Characterization of glucosinolates in 80 broccoli genotypes and different organs using UHPLC-Triple-TOF-MS method

•UHPLC-Triple-TOF-MS method was demonstrated to be good for simultaneously detecting and quantifying glucosinolates.•Twelve glucosinolate compounds were discovered in broccoli florets but varied among 80 genotypes.•Nine glucosinolates and their regression relations were revealed by detection in deve...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 334; p. 127519
Main Authors Li, Zhansheng, Zheng, Shuning, Liu, Yumei, Fang, Zhiyuan, Yang, Limei, Zhuang, Mu, Zhang, Yangyong, Lv, Honghao, Wang, Yong, Xu, Donghui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •UHPLC-Triple-TOF-MS method was demonstrated to be good for simultaneously detecting and quantifying glucosinolates.•Twelve glucosinolate compounds were discovered in broccoli florets but varied among 80 genotypes.•Nine glucosinolates and their regression relations were revealed by detection in developmental organs of broccoli.•The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance.•Some mutant broccoli genotypes were discovered by analysis of gluconapin contents in different organs. We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs.
AbstractList •UHPLC-Triple-TOF-MS method was demonstrated to be good for simultaneously detecting and quantifying glucosinolates.•Twelve glucosinolate compounds were discovered in broccoli florets but varied among 80 genotypes.•Nine glucosinolates and their regression relations were revealed by detection in developmental organs of broccoli.•The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance.•Some mutant broccoli genotypes were discovered by analysis of gluconapin contents in different organs. We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs.
We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs.We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs.
We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R²) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs.
ArticleNumber 127519
Author Xu, Donghui
Li, Zhansheng
Zheng, Shuning
Zhuang, Mu
Zhang, Yangyong
Lv, Honghao
Fang, Zhiyuan
Liu, Yumei
Yang, Limei
Wang, Yong
Author_xml – sequence: 1
  givenname: Zhansheng
  orcidid: 0000-0002-5867-728X
  surname: Li
  fullname: Li, Zhansheng
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 2
  givenname: Shuning
  surname: Zheng
  fullname: Zheng, Shuning
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 3
  givenname: Yumei
  surname: Liu
  fullname: Liu, Yumei
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 4
  givenname: Zhiyuan
  surname: Fang
  fullname: Fang, Zhiyuan
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 5
  givenname: Limei
  surname: Yang
  fullname: Yang, Limei
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 6
  givenname: Mu
  surname: Zhuang
  fullname: Zhuang, Mu
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 7
  givenname: Yangyong
  surname: Zhang
  fullname: Zhang, Yangyong
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 8
  givenname: Honghao
  orcidid: 0000-0003-2635-3042
  surname: Lv
  fullname: Lv, Honghao
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 9
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
– sequence: 10
  givenname: Donghui
  orcidid: 0000-0002-2920-1717
  surname: Xu
  fullname: Xu, Donghui
  email: xudonghui@caas.cn
  organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
BookMark eNqFkU1LAzEQhoMoWD_-guToZWuSTXaz4EEpVoWKgvUc0uykTdkmNUkF_fVurV689DQw8z7vYZ4TdOiDB4QuKBlSQqur5dCG0JoFrIaMsH7JakGbAzSgsi6LmtTsEA1ISWQhKa-O0UlKS0L6JJUD9D5a6KhNhui-dHbB42DxvNuYkJwPnc6QsPNYEjyLwZjQOTwHH_Lnuj9o3-LWWQsRfMYhzrVPeNODc_z28DIZFdPo1h0U0-dx8fSKV5AXoT1DR1Z3Cc5_5yl6G99NRw_F5Pn-cXQ7KQznPBeUQyMMkEbTkrKGAteikpRqXpKZEVbYclZxsMTOtJWWm7ZqqqY0LQFNqlqUp-hy17uO4X0DKauVSwa6TnsIm6SYYJwxXtdyf5QzKUQp6ba12kVNDClFsGod3UrHT0WJ2upQS_WnQ211qJ2OHrz-BxqXfz6eo3bdfvxmh0P_sg8HUSXjwBtoXQSTVRvcvopvvGKtNw
CitedBy_id crossref_primary_10_1002_jsfa_11511
crossref_primary_10_1016_j_fochx_2023_101065
crossref_primary_10_3390_molecules27010231
crossref_primary_10_1016_j_fochx_2024_101862
crossref_primary_10_1016_j_lwt_2021_113028
crossref_primary_10_3390_app13169124
crossref_primary_10_1080_10408398_2024_2338834
crossref_primary_10_1016_j_agrcom_2024_100040
crossref_primary_10_1016_j_foodchem_2022_133414
crossref_primary_10_1093_jaoacint_qsae049
crossref_primary_10_3390_agronomy12102287
crossref_primary_10_1016_j_scienta_2020_109835
crossref_primary_10_3390_foods13213507
crossref_primary_10_1016_j_hpj_2022_08_006
crossref_primary_10_1021_acssynbio_3c00676
crossref_primary_10_3390_antiox12122115
crossref_primary_10_3390_horticulturae10090968
crossref_primary_10_1038_s41598_021_88652_3
crossref_primary_10_3389_fpls_2023_1138700
crossref_primary_10_3389_fpls_2023_1216682
crossref_primary_10_3390_molecules28020766
crossref_primary_10_1016_j_crfs_2023_100493
crossref_primary_10_1016_j_postharvbio_2023_112411
crossref_primary_10_1021_acs_jafc_1c08118
crossref_primary_10_3390_plants11121563
crossref_primary_10_3136_fstr_27_897
crossref_primary_10_1007_s00217_023_04362_2
crossref_primary_10_1016_j_postharvbio_2023_112337
crossref_primary_10_3390_app12094754
crossref_primary_10_3390_horticulturae10080808
crossref_primary_10_1016_j_fbio_2023_103006
crossref_primary_10_1016_j_scienta_2023_112036
crossref_primary_10_3390_molecules27165200
crossref_primary_10_1016_j_lwt_2023_115318
crossref_primary_10_1017_S1479262125000061
crossref_primary_10_3389_fpls_2021_767898
crossref_primary_10_1016_j_scienta_2022_111284
crossref_primary_10_3390_foods10122911
crossref_primary_10_1016_j_postharvbio_2022_112103
crossref_primary_10_3390_plants11040561
crossref_primary_10_11109_JAES_2024_26_1_046
crossref_primary_10_1016_j_fochx_2022_100429
crossref_primary_10_3390_foods13213513
crossref_primary_10_3390_agronomy11030548
crossref_primary_10_3390_foods13050757
crossref_primary_10_1021_acsfoodscitech_3c00040
crossref_primary_10_1007_s10725_024_01247_6
crossref_primary_10_3390_agronomy13112760
crossref_primary_10_3390_foods12030561
crossref_primary_10_3390_plants13243513
crossref_primary_10_1016_j_scienta_2024_113713
crossref_primary_10_1007_s11947_022_02909_x
crossref_primary_10_3389_fpls_2023_1091588
crossref_primary_10_3390_ijms25094829
crossref_primary_10_1016_j_foodchem_2023_136588
crossref_primary_10_1016_j_lwt_2023_114859
crossref_primary_10_3390_agriculture13061267
crossref_primary_10_3390_foods13010041
crossref_primary_10_3390_ijms25031650
crossref_primary_10_3390_molecules29153448
crossref_primary_10_1186_s12870_021_03168_2
crossref_primary_10_3746_jkfn_2024_53_1_63
crossref_primary_10_1016_j_foodres_2023_112873
crossref_primary_10_1111_ijfs_16664
crossref_primary_10_3390_agronomy13020579
crossref_primary_10_3390_plants11091274
crossref_primary_10_1016_j_foodchem_2021_130007
crossref_primary_10_1016_j_plantsci_2023_111690
crossref_primary_10_3390_agronomy13122928
crossref_primary_10_1016_j_scienta_2024_113921
crossref_primary_10_3390_genes13091600
crossref_primary_10_3390_genes15081102
crossref_primary_10_1016_j_tifs_2021_12_015
crossref_primary_10_1071_CP23208
crossref_primary_10_3390_foods13050696
crossref_primary_10_1016_j_jfca_2022_104523
crossref_primary_10_1021_jasms_3c00140
crossref_primary_10_1016_j_jpba_2021_113999
crossref_primary_10_1093_hr_uhae063
crossref_primary_10_3390_agriculture12101519
crossref_primary_10_3390_ijms25147945
crossref_primary_10_1016_j_foodchem_2025_143924
crossref_primary_10_3389_fpls_2022_1081321
crossref_primary_10_3390_app12094101
crossref_primary_10_1016_j_postharvbio_2024_112962
crossref_primary_10_3390_antiox11071298
Cites_doi 10.1016/j.phytochem.2010.09.017
10.1002/jsfa.2355
10.1007/s12035-017-0684-2
10.1270/jsbbs.62.63
10.1002/jsfa.7629
10.1016/S0031-9422(02)00549-6
10.1146/annurev.arplant.57.032905.105228
10.1016/j.foodchem.2012.01.085
10.1021/jf303970k
10.1021/jf00108a034
10.1007/s00122-002-1161-4
10.1046/j.0179-9541.2003.00912.x
10.1016/S0031-9422(00)00316-2
10.1016/j.phytochem.2007.08.014
10.1016/j.hpj.2017.07.002
10.1016/j.foodchem.2014.09.116
10.1007/s007260200014
10.1021/jf980985s
10.1371/journal.pone.0213902
10.1016/j.foodchem.2010.12.067
10.1016/j.foodchem.2011.05.078
10.1111/j.1365-313X.2007.03101.x
10.1002/ijc.25620
10.1038/ncomms4930
10.1270/jsbbs.64.48
10.1096/fasebj.24.1_supplement.928.18
10.1007/s00122-015-2517-x
10.1046/j.1365-313X.2003.01679.x
10.1016/j.tplants.2005.12.006
10.1016/j.tplants.2010.02.005
10.21273/JASHS.120.6.1069
10.1016/j.foodchem.2018.06.089
10.1107/S2053229614009115
10.1021/acs.jafc.8b03396
10.1007/s10637-014-0189-z
10.1111/j.1365-2621.2003.tb08285.x
10.1021/jf801318v
10.1105/tpc.109.066399
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Ltd.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Ltd.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2020.127519
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 10_1016_j_foodchem_2020_127519
S0308814620313819
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
RIG
SCB
SEW
SSH
VH1
WUQ
Y6R
7X8
7S9
L.6
ID FETCH-LOGICAL-c444t-14e95ce09a131291e4a56811a430bc5f5f3b64ef0fbaf8f4cd69693cd0ea06753
IEDL.DBID .~1
ISSN 0308-8146
1873-7072
IngestDate Fri Jul 11 07:00:01 EDT 2025
Fri Jul 11 10:07:16 EDT 2025
Tue Jul 01 03:22:13 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Fri Feb 23 02:49:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Genotype
Broccoli
UHPLC-Triple-TOF-MS
Glucosinolate
Organs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-14e95ce09a131291e4a56811a430bc5f5f3b64ef0fbaf8f4cd69693cd0ea06753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2920-1717
0000-0002-5867-728X
0000-0003-2635-3042
PQID 2428553815
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524224778
proquest_miscellaneous_2428553815
crossref_primary_10_1016_j_foodchem_2020_127519
crossref_citationtrail_10_1016_j_foodchem_2020_127519
elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_127519
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Food chemistry
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gigolashvili, Yatusevich, Rollwitz, Humphry, Gershenzon, Flugge (b0070) 2009; 21
Alumkal, Slottke, Schwartzman, Cherala, Munar, Graff, Mori (b0010) 2015; 33
Chen, Glawischnig, Jorgensen, Naur, Jorgensen, Olsen, Halkier (b0050) 2003; 33
Mithen, Bennett, Marquez (b0150) 2010; 71
Grubb, Abel (b0080) 2006; 11
Kushad, Brown, Kurilich, Juvik, Klein, Wallig, Jeffery (b0120) 1999; 47
Nilsson, Olsson, Engqvist, Ekvall, Olsson, Nyman, Akesson (b0155) 2006; 86
Volker, S. E., Freeman, J., Banuelos, G., & Jeffery, E. H. (2010). Impact of selenate treatment on broccoli glucosinolate profile and bioactivity. Faseb Journal, 24.
Wang, Gu, Yu, Zhao, Sheng, Zhang (b0185) 2012; 133
Hansen, Kliebenstein, Halkier (b0100) 2007; 50
Brown, Yousef, Reid, Chebrolu, Thomas, Krueger, Juvik (b0030) 2015; 128
Bello, Maldini, Baima, Scaccini, Natella (b0025) 2018; 268
Liu, Liu, Yang, Tong, Edwards, Parkin, Paterson (b0140) 2014; 5
Ishida, Hara, Fukino, Kakizaki, Morimitsu (b0110) 2014; 64
Bell, Oruna-Concha, Wagstaff (b0020) 2015; 172
Wiesner, Zrenner, Krumbein, Glatt, Schreiner (b0190) 2013; 61
Halkier, Gershenzon (b0095) 2006; 57
Tian, Yang, Avila, Fish, Yuan, Hui, Li (b0170) 2018; 66
Brown, Tokuhisa, Reichelt, Gershenzon (b0035) 2003; 62
Abdull Razis, Iori, Ioannides (b0005) 2011; 128
de Oliveira, Brasil, Furstenau (b0055) 2018; 55
Guo, Yang, Gu (b0085) 2016; 96
Carlson, Daxenbichler, VanEtten, Tookey, Williams (b0040) 1981; 29
Stewart, Nho, Jeffery (b0165) 2004
Ishida, Nagata, Ohara, Kakizaki, Hatakeyama, Nishio (b0115) 2012; 62
Vo, Trenerry, Rochfort, White, Hughes (b0175) 2014; 70
Li, Liu, Li, Fang, Yang, Zhuang, Lv (b0130) 2019; 14
Farnham, Wilson, Stephenson, Fahey (b0065) 2004; 123
Hansen, Moller, Sorensen, Detrejo (b0105) 1995; 120
Sønderby, Geu-Flores, Halkier (b0160) 2010; 15
Baik, Juvik, Jeffery, Wallig, Kushad, Klein (b0015) 2003; 68
Gorissen, Kraut, de Visser, de Vries, Roelofsen, Vonk (b0075) 2011; 127
Zheng, Zhang, Liu, Lv, Lw, Xu, Xu (b0195) 2017; 3
Cartea, Velasco, Obregon, Padilla, de Haro (b0045) 2008; 69
Mikkelsen, Petersen, Olsen, Halkier (b0145) 2002; 22
Fahey, Zalcmann, Talalay (b0060) 2001; 56
Guo, Yuan, Wang (b0090) 2011; 129
Liang, Li, Yuan, Vriesekoop (b0135) 2008; 56
Li, Quiros (b0125) 2003; 106
Fahey (10.1016/j.foodchem.2020.127519_b0060) 2001; 56
Gorissen (10.1016/j.foodchem.2020.127519_b0075) 2011; 127
Hansen (10.1016/j.foodchem.2020.127519_b0100) 2007; 50
Liang (10.1016/j.foodchem.2020.127519_b0135) 2008; 56
Ishida (10.1016/j.foodchem.2020.127519_b0115) 2012; 62
Wiesner (10.1016/j.foodchem.2020.127519_b0190) 2013; 61
Tian (10.1016/j.foodchem.2020.127519_b0170) 2018; 66
Mithen (10.1016/j.foodchem.2020.127519_b0150) 2010; 71
Sønderby (10.1016/j.foodchem.2020.127519_b0160) 2010; 15
Liu (10.1016/j.foodchem.2020.127519_b0140) 2014; 5
Brown (10.1016/j.foodchem.2020.127519_b0030) 2015; 128
Grubb (10.1016/j.foodchem.2020.127519_b0080) 2006; 11
Li (10.1016/j.foodchem.2020.127519_b0125) 2003; 106
Bell (10.1016/j.foodchem.2020.127519_b0020) 2015; 172
Mikkelsen (10.1016/j.foodchem.2020.127519_b0145) 2002; 22
Kushad (10.1016/j.foodchem.2020.127519_b0120) 1999; 47
Halkier (10.1016/j.foodchem.2020.127519_b0095) 2006; 57
Guo (10.1016/j.foodchem.2020.127519_b0085) 2016; 96
Abdull Razis (10.1016/j.foodchem.2020.127519_b0005) 2011; 128
Gigolashvili (10.1016/j.foodchem.2020.127519_b0070) 2009; 21
Alumkal (10.1016/j.foodchem.2020.127519_b0010) 2015; 33
Bello (10.1016/j.foodchem.2020.127519_b0025) 2018; 268
Chen (10.1016/j.foodchem.2020.127519_b0050) 2003; 33
Farnham (10.1016/j.foodchem.2020.127519_b0065) 2004; 123
Cartea (10.1016/j.foodchem.2020.127519_b0045) 2008; 69
Hansen (10.1016/j.foodchem.2020.127519_b0105) 1995; 120
Brown (10.1016/j.foodchem.2020.127519_b0035) 2003; 62
Stewart (10.1016/j.foodchem.2020.127519_b0165) 2004
Nilsson (10.1016/j.foodchem.2020.127519_b0155) 2006; 86
Guo (10.1016/j.foodchem.2020.127519_b0090) 2011; 129
Zheng (10.1016/j.foodchem.2020.127519_b0195) 2017; 3
Ishida (10.1016/j.foodchem.2020.127519_b0110) 2014; 64
de Oliveira (10.1016/j.foodchem.2020.127519_b0055) 2018; 55
Baik (10.1016/j.foodchem.2020.127519_b0015) 2003; 68
Wang (10.1016/j.foodchem.2020.127519_b0185) 2012; 133
10.1016/j.foodchem.2020.127519_b0180
Carlson (10.1016/j.foodchem.2020.127519_b0040) 1981; 29
Li (10.1016/j.foodchem.2020.127519_b0130) 2019; 14
Vo (10.1016/j.foodchem.2020.127519_b0175) 2014; 70
References_xml – volume: 22
  start-page: 279
  year: 2002
  end-page: 295
  ident: b0145
  article-title: Biosynthesis and metabolic engineering of glucosinolates
  publication-title: Amino Acids
– volume: 50
  start-page: 902
  year: 2007
  end-page: 910
  ident: b0100
  article-title: Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis
  publication-title: Plant Journal
– volume: 56
  start-page: 7746
  year: 2008
  end-page: 7749
  ident: b0135
  article-title: Application of high-speed countercurrent chromatography for the isolation of sulforaphane from broccoli seed meal
  publication-title: J Agric Food Chem
– volume: 133
  start-page: 735
  year: 2012
  end-page: 741
  ident: b0185
  article-title: Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China
  publication-title: Food Chem
– start-page: 107
  year: 2004
  end-page: 119
  ident: b0165
  article-title: Gene regulation by glucosinolate hydrolysis products from broccoli
– volume: 21
  start-page: 1813
  year: 2009
  end-page: 1829
  ident: b0070
  article-title: The Plastidic Bile Acid Transporter 5 Is Required for the Biosynthesis of Methionine-Derived Glucosinolates in Arabidopsis thaliana
  publication-title: Plant Cell
– volume: 14
  year: 2019
  ident: b0130
  article-title: Transcriptome reveals the gene expression patterns of sulforaphane metabolism in broccoli florets
  publication-title: PLoS One
– volume: 61
  start-page: 1943
  year: 2013
  end-page: 1953
  ident: b0190
  article-title: Genotypic Variation of the Glucosinolate Profile in Pak Choi (Brassica rapa ssp chinensis)
  publication-title: J Agric Food Chem
– volume: 70
  start-page: 588
  year: 2014
  end-page: 594
  ident: b0175
  article-title: Preparation and X-ray analysis of potassium (2,3-dichlorophenyl)glucosinolate
  publication-title: Acta Crystallogr C Struct Chem
– volume: 128
  start-page: 2775
  year: 2011
  end-page: 2782
  ident: b0005
  article-title: The natural chemopreventive phytochemical R-sulforaphane is a far more potent inducer of the carcinogen-detoxifying enzyme systems in rat liver and lung than the S-isomer
  publication-title: Int J Cancer
– volume: 128
  start-page: 1431
  year: 2015
  end-page: 1447
  ident: b0030
  article-title: Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms
  publication-title: Theoretical and Applied Genetics
– volume: 68
  start-page: 1043
  year: 2003
  end-page: 1050
  ident: b0015
  article-title: Relating glucosinolate content and flavor of broccoli cultivars
  publication-title: J Food Sci
– volume: 123
  start-page: 60
  year: 2004
  end-page: 65
  ident: b0065
  article-title: Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli
  publication-title: Plant Breeding
– volume: 33
  start-page: 480
  year: 2015
  end-page: 489
  ident: b0010
  article-title: A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer
  publication-title: Invest New Drugs
– volume: 33
  start-page: 923
  year: 2003
  end-page: 937
  ident: b0050
  article-title: CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis
  publication-title: Plant Journal
– volume: 64
  start-page: 48
  year: 2014
  end-page: 59
  ident: b0110
  article-title: Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables
  publication-title: Breed Sci
– volume: 268
  start-page: 249
  year: 2018
  end-page: 256
  ident: b0025
  article-title: Glucoraphanin and sulforaphane evolution during juice preparation from broccoli sprouts
  publication-title: Food Chem
– volume: 3
  start-page: 141
  year: 2017
  end-page: 150
  ident: b0195
  article-title: Glycerolipid Profiling of Yellow Sarson Seeds Using Ultra High Performance Liquid Chromatography Coupled to Triple Time-of-Flight Mass Spectrometry
  publication-title: Horticultural Plant Journal
– volume: 57
  start-page: 303
  year: 2006
  end-page: 333
  ident: b0095
  article-title: Biology and biochemistry of glucosinolates
  publication-title: Annual Review of Plant Biology
– volume: 106
  start-page: 1116
  year: 2003
  end-page: 1121
  ident: b0125
  article-title: In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK
  publication-title: Theoretical and Applied Genetics
– volume: 62
  start-page: 471
  year: 2003
  end-page: 481
  ident: b0035
  article-title: Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana
  publication-title: Phytochemistry
– volume: 71
  start-page: 2074
  year: 2010
  end-page: 2086
  ident: b0150
  article-title: Glucosinolate biochemical diversity and innovation in the Brassicales
  publication-title: Phytochemistry
– volume: 86
  start-page: 528
  year: 2006
  end-page: 538
  ident: b0155
  article-title: Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables
  publication-title: J Sci Food Agric
– volume: 55
  start-page: 4777
  year: 2018
  end-page: 4787
  ident: b0055
  article-title: Sulforaphane Promotes Mitochondrial Protection in SH-SY5Y Cells Exposed to Hydrogen Peroxide by an Nrf2-Dependent Mechanism
  publication-title: Molecular Neurobiology
– volume: 5
  start-page: 3930
  year: 2014
  ident: b0140
  article-title: The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes
  publication-title: Nature Communications
– volume: 29
  start-page: 1235
  year: 1981
  end-page: 1239
  ident: b0040
  article-title: Glucosinolates in crucifer vegetables: Turnips and rutabagas
  publication-title: J Agric Food Chem
– volume: 56
  start-page: 5
  year: 2001
  end-page: 51
  ident: b0060
  article-title: The chemical diversity and distribution of glucosinolates and isothiocyanates among plants
  publication-title: Phytochemistry
– volume: 96
  start-page: 4329
  year: 2016
  end-page: 4336
  ident: b0085
  article-title: Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment
  publication-title: J Sci Food Agric
– volume: 62
  start-page: 63
  year: 2012
  end-page: 70
  ident: b0115
  article-title: Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component
  publication-title: Breed Sci
– volume: 120
  start-page: 1069
  year: 1995
  end-page: 1074
  ident: b0105
  article-title: Glucosinolates in Broccoli Stored under Controlled-Atmosphere
  publication-title: Journal of the American Society for Horticultural Science
– reference: Volker, S. E., Freeman, J., Banuelos, G., & Jeffery, E. H. (2010). Impact of selenate treatment on broccoli glucosinolate profile and bioactivity. Faseb Journal, 24.
– volume: 15
  start-page: 283
  year: 2010
  end-page: 290
  ident: b0160
  article-title: Biosynthesis of glucosinolates – gene discovery and beyond
  publication-title: Trends in Plant Science
– volume: 69
  start-page: 403
  year: 2008
  end-page: 410
  ident: b0045
  article-title: Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain
  publication-title: Phytochemistry
– volume: 66
  start-page: 8036
  year: 2018
  end-page: 8044
  ident: b0170
  article-title: Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli
  publication-title: J Agric Food Chem
– volume: 129
  start-page: 1080
  year: 2011
  end-page: 1087
  ident: b0090
  article-title: Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts
  publication-title: Food Chem
– volume: 11
  start-page: 89
  year: 2006
  end-page: 100
  ident: b0080
  article-title: Glucosinolate metabolism and its control
  publication-title: Trends in Plant Science
– volume: 127
  start-page: 192
  year: 2011
  end-page: 196
  ident: b0075
  article-title: No de novo sulforaphane biosynthesis in broccoli seedlings
  publication-title: Food Chem
– volume: 47
  start-page: 1541
  year: 1999
  end-page: 1548
  ident: b0120
  article-title: Variation of glucosinolates in vegetable crops of Brassica oleracea
  publication-title: J Agric Food Chem
– volume: 172
  start-page: 852
  year: 2015
  end-page: 861
  ident: b0020
  article-title: Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: Highlighting the potential for improving nutritional value of rocket crops
  publication-title: Food Chem
– volume: 71
  start-page: 2074
  issue: 17–18
  year: 2010
  ident: 10.1016/j.foodchem.2020.127519_b0150
  article-title: Glucosinolate biochemical diversity and innovation in the Brassicales
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.09.017
– volume: 86
  start-page: 528
  issue: 4
  year: 2006
  ident: 10.1016/j.foodchem.2020.127519_b0155
  article-title: Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.2355
– volume: 55
  start-page: 4777
  issue: 6
  year: 2018
  ident: 10.1016/j.foodchem.2020.127519_b0055
  article-title: Sulforaphane Promotes Mitochondrial Protection in SH-SY5Y Cells Exposed to Hydrogen Peroxide by an Nrf2-Dependent Mechanism
  publication-title: Molecular Neurobiology
  doi: 10.1007/s12035-017-0684-2
– volume: 62
  start-page: 63
  issue: 1
  year: 2012
  ident: 10.1016/j.foodchem.2020.127519_b0115
  article-title: Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component
  publication-title: Breed Sci
  doi: 10.1270/jsbbs.62.63
– volume: 96
  start-page: 4329
  issue: 13
  year: 2016
  ident: 10.1016/j.foodchem.2020.127519_b0085
  article-title: Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.7629
– volume: 62
  start-page: 471
  issue: 3
  year: 2003
  ident: 10.1016/j.foodchem.2020.127519_b0035
  article-title: Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(02)00549-6
– volume: 57
  start-page: 303
  year: 2006
  ident: 10.1016/j.foodchem.2020.127519_b0095
  article-title: Biology and biochemistry of glucosinolates
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.57.032905.105228
– volume: 133
  start-page: 735
  issue: 3
  year: 2012
  ident: 10.1016/j.foodchem.2020.127519_b0185
  article-title: Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2012.01.085
– volume: 61
  start-page: 1943
  issue: 8
  year: 2013
  ident: 10.1016/j.foodchem.2020.127519_b0190
  article-title: Genotypic Variation of the Glucosinolate Profile in Pak Choi (Brassica rapa ssp chinensis)
  publication-title: J Agric Food Chem
  doi: 10.1021/jf303970k
– volume: 29
  start-page: 1235
  issue: 6
  year: 1981
  ident: 10.1016/j.foodchem.2020.127519_b0040
  article-title: Glucosinolates in crucifer vegetables: Turnips and rutabagas
  publication-title: J Agric Food Chem
  doi: 10.1021/jf00108a034
– volume: 106
  start-page: 1116
  issue: 6
  year: 2003
  ident: 10.1016/j.foodchem.2020.127519_b0125
  article-title: In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-002-1161-4
– volume: 123
  start-page: 60
  issue: 1
  year: 2004
  ident: 10.1016/j.foodchem.2020.127519_b0065
  article-title: Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli
  publication-title: Plant Breeding
  doi: 10.1046/j.0179-9541.2003.00912.x
– volume: 56
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.foodchem.2020.127519_b0060
  article-title: The chemical diversity and distribution of glucosinolates and isothiocyanates among plants
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)00316-2
– volume: 69
  start-page: 403
  issue: 2
  year: 2008
  ident: 10.1016/j.foodchem.2020.127519_b0045
  article-title: Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2007.08.014
– volume: 3
  start-page: 141
  issue: 4
  year: 2017
  ident: 10.1016/j.foodchem.2020.127519_b0195
  article-title: Glycerolipid Profiling of Yellow Sarson Seeds Using Ultra High Performance Liquid Chromatography Coupled to Triple Time-of-Flight Mass Spectrometry
  publication-title: Horticultural Plant Journal
  doi: 10.1016/j.hpj.2017.07.002
– volume: 172
  start-page: 852
  year: 2015
  ident: 10.1016/j.foodchem.2020.127519_b0020
  article-title: Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: Highlighting the potential for improving nutritional value of rocket crops
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2014.09.116
– volume: 22
  start-page: 279
  issue: 3
  year: 2002
  ident: 10.1016/j.foodchem.2020.127519_b0145
  article-title: Biosynthesis and metabolic engineering of glucosinolates
  publication-title: Amino Acids
  doi: 10.1007/s007260200014
– volume: 47
  start-page: 1541
  issue: 4
  year: 1999
  ident: 10.1016/j.foodchem.2020.127519_b0120
  article-title: Variation of glucosinolates in vegetable crops of Brassica oleracea
  publication-title: J Agric Food Chem
  doi: 10.1021/jf980985s
– volume: 14
  issue: 3
  year: 2019
  ident: 10.1016/j.foodchem.2020.127519_b0130
  article-title: Transcriptome reveals the gene expression patterns of sulforaphane metabolism in broccoli florets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0213902
– volume: 127
  start-page: 192
  issue: 1
  year: 2011
  ident: 10.1016/j.foodchem.2020.127519_b0075
  article-title: No de novo sulforaphane biosynthesis in broccoli seedlings
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2010.12.067
– volume: 129
  start-page: 1080
  issue: 3
  year: 2011
  ident: 10.1016/j.foodchem.2020.127519_b0090
  article-title: Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2011.05.078
– volume: 50
  start-page: 902
  issue: 5
  year: 2007
  ident: 10.1016/j.foodchem.2020.127519_b0100
  article-title: Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis
  publication-title: Plant Journal
  doi: 10.1111/j.1365-313X.2007.03101.x
– volume: 128
  start-page: 2775
  issue: 12
  year: 2011
  ident: 10.1016/j.foodchem.2020.127519_b0005
  article-title: The natural chemopreventive phytochemical R-sulforaphane is a far more potent inducer of the carcinogen-detoxifying enzyme systems in rat liver and lung than the S-isomer
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25620
– start-page: 107
  year: 2004
  ident: 10.1016/j.foodchem.2020.127519_b0165
– volume: 5
  start-page: 3930
  year: 2014
  ident: 10.1016/j.foodchem.2020.127519_b0140
  article-title: The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes
  publication-title: Nature Communications
  doi: 10.1038/ncomms4930
– volume: 64
  start-page: 48
  issue: 1
  year: 2014
  ident: 10.1016/j.foodchem.2020.127519_b0110
  article-title: Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables
  publication-title: Breed Sci
  doi: 10.1270/jsbbs.64.48
– ident: 10.1016/j.foodchem.2020.127519_b0180
  doi: 10.1096/fasebj.24.1_supplement.928.18
– volume: 128
  start-page: 1431
  issue: 7
  year: 2015
  ident: 10.1016/j.foodchem.2020.127519_b0030
  article-title: Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-015-2517-x
– volume: 33
  start-page: 923
  issue: 5
  year: 2003
  ident: 10.1016/j.foodchem.2020.127519_b0050
  article-title: CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis
  publication-title: Plant Journal
  doi: 10.1046/j.1365-313X.2003.01679.x
– volume: 11
  start-page: 89
  issue: 2
  year: 2006
  ident: 10.1016/j.foodchem.2020.127519_b0080
  article-title: Glucosinolate metabolism and its control
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2005.12.006
– volume: 15
  start-page: 283
  issue: 5
  year: 2010
  ident: 10.1016/j.foodchem.2020.127519_b0160
  article-title: Biosynthesis of glucosinolates – gene discovery and beyond
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2010.02.005
– volume: 120
  start-page: 1069
  issue: 6
  year: 1995
  ident: 10.1016/j.foodchem.2020.127519_b0105
  article-title: Glucosinolates in Broccoli Stored under Controlled-Atmosphere
  publication-title: Journal of the American Society for Horticultural Science
  doi: 10.21273/JASHS.120.6.1069
– volume: 268
  start-page: 249
  year: 2018
  ident: 10.1016/j.foodchem.2020.127519_b0025
  article-title: Glucoraphanin and sulforaphane evolution during juice preparation from broccoli sprouts
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2018.06.089
– volume: 70
  start-page: 588
  issue: Pt 6
  year: 2014
  ident: 10.1016/j.foodchem.2020.127519_b0175
  article-title: Preparation and X-ray analysis of potassium (2,3-dichlorophenyl)glucosinolate
  publication-title: Acta Crystallogr C Struct Chem
  doi: 10.1107/S2053229614009115
– volume: 66
  start-page: 8036
  issue: 30
  year: 2018
  ident: 10.1016/j.foodchem.2020.127519_b0170
  article-title: Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.8b03396
– volume: 33
  start-page: 480
  issue: 2
  year: 2015
  ident: 10.1016/j.foodchem.2020.127519_b0010
  article-title: A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer
  publication-title: Invest New Drugs
  doi: 10.1007/s10637-014-0189-z
– volume: 68
  start-page: 1043
  issue: 3
  year: 2003
  ident: 10.1016/j.foodchem.2020.127519_b0015
  article-title: Relating glucosinolate content and flavor of broccoli cultivars
  publication-title: J Food Sci
  doi: 10.1111/j.1365-2621.2003.tb08285.x
– volume: 56
  start-page: 7746
  issue: 17
  year: 2008
  ident: 10.1016/j.foodchem.2020.127519_b0135
  article-title: Application of high-speed countercurrent chromatography for the isolation of sulforaphane from broccoli seed meal
  publication-title: J Agric Food Chem
  doi: 10.1021/jf801318v
– volume: 21
  start-page: 1813
  issue: 6
  year: 2009
  ident: 10.1016/j.foodchem.2020.127519_b0070
  article-title: The Plastidic Bile Acid Transporter 5 Is Required for the Biosynthesis of Methionine-Derived Glucosinolates in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.066399
SSID ssj0002018
Score 2.5985904
Snippet •UHPLC-Triple-TOF-MS method was demonstrated to be good for simultaneously detecting and quantifying glucosinolates.•Twelve glucosinolate compounds were...
We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127519
SubjectTerms Broccoli
florets
food chemistry
Genotype
glucobrassicin
gluconapin
glucoraphanin
Glucosinolate
mutants
Organs
UHPLC-Triple-TOF-MS
variance
Title Characterization of glucosinolates in 80 broccoli genotypes and different organs using UHPLC-Triple-TOF-MS method
URI https://dx.doi.org/10.1016/j.foodchem.2020.127519
https://www.proquest.com/docview/2428553815
https://www.proquest.com/docview/2524224778
Volume 334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9lAuqA8QS6EyEuLmbhLbWftYBVbLowtSd6XeLD9Rqiop3fTKb8eTxKVFiB64RnZkecYz4_E33yD01hSFcYBq1NJbwqiXRMSbEHE2GENzXZYMaofPluVizT5d8IstVKVaGIBVjrZ_sOm9tR6_TMfdnF7X9fQcmFYggVUA_aDoqT8Zm4GWn_z8DfOIDk4MLwmiT3fdqxK-PAlt6-LeQEV6AUQLMw6MO393UH-Y6t7_zPfQ0zFwxKfD2vbRlm8O0G6V-rUdoMn72nf4HR6ZPq_wMhHtx3Gp_nhziH5UdxzNQwkmbgMekOt1Ey-6MfbEdYNFhk10blFPagxErpCr3WDdOJx6qnS4bwm1wYCd_47Xi29fKrK6gcw9WX2dk7NzPPSnfobW8w-rakHGxgvEMsY6kjMvufWZ1DmN8UDumQaeslwzmhnLAw_UlMyHLBgdRGDWlbKU1LrMa7iB0Odou2kb_wJh4zJXSGEFDSb-W0tOTTz3ZSikcU7SCeJpt5UdWcmhOcaVSvCzS5WkpEBKapDSBE3v5l0PvByPzpBJmOqBhqnoPB6d-yZJX0WpwpuKbnx7u1ExwhE8Oo2c_2MMj6MKNpuJl_-xhiP0pAA8TZ_-eYW2u5tb_zoGRJ057jX-GO2cfvy8WP4CO9QLiw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOZQLKgXEQgEjAbd0E9vJxgcOaMtqS3cXpO5KvRk7tqtUVVK6qRAX_hR_kJkkLh9C9IB6jewo8pvMjO03bwh5aRgzFlmNWroiEtzJKIedUGQLbwxPdJYJrB2eL7LpSrw_To83yPdQC4O0yt73dz699db9k2G_msPzshweodIKHmAxlB-EwNYzKw_d1y-wb1u_OdgHkF8xNnm3HE-jvrVAVAghmigRTqaFi6VOOES8xAmNSlyJFjw2RepTz00mnI-90T73orCZzCQvbOw05tgc3nuL3BbgLrBtwt63n7wSiKh5d3WRt-drv5Qln-75urYABpbAM1R2GKUo8fP3iPhHbGgD3mSb3O0zVfq2W4x7ZMNVO2RrHBrE7ZDBfuka-pr20qJndBGU_WFcKHhe3yefx1ei0F3NJ6097ajyZQU7a0h2aVnRPKYGoikYZklRORYPh9dUV5aGJi4NbXtQrSmS9U_oavpxNo6WF3hVEC0_TKL5Ee0aYj8gqxuB4yHZrOrKPSLU2NgymRc59wberWXKDTiazDNprJV8QNKw2qroZdCxG8eZCny3UxVQUoiS6lAakOHVvPNOCOTaGTKAqX4zaQXR6tq5LwL6ClDFSxxdufpyrSClylMwuyT9x5gURjExGuWP_-MbnpOt6XI-U7ODxeETcochmac9e9olm83FpXsK2VhjnrXWT8mnm_7dfgD2I0dF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+glucosinolates+in+80+broccoli+genotypes+and+different+organs+using+UHPLC-Triple-TOF-MS+method&rft.jtitle=Food+chemistry&rft.au=Li%2C+Zhansheng&rft.au=Zheng%2C+Shuning&rft.au=Liu%2C+Yumei&rft.au=Fang%2C+Zhiyuan&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0308-8146&rft.eissn=1873-7072&rft.volume=334&rft_id=info:doi/10.1016%2Fj.foodchem.2020.127519&rft.externalDocID=S0308814620313819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon