009
10.1140/epjc/s10052-015-3397-6
10.1016/j.physletb.2006.02.007
10.1007/JHEP06(2019)037
10.1103/PhysRevD.93.033006
10.1016/S0370-2693(01)00902-9
10.1016/j.physletb.2019.04.052
10.1103/PhysRevLett.102.212002
10.1103/PhysRevLett.120.102001
10.1007/JHEP01(2020)040
10.1007/s100520200915
10.1016/j.nuclphysb.2014.04.020
10.1103/PhysRevLett.41.1585
10.1088/1126-6708/2007/01/076
10.1103/PhysRevLett.112.071601
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – sequence: 0
  name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP11(2020)051
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 16
ExternalDocumentID oai_doaj_org_article_7e00c2bb86694521b916c9a632bcd470
1807869
10_1007_JHEP11_2020_051
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
AAYZJ
AHBXF
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c444t-307aee93d4d4f4daa846386b9ee0d477361225dba9f5beeca2316e1a0cfa33d43
IEDL.DBID C6C
ISSN 1029-8479
IngestDate Wed Aug 27 01:30:07 EDT 2025
Thu Dec 05 06:25:34 EST 2024
Fri Jul 25 02:32:12 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Tue Jul 01 00:58:57 EDT 2025
Fri Feb 21 02:49:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep Inelastic Scattering (Phenomenology)
QCD Phenomenology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-307aee93d4d4f4daa846386b9ee0d477361225dba9f5beeca2316e1a0cfa33d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
LA-UR-20-28010
USDOE Laboratory Directed Research and Development (LDRD) Program
89233218CNA000001; AC52-06NA25396; 11975200
ORCID 0000-0003-0682-2868
0000000306822868
0000000151000113
OpenAccessLink https://doi.org/10.1007/JHEP11(2020)051
PQID 2473427124
PQPubID 2034718
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_7e00c2bb86694521b916c9a632bcd470
osti_scitechconnect_1807869
proquest_journals_2473427124
crossref_primary_10_1007_JHEP11_2020_051
crossref_citationtrail_10_1007_JHEP11_2020_051
springer_journals_10_1007_JHEP11_2020_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Berlin
SpringerOpen
Publisher_xml – sequence: 0
  name: Springer Berlin
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References H1 collaboration, Measurement of event shape variables in deep-inelastic scattering at HERA, Eur. Phys. J. C46 (2006) 343 [hep-ex/0512014] [INSPIRE].
NagyZTrócsányiZThree-jet event-shapes in lepton-proton scattering at next-to-leading order accuracyPhys. Lett. B20066344982006PhLB..634..498N[hep-ph/0511328] [INSPIRE]
ZEUS collaboration, Event shapes in deep inelastic scattering at HERA, Nucl. Phys. B767 (2007) 1 [hep-ex/0604032] [INSPIRE].
HennJMSokatchevEYanKZhiboedovAEnergy-energy correlation in N = 4 super Yang-Mills theory at next-to-next-to-leading orderPhys. Rev. D20191002019PhRvD.100c6010H4018809[arXiv:1903.05314] [INSPIRE]
GehrmannTLubbertTYangLLTransverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark casePhys. Rev. Lett.20121092012PhRvL.109x2003G[arXiv:1209.0682] [INSPIRE]
LiHTVitevIJet charge modification in dense QCD matterPhys. Rev. D20201012020PhRvD.101g6020L[arXiv:1908.06979] [INSPIRE]
ZEUS collaboration, Event shape analysis of deep inelastic scattering events with a large rapidity gap at HERA, Phys. Lett. B421 (1998) 368 [hep-ex/9710027] [INSPIRE].
M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE].
KorchemskyGPEnergy correlations in the end-point regionJHEP2020010082020JHEP...01..008K40883111434.81105[arXiv:1905.01444] [INSPIRE]
D. Graudenz, Disaster++: version 1.0, hep-ph/9710244 [INSPIRE].
LuoM-XYangT-ZZhuHXZhuYJQuark transverse parton distribution at the next-to-next-to-next-to-leading orderPhys. Rev. Lett.20201242020PhRvL.124i2001L[arXiv:1912.05778] [INSPIRE]
KangZ-BLiuXMantryS1-jettiness DIS event shape: NNLL+NLO resultsPhys. Rev. D2014902014PhRvD..90a4041K[arXiv:1312.0301] [INSPIRE]
GehrmannTGloverEWNHuberTIkizlerliNStuderusCCalculation of the quark and gluon form factors to three loops in QCDJHEP2010060942010JHEP...06..094G1288.81146[arXiv:1004.3653] [INSPIRE]
BuckleyALHAPDF6: parton density access in the LHC precision eraEur. Phys. J. C2015751322015EPJC...75..132B[arXiv:1412.7420] [INSPIRE]
BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAEnergy-energy correlations in N = 4 supersymmetric Yang-Mills theoryPhys. Rev. Lett.20141122014PhRvL.112g1601B1323.81056[arXiv:1311.6800] [INSPIRE]
EchevarriaMGScimemiIVladimirovAUnpolarized transverse momentum dependent parton distribution and fragmentation functions at next-to-next-to-leading orderJHEP2016090042016JHEP...09..004E35579071390.81168[arXiv:1604.07869] [INSPIRE]
BenekeMChapovskyAPDiehlMFeldmannTSoft collinear effective theory and heavy to light currents beyond leading powerNucl. Phys. B20026434312002NuPhB.643..431B0998.81538[hep-ph/0206152] [INSPIRE]
BecherTNeubertMPecjakBDFactorization and momentum-space resummation in deep-inelastic scatteringJHEP2007010762007JHEP...01..076B[hep-ph/0607228] [INSPIRE]
NagyZTrócsányiZMultijet cross-sections in deep inelastic scattering at next-to-leading orderPhys. Rev. Lett.2001872001PhRvL..87h2001N[hep-ph/0104315] [INSPIRE]
GehrmannTLuebbertTYangLLCalculation of the transverse parton distribution functions at next-to-next-to-leading orderJHEP2014061552014JHEP...06..155G[arXiv:1403.6451] [INSPIRE]
S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [Erratum ibid.510 (1998) 503] [hep-ph/9605323] [INSPIRE].
M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev. D93 (2016) 011502 [Erratum ibid.94 (2016) 099904] [arXiv:1509.06392] [INSPIRE].
DasguptaMSalamGPResummation of the jet broadening in DISEur. Phys. J. C2002242132002EPJC...24..213D[hep-ph/0110213] [INSPIRE]
SjöstrandTMrennaSSkandsPZA brief introduction to PYTHIA 8.1Comput. Phys. Commun.20081788522008CoPhC.178..852S1196.81038[arXiv:0710.3820] [INSPIRE]
BashamCBrownLSEllisSDLoveSTEnergy correlations in electron-positron annihilation: testing QCDPhys. Rev. Lett.19784115851978PhRvL..41.1585B[INSPIRE]
DixonLJLuoM-XShtabovenkoVYangT-ZZhuHXAnalytical computation of energy-energy correlation at next-to-leading order in QCDPhys. Rev. Lett.20181202018PhRvL.120j2001D[arXiv:1801.03219] [INSPIRE]
DasguptaMSalamGPEvent shapes in e+e−annihilation and deep inelastic scatteringJ. Phys. G2004302004JPhG...30R.143D[hep-ph/0312283] [INSPIRE]
OvanesyanGVitevIAn effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlungJHEP2011060802011JHEP...06..080O1298.81403[arXiv:1103.1074] [INSPIRE]
BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAEvent shapes in N = 4 super-Yang-Mills theoryNucl. Phys. B20148842062014NuPhB.884..206B32148821323.81056[arXiv:1309.1424] [INSPIRE]
DixonLJMoultIZhuHXCollinear limit of the energy-energy correlatorPhys. Rev. D20191002019PhRvD.100a4009D4014087[arXiv:1905.01310] [INSPIRE]
MoultIZhuHXSimplicity from recoil: the three-loop soft function and factorization for the energy-energy correlationJHEP2018081602018JHEP...08..160M[arXiv:1801.02627] [INSPIRE]
AliABarreiroFLlorenteJWangWTransverse energy-energy correlations in next-to-leading order in αsat the LHCPhys. Rev. D2012862012PhRvD..86k4017A[arXiv:1205.1689] [INSPIRE]
SjöstrandTAn introduction to PYTHIA 8.2Comput. Phys. Commun.20151911592015CoPhC.191..159S1344.81029[arXiv:1410.3012] [INSPIRE]
GaoALiHTMoultIZhuHXPrecision QCD event shapes at hadron colliders: the transverse energy-energy correlator in the back-to-back limitPhys. Rev. Lett.20191232019PhRvL.123f2001G[arXiv:1901.04497] [INSPIRE]
BecherTNeubertMInfrared singularities of scattering amplitudes and N3LL resummation for n-jet processesJHEP2020010252020JHEP...01..025B1434.81135[arXiv:1908.11379] [INSPIRE]
E.C. Aschenauer et al., eRHIC design study: an electron-ion collider at BNL, arXiv:1409.1633 [INSPIRE].
D. Kang and T. Maji, Toward precision jet event shape for future electron-ion collider, PoS(LC2019)061 (2019) [arXiv:1912.10656] [INSPIRE].
LuoM-XWangXXuXYangLLYangT-ZZhuHXTransverse parton distribution and fragmentation functions at NNLO: the quark caseJHEP2019100832019JHEP...10..083L[arXiv:1908.03831] [INSPIRE]
AntonelliVDasguptaMSalamGPResummation of thrust distributions in DISJHEP2000020012000JHEP...02..001A[hep-ph/9912488] [INSPIRE]
BaikovPAChetyrkinKGSmirnovAVSmirnovVASteinhauserMQuark and gluon form factors to three loopsPhys. Rev. Lett.20091022009PhRvL.102u2002B[arXiv:0902.3519] [INSPIRE]
DokshitzerYLMarchesiniGWebberBRNonperturbative effects in the energy energy correlationJHEP1999070121999JHEP...07..012D[hep-ph/9905339] [INSPIRE]
SunPIsaacsonJYuanCPYuanFNonperturbative functions for SIDIS and Drell-Yan processesInt. J. Mod. Phys. A2018332018IJMPA..3341006S[arXiv:1406.3073] [INSPIRE]
LiHTVitevIInverting the mass hierarchy of jet quenching effects with prompt b-jet substructurePhys. Lett. B20197932592019PhLB..793..259L[arXiv:1801.00008] [INSPIRE]
LuoM-XShtabovenkoVYangT-ZZhuHXAnalytic next-to-leading order calculation of energy-energy correlation in gluon-initiated Higgs decaysJHEP2019060372019JHEP...06..037L[arXiv:1903.07277] [INSPIRE]
KangZ-BRingerFVitevIEffective field theory approach to open heavy flavor production in heavy-ion collisionsJHEP2017031462017JHEP...03..146K[arXiv:1610.02043] [INSPIRE]
ZEUS collaboration, Measurement of event shapes in deep inelastic scattering at HERA, Eur. Phys. J. C27 (2003) 531 [hep-ex/0211040] [INSPIRE].
BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAFrom correlation functions to event shapesNucl. Phys. B20148843052014NuPhB.884..305B32148851323.81084[arXiv:1309.0769] [INSPIRE]
LuoM-XYangT-ZZhuHXZhuYJTransverse parton distribution and fragmentation functions at NNLO: the gluon caseJHEP2020010402020JHEP...01..040L[arXiv:1909.13820] [INSPIRE]
D. Kang, C. Lee and I.W. Stewart, DIS event shape at N3LL, PoS(DIS2015)142 (2015) [INSPIRE].
DulatSNew parton distribution functions from a global analysis of quantum chromodynamicsPhys. Rev. D2016932016PhRvD..93c3006D[arXiv:1506.07443] [INSPIRE]
BauerCWFlemingSPirjolDStewartIWAn effective field theory for collinear and soft gluons: heavy to light decaysPhys. Rev. D2001631140202001PhRvD..63k4020B[hep-ph/0011336] [INSPIRE]
ProkudinASunPYuanFScheme dependence and transverse momentum distribution interpretation of Collins-Soper-Sterman resummationPhys. Lett. B20157505332015PhLB..750..533P1364.81236[arXiv:1505.05588] [INSPIRE]
NNPDF collaboration, Parton distributions for the LHC run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
LübbertTOredssonJStahlhofenMRapidity renormalized TMD soft and beam functions at two loopsJHEP2016031682016JHEP...03..168L[arXiv:1602.01829] [INSPIRE]
LiHTVitevIInclusive heavy flavor jet production with semi-inclusive jet functions: from proton to heavy-ion collisionsJHEP2019071482019JHEP...07..148L[arXiv:1811.07905] [INSPIRE]
DasguptaMSalamGPResummed event shape variables in DISJHEP2002080322002JHEP...08..032D[hep-ph/0208073] [INSPIRE]
GehrmannTHussAMoJNiehuesJSecond-order QCD corrections to event shape distributions in deep inelastic scatteringEur. Phys. J. C20197910222019EPJC...79.1022G[arXiv:1909.02760] [INSPIRE]
AliAPietarinenEStirlingWTransverse energy-energy correlations: a test of perturbative QCD for the proton-anti-proton colliderPhys. Lett. B19841414471984PhLB..141..447A[INSPIRE]
Gutierrez-ReyesDScimemiIWaalewijnWJZoppiLTransverse momentum dependent distributions in e+e−and semi-inclusive deep-inelastic scattering using jetsJHEP2019100312019JHEP...10..031G4059663[arXiv:1904.04259] [INSPIRE]
BauerCWFlemingSLukeMESumming Sudakov logarithms in B → Xsγ in effective field theoryPhys. Rev. D2000632001PhRvD..63a4006B[hep-ph/0005275] [INSPIRE]
LiXA new heavy flavor program for the future electron-ion colliderEPJ Web Conf.2020235[arXiv:2002.05880] [INSPIRE]
H1 collaboration, Measurement of event shape variables in deep inelastic ep scattering, Phys. Lett. B406 (1997) 256 [hep-ex/9706002] [INSPIRE].
BauerCWPirjolDStewartIWSoft collinear factorization in effective field theoryPhys. Rev. D2002650540222002PhRvD..65e4022B[hep-ph/0109045] [INSPIRE]
LiYNeillDZhuHXAn
T Becher (14167_CR72) 2020; 01
YL Dokshitzer (14167_CR63) 1999; 07
A Ali (14167_CR18) 1984; 141
14167_CR53
14167_CR10
14167_CR11
M Beneke (14167_CR38) 2002; 643
T Lübbert (14167_CR45) 2016; 03
LJ Dixon (14167_CR20) 2018; 120
T Sjöstrand (14167_CR60) 2015; 191
T Gehrmann (14167_CR43) 2012; 109
M-X Luo (14167_CR39) 2019; 10
14167_CR48
A Buckley (14167_CR58) 2015; 75
M Dasgupta (14167_CR8) 2004; 30
S Dulat (14167_CR55) 2016; 93
PA Baikov (14167_CR51) 2009; 102
T Gehrmann (14167_CR4) 2019; 79
Y Li (14167_CR42) 2020; 960
P Sun (14167_CR64) 2018; 33
M-X Luo (14167_CR40) 2020; 01
CW Bauer (14167_CR35) 2001; 516
T Gehrmann (14167_CR52) 2010; 06
JC Collins (14167_CR62) 1982; 197
V Antonelli (14167_CR5) 2000; 02
LA Harland-Lang (14167_CR56) 2015; 75
M Dasgupta (14167_CR7) 2002; 08
14167_CR16
C Basham (14167_CR19) 1978; 41
14167_CR17
HT Li (14167_CR71) 2020; 101
14167_CR12
14167_CR13
14167_CR57
14167_CR14
14167_CR15
CW Bauer (14167_CR34) 2002; 65
Z-B Kang (14167_CR68) 2017; 03
G Ovanesyan (14167_CR67) 2011; 06
A Prokudin (14167_CR65) 2015; 750
Z Nagy (14167_CR61) 2006; 634
14167_CR30
Z Nagy (14167_CR3) 2001; 87
14167_CR33
Z-B Kang (14167_CR9) 2014; 90
T Becher (14167_CR50) 2007; 01
M-X Luo (14167_CR21) 2019; 06
T Gehrmann (14167_CR44) 2014; 06
14167_CR28
14167_CR1
M Dasgupta (14167_CR6) 2002; 24
14167_CR2
I Moult (14167_CR26) 2018; 08
AV Belitsky (14167_CR23) 2014; 884
Y Li (14167_CR49) 2017; 118
AV Belitsky (14167_CR24) 2014; 112
HT Li (14167_CR70) 2019; 793
JM Henn (14167_CR25) 2019; 100
M-X Luo (14167_CR47) 2020; 124
HT Li (14167_CR69) 2019; 07
A Ali (14167_CR31) 2012; 86
CW Bauer (14167_CR37) 2000; 63
AV Belitsky (14167_CR22) 2014; 884
CW Bauer (14167_CR36) 2001; 63
LJ Dixon (14167_CR27) 2019; 100
A Gao (14167_CR32) 2019; 123
D Gutierrez-Reyes (14167_CR41) 2019; 10
J Butterworth (14167_CR54) 2016; 43
T Sjöstrand (14167_CR59) 2008; 178
X Li (14167_CR66) 2020; 235
GP Korchemsky (14167_CR29) 2020; 01
MG Echevarria (14167_CR46) 2016; 09
References_xml – reference: D. Graudenz, Disaster++: version 1.0, hep-ph/9710244 [INSPIRE].
– reference: KorchemskyGPEnergy correlations in the end-point regionJHEP2020010082020JHEP...01..008K40883111434.81105[arXiv:1905.01444] [INSPIRE]
– reference: LiXA new heavy flavor program for the future electron-ion colliderEPJ Web Conf.2020235[arXiv:2002.05880] [INSPIRE]
– reference: BashamCBrownLSEllisSDLoveSTEnergy correlations in electron-positron annihilation: testing QCDPhys. Rev. Lett.19784115851978PhRvL..41.1585B[INSPIRE]
– reference: ButterworthJPDF4LHC recommendations for LHC run IIJ. Phys. G2016432016JPhG...43b3001B[arXiv:1510.03865] [INSPIRE]
– reference: D. Kang and T. Maji, Toward precision jet event shape for future electron-ion collider, PoS(LC2019)061 (2019) [arXiv:1912.10656] [INSPIRE].
– reference: AliABarreiroFLlorenteJWangWTransverse energy-energy correlations in next-to-leading order in αsat the LHCPhys. Rev. D2012862012PhRvD..86k4017A[arXiv:1205.1689] [INSPIRE]
– reference: Gutierrez-ReyesDScimemiIWaalewijnWJZoppiLTransverse momentum dependent distributions in e+e−and semi-inclusive deep-inelastic scattering using jetsJHEP2019100312019JHEP...10..031G4059663[arXiv:1904.04259] [INSPIRE]
– reference: ProkudinASunPYuanFScheme dependence and transverse momentum distribution interpretation of Collins-Soper-Sterman resummationPhys. Lett. B20157505332015PhLB..750..533P1364.81236[arXiv:1505.05588] [INSPIRE]
– reference: BenekeMChapovskyAPDiehlMFeldmannTSoft collinear effective theory and heavy to light currents beyond leading powerNucl. Phys. B20026434312002NuPhB.643..431B0998.81538[hep-ph/0206152] [INSPIRE]
– reference: LiYNeillDZhuHXAn exponential regulator for rapidity divergencesNucl. Phys. B20209604164557[arXiv:1604.00392] [INSPIRE]
– reference: KangZ-BRingerFVitevIEffective field theory approach to open heavy flavor production in heavy-ion collisionsJHEP2017031462017JHEP...03..146K[arXiv:1610.02043] [INSPIRE]
– reference: LiHTVitevIInverting the mass hierarchy of jet quenching effects with prompt b-jet substructurePhys. Lett. B20197932592019PhLB..793..259L[arXiv:1801.00008] [INSPIRE]
– reference: LiHTVitevIInclusive heavy flavor jet production with semi-inclusive jet functions: from proton to heavy-ion collisionsJHEP2019071482019JHEP...07..148L[arXiv:1811.07905] [INSPIRE]
– reference: SunPIsaacsonJYuanCPYuanFNonperturbative functions for SIDIS and Drell-Yan processesInt. J. Mod. Phys. A2018332018IJMPA..3341006S[arXiv:1406.3073] [INSPIRE]
– reference: DasguptaMSalamGPResummed event shape variables in DISJHEP2002080322002JHEP...08..032D[hep-ph/0208073] [INSPIRE]
– reference: H1 collaboration, Investigation of power corrections to event shape variables measured in deep inelastic scattering, Eur. Phys. J. C14 (2000) 255 [Erratum ibid.18 (2000) 417] [hep-ex/9912052] [INSPIRE].
– reference: LuoM-XWangXXuXYangLLYangT-ZZhuHXTransverse parton distribution and fragmentation functions at NNLO: the quark caseJHEP2019100832019JHEP...10..083L[arXiv:1908.03831] [INSPIRE]
– reference: AntonelliVDasguptaMSalamGPResummation of thrust distributions in DISJHEP2000020012000JHEP...02..001A[hep-ph/9912488] [INSPIRE]
– reference: SjöstrandTAn introduction to PYTHIA 8.2Comput. Phys. Commun.20151911592015CoPhC.191..159S1344.81029[arXiv:1410.3012] [INSPIRE]
– reference: KangZ-BLiuXMantryS1-jettiness DIS event shape: NNLL+NLO resultsPhys. Rev. D2014902014PhRvD..90a4041K[arXiv:1312.0301] [INSPIRE]
– reference: HennJMSokatchevEYanKZhiboedovAEnergy-energy correlation in N = 4 super Yang-Mills theory at next-to-next-to-leading orderPhys. Rev. D20191002019PhRvD.100c6010H4018809[arXiv:1903.05314] [INSPIRE]
– reference: NNPDF collaboration, Parton distributions for the LHC run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
– reference: BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAFrom correlation functions to event shapesNucl. Phys. B20148843052014NuPhB.884..305B32148851323.81084[arXiv:1309.0769] [INSPIRE]
– reference: E.C. Aschenauer et al., eRHIC design study: an electron-ion collider at BNL, arXiv:1409.1633 [INSPIRE].
– reference: M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE].
– reference: BauerCWPirjolDStewartIWSoft collinear factorization in effective field theoryPhys. Rev. D2002650540222002PhRvD..65e4022B[hep-ph/0109045] [INSPIRE]
– reference: LuoM-XYangT-ZZhuHXZhuYJQuark transverse parton distribution at the next-to-next-to-next-to-leading orderPhys. Rev. Lett.20201242020PhRvL.124i2001L[arXiv:1912.05778] [INSPIRE]
– reference: ZEUS collaboration, Measurement of event shapes in deep inelastic scattering at HERA, Eur. Phys. J. C27 (2003) 531 [hep-ex/0211040] [INSPIRE].
– reference: BaikovPAChetyrkinKGSmirnovAVSmirnovVASteinhauserMQuark and gluon form factors to three loopsPhys. Rev. Lett.20091022009PhRvL.102u2002B[arXiv:0902.3519] [INSPIRE]
– reference: NagyZTrócsányiZThree-jet event-shapes in lepton-proton scattering at next-to-leading order accuracyPhys. Lett. B20066344982006PhLB..634..498N[hep-ph/0511328] [INSPIRE]
– reference: D. Kang, C. Lee and I.W. Stewart, DIS event shape at N3LL, PoS(DIS2015)142 (2015) [INSPIRE].
– reference: DokshitzerYLMarchesiniGWebberBRNonperturbative effects in the energy energy correlationJHEP1999070121999JHEP...07..012D[hep-ph/9905339] [INSPIRE]
– reference: GehrmannTGloverEWNHuberTIkizlerliNStuderusCCalculation of the quark and gluon form factors to three loops in QCDJHEP2010060942010JHEP...06..094G1288.81146[arXiv:1004.3653] [INSPIRE]
– reference: Harland-LangLAMartinADMotylinskiPThorneRSParton distributions in the LHC era: MMHT 2014 PDFsEur. Phys. J. C2015752042015EPJC...75..204H[arXiv:1412.3989] [INSPIRE]
– reference: MoultIZhuHXSimplicity from recoil: the three-loop soft function and factorization for the energy-energy correlationJHEP2018081602018JHEP...08..160M[arXiv:1801.02627] [INSPIRE]
– reference: GaoALiHTMoultIZhuHXPrecision QCD event shapes at hadron colliders: the transverse energy-energy correlator in the back-to-back limitPhys. Rev. Lett.20191232019PhRvL.123f2001G[arXiv:1901.04497] [INSPIRE]
– reference: NagyZTrócsányiZMultijet cross-sections in deep inelastic scattering at next-to-leading orderPhys. Rev. Lett.2001872001PhRvL..87h2001N[hep-ph/0104315] [INSPIRE]
– reference: H1 collaboration, Measurement of event shape variables in deep-inelastic scattering at HERA, Eur. Phys. J. C46 (2006) 343 [hep-ex/0512014] [INSPIRE].
– reference: AliAPietarinenEStirlingWTransverse energy-energy correlations: a test of perturbative QCD for the proton-anti-proton colliderPhys. Lett. B19841414471984PhLB..141..447A[INSPIRE]
– reference: GehrmannTLubbertTYangLLTransverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark casePhys. Rev. Lett.20121092012PhRvL.109x2003G[arXiv:1209.0682] [INSPIRE]
– reference: LiYZhuHXBootstrapping rapidity anomalous dimensions for transverse-momentum resummationPhys. Rev. Lett.20171182017PhRvL.118b2004L[arXiv:1604.01404] [INSPIRE]
– reference: H. Chen, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Analytic continuation and reciprocity relation for collinear splitting in QCD, arXiv:2006.10534 [INSPIRE].
– reference: BecherTNeubertMPecjakBDFactorization and momentum-space resummation in deep-inelastic scatteringJHEP2007010762007JHEP...01..076B[hep-ph/0607228] [INSPIRE]
– reference: ZEUS collaboration, Event shapes in deep inelastic scattering at HERA, Nucl. Phys. B767 (2007) 1 [hep-ex/0604032] [INSPIRE].
– reference: S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [Erratum ibid.510 (1998) 503] [hep-ph/9605323] [INSPIRE].
– reference: BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAEnergy-energy correlations in N = 4 supersymmetric Yang-Mills theoryPhys. Rev. Lett.20141122014PhRvL.112g1601B1323.81056[arXiv:1311.6800] [INSPIRE]
– reference: A. Gao, H.T. Li, I. Moult and H.X. Zhu, Hadron collider dijet event shapes at next-to-next-to-next-to-leading logarithm, in preparation.
– reference: LuoM-XYangT-ZZhuHXZhuYJTransverse parton distribution and fragmentation functions at NNLO: the gluon caseJHEP2020010402020JHEP...01..040L[arXiv:1909.13820] [INSPIRE]
– reference: EchevarriaMGScimemiIVladimirovAUnpolarized transverse momentum dependent parton distribution and fragmentation functions at next-to-next-to-leading orderJHEP2016090042016JHEP...09..004E35579071390.81168[arXiv:1604.07869] [INSPIRE]
– reference: LiHTVitevIJet charge modification in dense QCD matterPhys. Rev. D20201012020PhRvD.101g6020L[arXiv:1908.06979] [INSPIRE]
– reference: LuoM-XShtabovenkoVYangT-ZZhuHXAnalytic next-to-leading order calculation of energy-energy correlation in gluon-initiated Higgs decaysJHEP2019060372019JHEP...06..037L[arXiv:1903.07277] [INSPIRE]
– reference: CollinsJCSoperDEBack-to-back jets: Fourier transform from B to k-transverseNucl. Phys. B19821974461982NuPhB.197..446C[INSPIRE]
– reference: BuckleyALHAPDF6: parton density access in the LHC precision eraEur. Phys. J. C2015751322015EPJC...75..132B[arXiv:1412.7420] [INSPIRE]
– reference: BelitskyAVHoheneggerSKorchemskyGPSokatchevEZhiboedovAEvent shapes in N = 4 super-Yang-Mills theoryNucl. Phys. B20148842062014NuPhB.884..206B32148821323.81056[arXiv:1309.1424] [INSPIRE]
– reference: LübbertTOredssonJStahlhofenMRapidity renormalized TMD soft and beam functions at two loopsJHEP2016031682016JHEP...03..168L[arXiv:1602.01829] [INSPIRE]
– reference: BauerCWFlemingSLukeMESumming Sudakov logarithms in B → Xsγ in effective field theoryPhys. Rev. D2000632001PhRvD..63a4006B[hep-ph/0005275] [INSPIRE]
– reference: DasguptaMSalamGPResummation of the jet broadening in DISEur. Phys. J. C2002242132002EPJC...24..213D[hep-ph/0110213] [INSPIRE]
– reference: ZEUS collaboration, Event shape analysis of deep inelastic scattering events with a large rapidity gap at HERA, Phys. Lett. B421 (1998) 368 [hep-ex/9710027] [INSPIRE].
– reference: BauerCWFlemingSPirjolDStewartIWAn effective field theory for collinear and soft gluons: heavy to light decaysPhys. Rev. D2001631140202001PhRvD..63k4020B[hep-ph/0011336] [INSPIRE]
– reference: DasguptaMSalamGPEvent shapes in e+e−annihilation and deep inelastic scatteringJ. Phys. G2004302004JPhG...30R.143D[hep-ph/0312283] [INSPIRE]
– reference: SjöstrandTMrennaSSkandsPZA brief introduction to PYTHIA 8.1Comput. Phys. Commun.20081788522008CoPhC.178..852S1196.81038[arXiv:0710.3820] [INSPIRE]
– reference: OvanesyanGVitevIAn effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlungJHEP2011060802011JHEP...06..080O1298.81403[arXiv:1103.1074] [INSPIRE]
– reference: M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev. D93 (2016) 011502 [Erratum ibid.94 (2016) 099904] [arXiv:1509.06392] [INSPIRE].
– reference: BauerCWStewartIWInvariant operators in collinear effective theoryPhys. Lett. B20015161342001PhLB..516..134B0971.81569[hep-ph/0107001] [INSPIRE]
– reference: GehrmannTLuebbertTYangLLCalculation of the transverse parton distribution functions at next-to-next-to-leading orderJHEP2014061552014JHEP...06..155G[arXiv:1403.6451] [INSPIRE]
– reference: DixonLJLuoM-XShtabovenkoVYangT-ZZhuHXAnalytical computation of energy-energy correlation at next-to-leading order in QCDPhys. Rev. Lett.20181202018PhRvL.120j2001D[arXiv:1801.03219] [INSPIRE]
– reference: DixonLJMoultIZhuHXCollinear limit of the energy-energy correlatorPhys. Rev. D20191002019PhRvD.100a4009D4014087[arXiv:1905.01310] [INSPIRE]
– reference: H1 collaboration, Measurement of event shape variables in deep inelastic ep scattering, Phys. Lett. B406 (1997) 256 [hep-ex/9706002] [INSPIRE].
– reference: DulatSNew parton distribution functions from a global analysis of quantum chromodynamicsPhys. Rev. D2016932016PhRvD..93c3006D[arXiv:1506.07443] [INSPIRE]
– reference: GehrmannTHussAMoJNiehuesJSecond-order QCD corrections to event shape distributions in deep inelastic scatteringEur. Phys. J. C20197910222019EPJC...79.1022G[arXiv:1909.02760] [INSPIRE]
– reference: BecherTNeubertMInfrared singularities of scattering amplitudes and N3LL resummation for n-jet processesJHEP2020010252020JHEP...01..025B1434.81135[arXiv:1908.11379] [INSPIRE]
– ident: 14167_CR16
– volume: 08
  start-page: 160
  year: 2018
  ident: 14167_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)160
– volume: 33
  year: 2018
  ident: 14167_CR64
  publication-title: Int. J. Mod. Phys. A
– volume: 109
  year: 2012
  ident: 14167_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.242003
– volume: 63
  start-page: 114020
  year: 2001
  ident: 14167_CR36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.63.114020
– ident: 14167_CR12
– volume: 884
  start-page: 206
  year: 2014
  ident: 14167_CR23
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2014.04.019
– volume: 06
  start-page: 094
  year: 2010
  ident: 14167_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP06(2010)094
– ident: 14167_CR1
– volume: 643
  start-page: 431
  year: 2002
  ident: 14167_CR38
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(02)00687-9
– volume: 75
  start-page: 132
  year: 2015
  ident: 14167_CR58
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3318-8
– volume: 06
  start-page: 080
  year: 2011
  ident: 14167_CR67
  publication-title: JHEP
  doi: 10.1007/JHEP06(2011)080
– volume: 178
  start-page: 852
  year: 2008
  ident: 14167_CR59
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.01.036
– volume: 02
  start-page: 001
  year: 2000
  ident: 14167_CR5
  publication-title: JHEP
  doi: 10.1088/1126-6708/2000/02/001
– volume: 87
  year: 2001
  ident: 14167_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.082001
– volume: 07
  start-page: 012
  year: 1999
  ident: 14167_CR63
  publication-title: JHEP
  doi: 10.1088/1126-6708/1999/07/012
– volume: 63
  year: 2000
  ident: 14167_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.63.014006
– volume: 10
  start-page: 031
  year: 2019
  ident: 14167_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)031
– volume: 960
  year: 2020
  ident: 14167_CR42
  publication-title: Nucl. Phys. B
– volume: 01
  start-page: 025
  year: 2020
  ident: 14167_CR72
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)025
– volume: 100
  year: 2019
  ident: 14167_CR25
  publication-title: Phys. Rev. D
– volume: 03
  start-page: 168
  year: 2016
  ident: 14167_CR45
  publication-title: JHEP
  doi: 10.1007/JHEP03(2016)168
– ident: 14167_CR15
– volume: 10
  start-page: 083
  year: 2019
  ident: 14167_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)083
– volume: 30
  year: 2004
  ident: 14167_CR8
  publication-title: J. Phys. G
  doi: 10.1088/0954-3899/30/5/R01
– volume: 124
  year: 2020
  ident: 14167_CR47
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 1022
  year: 2019
  ident: 14167_CR4
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7528-3
– volume: 01
  start-page: 008
  year: 2020
  ident: 14167_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)008
– volume: 191
  start-page: 159
  year: 2015
  ident: 14167_CR60
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.01.024
– volume: 101
  year: 2020
  ident: 14167_CR71
  publication-title: Phys. Rev. D
– ident: 14167_CR57
– volume: 118
  year: 2017
  ident: 14167_CR49
  publication-title: Phys. Rev. Lett.
– volume: 197
  start-page: 446
  year: 1982
  ident: 14167_CR62
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(82)90453-9
– ident: 14167_CR53
– volume: 90
  year: 2014
  ident: 14167_CR9
  publication-title: Phys. Rev. D
– volume: 07
  start-page: 148
  year: 2019
  ident: 14167_CR69
  publication-title: JHEP
– ident: 14167_CR2
– volume: 750
  start-page: 533
  year: 2015
  ident: 14167_CR65
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2015.09.064
– volume: 09
  start-page: 004
  year: 2016
  ident: 14167_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP09(2016)004
– ident: 14167_CR14
– volume: 65
  start-page: 054022
  year: 2002
  ident: 14167_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.65.054022
– volume: 08
  start-page: 032
  year: 2002
  ident: 14167_CR7
  publication-title: JHEP
  doi: 10.1088/1126-6708/2002/08/032
– ident: 14167_CR11
  doi: 10.22323/1.247.0142
– volume: 141
  start-page: 447
  year: 1984
  ident: 14167_CR18
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(84)90283-1
– ident: 14167_CR10
– ident: 14167_CR33
– volume: 03
  start-page: 146
  year: 2017
  ident: 14167_CR68
  publication-title: JHEP
– ident: 14167_CR28
– volume: 06
  start-page: 155
  year: 2014
  ident: 14167_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP06(2014)155
– volume: 43
  year: 2016
  ident: 14167_CR54
  publication-title: J. Phys. G
  doi: 10.1088/0954-3899/43/2/023001
– volume: 100
  year: 2019
  ident: 14167_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.014009
– volume: 75
  start-page: 204
  year: 2015
  ident: 14167_CR56
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3397-6
– volume: 86
  year: 2012
  ident: 14167_CR31
  publication-title: Phys. Rev. D
– volume: 634
  start-page: 498
  year: 2006
  ident: 14167_CR61
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2006.02.007
– volume: 06
  start-page: 037
  year: 2019
  ident: 14167_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)037
– volume: 93
  year: 2016
  ident: 14167_CR55
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.033006
– ident: 14167_CR17
– volume: 516
  start-page: 134
  year: 2001
  ident: 14167_CR35
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(01)00902-9
– ident: 14167_CR13
– volume: 235
  year: 2020
  ident: 14167_CR66
  publication-title: EPJ Web Conf.
– volume: 123
  year: 2019
  ident: 14167_CR32
  publication-title: Phys. Rev. Lett.
– volume: 793
  start-page: 259
  year: 2019
  ident: 14167_CR70
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.04.052
– volume: 102
  year: 2009
  ident: 14167_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.212002
– volume: 120
  year: 2018
  ident: 14167_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.102001
– volume: 01
  start-page: 040
  year: 2020
  ident: 14167_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)040
– ident: 14167_CR30
– volume: 24
  start-page: 213
  year: 2002
  ident: 14167_CR6
  publication-title: Eur. Phys. J. C
  doi: 10.1007/s100520200915
– volume: 884
  start-page: 305
  year: 2014
  ident: 14167_CR22
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2014.04.020
– volume: 41
  start-page: 1585
  year: 1978
  ident: 14167_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.41.1585
– volume: 01
  start-page: 076
  year: 2007
  ident: 14167_CR50
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/01/076
– volume: 112
  year: 2014
  ident: 14167_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.071601
– ident: 14167_CR48
SSID ssj0015190
Score 2.5321743
Snippet A bstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate...
Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the...
Abstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Atomic, Nuclear and Particle Physics
Classical and Quantum Gravitation
Convolution
Correlation
Cross-sections
Deep Inelastic Scattering (Phenomenology)
Distribution functions
Elementary Particles
Energy
High energy physics
Inelastic scattering
Leptons
Mathematical analysis
Partons
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QCD Phenomenology
Quantum chromodynamics
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSzYhEJcIgi7RJ21f7KFDHbZ01XU9VhQPQdGhoJvo7AhBPEXP8_7_7-ju9gXRpZPgqiszyvxGx98wdhiNxEYHW9lW80pp7SsPsa2AbEknowQu0kPhm9tm8qCuH_Xjp1RfKSaspwfuBXdqkHOoQ2ibxiqyNYHwDFjfyDpAp0z21snmjc7UcH9AuISPRD7cnF5PLu-EOCJHnx9zLb7YoEzVT8ULbakvMPPbzWg2OFerbGVAiuVZP8M1toDTdbaUIzZhtsHOs5VJQRVYYX7ANxQlpIQbQ4hb-TQtO8RXKqkqcTKXM8iUmvTPTfZwdXl_MamGhAgVKKXm6ZzII1rZqU5F1XlP4EG2TbCInGRhJMGVWnfB26gDIngCbw0KzyF6Sb3kFlucvkxxm5XctxJ8a9rYaRpJWozCgBeqFpF8NF-wk1FEDga28JS04tmNPMe9TF2SqSOZFuzovcNrT5Txc9PzJPP3ZonhOleQ3t2gd_eb3gu2mzTmCCgktltIYUEwdyLx5ze2YHujIt2wKWeuVkaq2tAqLNjxqNyPzz_MducvZrvLltN4_SPGPbY4f_uH-4Rm5uEgL9z_OEruTA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RaxwhEB7SC4W-lCZt6TZp2Ic-JA_buKuu-lR65cIRaAilgbyJjloK5e6Su_7_jnvuhRTSJ8FVd3dGnU8dvwH4mBSPvfSmMVqyRkjpGodJN0i2JPDEkbX5ovC3q35-Iy5v5W3ZcFsXt8pxThwm6rDEvEd-3gnFRaeoic-ruyZHjcqnqyWExjPYpylY6wnsT2dX19935wiET9hI6MPU-eV8dt22p7TgZ2dMto9s0UDZT8mShtYjuPnPCelgeC5ewcuCGOsvWxUfwF5cHMLzwXMT169hOlib7FwRmzhc5CtJjTnwRnF1q38t6hDjilLKytzM9RoHak165xu4uZj9-DpvSmCEBoUQm7xf5GI0PIggkgjOEYjguvcmRhaEUpxgSyeDdyZJHyM6AnF9bB3D5DjV4m9hslgu4juomdMcnVY6BUktcRNTq9C1omsTrdVcBZ9GEVksrOE5eMVvO_Idb2Vqs0wtybSC012F1ZYw4-mi0yzzXbHMdD1kLO9_2jJwrIqMYee97nsjCGt4wrNoXM87j_SvrIKjrDFLgCGz3mJ2D8KNbTOPfm8qOB4VacvgXNuHrlTB2ajch8dPfO37_zd1BC9yye01xWOYbO7_xA-EVzb-pHTKv50L59o
  priority: 102
  providerName: ProQuest
Title Transverse-energy-energy correlations in deep inelastic scattering
URI https://link.springer.com/article/10.1007/JHEP11(2020)051
https://www.proquest.com/docview/2473427124
https://www.osti.gov/servlets/purl/1807869
https://doaj.org/article/7e00c2bb86694521b916c9a632bcd470
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ahEIvoU_qJF186CE5uJWsl3XMLrtdAg2hdCE3IckjKJRNyG7_f0dae0tScujFsmXJjxmL-WTNfAPwKRmBWgXb2E6xRirlGx9T10SyJb1IIjKeA4W_XenlSl7eqJuBJCnHwjxav_9yuZxfc35GU3R2znKo9KHiwuQcDTM92y8XEAxhI2_Pv50emJzCzE_FLY2gB6jy0UJosS-LV3A0AMP6YqfJ1_AM12_gRXHQjJu3MC1GJftQYIMlXm8o6pjzawwebfXPdd0j3lFJVZmCud7EwqBJ93wHq8X8x2zZDPkPmiil3ObfQh7Ril72Msnee8IKotPBIrJeGiMInbSqD94mFRCjJ6ymkXsWkxfUS7yHg_XtGj9AzXwnou9Ml3pFVxIWEzfRc9nyRFMyX8HnUUQuDuTgOUfFLzfSGu9k6rJMHcm0grN9h7sdL8bTTadZ5vtmmdC6VJCe3TA-nEHGYhtCp7WVBCkCwdZovRZtiPSurIKTrDFHuCCT28bsBRS3jme6fG0rOB0V6YYxuHGtNEK2hj66Cs5H5f49_cTTHv9H2xN4mXd3oYmncLC9_40fCaNswwSed4uvEziczq-uv9PRrJWT8s1Oyqyftqv24g_A9-Ma
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNNWyAHkNpDqB07cXJAiEKX7VMcWqk348cEIaHdbXcR4k_xG5nJY6silVtPlhzbScaP-WzPfAPwujEKy8LXWV0VItNF4TIXmioLpEuialQQkh2Fj0_K8Zk-OC_OV-DP4AvDZpXDmtgu1HEa-Ix8J9dG6dxQE-9nFxlHjeLb1SGERjcsDvH3L9qyzd_tf6L-fZPno73Tj-OsjyqQBa31gg9bHGKtoo660dE50sCqKn2NKKI2RpHOz4voXd0UHjE4QkAlSidC4xTVUtTuHbirFWly9kwffV7eWhAaEgN9kDA7B-O9L1Ju5YTItkUhr2m-NkAAJVOayNfA7T_3sa2aGz2Chz0-TT90A-oxrODkCdxr7UTD_CnstrqNTTkww9ZtsE_SwGE-esO69PskjYgzSimLmaDTeWiJPOmdz-DsVgT2HFYn0wmuQSpcpYKrTNXEglpSNTbSBCd1LhvaGboE3g4isqHnKOdQGT_swK7cydSyTC3JNIGtZYVZR89xc9FdlvmyGPNqtxnTy2-2n6bWoBAh974qy1oTsvGEnkPtSpX7QP8qEtjgHrMET5hjN7AxUlhYyaz9ZZ3A5tCRtl8K5vZq4CawPXTu1eMbvnb9_029gvvj0-Mje7R_crgBD7hW5yC5CauLy5_4gpDSwr9sh2cKX297PvwF6nEklQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcKp5q2gI5gNQewjqxHceHqmLprrYtrFaISr0Zx7EREtrddrdC_DV-HTN5bFWkcuvJkmM7yfgxn-2ZbwDeBsV9Lkud6EKyREhpE-tCkTjUJRUP3LGUHIU_T_LxuTi9kBcb8KfzhSGzym5NrBfqau7ojLyfCcVFprCJfmjNIqbHo6PFZUIRpOimtQun0QyRM__7F27flocnx9jX77JsNPz6cZy0EQYSJ4RY0cGL9V7zSlQiiMpa1Ma8yEvtPauEUhz1fyar0uogS--dRTSU-9QyFyzHWhzbfQCbinZFPdgcDCfTL-s7DMRGrCMTYqp_Oh5O03Q_Q3x2wGR6Sw_W4QIwmeO0vgV1_7mdrZXe6AlstWg1_tAMr6ew4WfP4GFtNeqWz2FQazoy7PCJr50I2yR2FPSjNbOLf8ziyvsFpphFvNDx0tW0nvjOF3B-LyJ7Cb3ZfOa3IWa24M4WqgiVxJa49iFVzqYiSwPuE20E7zsRGdcyllPgjJ-m41puZGpIpgZlGsH-usKiIeu4u-iAZL4uRizbdcb86rtpJ61RnjGXlWWR51ogzikRSzttc56VDv-VRbBLPWYQrBDjriPTJLcyKXH45zqCva4jTbswLM3NMI7goOvcm8d3fO3O_5t6A49wLphPJ5OzXXhMlRpvyT3ora6u_SuETavydTs-Y_h231PiL2chKic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transverse-energy-energy+correlations+in+deep+inelastic+scattering&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Li%2C+Hai+Tao&rft.au=Vitev%2C+Ivan+Mateev&rft.au=Zhu%2C+Yu+Jiao&rft.date=2020-11-01&rft.pub=Springer+Berlin&rft.issn=1029-8479&rft.volume=2020&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282020%29051&rft.externalDocID=1807869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon