Part-scale build orientation optimization for minimizing residual stress and support volume for metal additive manufacturing: Theory and experimental validation
Laser powder bed metal additive manufacturing (AM) has been widely accepted by the industry to manufacture end-use components with complex geometry to achieve desirable performance (i.e. conformal cooling). However, residual stress and large deformation introduced in the laser AM process lead to sev...
Saved in:
Published in | Computer aided design Vol. 113; pp. 1 - 23 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.08.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Laser powder bed metal additive manufacturing (AM) has been widely accepted by the industry to manufacture end-use components with complex geometry to achieve desirable performance (i.e. conformal cooling). However, residual stress and large deformation introduced in the laser AM process lead to severe issues, such as cracks, delamination, and large deformation. These issues result in the stoppage of powder spreading and warpage of the component. To overcome these issues, a novel optimization framework based on fast process modeling is proposed to find the optimal build orientation by minimizing the maximum residual stress and support structure volume. For support generation, a voxel-based methodology is proposed to systematically capture support surfaces from STL file, form support structure, and generate Cartesian mesh for fast process modeling. Instead of using conformal mesh, the voxel-based fictitious domain method is used to calculate the stress distribution in the design domain including the support structure, which is represented by the homogenized model. This can circumvent time-consuming mesh generation for geometrically complex geometry and its support structure during the optimization iterations, thus making it possible to minimize residual stress through orientation optimization based on process modeling. Due to its self-supporting and open-cell nature, lattice structure is employed as the support structure to anchor the overhangs to the substrate to prevent distortion resulting from residual stress. Asymptotic homogenization (AH) method is employed to compute the effective properties of lattice structure, while a multiscale model is proposed to compute the yield strength. In particular, the multi-objective optimization including both the residual stress and support volume is discussed and investigated in this work. Experimental validation is conducted on a realistic component with some geometric complexity. By comparing the component and support structure without build orientation optimization, it is found that the proposed framework can significantly reduce the influence of the residual stress on the printed part, ensure the manufacturability of the design, and decrease the material consumption for the sacrificial support structure simultaneously.
•A new voxel-based overhang detection method is proposed for AM simulation.•A fictitious domain method is developed to simulate residual stress in metal AM.•Residual stress and support volume are minimized through the optimization method.•Experiments are conducted to investigate the efficiency of the proposed framework. |
---|---|
AbstractList | Laser powder bed metal additive manufacturing (AM) has been widely accepted by the industry to manufacture end-use components with complex geometry to achieve desirable performance (i.e. conformal cooling). However, residual stress and large deformation introduced in the laser AM process lead to severe issues, such as cracks, delamination, and large deformation. These issues result in the stoppage of powder spreading and warpage of the component. To overcome these issues, a novel optimization framework based on fast process modeling is proposed to find the optimal build orientation by minimizing the maximum residual stress and support structure volume. For support generation, a voxel-based methodology is proposed to systematically capture support surfaces from STL file, form support structure, and generate Cartesian mesh for fast process modeling. Instead of using conformal mesh, the voxel-based fictitious domain method is used to calculate the stress distribution in the design domain including the support structure, which is represented by the homogenized model. This can circumvent time-consuming mesh generation for geometrically complex geometry and its support structure during the optimization iterations, thus making it possible to minimize residual stress through orientation optimization based on process modeling. Due to its self-supporting and open-cell nature, lattice structure is employed as the support structure to anchor the overhangs to the substrate to prevent distortion resulting from residual stress. Asymptotic homogenization (AH) method is employed to compute the effective properties of lattice structure, while a multiscale model is proposed to compute the yield strength. In particular, the multi-objective optimization including both the residual stress and support volume is discussed and investigated in this work. Experimental validation is conducted on a realistic component with some geometric complexity. By comparing the component and support structure without build orientation optimization, it is found that the proposed framework can significantly reduce the influence of the residual stress on the printed part, ensure the manufacturability of the design, and decrease the material consumption for the sacrificial support structure simultaneously.
•A new voxel-based overhang detection method is proposed for AM simulation.•A fictitious domain method is developed to simulate residual stress in metal AM.•Residual stress and support volume are minimized through the optimization method.•Experiments are conducted to investigate the efficiency of the proposed framework. Laser powder bed metal additive manufacturing (AM) has been widely accepted by the industry to manufacture end-use components with complex geometry to achieve desirable performance (i.e. conformal cooling). However, residual stress and large deformation introduced in the laser AM process lead to severe issues, such as cracks, delamination, and large deformation. These issues result in the stoppage of powder spreading and warpage of the component. To overcome these issues, a novel optimization framework based on fast process modeling is proposed to find the optimal build orientation by minimizing the maximum residual stress and support structure volume. For support generation, a voxel-based methodology is proposed to systematically capture support surfaces from STL file, form support structure, and generate Cartesian mesh for fast process modeling. Instead of using conformal mesh, the voxel-based fictitious domain method is used to calculate the stress distribution in the design domain including the support structure, which is represented by the homogenized model. This can circumvent time-consuming mesh generation for geometrically complex geometry and its support structure during the optimization iterations, thus making it possible to minimize residual stress through orientation optimization based on process modeling. Due to its self-supporting and open-cell nature, lattice structure is employed as the support structure to anchor the overhangs to the substrate to prevent distortion resulting from residual stress. Asymptotic homogenization (AH) method is employed to compute the effective properties of lattice structure, while a multiscale model is proposed to compute the yield strength. In particular, the multi-objective optimization including both the residual stress and support volume is discussed and investigated in this work. Experimental validation is conducted on a realistic component with some geometric complexity. By comparing the component and support structure without build orientation optimization, it is found that the proposed framework can significantly reduce the influence of the residual stress on the printed part, ensure the manufacturability of the design, and decrease the material consumption for the sacrificial support structure simultaneously. |
Author | To, Albert Cheng, Lin |
Author_xml | – sequence: 1 givenname: Lin surname: Cheng fullname: Cheng, Lin – sequence: 2 givenname: Albert surname: To fullname: To, Albert email: albertto@pitt.edu |
BookMark | eNp9kc9u1DAQxi3USmxLH6A3S5wTxn-ySeCEKgpIleCwd2tiO8WrxA62s6I8DY-Kt-HEoafxWN9vPs18V-TCB28JuWVQM2D7d8dao6k5sL4GUQPIV2THurav-L5rLsgOgEElZde8JlcpHQGAM9HvyJ_vGHOVNE6WDqubDA3RWZ8xu-BpWLKb3e-tGUOks_PnD-cfabTJmRUnmnJ5Jore0LQuS4iZnsK0znYjbC4aNMZld7J0Rr-OqPMay4z39PDDhvj0zNpfi41uPntP9ISTM8-2b8jliFOyN__qNTncfzrcfakevn3-evfxodJSylxxHIAZ3Q2ooem57FEMzX4A0-iODXwQe2x7LXnHtWhRNq3ATncjliuMIwhxTd5uY5cYfq42ZXUMa_TFUXEuhZRt07CiajeVjiGlaEel3XaqHNFNioE6p6GOqqShzmkoEKqkUUj2H7mUZTE-vch82Bhb9j45G1XSJRttjYtWZ2WCe4H-C8oVqUA |
CitedBy_id | crossref_primary_10_1007_s00170_022_10052_2 crossref_primary_10_1016_j_matdes_2022_110489 crossref_primary_10_1108_RPJ_02_2024_0102 crossref_primary_10_3390_app11010262 crossref_primary_10_1080_00207543_2023_2298477 crossref_primary_10_1016_j_ijmecsci_2024_109759 crossref_primary_10_1016_j_pmatsci_2020_100684 crossref_primary_10_1016_j_finmec_2024_100304 crossref_primary_10_1080_17452759_2022_2090015 crossref_primary_10_3390_ma15155323 crossref_primary_10_1016_j_euromechsol_2020_104147 crossref_primary_10_3390_app11010304 crossref_primary_10_1007_s40516_023_00217_6 crossref_primary_10_5604_01_3001_0054_4800 crossref_primary_10_3390_jmmp4030071 crossref_primary_10_3390_ma18040895 crossref_primary_10_1080_17452759_2019_1708027 crossref_primary_10_1080_17452759_2020_1756086 crossref_primary_10_1089_3dp_2019_0106 crossref_primary_10_1016_j_optlastec_2022_108356 crossref_primary_10_1016_j_cad_2023_103531 crossref_primary_10_1007_s11465_022_0737_8 crossref_primary_10_1016_j_matdes_2024_112933 crossref_primary_10_1016_j_prostr_2024_01_081 crossref_primary_10_1007_s11665_024_09198_9 crossref_primary_10_3390_jmmp5030101 crossref_primary_10_1016_j_jmapro_2024_11_068 crossref_primary_10_1111_mice_13136 crossref_primary_10_1115_1_4062663 crossref_primary_10_1007_s00170_021_06996_6 crossref_primary_10_3390_met13101666 crossref_primary_10_1515_mt_2021_2075 crossref_primary_10_1007_s00158_023_03565_1 crossref_primary_10_1007_s00170_023_12282_4 crossref_primary_10_1007_s00158_024_03808_9 crossref_primary_10_1007_s40684_022_00450_y crossref_primary_10_1108_RPJ_08_2020_0187 crossref_primary_10_5604_01_3001_0054_7283 crossref_primary_10_1007_s00158_024_03883_y crossref_primary_10_1080_0951192X_2021_1972466 crossref_primary_10_1007_s00158_020_02551_1 crossref_primary_10_1016_j_addma_2021_102341 crossref_primary_10_3390_pr10071290 crossref_primary_10_1016_j_jsamd_2023_100615 crossref_primary_10_1080_10426914_2020_1802035 crossref_primary_10_1007_s40964_023_00419_6 crossref_primary_10_1007_s00170_024_13348_7 crossref_primary_10_1088_2053_1591_ad5fe2 crossref_primary_10_1080_02670836_2022_2110223 crossref_primary_10_1016_j_addma_2022_102708 crossref_primary_10_7735_ksmte_2021_30_5_389 crossref_primary_10_1007_s00170_023_12590_9 crossref_primary_10_1177_09544062251323034 crossref_primary_10_1016_j_addma_2024_104294 crossref_primary_10_1007_s40684_023_00542_3 crossref_primary_10_1016_j_commatsci_2020_109911 crossref_primary_10_1088_1757_899X_1038_1_012065 crossref_primary_10_4028_p_hRaR1o crossref_primary_10_1016_j_addma_2022_102950 crossref_primary_10_1016_j_cirpj_2023_08_005 crossref_primary_10_1007_s00170_024_13689_3 crossref_primary_10_1016_j_eng_2024_01_028 crossref_primary_10_1016_j_addma_2021_102278 crossref_primary_10_3390_app12094612 crossref_primary_10_1007_s12666_024_03350_8 crossref_primary_10_1016_j_cma_2025_117913 crossref_primary_10_1016_j_addma_2021_102116 crossref_primary_10_1016_j_cma_2021_114380 crossref_primary_10_1016_j_cagd_2024_102393 crossref_primary_10_1016_j_addma_2020_101246 crossref_primary_10_1002_nme_6314 crossref_primary_10_1016_j_procir_2020_09_048 crossref_primary_10_1016_j_addma_2020_101803 crossref_primary_10_1080_17452759_2023_2181192 crossref_primary_10_1108_RPJ_03_2023_0104 crossref_primary_10_1002_adem_202300976 crossref_primary_10_1016_j_mtchem_2022_100978 crossref_primary_10_1080_17452759_2020_1832793 crossref_primary_10_1007_s10999_020_09494_x crossref_primary_10_1080_09544828_2023_2193879 crossref_primary_10_1016_j_cad_2020_102884 crossref_primary_10_1557_s43578_023_01254_9 crossref_primary_10_3390_mi13101777 crossref_primary_10_1007_s12541_023_00895_4 crossref_primary_10_1016_j_addma_2025_104660 |
Cites_doi | 10.1016/j.pmatsci.2015.03.002 10.1016/j.promfg.2015.09.041 10.1007/BF00369853 10.1016/j.ijmachtools.2017.04.005 10.1007/s10237-011-0322-2 10.1002/adfm.201504901 10.1016/j.addma.2018.05.041 10.1089/3dp.2016.0013 10.1080/16864360.2017.1308074 10.1016/j.promfg.2015.09.042 10.1007/BF00124677 10.1016/j.ijsolstr.2013.10.003 10.1016/j.promfg.2016.08.072 10.1002/nme.4269 10.1016/j.jmatprotec.2003.11.051 10.1007/s00466-007-0173-y 10.1007/s00158-004-0465-1 10.1016/j.cma.2018.10.010 10.1016/j.jmsy.2014.06.014 10.1002/nme.3289 10.1007/s00170-012-4403-x 10.1016/j.ijmachtools.2003.12.004 10.1002/nme.1743 10.1016/j.addma.2016.06.012 10.1016/j.cma.2010.05.013 10.1089/3dp.2016.0043 10.1016/j.procir.2014.06.113 10.1007/s004190050248 10.1016/j.addma.2018.06.002 10.1016/j.matdes.2014.07.043 10.1016/j.ijmachtools.2017.04.007 10.1145/2816795.2818121 10.1016/S0045-7949(98)00131-X 10.1016/j.cma.2008.02.036 10.1016/j.cma.2006.05.012 10.1016/j.ijfatigue.2012.11.011 10.3390/technologies5020015 10.1016/j.cma.2006.05.013 10.1016/j.ijsolstr.2004.09.028 10.1108/13552540610707013 10.1016/j.addma.2018.08.029 10.1115/1.4040622 10.1038/s41598-017-04237-z 10.1016/j.jmatprotec.2013.01.020 10.1177/0954405414567522 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Aug 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2019 |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cad.2019.03.004 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
EndPage | 23 |
ExternalDocumentID | 10_1016_j_cad_2019_03_004 S0010448518302884 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS F28 FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c444t-2ab01dc8bac059249a3b56b0d5c81b2b36a79c4282c37a4573a8c8fa213ff033 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Fri Jul 25 02:59:06 EDT 2025 Tue Jul 01 03:34:35 EDT 2025 Thu Apr 24 23:12:04 EDT 2025 Fri Feb 23 02:28:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Inherent strain method Lattice structure Particle swarm optimization Metal additive manufacturing Voxel-based mesh generation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-2ab01dc8bac059249a3b56b0d5c81b2b36a79c4282c37a4573a8c8fa213ff033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2243447551 |
PQPubID | 2045267 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2243447551 crossref_citationtrail_10_1016_j_cad_2019_03_004 crossref_primary_10_1016_j_cad_2019_03_004 elsevier_sciencedirect_doi_10_1016_j_cad_2019_03_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer aided design |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ahmad, van der Veen, Fitzpatrick, Guo (b30) 2018; 22 Hollister, Kikuchi (b38) 1992; 10 Ly, Rubenchik, Khairallah, Guss, Matthews (b27) 2017; 7 Patterson, Messimer, Farrington (b39) 2017; 5 t. Olakanmi, Cochrane, Dalgarno (b6) 2015; 74 Hassani, Hinton (b37) 1998; 69 Schillinger, Düster, Rank (b24) 2012; 89 Papadakis, Loizou, Risse, Schrage (b4) 2014; 18 Hussein, Hao, Yan, Everson, Young (b16) 2013; 213 Yamada, Izui, Nishiwaki, Takezawa (b51) 2010; 199 Kim, de Weck (b56) 2005; 29 Cheng, Bai, To (b31) 2019; 344 Calignano (b17) 2014; 64 Kennedy, optimization (b55) 2011 Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts, Lauwers (b3) 2004; 149 Parvizian, Düster, Rank (b26) 2007; 41 Zhang, Sun (b11) 2006; 68 Keller N, Ploshikhin V. New method for fast predictions of residual stress and distortion of AM parts. Düster, Parvizian, Yang, Rank (b25) 2008; 197 Cai, Kollmannsberger, Mundani, Rank (b53) 2011 Allen, Dutta (b7) 1994 Liang X, Chen Q, Cheng L, Yang Q, To A. A modified inherent strain method for fast prediction of residual deformation in additive manufacturing of metal parts. Schwarz, Seidel (b35) 2010 Vanek, Galicia, Benes (b34) 2014 Glowinski, Kuznetsov (b50) 2007; 196 Bendsøe, Sigmund (b10) 1999; 69 Liang, Cheng, Chen, Yang, To (b28) 2018; 23 Masoomi, Thompson, Shamsaei (b44) 2017; 118-119 Cheng, Liang, Belski, Wang, Sietins, Ludwick (b1) 2018; 140 Yan, Lin, Kafka, Lian, Yu, Liu (b42) 2018 Siewert, Neugebauer, Epp, Ploshikhin (b49) 2018 Schoinochoritis, Chantzis, Salonitis (b43) 2017; 231 Ruess, Tal, Trabelsi, Yosibash, Rank (b23) 2012; 11 Paul, Anand (b19) 2015; 36 Li, Fu, Guo, Fang (b40) 2015; 1 Hildreth, Nassar, Chasse, Simpson (b58) 2016; 3 Yang, Ruess, Kollmannsberger, Düster, Rank (b54) 2012; 91 Vaidya, Anand (b18) 2016; 5 Poyraz, Yasa, Akbulut, Orhangul, Pilatin (b33) 2015 Thrimurthulu, Pandey, Reddy (b13) 2004; 44 Setien, Chiumenti, van der Veen, San Sebastian, Garciandía, Echeverría (b48) 2018 Leuders, Thöne, Riemer, Niendorf, Tröster, Richard (b5) 2013; 48 Bugatti, Semeraro (b29) 2018; 23 Strano, Hao, Everson, Evans (b15) 2013; 66 Shrestha, Chou (b45) 2017; 121 Lefky, Zucker, Wright, Nassar, Simpson, Hildreth (b57) 2017; 4 Yan, Zhang, Wang, Liu, Guo, Nan (b32) 2016; 26 Dong, Chen, Bao, Zhang, Peng (b36) 2004 Tantikom, Aizawa, Mukai (b12) 2005; 42 Mumtaz, Vora, Hopkinson (b14) 2011 Frank, Fadel (b8) 1995; 6 Mercelis, Kruth (b2) 2006; 12 Zhang, Le, Panotopoulou, Whiting, Wang (b22) 2015; 34 Das, Mhapsekar, Chowdhury, Samant, Anand (b20) 2017 Das, Chandran, Samant, Anand (b21) 2015; 1 Ramiere, Angot, Belliard (b52) 2007; 196 Yang, Zhang, Cheng, Min, Chyu, To (b41) 2016; 12 Cai, Xu, Cheng (b9) 2014; 51 Li (10.1016/j.cad.2019.03.004_b40) 2015; 1 Ruess (10.1016/j.cad.2019.03.004_b23) 2012; 11 Patterson (10.1016/j.cad.2019.03.004_b39) 2017; 5 Strano (10.1016/j.cad.2019.03.004_b15) 2013; 66 Cai (10.1016/j.cad.2019.03.004_b53) 2011 Das (10.1016/j.cad.2019.03.004_b21) 2015; 1 Düster (10.1016/j.cad.2019.03.004_b25) 2008; 197 Vanek (10.1016/j.cad.2019.03.004_b34) 2014 Dong (10.1016/j.cad.2019.03.004_b36) 2004 Setien (10.1016/j.cad.2019.03.004_b48) 2018 Papadakis (10.1016/j.cad.2019.03.004_b4) 2014; 18 Frank (10.1016/j.cad.2019.03.004_b8) 1995; 6 Hildreth (10.1016/j.cad.2019.03.004_b58) 2016; 3 Zhang (10.1016/j.cad.2019.03.004_b22) 2015; 34 Parvizian (10.1016/j.cad.2019.03.004_b26) 2007; 41 t. Olakanmi (10.1016/j.cad.2019.03.004_b6) 2015; 74 Hussein (10.1016/j.cad.2019.03.004_b16) 2013; 213 Hollister (10.1016/j.cad.2019.03.004_b38) 1992; 10 Schoinochoritis (10.1016/j.cad.2019.03.004_b43) 2017; 231 Kim (10.1016/j.cad.2019.03.004_b56) 2005; 29 Ahmad (10.1016/j.cad.2019.03.004_b30) 2018; 22 Masoomi (10.1016/j.cad.2019.03.004_b44) 2017; 118-119 Yamada (10.1016/j.cad.2019.03.004_b51) 2010; 199 Tantikom (10.1016/j.cad.2019.03.004_b12) 2005; 42 Thrimurthulu (10.1016/j.cad.2019.03.004_b13) 2004; 44 Allen (10.1016/j.cad.2019.03.004_b7) 1994 Cheng (10.1016/j.cad.2019.03.004_b31) 2019; 344 Ly (10.1016/j.cad.2019.03.004_b27) 2017; 7 Ramiere (10.1016/j.cad.2019.03.004_b52) 2007; 196 Zhang (10.1016/j.cad.2019.03.004_b11) 2006; 68 Yang (10.1016/j.cad.2019.03.004_b41) 2016; 12 Mercelis (10.1016/j.cad.2019.03.004_b2) 2006; 12 Bendsøe (10.1016/j.cad.2019.03.004_b10) 1999; 69 Hassani (10.1016/j.cad.2019.03.004_b37) 1998; 69 Kennedy (10.1016/j.cad.2019.03.004_b55) 2011 Calignano (10.1016/j.cad.2019.03.004_b17) 2014; 64 Schwarz (10.1016/j.cad.2019.03.004_b35) 2010 Mumtaz (10.1016/j.cad.2019.03.004_b14) 2011 Cai (10.1016/j.cad.2019.03.004_b9) 2014; 51 Yan (10.1016/j.cad.2019.03.004_b42) 2018 Liang (10.1016/j.cad.2019.03.004_b28) 2018; 23 Das (10.1016/j.cad.2019.03.004_b20) 2017 Yan (10.1016/j.cad.2019.03.004_b32) 2016; 26 Bugatti (10.1016/j.cad.2019.03.004_b29) 2018; 23 Paul (10.1016/j.cad.2019.03.004_b19) 2015; 36 Poyraz (10.1016/j.cad.2019.03.004_b33) 2015 10.1016/j.cad.2019.03.004_b46 10.1016/j.cad.2019.03.004_b47 Schillinger (10.1016/j.cad.2019.03.004_b24) 2012; 89 Lefky (10.1016/j.cad.2019.03.004_b57) 2017; 4 Vaidya (10.1016/j.cad.2019.03.004_b18) 2016; 5 Leuders (10.1016/j.cad.2019.03.004_b5) 2013; 48 Siewert (10.1016/j.cad.2019.03.004_b49) 2018 Kruth (10.1016/j.cad.2019.03.004_b3) 2004; 149 Glowinski (10.1016/j.cad.2019.03.004_b50) 2007; 196 Yang (10.1016/j.cad.2019.03.004_b54) 2012; 91 Cheng (10.1016/j.cad.2019.03.004_b1) 2018; 140 Shrestha (10.1016/j.cad.2019.03.004_b45) 2017; 121 |
References_xml | – volume: 1 start-page: 355 year: 2015 end-page: 365 ident: b40 article-title: Fast prediction and validation of part distortion in selective laser melting publication-title: Procedia Manuf – volume: 89 start-page: 1171 year: 2012 end-page: 1202 ident: b24 article-title: The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics publication-title: Internat J Numer Methods Engrg – start-page: 179 year: 2010 ident: b35 article-title: Fast parallel surface and solid voxelization on GPUs publication-title: ACM transactions on graphics (TOG) – volume: 118-119 start-page: 73 year: 2017 end-page: 90 ident: b44 article-title: Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications publication-title: Int J Mach Tools Manuf – volume: 6 start-page: 339 year: 1995 end-page: 345 ident: b8 article-title: Expert system-based selection of the preferred direction of build for rapid prototyping processes publication-title: J Intell Manuf – volume: 22 start-page: 571 year: 2018 end-page: 582 ident: b30 article-title: Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation publication-title: Additive Manuf – start-page: 43 year: 2004 end-page: 50 ident: b36 article-title: Real-time voxelization for complex polygonal models publication-title: Computer graphics and applications, 2004. PG 2004. proceedings. 12th pacific conference on – volume: 197 start-page: 3768 year: 2008 end-page: 3782 ident: b25 article-title: The finite cell method for three-dimensional problems of solid mechanics publication-title: Comput Methods Appl Mech Engrg – volume: 5 start-page: 15 year: 2017 ident: b39 article-title: Overhanging features and the SLM/DMLS residual stresses problem: Review and future research need publication-title: Technologies – volume: 18 start-page: 90 year: 2014 end-page: 95 ident: b4 article-title: Numerical computation of component shape distortion manufactured by selective laser melting publication-title: Procedia CIRP – volume: 29 start-page: 149 year: 2005 end-page: 158 ident: b56 article-title: Adaptive weighted-sum method for bi-objective optimization: pareto front generation publication-title: Struct Multidiscip Optim – volume: 34 start-page: 215 year: 2015 ident: b22 article-title: Perceptual models of preference in 3D printing direction publication-title: ACM Trans Graph – volume: 1 start-page: 343 year: 2015 end-page: 354 ident: b21 article-title: Optimum part build orientation in additive manufacturing for minimizing part errors and support structures publication-title: Procedia Manuf – volume: 12 start-page: 254 year: 2006 end-page: 265 ident: b2 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyping J – volume: 48 start-page: 300 year: 2013 end-page: 307 ident: b5 article-title: On the mechanical behaviour of titanium alloy tial6v4 manufactured by selective laser melting: fatigue resistance and crack growth performance publication-title: Int J Fatigue – start-page: 55 year: 2011 end-page: 64 ident: b14 article-title: A method to eliminate anchors/supports from directly laser melted metal powder bed processes publication-title: Proc. solid freeform fabrication symposium – volume: 26 start-page: 2629 year: 2016 end-page: 2639 ident: b32 article-title: Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials publication-title: Adv Funct Mater – volume: 7 start-page: 4085 year: 2017 ident: b27 article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing publication-title: Sci Rep – volume: 199 start-page: 2876 year: 2010 end-page: 2891 ident: b51 article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy publication-title: Comput Methods Appl Mech Engrg – reference: Liang X, Chen Q, Cheng L, Yang Q, To A. A modified inherent strain method for fast prediction of residual deformation in additive manufacturing of metal parts. – year: 2015 ident: b33 article-title: Investigation of support structures for direct metal laser sintering (DMLS) of IN625 parts publication-title: Proceedings of solid freeform fabrication (SFF) symposium – volume: 42 start-page: 2199 year: 2005 end-page: 2210 ident: b12 article-title: Symmetric and asymmetric deformation transition in the regularly cell-structured materials, Part I: experimental study publication-title: Int J Solids Struct – volume: 66 start-page: 1247 year: 2013 end-page: 1254 ident: b15 article-title: A new approach to the design and optimisation of support structures in additive manufacturing publication-title: Int J Adv Manuf Technol – volume: 69 start-page: 707 year: 1998 end-page: 717 ident: b37 article-title: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure publication-title: Comput Struct – volume: 44 start-page: 585 year: 2004 end-page: 594 ident: b13 article-title: Optimum part deposition orientation in fused deposition modeling publication-title: Int J Mach Tools Manuf – volume: 68 start-page: 993 year: 2006 end-page: 1011 ident: b11 article-title: Scale-related topology optimization of cellular materials and structures publication-title: Internat J Numer Methods Engrg – volume: 36 start-page: 231 year: 2015 end-page: 243 ident: b19 article-title: Optimization of layered manufacturing process for reducing form errors with minimal support structures publication-title: J Manuf Syst – volume: 213 start-page: 1019 year: 2013 end-page: 1026 ident: b16 article-title: Advanced lattice support structures for metal additive manufacturing publication-title: J Mater Process Technol – volume: 140 year: 2018 ident: b1 article-title: Natural frequency optimization of variable-density additive manufactured lattice structure: Theory and experimental validation publication-title: J Manuf Sci Eng – start-page: 1 year: 2017 end-page: 13 ident: b20 article-title: Selection of build orientation for optimal support structures and minimum part errors in additive manufacturing publication-title: Comput-Aided Des Appl – volume: 23 start-page: 471 year: 2018 end-page: 486 ident: b28 article-title: A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition publication-title: Additive Manuf – volume: 69 start-page: 635 year: 1999 end-page: 654 ident: b10 article-title: Material interpolation schemes in topology optimization publication-title: Arch Appl Mech – volume: 10 start-page: 73 year: 1992 end-page: 95 ident: b38 article-title: A comparison of homogenization and standard mechanics analyses for periodic porous composites publication-title: Comput Mech – year: 2018 ident: b48 article-title: Empirical methodology to determine inherent strains in additive manufacturing publication-title: Comput Math Appl – volume: 91 start-page: 457 year: 2012 end-page: 471 ident: b54 article-title: An efficient integration technique for the voxel-based finite cell method publication-title: Internat J Numer Methods Engrg – volume: 5 start-page: 1043 year: 2016 end-page: 1059 ident: b18 article-title: Optimum support structure generation for additive manufacturing using unit cell structures and support removal constraint publication-title: Procedia Manuf – year: 2018 ident: b49 article-title: Validation of Mechanical Layer Equivalent Method for simulation of residual stresses in additive manufactured components publication-title: Comput Math Appl – volume: 51 start-page: 284 year: 2014 end-page: 292 ident: b9 article-title: Novel numerical implementation of asymptotic homogenization method for periodic plate structures publication-title: Int J Solids Struct – volume: 64 start-page: 203 year: 2014 end-page: 213 ident: b17 article-title: Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting publication-title: Mater Des – start-page: 1 year: 2018 end-page: 21 ident: b42 article-title: Et al data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing publication-title: Comput Mech – volume: 344 start-page: 334 year: 2019 end-page: 359 ident: b31 article-title: Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints publication-title: Comput Methods Appl Mech Engrg – start-page: 117 year: 2014 end-page: 125 ident: b34 article-title: Efficient support structure generation for digital fabrication publication-title: Computer graphics forum – start-page: 760 year: 2011 end-page: 766 ident: b55 article-title: Encyclopedia of Machine Learning – volume: 3 start-page: 90 year: 2016 end-page: 97 ident: b58 article-title: Dissolvable metal supports for 3D direct metal printing publication-title: 3D Print Additive Manuf – volume: 196 start-page: 1498 year: 2007 end-page: 1506 ident: b50 article-title: Distributed lagrange multipliers based on fictitious domain method for second order elliptic problems publication-title: Comput Methods Appl Mech Engrg – volume: 23 start-page: 329 year: 2018 end-page: 346 ident: b29 article-title: Limitations of the inherent strain method in simulating powder bed fusion processes publication-title: Additive Manuf – volume: 121 start-page: 37 year: 2017 end-page: 49 ident: b45 article-title: A build surface study of Powder-Bed Electron Beam Additive Manufacturing by 3D thermo-fluid simulation and white-light interferometry publication-title: Int J Mach Tools Manuf – volume: 4 start-page: 3 year: 2017 end-page: 11 ident: b57 article-title: Dissolvable supports in powder bed fusion-printed stainless steel publication-title: 3D Print Additive Manuf – volume: 149 start-page: 616 year: 2004 end-page: 622 ident: b3 article-title: Selective laser melting of iron-based powder publication-title: J Mater Process Technol – volume: 74 start-page: 401 year: 2015 end-page: 477 ident: b6 article-title: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties publication-title: Prog Mater Sci – volume: 41 start-page: 121 year: 2007 end-page: 133 ident: b26 article-title: Finite cell method publication-title: Comput Mech – volume: 196 start-page: 766 year: 2007 end-page: 781 ident: b52 article-title: A fictitious domain approach with spread interface for elliptic problems with general boundary conditions publication-title: Comput Methods Appl Mech Engrg – volume: 231 start-page: 96 year: 2017 end-page: 117 ident: b43 article-title: Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review publication-title: Proc Inst Mech Eng B – year: 2011 ident: b53 article-title: The finite cell method for solute transport problems in porous media publication-title: Proceedings of the international conference on finite elements in flow problems – volume: 11 start-page: 425 year: 2012 end-page: 437 ident: b23 article-title: The finite cell method for bone simulations: verification and validation publication-title: Biomech Model Mechanobiology – start-page: 259 year: 1994 end-page: 269 ident: b7 article-title: On the computation of part orientation using support structures in layered manufacturing publication-title: Proceedings of solid freeform fabrication symposium – volume: 12 start-page: 169 year: 2016 end-page: 177 ident: b41 article-title: Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing publication-title: Additive Manuf – reference: Keller N, Ploshikhin V. New method for fast predictions of residual stress and distortion of AM parts. – ident: 10.1016/j.cad.2019.03.004_b46 – volume: 74 start-page: 401 year: 2015 ident: 10.1016/j.cad.2019.03.004_b6 article-title: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2015.03.002 – volume: 1 start-page: 343 year: 2015 ident: 10.1016/j.cad.2019.03.004_b21 article-title: Optimum part build orientation in additive manufacturing for minimizing part errors and support structures publication-title: Procedia Manuf doi: 10.1016/j.promfg.2015.09.041 – volume: 10 start-page: 73 year: 1992 ident: 10.1016/j.cad.2019.03.004_b38 article-title: A comparison of homogenization and standard mechanics analyses for periodic porous composites publication-title: Comput Mech doi: 10.1007/BF00369853 – volume: 121 start-page: 37 year: 2017 ident: 10.1016/j.cad.2019.03.004_b45 article-title: A build surface study of Powder-Bed Electron Beam Additive Manufacturing by 3D thermo-fluid simulation and white-light interferometry publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2017.04.005 – volume: 11 start-page: 425 year: 2012 ident: 10.1016/j.cad.2019.03.004_b23 article-title: The finite cell method for bone simulations: verification and validation publication-title: Biomech Model Mechanobiology doi: 10.1007/s10237-011-0322-2 – volume: 26 start-page: 2629 year: 2016 ident: 10.1016/j.cad.2019.03.004_b32 article-title: Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials publication-title: Adv Funct Mater doi: 10.1002/adfm.201504901 – start-page: 1 year: 2018 ident: 10.1016/j.cad.2019.03.004_b42 article-title: Et al data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing publication-title: Comput Mech – start-page: 259 year: 1994 ident: 10.1016/j.cad.2019.03.004_b7 article-title: On the computation of part orientation using support structures in layered manufacturing – volume: 23 start-page: 329 year: 2018 ident: 10.1016/j.cad.2019.03.004_b29 article-title: Limitations of the inherent strain method in simulating powder bed fusion processes publication-title: Additive Manuf doi: 10.1016/j.addma.2018.05.041 – volume: 3 start-page: 90 year: 2016 ident: 10.1016/j.cad.2019.03.004_b58 article-title: Dissolvable metal supports for 3D direct metal printing publication-title: 3D Print Additive Manuf doi: 10.1089/3dp.2016.0013 – start-page: 1 year: 2017 ident: 10.1016/j.cad.2019.03.004_b20 article-title: Selection of build orientation for optimal support structures and minimum part errors in additive manufacturing publication-title: Comput-Aided Des Appl doi: 10.1080/16864360.2017.1308074 – volume: 1 start-page: 355 year: 2015 ident: 10.1016/j.cad.2019.03.004_b40 article-title: Fast prediction and validation of part distortion in selective laser melting publication-title: Procedia Manuf doi: 10.1016/j.promfg.2015.09.042 – volume: 6 start-page: 339 year: 1995 ident: 10.1016/j.cad.2019.03.004_b8 article-title: Expert system-based selection of the preferred direction of build for rapid prototyping processes publication-title: J Intell Manuf doi: 10.1007/BF00124677 – volume: 51 start-page: 284 year: 2014 ident: 10.1016/j.cad.2019.03.004_b9 article-title: Novel numerical implementation of asymptotic homogenization method for periodic plate structures publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2013.10.003 – volume: 5 start-page: 1043 year: 2016 ident: 10.1016/j.cad.2019.03.004_b18 article-title: Optimum support structure generation for additive manufacturing using unit cell structures and support removal constraint publication-title: Procedia Manuf doi: 10.1016/j.promfg.2016.08.072 – volume: 91 start-page: 457 year: 2012 ident: 10.1016/j.cad.2019.03.004_b54 article-title: An efficient integration technique for the voxel-based finite cell method publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.4269 – volume: 149 start-page: 616 year: 2004 ident: 10.1016/j.cad.2019.03.004_b3 article-title: Selective laser melting of iron-based powder publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2003.11.051 – volume: 41 start-page: 121 year: 2007 ident: 10.1016/j.cad.2019.03.004_b26 article-title: Finite cell method publication-title: Comput Mech doi: 10.1007/s00466-007-0173-y – start-page: 43 year: 2004 ident: 10.1016/j.cad.2019.03.004_b36 article-title: Real-time voxelization for complex polygonal models – volume: 29 start-page: 149 year: 2005 ident: 10.1016/j.cad.2019.03.004_b56 article-title: Adaptive weighted-sum method for bi-objective optimization: pareto front generation publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-004-0465-1 – volume: 344 start-page: 334 year: 2019 ident: 10.1016/j.cad.2019.03.004_b31 article-title: Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2018.10.010 – year: 2015 ident: 10.1016/j.cad.2019.03.004_b33 article-title: Investigation of support structures for direct metal laser sintering (DMLS) of IN625 parts – volume: 36 start-page: 231 year: 2015 ident: 10.1016/j.cad.2019.03.004_b19 article-title: Optimization of layered manufacturing process for reducing form errors with minimal support structures publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2014.06.014 – year: 2018 ident: 10.1016/j.cad.2019.03.004_b48 article-title: Empirical methodology to determine inherent strains in additive manufacturing publication-title: Comput Math Appl – volume: 89 start-page: 1171 year: 2012 ident: 10.1016/j.cad.2019.03.004_b24 article-title: The hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanics publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.3289 – volume: 66 start-page: 1247 year: 2013 ident: 10.1016/j.cad.2019.03.004_b15 article-title: A new approach to the design and optimisation of support structures in additive manufacturing publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-012-4403-x – volume: 44 start-page: 585 year: 2004 ident: 10.1016/j.cad.2019.03.004_b13 article-title: Optimum part deposition orientation in fused deposition modeling publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2003.12.004 – start-page: 760 year: 2011 ident: 10.1016/j.cad.2019.03.004_b55 – volume: 68 start-page: 993 year: 2006 ident: 10.1016/j.cad.2019.03.004_b11 article-title: Scale-related topology optimization of cellular materials and structures publication-title: Internat J Numer Methods Engrg doi: 10.1002/nme.1743 – start-page: 117 year: 2014 ident: 10.1016/j.cad.2019.03.004_b34 article-title: Efficient support structure generation for digital fabrication – volume: 12 start-page: 169 year: 2016 ident: 10.1016/j.cad.2019.03.004_b41 article-title: Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing publication-title: Additive Manuf doi: 10.1016/j.addma.2016.06.012 – volume: 199 start-page: 2876 year: 2010 ident: 10.1016/j.cad.2019.03.004_b51 article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2010.05.013 – volume: 4 start-page: 3 year: 2017 ident: 10.1016/j.cad.2019.03.004_b57 article-title: Dissolvable supports in powder bed fusion-printed stainless steel publication-title: 3D Print Additive Manuf doi: 10.1089/3dp.2016.0043 – volume: 18 start-page: 90 year: 2014 ident: 10.1016/j.cad.2019.03.004_b4 article-title: Numerical computation of component shape distortion manufactured by selective laser melting publication-title: Procedia CIRP doi: 10.1016/j.procir.2014.06.113 – volume: 69 start-page: 635 year: 1999 ident: 10.1016/j.cad.2019.03.004_b10 article-title: Material interpolation schemes in topology optimization publication-title: Arch Appl Mech doi: 10.1007/s004190050248 – volume: 22 start-page: 571 year: 2018 ident: 10.1016/j.cad.2019.03.004_b30 article-title: Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation publication-title: Additive Manuf doi: 10.1016/j.addma.2018.06.002 – volume: 64 start-page: 203 year: 2014 ident: 10.1016/j.cad.2019.03.004_b17 article-title: Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting publication-title: Mater Des doi: 10.1016/j.matdes.2014.07.043 – volume: 118-119 start-page: 73 year: 2017 ident: 10.1016/j.cad.2019.03.004_b44 article-title: Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications publication-title: Int J Mach Tools Manuf doi: 10.1016/j.ijmachtools.2017.04.007 – year: 2011 ident: 10.1016/j.cad.2019.03.004_b53 article-title: The finite cell method for solute transport problems in porous media – volume: 34 start-page: 215 year: 2015 ident: 10.1016/j.cad.2019.03.004_b22 article-title: Perceptual models of preference in 3D printing direction publication-title: ACM Trans Graph doi: 10.1145/2816795.2818121 – volume: 69 start-page: 707 year: 1998 ident: 10.1016/j.cad.2019.03.004_b37 article-title: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure publication-title: Comput Struct doi: 10.1016/S0045-7949(98)00131-X – volume: 197 start-page: 3768 year: 2008 ident: 10.1016/j.cad.2019.03.004_b25 article-title: The finite cell method for three-dimensional problems of solid mechanics publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2008.02.036 – start-page: 179 year: 2010 ident: 10.1016/j.cad.2019.03.004_b35 article-title: Fast parallel surface and solid voxelization on GPUs – ident: 10.1016/j.cad.2019.03.004_b47 – volume: 196 start-page: 766 year: 2007 ident: 10.1016/j.cad.2019.03.004_b52 article-title: A fictitious domain approach with spread interface for elliptic problems with general boundary conditions publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2006.05.012 – volume: 48 start-page: 300 year: 2013 ident: 10.1016/j.cad.2019.03.004_b5 article-title: On the mechanical behaviour of titanium alloy tial6v4 manufactured by selective laser melting: fatigue resistance and crack growth performance publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2012.11.011 – volume: 5 start-page: 15 year: 2017 ident: 10.1016/j.cad.2019.03.004_b39 article-title: Overhanging features and the SLM/DMLS residual stresses problem: Review and future research need publication-title: Technologies doi: 10.3390/technologies5020015 – volume: 196 start-page: 1498 year: 2007 ident: 10.1016/j.cad.2019.03.004_b50 article-title: Distributed lagrange multipliers based on fictitious domain method for second order elliptic problems publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2006.05.013 – year: 2018 ident: 10.1016/j.cad.2019.03.004_b49 article-title: Validation of Mechanical Layer Equivalent Method for simulation of residual stresses in additive manufactured components publication-title: Comput Math Appl – volume: 42 start-page: 2199 year: 2005 ident: 10.1016/j.cad.2019.03.004_b12 article-title: Symmetric and asymmetric deformation transition in the regularly cell-structured materials, Part I: experimental study publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2004.09.028 – volume: 12 start-page: 254 year: 2006 ident: 10.1016/j.cad.2019.03.004_b2 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyping J doi: 10.1108/13552540610707013 – volume: 23 start-page: 471 year: 2018 ident: 10.1016/j.cad.2019.03.004_b28 article-title: A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition publication-title: Additive Manuf doi: 10.1016/j.addma.2018.08.029 – volume: 140 year: 2018 ident: 10.1016/j.cad.2019.03.004_b1 article-title: Natural frequency optimization of variable-density additive manufactured lattice structure: Theory and experimental validation publication-title: J Manuf Sci Eng doi: 10.1115/1.4040622 – volume: 7 start-page: 4085 year: 2017 ident: 10.1016/j.cad.2019.03.004_b27 article-title: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing publication-title: Sci Rep doi: 10.1038/s41598-017-04237-z – volume: 213 start-page: 1019 year: 2013 ident: 10.1016/j.cad.2019.03.004_b16 article-title: Advanced lattice support structures for metal additive manufacturing publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2013.01.020 – volume: 231 start-page: 96 year: 2017 ident: 10.1016/j.cad.2019.03.004_b43 article-title: Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review publication-title: Proc Inst Mech Eng B doi: 10.1177/0954405414567522 – start-page: 55 year: 2011 ident: 10.1016/j.cad.2019.03.004_b14 article-title: A method to eliminate anchors/supports from directly laser melted metal powder bed processes |
SSID | ssj0002139 |
Score | 2.563352 |
Snippet | Laser powder bed metal additive manufacturing (AM) has been widely accepted by the industry to manufacture end-use components with complex geometry to achieve... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Additive manufacturing Anchors Asymptotic methods Complexity Cracks Deformation Design for manufacturability Finite element method Inherent strain method Laser cooling Lattice structure Manufacturability Mesh generation Metal additive manufacturing Modelling Multiple objective analysis Optimization Orientation Particle swarm optimization Powder beds Residual stress Stress concentration Stress distribution Substrates Voxel-based mesh generation Warpage |
Title | Part-scale build orientation optimization for minimizing residual stress and support volume for metal additive manufacturing: Theory and experimental validation |
URI | https://dx.doi.org/10.1016/j.cad.2019.03.004 https://www.proquest.com/docview/2243447551 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvehB_MRqLXvwJMQm2U2TeCvFUhWLhwq9LbubBCo2Lf24-lv8qc7sbrQK9uAxIVPCznb2PTLvDSFXmQTQXgAt4SoEghL6qZemGfd0AeefUjrJzYylp2Fn8MIfxtG4RnqVFgbbKl3ttzXdVGt3p-1Wsz2fTFDjC1SCA2JAC6skQU9QzmPc5Tfv320eYcAsBIZ6g09XXzZNj5eWaBYaOJ9T_tfZ9KtKm6Onf0D2HWakXftah6SWl0dkb8NJ8Jh8PMNLe0tY8JwqnHRNZ4uJkxWVdAZ1YeoElxRQKkVDEbgBoRTottFjUasaobLM6HI9R1hObemyETmgdIrdR1gf6VSWa9REGJHjLbUKfxO7OTKAwjae2KFNJ2TUvxv1Bp4bvuBpzvnKC6Xyg0wnSmpAYEDSJFNRR_lZpAHphop1ZJxqIC-hZrHkUcxkopNCwnoXhc_YKamXszI_I9Qv0hRoHWORjDkQqDQrZI7WX8COJeDBBvGrVRfaGZPjfIw3UXWgvQpIlMBECZ8JSFSDXH-FzK0rx7aHeZVK8WNrCTg1toU1q7QL979eCgA8xiIxCs7_96sXZBevbAthk9RXi3V-CbBmpVpm37bITvf-cTD8BCFa-aI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0gHtSD8TOiqHPwZFIp3S203gyRoALxgAm3ze62TTBSCB9Xf4s_1dmPKprIwWvpNM3Odva9MO8NIVeJQNCeIS1hMkCCEvixF8cJ81SG55-UKkrNjKVev9F5YY_DcFgirUILo9sqXe23Nd1Ua3el5lazNh2NtMYXqQRDxKAtrKKIbZBNhp-vHmNw8_7d5xHUqcXAWHD07cVfm6bJSwntFlp3Rqfsr8PpV5k2Z097j-w60Ah39r32SSnND8jOipXgIfl4xrf25rjiKUg96homs5HTFeUwwcIwdopLQJgK2lEEL2AoIN82giywshEQeQLz5VTjcrC1y0akCNNBtx_pAgljkS-1KMKoHG_BSvxN7OrMAMB9PLJTm47IoH0_aHU8N33BU4yxhRcI6dcTFUmhEIIhSxNUhg3pJ6FCqBtI2hDNWCF7CRRtChY2qYhUlAlc7yzzKT0m5XySpycE_CyOkddRGoomQwYVJ5lItfcX0mOBgLBC_GLVuXLO5HpAxhsvWtBeOSaK60Rxn3JMVIVcf4VMrS3HuptZkUr-Y29xPDbWhVWLtHP3Yc85Ih7jkRjWT__31Euy1Rn0urz70H86I9v6F9tPWCXlxWyZniPGWcgLs4c_Acyk-zA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Part-scale+build+orientation+optimization+for+minimizing+residual+stress+and+support+volume+for+metal+additive+manufacturing%3A+Theory+and+experimental+validation&rft.jtitle=Computer+aided+design&rft.au=Cheng%2C+Lin&rft.au=To%2C+Albert&rft.date=2019-08-01&rft.issn=0010-4485&rft.volume=113&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1016%2Fj.cad.2019.03.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cad_2019_03_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |