MulViMotion: Shape-Aware 3D Myocardial Motion Tracking From Multi-View Cardiac MRI

Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 8; pp. 1961 - 1974
Main Authors Meng, Qingjie, Qin, Chen, Bai, Wenjia, Liu, Tianrui, de Marvao, Antonio, O'Regan, Declan P, Rueckert, Daniel
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2022.3154599

Cover

Abstract Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods.
AbstractList Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods.
Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods.Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods.
Author Qin, Chen
de Marvao, Antonio
Meng, Qingjie
Rueckert, Daniel
Liu, Tianrui
Bai, Wenjia
O'Regan, Declan P
AuthorAffiliation Biomedical Image Analysis Group Department of Computing Imperial College London 4615 London SW7 2AZ U.K
Department of Brain Sciences Imperial College London 4615 London SW7 2AZ U.K
School of Engineering Institute for Digital Communications, The University of Edinburgh 3124 Edinburgh EH9 9JL U.K
MRC London Institute of Medical Sciences Imperial College London London W12 0HS U.K
Faculty of Informatics and Medicine Technical University of Munich 9184 85748 Munich Germany
AuthorAffiliation_xml – name: Biomedical Image Analysis Group Department of Computing Imperial College London 4615 London SW7 2AZ U.K
– name: School of Engineering Institute for Digital Communications, The University of Edinburgh 3124 Edinburgh EH9 9JL U.K
– name: Faculty of Informatics and Medicine Technical University of Munich 9184 85748 Munich Germany
– name: MRC London Institute of Medical Sciences Imperial College London London W12 0HS U.K
– name: Department of Brain Sciences Imperial College London 4615 London SW7 2AZ U.K
Author_xml – sequence: 1
  givenname: Qingjie
  orcidid: 0000-0001-8728-4007
  surname: Meng
  fullname: Meng, Qingjie
  email: q.meng16@imperial.ac.uk
  organization: Department of Computing, Biomedical Image Analysis Group, Imperial College London, London, U.K
– sequence: 2
  givenname: Chen
  orcidid: 0000-0003-3417-3092
  surname: Qin
  fullname: Qin, Chen
  email: chen.qin@ed.ac.uk
  organization: School of Engineering, Institute for Digital Communications, The University of Edinburgh, Edinburgh, U.K
– sequence: 3
  givenname: Wenjia
  orcidid: 0000-0003-2943-7698
  surname: Bai
  fullname: Bai, Wenjia
  email: w.bai@imperial.ac.uk
  organization: Department of Computing, Biomedical Image Analysis Group, Imperial College London, London, U.K
– sequence: 4
  givenname: Tianrui
  orcidid: 0000-0001-7926-3310
  surname: Liu
  fullname: Liu, Tianrui
  email: t.liu15@imperial.ac.uk
  organization: Department of Computing, Biomedical Image Analysis Group, Imperial College London, London, U.K
– sequence: 5
  givenname: Antonio
  orcidid: 0000-0001-9095-5887
  surname: de Marvao
  fullname: de Marvao, Antonio
  email: antonio.de-marvao@imperial.ac.uk
  organization: Imperial College London, MRC London Institute of Medical Sciences, London, U.K
– sequence: 6
  givenname: Declan P
  orcidid: 0000-0002-0691-0270
  surname: O'Regan
  fullname: O'Regan, Declan P
  email: declan.oregan@lms.mrc.ac.uk
  organization: Imperial College London, MRC London Institute of Medical Sciences, London, U.K
– sequence: 7
  givenname: Daniel
  orcidid: 0000-0002-5683-5889
  surname: Rueckert
  fullname: Rueckert, Daniel
  email: daniel.rueckert@tum.de
  organization: Department of Computing, Biomedical Image Analysis Group, Imperial College London, London, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35201985$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEYhoNU7LZ6FwQJePEy65ffMx4KZbW60EGoS_EWkkymTZ2drJkZS_97s-66aA-ecsjzvPm-vCfoqI-9R-glgTkhUL1b1cs5BUrnjAguquoJmhEhyoIK_u0IzYCqsgCQ9BidDMMdAOECqmfomAkKpCrFDF3VU3cd6jiG2L_HX2_Nxhfn9yZ5zD7g-iE6k5pgOrwj8CoZ9z30N_gixTXO7hiK6-Dv8eI353B9tXyOnramG_yL_XmKVhcfV4vPxeWXT8vF-WXhOOdjQRQXrHWtBe5sWZbSSmtsI0tDQLBGKVkZK6hUHmxDqCTcQwNgjVem9ZSdorNd7Gaya98434_JdHqTwtqkBx1N0P_e9OFW38SfWknCKBU54O0-IMUfkx9GvQ6D811neh-nQVPJWMlLIDKjbx6hd3FKfd4uU5USUlLCM_X674kOo_z57QzADnApDkPy7QEhoLeF6lyo3haq94VmRT5SXBjNtou8U-j-J77aicF7f3inUpQwIOwXcQ2r2w
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_jksuci_2024_102061
crossref_primary_10_1109_JBHI_2024_3389871
crossref_primary_10_1016_j_imavis_2024_105290
crossref_primary_10_1088_1742_6596_2386_1_012034
crossref_primary_10_1109_TMI_2023_3340118
crossref_primary_10_1109_TMI_2023_3325766
crossref_primary_10_1038_s41598_024_74091_3
crossref_primary_10_3390_diagnostics13203162
crossref_primary_10_1016_j_asoc_2023_110694
crossref_primary_10_1016_j_media_2024_103138
crossref_primary_10_1109_TAI_2024_3394798
crossref_primary_10_1016_j_media_2022_102682
crossref_primary_10_1016_j_media_2024_103385
Cites_doi 10.1109/TMI.2019.2894322
10.1209/epl/i1998-00366-3
10.1007/978-3-030-59716-0_22
10.1186/1532-429X-13-36
10.1109/TBME.2018.2865669
10.1038/s41591-020-1009-y
10.1148/radiology.169.1.3420283
10.1109/TMI.2011.2168825
10.1007/978-3-030-59725-2_45
10.1007/978-3-030-32251-9_72
10.1109/TMI.2012.2188104
10.1186/s12968-018-0448-9
10.1038/s41586-018-0579-z
10.1007/978-3-030-00934-2_53
10.1016/S1361-8415(98)80022-4
10.1109/TMI.2009.2021041
10.1007/978-3-540-75759-7_39
10.1093/ehjci/jez041
10.1186/s12968-018-0471-x
10.1007/978-3-642-28326-0_6
10.1109/CVPR.2017.304
10.1016/j.media.2011.10.006
10.1109/42.845177
10.1007/11566489_111
10.1016/j.media.2017.10.004
10.1186/s12968-015-0111-7
10.2214/AJR.10.7231
10.1007/978-3-030-32245-8_58
10.1007/978-3-642-23626-6_59
10.1186/1532-429X-11-S1-P61
10.1016/j.media.2018.11.010
10.1109/42.796284
10.1038/s42256-019-0019-2
10.1007/978-3-030-32245-8_65
10.1109/ISBI.2018.8363772
10.1109/CVPR46437.2021.00718
10.1109/TMI.2019.2897112
10.1016/j.jcmg.2015.11.001
10.1109/TMI.2004.834607
10.1109/ICCV.2017.81
10.1081/JCMR-200053610
10.1161/CIRCIMAGING.119.009404
10.1109/ISBI.2019.8759328
10.1016/j.media.2013.03.008
10.1007/978-3-319-46723-8_49
10.1007/978-3-319-24574-4_28
10.1148/ryct.2020190032
10.1186/s12968-016-0227-4
10.1016/j.media.2019.06.001
10.1080/001075199181693
10.1161/01.CIR.90.3.1200
10.1109/TMI.2019.2897538
10.1109/CVPR42600.2020.00437
10.1016/S1361-8415(00)00022-0
10.1109/42.929616
10.1007/978-3-030-59716-0_29
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
2022 Author
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: 2022 Author
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2022.3154599
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1974
ExternalDocumentID PMC7613225
35201985
10_1109_TMI_2022_3154599
9721301
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: UK Biobank resource under Application
  grantid: 40616
– fundername: Medical Research Council
  grantid: MC-A658-5QEB0
  funderid: 10.13039/501100000265
– fundername: Wellcome Trust Grant
  grantid: 102431
  funderid: 10.13039/100010269
– fundername: British Heart Foundation
  grantid: RG/19/6/34387; RE/18/4/34215
  funderid: 10.13039/501100000274
– fundername: National Institute for Health Research (NIHR) Imperial College Biomedical Research Centre
  funderid: 10.13039/501100000272
– fundername: Medical Research Council
  grantid: MC_UP_1605/13
– fundername: British Heart Foundation
  grantid: NH/17/1/32725
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: British Heart Foundation
  grantid: RE/18/4/34215
– fundername: Medical Research Council
  grantid: MC_UP_1102/19
– fundername: Wellcome Trust
  grantid: 102431
– fundername: Medical Research Council
  grantid: MC_QA137853
– fundername: British Heart Foundation
  grantid: RG/19/6/34387
– fundername: ;
– fundername: ;
  grantid: 102431
– fundername: ;
  grantid: 40616
– fundername: ;
  grantid: MC-A658-5QEB0
– fundername: ;
  grantid: RG/19/6/34387; RE/18/4/34215
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c444t-17453fcfb04cb8886b6babd68a1053d7769ab5267e0bd12614e0d00bae7afe23
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:11:32 EDT 2025
Fri Jul 11 10:52:34 EDT 2025
Mon Jun 30 06:49:23 EDT 2025
Mon Jul 21 05:45:51 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Tue Jul 01 03:16:05 EDT 2025
Wed Aug 27 02:23:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-17453fcfb04cb8886b6babd68a1053d7769ab5267e0bd12614e0d00bae7afe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3417-3092
0000-0002-0691-0270
0000-0001-8728-4007
0000-0001-7926-3310
0000-0003-2943-7698
0000-0001-9095-5887
0000-0002-5683-5889
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9721301
PMID 35201985
PQID 2697566214
PQPubID 85460
PageCount 14
ParticipantIDs proquest_journals_2697566214
proquest_miscellaneous_2633848016
pubmed_primary_35201985
crossref_primary_10_1109_TMI_2022_3154599
ieee_primary_9721301
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613225
crossref_citationtrail_10_1109_TMI_2022_3154599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Abdelkhalek (ref34) 2020
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
Jaderberg (ref38)
ref2
ref1
ref39
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref9
  doi: 10.1109/TMI.2019.2894322
– ident: ref3
  doi: 10.1209/epl/i1998-00366-3
– ident: ref43
  doi: 10.1007/978-3-030-59716-0_22
– ident: ref7
  doi: 10.1186/1532-429X-13-36
– ident: ref6
  doi: 10.1109/TBME.2018.2865669
– ident: ref14
  doi: 10.1038/s41591-020-1009-y
– ident: ref16
  doi: 10.1148/radiology.169.1.3420283
– ident: ref19
  doi: 10.1109/TMI.2011.2168825
– ident: ref37
  doi: 10.1007/978-3-030-59725-2_45
– ident: ref45
  doi: 10.1007/978-3-030-32251-9_72
– ident: ref25
  doi: 10.1109/TMI.2012.2188104
– ident: ref57
  doi: 10.1186/s12968-018-0448-9
– ident: ref40
  doi: 10.1038/s41586-018-0579-z
– ident: ref11
  doi: 10.1007/978-3-030-00934-2_53
– ident: ref28
  doi: 10.1016/S1361-8415(98)80022-4
– ident: ref18
  doi: 10.1109/TMI.2009.2021041
– ident: ref29
  doi: 10.1007/978-3-540-75759-7_39
– ident: ref58
  doi: 10.1093/ehjci/jez041
– ident: ref49
  doi: 10.1186/s12968-018-0471-x
– ident: ref30
  doi: 10.1007/978-3-642-28326-0_6
– ident: ref39
  doi: 10.1109/CVPR.2017.304
– ident: ref22
  doi: 10.1016/j.media.2011.10.006
– ident: ref17
  doi: 10.1109/42.845177
– ident: ref4
  doi: 10.1007/11566489_111
– ident: ref51
  doi: 10.1016/j.media.2017.10.004
– ident: ref56
  doi: 10.1186/s12968-015-0111-7
– ident: ref10
  doi: 10.2214/AJR.10.7231
– ident: ref33
  doi: 10.1007/978-3-030-32245-8_58
– ident: ref50
  doi: 10.1007/978-3-642-23626-6_59
– ident: ref47
  doi: 10.1186/1532-429X-11-S1-P61
– ident: ref53
  doi: 10.1016/j.media.2018.11.010
– ident: ref23
  doi: 10.1109/42.796284
– ident: ref1
  doi: 10.1038/s42256-019-0019-2
– ident: ref35
  doi: 10.1007/978-3-030-32245-8_65
– ident: ref27
  doi: 10.1109/ISBI.2018.8363772
– ident: ref32
  doi: 10.1109/CVPR46437.2021.00718
– volume-title: arXiv:2009.12466
  year: 2020
  ident: ref34
  article-title: Enhanced 3D myocardial strain estimation from multi-view 2D CMR imaging
– ident: ref54
  doi: 10.1109/TMI.2019.2897112
– ident: ref8
  doi: 10.1016/j.jcmg.2015.11.001
– ident: ref24
  doi: 10.1109/TMI.2004.834607
– ident: ref36
  doi: 10.1109/ICCV.2017.81
– ident: ref55
  doi: 10.1081/JCMR-200053610
– ident: ref5
  doi: 10.1161/CIRCIMAGING.119.009404
– ident: ref46
  doi: 10.1109/ISBI.2019.8759328
– ident: ref26
  doi: 10.1016/j.media.2013.03.008
– ident: ref44
  doi: 10.1007/978-3-319-46723-8_49
– ident: ref31
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref52
  doi: 10.1148/ryct.2020190032
– ident: ref41
  doi: 10.1186/s12968-016-0227-4
– ident: ref12
  doi: 10.1016/j.media.2019.06.001
– ident: ref2
  doi: 10.1080/001075199181693
– start-page: 2017
  volume-title: Proc. NIPS
  ident: ref38
  article-title: Spatial transformer networks
– ident: ref48
  doi: 10.1161/01.CIR.90.3.1200
– ident: ref42
  doi: 10.1109/TMI.2019.2897538
– ident: ref15
  doi: 10.1109/CVPR42600.2020.00437
– ident: ref21
  doi: 10.1016/S1361-8415(00)00022-0
– ident: ref20
  doi: 10.1109/42.929616
– ident: ref13
  doi: 10.1007/978-3-030-59716-0_29
SSID ssj0014509
Score 2.5107079
Snippet Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1961
SubjectTerms 3D motion tracking
Cardiovascular diseases
cine CMR
Coronary artery disease
deep neural networks
Estimation
Heart diseases
Humans
Image acquisition
Imaging, Three-Dimensional - methods
Magnetic resonance
Magnetic Resonance Imaging
Magnetic Resonance Imaging, Cine - methods
Medical imaging
Motion
Motion estimation
Motion simulation
Multi-view
Myocardium
Regularization
Shape
shape regularization
Strain
Three dimensional motion
Three-dimensional displays
Tracking
Ventricle
Title MulViMotion: Shape-Aware 3D Myocardial Motion Tracking From Multi-View Cardiac MRI
URI https://ieeexplore.ieee.org/document/9721301
https://www.ncbi.nlm.nih.gov/pubmed/35201985
https://www.proquest.com/docview/2697566214
https://www.proquest.com/docview/2633848016
https://pubmed.ncbi.nlm.nih.gov/PMC7613225
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAcCrTQBgoyEhckvOs6fmy4VYVVixQOZal6i-zYUVcs2WrZqIJfz9h5aFtViFskTyLHM9Z84xl_A_BOo1-xqeM04yylQpWamopriupnzmeZMbHZRP5VnX4XXy7l5RZ8GO7CeO9j8ZkfhceYy3fLsglHZePANJOGy1oP0Mzau1pDxkDItpyDB8ZYpnifkmTZeJafYSDIOcaniBeyQBSKsAOxTWigvOGNYnuV-5Dm3YLJDQ80fQJ5P_e28OTHqFnbUfnnDq3j__7cU9jpoCg5bm3nGWz5ehcebxAU7sLDvEu978F53iwu5nls-vORfLsy154e35iVJ-knkv9GlxhMbUFaCYI-sAyn8GS6Wv4k8ZovvZj7G3IS5UqSn589h9n08-zklHYNGWgphFhTjF5kWpWVZaK0GDorq6yxTk0MorTUaa0yYyVX2jPrjjA2E545xqzx2lSepy9gu17W_gDIpBIGkR-Gl1oIqSsjvKvcZCKdlNpWPIFxr5ei7MjKQ8-MRRGDFpYVqNQiKLXolJrA--GN65ao4x-ye2H9B7lu6RM47FVfdDv5V8FVphHy8iORwNthGPdgSKyY2i-bIIOBfuDhUQnst5YyfLu3tAT0LRsaBAK_9-2Ren4Veb61CkcF8uX9s30Fj8I_tcWIh7C9XjX-NQKktX0Td8Zf9NYIvA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ-LjgY-NQWCAkXhBIq3n-KPhbRpULSx7GGXaW2THjlZR0qk0muCv5-x8qJsmxFsknyPbd9bd-e5-B_BOoV4xiWVxymgSc1moWJdMxch-al2aah2aTWQncvKdfzkX51vwoa-Fcc6F5DM38J8hlm-XRe2fyoYeaSbxxVp3UO9z0VRr9TEDLpqEDuYxY6lkXVCSpsNZNkVXkDH0UHFe6qFC0fBA68a3UN7QR6HBym225s2UyQ0dNH4EWbf6JvXkx6Bem0Hx5waw4_9u7zE8bI1RcthIzxPYctUOPNiAKNyBu1kbfN-F06xenM2z0PbnI_l2oS9dfHilV44kn0j2G5WiF7YFaSgIasHCv8OT8Wr5k4RC3_hs7q7IUaArSHY6fQqz8efZ0SRuWzLEBed8HaP_IpKyKA3lhUHnWRpptLFypNFOS6xSMtVGMKkcNfYAvTPuqKXUaKd06ViyB9vVsnLPgYxKrtH2QwdTcS5UqbmzpR2NhBVCmZJFMOz4khctXLnvmrHIg9tC0xyZmnum5i1TI3jfz7hsoDr-Qbvrz7-na48-gv2O9Xl7l3_lTKYKjV52wCN42w_jLfShFV25Ze1p0NX3SDwygmeNpPT_7iQtAnVNhnoCj_B9faSaXwSkbyX9Y4F4cftq38C9ySw7zo-nJ19fwn2_vyY1cR-216vavUJzaW1eh1vyF_EZDAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MulViMotion%3A+Shape-Aware+3D+Myocardial+Motion+Tracking+From+Multi-View+Cardiac+MRI&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Meng%2C+Qingjie&rft.au=Qin%2C+Chen&rft.au=Bai%2C+Wenjia&rft.au=Liu%2C+Tianrui&rft.date=2022-08-01&rft.eissn=1558-254X&rft.volume=41&rft.issue=8&rft.spage=1961&rft_id=info:doi/10.1109%2FTMI.2022.3154599&rft_id=info%3Apmid%2F35201985&rft.externalDocID=35201985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon