MulViMotion: Shape-Aware 3D Myocardial Motion Tracking From Multi-View Cardiac MRI
Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 41; no. 8; pp. 1961 - 1974 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2022.3154599 |
Cover
Abstract | Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods. |
---|---|
AbstractList | Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods. Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods.Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods. |
Author | Qin, Chen de Marvao, Antonio Meng, Qingjie Rueckert, Daniel Liu, Tianrui Bai, Wenjia O'Regan, Declan P |
AuthorAffiliation | Biomedical Image Analysis Group Department of Computing Imperial College London 4615 London SW7 2AZ U.K Department of Brain Sciences Imperial College London 4615 London SW7 2AZ U.K School of Engineering Institute for Digital Communications, The University of Edinburgh 3124 Edinburgh EH9 9JL U.K MRC London Institute of Medical Sciences Imperial College London London W12 0HS U.K Faculty of Informatics and Medicine Technical University of Munich 9184 85748 Munich Germany |
AuthorAffiliation_xml | – name: Biomedical Image Analysis Group Department of Computing Imperial College London 4615 London SW7 2AZ U.K – name: School of Engineering Institute for Digital Communications, The University of Edinburgh 3124 Edinburgh EH9 9JL U.K – name: Faculty of Informatics and Medicine Technical University of Munich 9184 85748 Munich Germany – name: MRC London Institute of Medical Sciences Imperial College London London W12 0HS U.K – name: Department of Brain Sciences Imperial College London 4615 London SW7 2AZ U.K |
Author_xml | – sequence: 1 givenname: Qingjie orcidid: 0000-0001-8728-4007 surname: Meng fullname: Meng, Qingjie email: q.meng16@imperial.ac.uk organization: Department of Computing, Biomedical Image Analysis Group, Imperial College London, London, U.K – sequence: 2 givenname: Chen orcidid: 0000-0003-3417-3092 surname: Qin fullname: Qin, Chen email: chen.qin@ed.ac.uk organization: School of Engineering, Institute for Digital Communications, The University of Edinburgh, Edinburgh, U.K – sequence: 3 givenname: Wenjia orcidid: 0000-0003-2943-7698 surname: Bai fullname: Bai, Wenjia email: w.bai@imperial.ac.uk organization: Department of Computing, Biomedical Image Analysis Group, Imperial College London, London, U.K – sequence: 4 givenname: Tianrui orcidid: 0000-0001-7926-3310 surname: Liu fullname: Liu, Tianrui email: t.liu15@imperial.ac.uk organization: Department of Computing, Biomedical Image Analysis Group, Imperial College London, London, U.K – sequence: 5 givenname: Antonio orcidid: 0000-0001-9095-5887 surname: de Marvao fullname: de Marvao, Antonio email: antonio.de-marvao@imperial.ac.uk organization: Imperial College London, MRC London Institute of Medical Sciences, London, U.K – sequence: 6 givenname: Declan P orcidid: 0000-0002-0691-0270 surname: O'Regan fullname: O'Regan, Declan P email: declan.oregan@lms.mrc.ac.uk organization: Imperial College London, MRC London Institute of Medical Sciences, London, U.K – sequence: 7 givenname: Daniel orcidid: 0000-0002-5683-5889 surname: Rueckert fullname: Rueckert, Daniel email: daniel.rueckert@tum.de organization: Department of Computing, Biomedical Image Analysis Group, Imperial College London, London, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35201985$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9rFDEYhoNU7LZ6FwQJePEy65ffMx4KZbW60EGoS_EWkkymTZ2drJkZS_97s-66aA-ecsjzvPm-vCfoqI-9R-glgTkhUL1b1cs5BUrnjAguquoJmhEhyoIK_u0IzYCqsgCQ9BidDMMdAOECqmfomAkKpCrFDF3VU3cd6jiG2L_HX2_Nxhfn9yZ5zD7g-iE6k5pgOrwj8CoZ9z30N_gixTXO7hiK6-Dv8eI353B9tXyOnramG_yL_XmKVhcfV4vPxeWXT8vF-WXhOOdjQRQXrHWtBe5sWZbSSmtsI0tDQLBGKVkZK6hUHmxDqCTcQwNgjVem9ZSdorNd7Gaya98434_JdHqTwtqkBx1N0P_e9OFW38SfWknCKBU54O0-IMUfkx9GvQ6D811neh-nQVPJWMlLIDKjbx6hd3FKfd4uU5USUlLCM_X674kOo_z57QzADnApDkPy7QEhoLeF6lyo3haq94VmRT5SXBjNtou8U-j-J77aicF7f3inUpQwIOwXcQ2r2w |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_jksuci_2024_102061 crossref_primary_10_1109_JBHI_2024_3389871 crossref_primary_10_1016_j_imavis_2024_105290 crossref_primary_10_1088_1742_6596_2386_1_012034 crossref_primary_10_1109_TMI_2023_3340118 crossref_primary_10_1109_TMI_2023_3325766 crossref_primary_10_1038_s41598_024_74091_3 crossref_primary_10_3390_diagnostics13203162 crossref_primary_10_1016_j_asoc_2023_110694 crossref_primary_10_1016_j_media_2024_103138 crossref_primary_10_1109_TAI_2024_3394798 crossref_primary_10_1016_j_media_2022_102682 crossref_primary_10_1016_j_media_2024_103385 |
Cites_doi | 10.1109/TMI.2019.2894322 10.1209/epl/i1998-00366-3 10.1007/978-3-030-59716-0_22 10.1186/1532-429X-13-36 10.1109/TBME.2018.2865669 10.1038/s41591-020-1009-y 10.1148/radiology.169.1.3420283 10.1109/TMI.2011.2168825 10.1007/978-3-030-59725-2_45 10.1007/978-3-030-32251-9_72 10.1109/TMI.2012.2188104 10.1186/s12968-018-0448-9 10.1038/s41586-018-0579-z 10.1007/978-3-030-00934-2_53 10.1016/S1361-8415(98)80022-4 10.1109/TMI.2009.2021041 10.1007/978-3-540-75759-7_39 10.1093/ehjci/jez041 10.1186/s12968-018-0471-x 10.1007/978-3-642-28326-0_6 10.1109/CVPR.2017.304 10.1016/j.media.2011.10.006 10.1109/42.845177 10.1007/11566489_111 10.1016/j.media.2017.10.004 10.1186/s12968-015-0111-7 10.2214/AJR.10.7231 10.1007/978-3-030-32245-8_58 10.1007/978-3-642-23626-6_59 10.1186/1532-429X-11-S1-P61 10.1016/j.media.2018.11.010 10.1109/42.796284 10.1038/s42256-019-0019-2 10.1007/978-3-030-32245-8_65 10.1109/ISBI.2018.8363772 10.1109/CVPR46437.2021.00718 10.1109/TMI.2019.2897112 10.1016/j.jcmg.2015.11.001 10.1109/TMI.2004.834607 10.1109/ICCV.2017.81 10.1081/JCMR-200053610 10.1161/CIRCIMAGING.119.009404 10.1109/ISBI.2019.8759328 10.1016/j.media.2013.03.008 10.1007/978-3-319-46723-8_49 10.1007/978-3-319-24574-4_28 10.1148/ryct.2020190032 10.1186/s12968-016-0227-4 10.1016/j.media.2019.06.001 10.1080/001075199181693 10.1161/01.CIR.90.3.1200 10.1109/TMI.2019.2897538 10.1109/CVPR42600.2020.00437 10.1016/S1361-8415(00)00022-0 10.1109/42.929616 10.1007/978-3-030-59716-0_29 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 2022 Author |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: 2022 Author |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TMI.2022.3154599 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1974 |
ExternalDocumentID | PMC7613225 35201985 10_1109_TMI_2022_3154599 9721301 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: UK Biobank resource under Application grantid: 40616 – fundername: Medical Research Council grantid: MC-A658-5QEB0 funderid: 10.13039/501100000265 – fundername: Wellcome Trust Grant grantid: 102431 funderid: 10.13039/100010269 – fundername: British Heart Foundation grantid: RG/19/6/34387; RE/18/4/34215 funderid: 10.13039/501100000274 – fundername: National Institute for Health Research (NIHR) Imperial College Biomedical Research Centre funderid: 10.13039/501100000272 – fundername: Medical Research Council grantid: MC_UP_1605/13 – fundername: British Heart Foundation grantid: NH/17/1/32725 – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: British Heart Foundation grantid: RE/18/4/34215 – fundername: Medical Research Council grantid: MC_UP_1102/19 – fundername: Wellcome Trust grantid: 102431 – fundername: Medical Research Council grantid: MC_QA137853 – fundername: British Heart Foundation grantid: RG/19/6/34387 – fundername: ; – fundername: ; grantid: 102431 – fundername: ; grantid: 40616 – fundername: ; grantid: MC-A658-5QEB0 – fundername: ; grantid: RG/19/6/34387; RE/18/4/34215 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c444t-17453fcfb04cb8886b6babd68a1053d7769ab5267e0bd12614e0d00bae7afe23 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:11:32 EDT 2025 Fri Jul 11 10:52:34 EDT 2025 Mon Jun 30 06:49:23 EDT 2025 Mon Jul 21 05:45:51 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Tue Jul 01 03:16:05 EDT 2025 Wed Aug 27 02:23:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-17453fcfb04cb8886b6babd68a1053d7769ab5267e0bd12614e0d00bae7afe23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3417-3092 0000-0002-0691-0270 0000-0001-8728-4007 0000-0001-7926-3310 0000-0003-2943-7698 0000-0001-9095-5887 0000-0002-5683-5889 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9721301 |
PMID | 35201985 |
PQID | 2697566214 |
PQPubID | 85460 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2697566214 proquest_miscellaneous_2633848016 pubmed_primary_35201985 crossref_primary_10_1109_TMI_2022_3154599 ieee_primary_9721301 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613225 crossref_citationtrail_10_1109_TMI_2022_3154599 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Abdelkhalek (ref34) 2020 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref30 ref33 ref32 Jaderberg (ref38) ref2 ref1 ref39 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref9 doi: 10.1109/TMI.2019.2894322 – ident: ref3 doi: 10.1209/epl/i1998-00366-3 – ident: ref43 doi: 10.1007/978-3-030-59716-0_22 – ident: ref7 doi: 10.1186/1532-429X-13-36 – ident: ref6 doi: 10.1109/TBME.2018.2865669 – ident: ref14 doi: 10.1038/s41591-020-1009-y – ident: ref16 doi: 10.1148/radiology.169.1.3420283 – ident: ref19 doi: 10.1109/TMI.2011.2168825 – ident: ref37 doi: 10.1007/978-3-030-59725-2_45 – ident: ref45 doi: 10.1007/978-3-030-32251-9_72 – ident: ref25 doi: 10.1109/TMI.2012.2188104 – ident: ref57 doi: 10.1186/s12968-018-0448-9 – ident: ref40 doi: 10.1038/s41586-018-0579-z – ident: ref11 doi: 10.1007/978-3-030-00934-2_53 – ident: ref28 doi: 10.1016/S1361-8415(98)80022-4 – ident: ref18 doi: 10.1109/TMI.2009.2021041 – ident: ref29 doi: 10.1007/978-3-540-75759-7_39 – ident: ref58 doi: 10.1093/ehjci/jez041 – ident: ref49 doi: 10.1186/s12968-018-0471-x – ident: ref30 doi: 10.1007/978-3-642-28326-0_6 – ident: ref39 doi: 10.1109/CVPR.2017.304 – ident: ref22 doi: 10.1016/j.media.2011.10.006 – ident: ref17 doi: 10.1109/42.845177 – ident: ref4 doi: 10.1007/11566489_111 – ident: ref51 doi: 10.1016/j.media.2017.10.004 – ident: ref56 doi: 10.1186/s12968-015-0111-7 – ident: ref10 doi: 10.2214/AJR.10.7231 – ident: ref33 doi: 10.1007/978-3-030-32245-8_58 – ident: ref50 doi: 10.1007/978-3-642-23626-6_59 – ident: ref47 doi: 10.1186/1532-429X-11-S1-P61 – ident: ref53 doi: 10.1016/j.media.2018.11.010 – ident: ref23 doi: 10.1109/42.796284 – ident: ref1 doi: 10.1038/s42256-019-0019-2 – ident: ref35 doi: 10.1007/978-3-030-32245-8_65 – ident: ref27 doi: 10.1109/ISBI.2018.8363772 – ident: ref32 doi: 10.1109/CVPR46437.2021.00718 – volume-title: arXiv:2009.12466 year: 2020 ident: ref34 article-title: Enhanced 3D myocardial strain estimation from multi-view 2D CMR imaging – ident: ref54 doi: 10.1109/TMI.2019.2897112 – ident: ref8 doi: 10.1016/j.jcmg.2015.11.001 – ident: ref24 doi: 10.1109/TMI.2004.834607 – ident: ref36 doi: 10.1109/ICCV.2017.81 – ident: ref55 doi: 10.1081/JCMR-200053610 – ident: ref5 doi: 10.1161/CIRCIMAGING.119.009404 – ident: ref46 doi: 10.1109/ISBI.2019.8759328 – ident: ref26 doi: 10.1016/j.media.2013.03.008 – ident: ref44 doi: 10.1007/978-3-319-46723-8_49 – ident: ref31 doi: 10.1007/978-3-319-24574-4_28 – ident: ref52 doi: 10.1148/ryct.2020190032 – ident: ref41 doi: 10.1186/s12968-016-0227-4 – ident: ref12 doi: 10.1016/j.media.2019.06.001 – ident: ref2 doi: 10.1080/001075199181693 – start-page: 2017 volume-title: Proc. NIPS ident: ref38 article-title: Spatial transformer networks – ident: ref48 doi: 10.1161/01.CIR.90.3.1200 – ident: ref42 doi: 10.1109/TMI.2019.2897538 – ident: ref15 doi: 10.1109/CVPR42600.2020.00437 – ident: ref21 doi: 10.1016/S1361-8415(00)00022-0 – ident: ref20 doi: 10.1109/42.929616 – ident: ref13 doi: 10.1007/978-3-030-59716-0_29 |
SSID | ssj0014509 |
Score | 2.5107079 |
Snippet | Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1961 |
SubjectTerms | 3D motion tracking Cardiovascular diseases cine CMR Coronary artery disease deep neural networks Estimation Heart diseases Humans Image acquisition Imaging, Three-Dimensional - methods Magnetic resonance Magnetic Resonance Imaging Magnetic Resonance Imaging, Cine - methods Medical imaging Motion Motion estimation Motion simulation Multi-view Myocardium Regularization Shape shape regularization Strain Three dimensional motion Three-dimensional displays Tracking Ventricle |
Title | MulViMotion: Shape-Aware 3D Myocardial Motion Tracking From Multi-View Cardiac MRI |
URI | https://ieeexplore.ieee.org/document/9721301 https://www.ncbi.nlm.nih.gov/pubmed/35201985 https://www.proquest.com/docview/2697566214 https://www.proquest.com/docview/2633848016 https://pubmed.ncbi.nlm.nih.gov/PMC7613225 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAcCrTQBgoyEhckvOs6fmy4VYVVixQOZal6i-zYUVcs2WrZqIJfz9h5aFtViFskTyLHM9Z84xl_A_BOo1-xqeM04yylQpWamopriupnzmeZMbHZRP5VnX4XXy7l5RZ8GO7CeO9j8ZkfhceYy3fLsglHZePANJOGy1oP0Mzau1pDxkDItpyDB8ZYpnifkmTZeJafYSDIOcaniBeyQBSKsAOxTWigvOGNYnuV-5Dm3YLJDQ80fQJ5P_e28OTHqFnbUfnnDq3j__7cU9jpoCg5bm3nGWz5ehcebxAU7sLDvEu978F53iwu5nls-vORfLsy154e35iVJ-knkv9GlxhMbUFaCYI-sAyn8GS6Wv4k8ZovvZj7G3IS5UqSn589h9n08-zklHYNGWgphFhTjF5kWpWVZaK0GDorq6yxTk0MorTUaa0yYyVX2jPrjjA2E545xqzx2lSepy9gu17W_gDIpBIGkR-Gl1oIqSsjvKvcZCKdlNpWPIFxr5ei7MjKQ8-MRRGDFpYVqNQiKLXolJrA--GN65ao4x-ye2H9B7lu6RM47FVfdDv5V8FVphHy8iORwNthGPdgSKyY2i-bIIOBfuDhUQnst5YyfLu3tAT0LRsaBAK_9-2Ren4Veb61CkcF8uX9s30Fj8I_tcWIh7C9XjX-NQKktX0Td8Zf9NYIvA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ-LjgY-NQWCAkXhBIq3n-KPhbRpULSx7GGXaW2THjlZR0qk0muCv5-x8qJsmxFsknyPbd9bd-e5-B_BOoV4xiWVxymgSc1moWJdMxch-al2aah2aTWQncvKdfzkX51vwoa-Fcc6F5DM38J8hlm-XRe2fyoYeaSbxxVp3UO9z0VRr9TEDLpqEDuYxY6lkXVCSpsNZNkVXkDH0UHFe6qFC0fBA68a3UN7QR6HBym225s2UyQ0dNH4EWbf6JvXkx6Bem0Hx5waw4_9u7zE8bI1RcthIzxPYctUOPNiAKNyBu1kbfN-F06xenM2z0PbnI_l2oS9dfHilV44kn0j2G5WiF7YFaSgIasHCv8OT8Wr5k4RC3_hs7q7IUaArSHY6fQqz8efZ0SRuWzLEBed8HaP_IpKyKA3lhUHnWRpptLFypNFOS6xSMtVGMKkcNfYAvTPuqKXUaKd06ViyB9vVsnLPgYxKrtH2QwdTcS5UqbmzpR2NhBVCmZJFMOz4khctXLnvmrHIg9tC0xyZmnum5i1TI3jfz7hsoDr-Qbvrz7-na48-gv2O9Xl7l3_lTKYKjV52wCN42w_jLfShFV25Ze1p0NX3SDwygmeNpPT_7iQtAnVNhnoCj_B9faSaXwSkbyX9Y4F4cftq38C9ySw7zo-nJ19fwn2_vyY1cR-216vavUJzaW1eh1vyF_EZDAk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MulViMotion%3A+Shape-Aware+3D+Myocardial+Motion+Tracking+From+Multi-View+Cardiac+MRI&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Meng%2C+Qingjie&rft.au=Qin%2C+Chen&rft.au=Bai%2C+Wenjia&rft.au=Liu%2C+Tianrui&rft.date=2022-08-01&rft.eissn=1558-254X&rft.volume=41&rft.issue=8&rft.spage=1961&rft_id=info:doi/10.1109%2FTMI.2022.3154599&rft_id=info%3Apmid%2F35201985&rft.externalDocID=35201985 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |