Characterization of glucosinolates in 80 broccoli genotypes and different organs using UHPLC-Triple-TOF-MS method
•UHPLC-Triple-TOF-MS method was demonstrated to be good for simultaneously detecting and quantifying glucosinolates.•Twelve glucosinolate compounds were discovered in broccoli florets but varied among 80 genotypes.•Nine glucosinolates and their regression relations were revealed by detection in deve...
Saved in:
Published in | Food chemistry Vol. 334; p. 127519 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •UHPLC-Triple-TOF-MS method was demonstrated to be good for simultaneously detecting and quantifying glucosinolates.•Twelve glucosinolate compounds were discovered in broccoli florets but varied among 80 genotypes.•Nine glucosinolates and their regression relations were revealed by detection in developmental organs of broccoli.•The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance.•Some mutant broccoli genotypes were discovered by analysis of gluconapin contents in different organs.
We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs. |
---|---|
AbstractList | •UHPLC-Triple-TOF-MS method was demonstrated to be good for simultaneously detecting and quantifying glucosinolates.•Twelve glucosinolate compounds were discovered in broccoli florets but varied among 80 genotypes.•Nine glucosinolates and their regression relations were revealed by detection in developmental organs of broccoli.•The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance.•Some mutant broccoli genotypes were discovered by analysis of gluconapin contents in different organs.
We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs. We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs.We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs. We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R²) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs. |
ArticleNumber | 127519 |
Author | Xu, Donghui Li, Zhansheng Zheng, Shuning Zhuang, Mu Zhang, Yangyong Lv, Honghao Fang, Zhiyuan Liu, Yumei Yang, Limei Wang, Yong |
Author_xml | – sequence: 1 givenname: Zhansheng orcidid: 0000-0002-5867-728X surname: Li fullname: Li, Zhansheng organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China – sequence: 2 givenname: Shuning surname: Zheng fullname: Zheng, Shuning organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China – sequence: 3 givenname: Yumei surname: Liu fullname: Liu, Yumei organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China – sequence: 4 givenname: Zhiyuan surname: Fang fullname: Fang, Zhiyuan organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China – sequence: 5 givenname: Limei surname: Yang fullname: Yang, Limei organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China – sequence: 6 givenname: Mu surname: Zhuang fullname: Zhuang, Mu organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China – sequence: 7 givenname: Yangyong surname: Zhang fullname: Zhang, Yangyong organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China – sequence: 8 givenname: Honghao orcidid: 0000-0003-2635-3042 surname: Lv fullname: Lv, Honghao organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China – sequence: 9 givenname: Yong surname: Wang fullname: Wang, Yong organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China – sequence: 10 givenname: Donghui orcidid: 0000-0002-2920-1717 surname: Xu fullname: Xu, Donghui email: xudonghui@caas.cn organization: Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China |
BookMark | eNqFkU1LAzEQhoMoWD_-guToZWuSTXaz4EEpVoWKgvUc0uykTdkmNUkF_fVurV689DQw8z7vYZ4TdOiDB4QuKBlSQqur5dCG0JoFrIaMsH7JakGbAzSgsi6LmtTsEA1ISWQhKa-O0UlKS0L6JJUD9D5a6KhNhui-dHbB42DxvNuYkJwPnc6QsPNYEjyLwZjQOTwHH_Lnuj9o3-LWWQsRfMYhzrVPeNODc_z28DIZFdPo1h0U0-dx8fSKV5AXoT1DR1Z3Cc5_5yl6G99NRw_F5Pn-cXQ7KQznPBeUQyMMkEbTkrKGAteikpRqXpKZEVbYclZxsMTOtJWWm7ZqqqY0LQFNqlqUp-hy17uO4X0DKauVSwa6TnsIm6SYYJwxXtdyf5QzKUQp6ba12kVNDClFsGod3UrHT0WJ2upQS_WnQ211qJ2OHrz-BxqXfz6eo3bdfvxmh0P_sg8HUSXjwBtoXQSTVRvcvopvvGKtNw |
CitedBy_id | crossref_primary_10_1002_jsfa_11511 crossref_primary_10_1016_j_fochx_2023_101065 crossref_primary_10_3390_molecules27010231 crossref_primary_10_1016_j_fochx_2024_101862 crossref_primary_10_1016_j_lwt_2021_113028 crossref_primary_10_3390_app13169124 crossref_primary_10_1080_10408398_2024_2338834 crossref_primary_10_1016_j_agrcom_2024_100040 crossref_primary_10_1016_j_foodchem_2022_133414 crossref_primary_10_1093_jaoacint_qsae049 crossref_primary_10_3390_agronomy12102287 crossref_primary_10_1016_j_scienta_2020_109835 crossref_primary_10_3390_foods13213507 crossref_primary_10_1016_j_hpj_2022_08_006 crossref_primary_10_1021_acssynbio_3c00676 crossref_primary_10_3390_antiox12122115 crossref_primary_10_3390_horticulturae10090968 crossref_primary_10_1038_s41598_021_88652_3 crossref_primary_10_3389_fpls_2023_1138700 crossref_primary_10_3389_fpls_2023_1216682 crossref_primary_10_3390_molecules28020766 crossref_primary_10_1016_j_crfs_2023_100493 crossref_primary_10_1016_j_postharvbio_2023_112411 crossref_primary_10_1021_acs_jafc_1c08118 crossref_primary_10_3390_plants11121563 crossref_primary_10_3136_fstr_27_897 crossref_primary_10_1007_s00217_023_04362_2 crossref_primary_10_1016_j_postharvbio_2023_112337 crossref_primary_10_3390_app12094754 crossref_primary_10_3390_horticulturae10080808 crossref_primary_10_1016_j_fbio_2023_103006 crossref_primary_10_1016_j_scienta_2023_112036 crossref_primary_10_3390_molecules27165200 crossref_primary_10_1016_j_lwt_2023_115318 crossref_primary_10_1017_S1479262125000061 crossref_primary_10_3389_fpls_2021_767898 crossref_primary_10_1016_j_scienta_2022_111284 crossref_primary_10_3390_foods10122911 crossref_primary_10_1016_j_postharvbio_2022_112103 crossref_primary_10_3390_plants11040561 crossref_primary_10_11109_JAES_2024_26_1_046 crossref_primary_10_1016_j_fochx_2022_100429 crossref_primary_10_3390_foods13213513 crossref_primary_10_3390_agronomy11030548 crossref_primary_10_3390_foods13050757 crossref_primary_10_1021_acsfoodscitech_3c00040 crossref_primary_10_1007_s10725_024_01247_6 crossref_primary_10_3390_agronomy13112760 crossref_primary_10_3390_foods12030561 crossref_primary_10_3390_plants13243513 crossref_primary_10_1016_j_scienta_2024_113713 crossref_primary_10_1007_s11947_022_02909_x crossref_primary_10_3389_fpls_2023_1091588 crossref_primary_10_3390_ijms25094829 crossref_primary_10_1016_j_foodchem_2023_136588 crossref_primary_10_1016_j_lwt_2023_114859 crossref_primary_10_3390_agriculture13061267 crossref_primary_10_3390_foods13010041 crossref_primary_10_3390_ijms25031650 crossref_primary_10_3390_molecules29153448 crossref_primary_10_1186_s12870_021_03168_2 crossref_primary_10_3746_jkfn_2024_53_1_63 crossref_primary_10_1016_j_foodres_2023_112873 crossref_primary_10_1111_ijfs_16664 crossref_primary_10_3390_agronomy13020579 crossref_primary_10_3390_plants11091274 crossref_primary_10_1016_j_foodchem_2021_130007 crossref_primary_10_1016_j_plantsci_2023_111690 crossref_primary_10_3390_agronomy13122928 crossref_primary_10_1016_j_scienta_2024_113921 crossref_primary_10_3390_genes13091600 crossref_primary_10_3390_genes15081102 crossref_primary_10_1016_j_tifs_2021_12_015 crossref_primary_10_1071_CP23208 crossref_primary_10_3390_foods13050696 crossref_primary_10_1016_j_jfca_2022_104523 crossref_primary_10_1021_jasms_3c00140 crossref_primary_10_1016_j_jpba_2021_113999 crossref_primary_10_1093_hr_uhae063 crossref_primary_10_3390_agriculture12101519 crossref_primary_10_3390_ijms25147945 crossref_primary_10_1016_j_foodchem_2025_143924 crossref_primary_10_3389_fpls_2022_1081321 crossref_primary_10_3390_app12094101 crossref_primary_10_1016_j_postharvbio_2024_112962 crossref_primary_10_3390_antiox11071298 |
Cites_doi | 10.1016/j.phytochem.2010.09.017 10.1002/jsfa.2355 10.1007/s12035-017-0684-2 10.1270/jsbbs.62.63 10.1002/jsfa.7629 10.1016/S0031-9422(02)00549-6 10.1146/annurev.arplant.57.032905.105228 10.1016/j.foodchem.2012.01.085 10.1021/jf303970k 10.1021/jf00108a034 10.1007/s00122-002-1161-4 10.1046/j.0179-9541.2003.00912.x 10.1016/S0031-9422(00)00316-2 10.1016/j.phytochem.2007.08.014 10.1016/j.hpj.2017.07.002 10.1016/j.foodchem.2014.09.116 10.1007/s007260200014 10.1021/jf980985s 10.1371/journal.pone.0213902 10.1016/j.foodchem.2010.12.067 10.1016/j.foodchem.2011.05.078 10.1111/j.1365-313X.2007.03101.x 10.1002/ijc.25620 10.1038/ncomms4930 10.1270/jsbbs.64.48 10.1096/fasebj.24.1_supplement.928.18 10.1007/s00122-015-2517-x 10.1046/j.1365-313X.2003.01679.x 10.1016/j.tplants.2005.12.006 10.1016/j.tplants.2010.02.005 10.21273/JASHS.120.6.1069 10.1016/j.foodchem.2018.06.089 10.1107/S2053229614009115 10.1021/acs.jafc.8b03396 10.1007/s10637-014-0189-z 10.1111/j.1365-2621.2003.tb08285.x 10.1021/jf801318v 10.1105/tpc.109.066399 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Ltd. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.foodchem.2020.127519 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Chemistry Diet & Clinical Nutrition |
EISSN | 1873-7072 |
ExternalDocumentID | 10_1016_j_foodchem_2020_127519 S0308814620313819 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- RIG SCB SEW SSH VH1 WUQ Y6R 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c444t-14e95ce09a131291e4a56811a430bc5f5f3b64ef0fbaf8f4cd69693cd0ea06753 |
IEDL.DBID | .~1 |
ISSN | 0308-8146 1873-7072 |
IngestDate | Fri Jul 11 07:00:01 EDT 2025 Fri Jul 11 10:07:16 EDT 2025 Tue Jul 01 03:22:13 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Fri Feb 23 02:49:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Genotype Broccoli UHPLC-Triple-TOF-MS Glucosinolate Organs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c444t-14e95ce09a131291e4a56811a430bc5f5f3b64ef0fbaf8f4cd69693cd0ea06753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2920-1717 0000-0002-5867-728X 0000-0003-2635-3042 |
PQID | 2428553815 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524224778 proquest_miscellaneous_2428553815 crossref_primary_10_1016_j_foodchem_2020_127519 crossref_citationtrail_10_1016_j_foodchem_2020_127519 elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_127519 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Food chemistry |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gigolashvili, Yatusevich, Rollwitz, Humphry, Gershenzon, Flugge (b0070) 2009; 21 Alumkal, Slottke, Schwartzman, Cherala, Munar, Graff, Mori (b0010) 2015; 33 Chen, Glawischnig, Jorgensen, Naur, Jorgensen, Olsen, Halkier (b0050) 2003; 33 Mithen, Bennett, Marquez (b0150) 2010; 71 Grubb, Abel (b0080) 2006; 11 Kushad, Brown, Kurilich, Juvik, Klein, Wallig, Jeffery (b0120) 1999; 47 Nilsson, Olsson, Engqvist, Ekvall, Olsson, Nyman, Akesson (b0155) 2006; 86 Volker, S. E., Freeman, J., Banuelos, G., & Jeffery, E. H. (2010). Impact of selenate treatment on broccoli glucosinolate profile and bioactivity. Faseb Journal, 24. Wang, Gu, Yu, Zhao, Sheng, Zhang (b0185) 2012; 133 Hansen, Kliebenstein, Halkier (b0100) 2007; 50 Brown, Yousef, Reid, Chebrolu, Thomas, Krueger, Juvik (b0030) 2015; 128 Bello, Maldini, Baima, Scaccini, Natella (b0025) 2018; 268 Liu, Liu, Yang, Tong, Edwards, Parkin, Paterson (b0140) 2014; 5 Ishida, Hara, Fukino, Kakizaki, Morimitsu (b0110) 2014; 64 Bell, Oruna-Concha, Wagstaff (b0020) 2015; 172 Wiesner, Zrenner, Krumbein, Glatt, Schreiner (b0190) 2013; 61 Halkier, Gershenzon (b0095) 2006; 57 Tian, Yang, Avila, Fish, Yuan, Hui, Li (b0170) 2018; 66 Brown, Tokuhisa, Reichelt, Gershenzon (b0035) 2003; 62 Abdull Razis, Iori, Ioannides (b0005) 2011; 128 de Oliveira, Brasil, Furstenau (b0055) 2018; 55 Guo, Yang, Gu (b0085) 2016; 96 Carlson, Daxenbichler, VanEtten, Tookey, Williams (b0040) 1981; 29 Stewart, Nho, Jeffery (b0165) 2004 Ishida, Nagata, Ohara, Kakizaki, Hatakeyama, Nishio (b0115) 2012; 62 Vo, Trenerry, Rochfort, White, Hughes (b0175) 2014; 70 Li, Liu, Li, Fang, Yang, Zhuang, Lv (b0130) 2019; 14 Farnham, Wilson, Stephenson, Fahey (b0065) 2004; 123 Hansen, Moller, Sorensen, Detrejo (b0105) 1995; 120 Sønderby, Geu-Flores, Halkier (b0160) 2010; 15 Baik, Juvik, Jeffery, Wallig, Kushad, Klein (b0015) 2003; 68 Gorissen, Kraut, de Visser, de Vries, Roelofsen, Vonk (b0075) 2011; 127 Zheng, Zhang, Liu, Lv, Lw, Xu, Xu (b0195) 2017; 3 Cartea, Velasco, Obregon, Padilla, de Haro (b0045) 2008; 69 Mikkelsen, Petersen, Olsen, Halkier (b0145) 2002; 22 Fahey, Zalcmann, Talalay (b0060) 2001; 56 Guo, Yuan, Wang (b0090) 2011; 129 Liang, Li, Yuan, Vriesekoop (b0135) 2008; 56 Li, Quiros (b0125) 2003; 106 Fahey (10.1016/j.foodchem.2020.127519_b0060) 2001; 56 Gorissen (10.1016/j.foodchem.2020.127519_b0075) 2011; 127 Hansen (10.1016/j.foodchem.2020.127519_b0100) 2007; 50 Liang (10.1016/j.foodchem.2020.127519_b0135) 2008; 56 Ishida (10.1016/j.foodchem.2020.127519_b0115) 2012; 62 Wiesner (10.1016/j.foodchem.2020.127519_b0190) 2013; 61 Tian (10.1016/j.foodchem.2020.127519_b0170) 2018; 66 Mithen (10.1016/j.foodchem.2020.127519_b0150) 2010; 71 Sønderby (10.1016/j.foodchem.2020.127519_b0160) 2010; 15 Liu (10.1016/j.foodchem.2020.127519_b0140) 2014; 5 Brown (10.1016/j.foodchem.2020.127519_b0030) 2015; 128 Grubb (10.1016/j.foodchem.2020.127519_b0080) 2006; 11 Li (10.1016/j.foodchem.2020.127519_b0125) 2003; 106 Bell (10.1016/j.foodchem.2020.127519_b0020) 2015; 172 Mikkelsen (10.1016/j.foodchem.2020.127519_b0145) 2002; 22 Kushad (10.1016/j.foodchem.2020.127519_b0120) 1999; 47 Halkier (10.1016/j.foodchem.2020.127519_b0095) 2006; 57 Guo (10.1016/j.foodchem.2020.127519_b0085) 2016; 96 Abdull Razis (10.1016/j.foodchem.2020.127519_b0005) 2011; 128 Gigolashvili (10.1016/j.foodchem.2020.127519_b0070) 2009; 21 Alumkal (10.1016/j.foodchem.2020.127519_b0010) 2015; 33 Bello (10.1016/j.foodchem.2020.127519_b0025) 2018; 268 Chen (10.1016/j.foodchem.2020.127519_b0050) 2003; 33 Farnham (10.1016/j.foodchem.2020.127519_b0065) 2004; 123 Cartea (10.1016/j.foodchem.2020.127519_b0045) 2008; 69 Hansen (10.1016/j.foodchem.2020.127519_b0105) 1995; 120 Brown (10.1016/j.foodchem.2020.127519_b0035) 2003; 62 Stewart (10.1016/j.foodchem.2020.127519_b0165) 2004 Nilsson (10.1016/j.foodchem.2020.127519_b0155) 2006; 86 Guo (10.1016/j.foodchem.2020.127519_b0090) 2011; 129 Zheng (10.1016/j.foodchem.2020.127519_b0195) 2017; 3 Ishida (10.1016/j.foodchem.2020.127519_b0110) 2014; 64 de Oliveira (10.1016/j.foodchem.2020.127519_b0055) 2018; 55 Baik (10.1016/j.foodchem.2020.127519_b0015) 2003; 68 Wang (10.1016/j.foodchem.2020.127519_b0185) 2012; 133 10.1016/j.foodchem.2020.127519_b0180 Carlson (10.1016/j.foodchem.2020.127519_b0040) 1981; 29 Li (10.1016/j.foodchem.2020.127519_b0130) 2019; 14 Vo (10.1016/j.foodchem.2020.127519_b0175) 2014; 70 |
References_xml | – volume: 22 start-page: 279 year: 2002 end-page: 295 ident: b0145 article-title: Biosynthesis and metabolic engineering of glucosinolates publication-title: Amino Acids – volume: 50 start-page: 902 year: 2007 end-page: 910 ident: b0100 article-title: Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis publication-title: Plant Journal – volume: 56 start-page: 7746 year: 2008 end-page: 7749 ident: b0135 article-title: Application of high-speed countercurrent chromatography for the isolation of sulforaphane from broccoli seed meal publication-title: J Agric Food Chem – volume: 133 start-page: 735 year: 2012 end-page: 741 ident: b0185 article-title: Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China publication-title: Food Chem – start-page: 107 year: 2004 end-page: 119 ident: b0165 article-title: Gene regulation by glucosinolate hydrolysis products from broccoli – volume: 21 start-page: 1813 year: 2009 end-page: 1829 ident: b0070 article-title: The Plastidic Bile Acid Transporter 5 Is Required for the Biosynthesis of Methionine-Derived Glucosinolates in Arabidopsis thaliana publication-title: Plant Cell – volume: 14 year: 2019 ident: b0130 article-title: Transcriptome reveals the gene expression patterns of sulforaphane metabolism in broccoli florets publication-title: PLoS One – volume: 61 start-page: 1943 year: 2013 end-page: 1953 ident: b0190 article-title: Genotypic Variation of the Glucosinolate Profile in Pak Choi (Brassica rapa ssp chinensis) publication-title: J Agric Food Chem – volume: 70 start-page: 588 year: 2014 end-page: 594 ident: b0175 article-title: Preparation and X-ray analysis of potassium (2,3-dichlorophenyl)glucosinolate publication-title: Acta Crystallogr C Struct Chem – volume: 128 start-page: 2775 year: 2011 end-page: 2782 ident: b0005 article-title: The natural chemopreventive phytochemical R-sulforaphane is a far more potent inducer of the carcinogen-detoxifying enzyme systems in rat liver and lung than the S-isomer publication-title: Int J Cancer – volume: 128 start-page: 1431 year: 2015 end-page: 1447 ident: b0030 article-title: Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms publication-title: Theoretical and Applied Genetics – volume: 68 start-page: 1043 year: 2003 end-page: 1050 ident: b0015 article-title: Relating glucosinolate content and flavor of broccoli cultivars publication-title: J Food Sci – volume: 123 start-page: 60 year: 2004 end-page: 65 ident: b0065 article-title: Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli publication-title: Plant Breeding – volume: 33 start-page: 480 year: 2015 end-page: 489 ident: b0010 article-title: A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer publication-title: Invest New Drugs – volume: 33 start-page: 923 year: 2003 end-page: 937 ident: b0050 article-title: CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis publication-title: Plant Journal – volume: 64 start-page: 48 year: 2014 end-page: 59 ident: b0110 article-title: Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables publication-title: Breed Sci – volume: 268 start-page: 249 year: 2018 end-page: 256 ident: b0025 article-title: Glucoraphanin and sulforaphane evolution during juice preparation from broccoli sprouts publication-title: Food Chem – volume: 3 start-page: 141 year: 2017 end-page: 150 ident: b0195 article-title: Glycerolipid Profiling of Yellow Sarson Seeds Using Ultra High Performance Liquid Chromatography Coupled to Triple Time-of-Flight Mass Spectrometry publication-title: Horticultural Plant Journal – volume: 57 start-page: 303 year: 2006 end-page: 333 ident: b0095 article-title: Biology and biochemistry of glucosinolates publication-title: Annual Review of Plant Biology – volume: 106 start-page: 1116 year: 2003 end-page: 1121 ident: b0125 article-title: In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK publication-title: Theoretical and Applied Genetics – volume: 62 start-page: 471 year: 2003 end-page: 481 ident: b0035 article-title: Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana publication-title: Phytochemistry – volume: 71 start-page: 2074 year: 2010 end-page: 2086 ident: b0150 article-title: Glucosinolate biochemical diversity and innovation in the Brassicales publication-title: Phytochemistry – volume: 86 start-page: 528 year: 2006 end-page: 538 ident: b0155 article-title: Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables publication-title: J Sci Food Agric – volume: 55 start-page: 4777 year: 2018 end-page: 4787 ident: b0055 article-title: Sulforaphane Promotes Mitochondrial Protection in SH-SY5Y Cells Exposed to Hydrogen Peroxide by an Nrf2-Dependent Mechanism publication-title: Molecular Neurobiology – volume: 5 start-page: 3930 year: 2014 ident: b0140 article-title: The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes publication-title: Nature Communications – volume: 29 start-page: 1235 year: 1981 end-page: 1239 ident: b0040 article-title: Glucosinolates in crucifer vegetables: Turnips and rutabagas publication-title: J Agric Food Chem – volume: 56 start-page: 5 year: 2001 end-page: 51 ident: b0060 article-title: The chemical diversity and distribution of glucosinolates and isothiocyanates among plants publication-title: Phytochemistry – volume: 96 start-page: 4329 year: 2016 end-page: 4336 ident: b0085 article-title: Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment publication-title: J Sci Food Agric – volume: 62 start-page: 63 year: 2012 end-page: 70 ident: b0115 article-title: Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component publication-title: Breed Sci – volume: 120 start-page: 1069 year: 1995 end-page: 1074 ident: b0105 article-title: Glucosinolates in Broccoli Stored under Controlled-Atmosphere publication-title: Journal of the American Society for Horticultural Science – reference: Volker, S. E., Freeman, J., Banuelos, G., & Jeffery, E. H. (2010). Impact of selenate treatment on broccoli glucosinolate profile and bioactivity. Faseb Journal, 24. – volume: 15 start-page: 283 year: 2010 end-page: 290 ident: b0160 article-title: Biosynthesis of glucosinolates – gene discovery and beyond publication-title: Trends in Plant Science – volume: 69 start-page: 403 year: 2008 end-page: 410 ident: b0045 article-title: Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain publication-title: Phytochemistry – volume: 66 start-page: 8036 year: 2018 end-page: 8044 ident: b0170 article-title: Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli publication-title: J Agric Food Chem – volume: 129 start-page: 1080 year: 2011 end-page: 1087 ident: b0090 article-title: Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts publication-title: Food Chem – volume: 11 start-page: 89 year: 2006 end-page: 100 ident: b0080 article-title: Glucosinolate metabolism and its control publication-title: Trends in Plant Science – volume: 127 start-page: 192 year: 2011 end-page: 196 ident: b0075 article-title: No de novo sulforaphane biosynthesis in broccoli seedlings publication-title: Food Chem – volume: 47 start-page: 1541 year: 1999 end-page: 1548 ident: b0120 article-title: Variation of glucosinolates in vegetable crops of Brassica oleracea publication-title: J Agric Food Chem – volume: 172 start-page: 852 year: 2015 end-page: 861 ident: b0020 article-title: Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: Highlighting the potential for improving nutritional value of rocket crops publication-title: Food Chem – volume: 71 start-page: 2074 issue: 17–18 year: 2010 ident: 10.1016/j.foodchem.2020.127519_b0150 article-title: Glucosinolate biochemical diversity and innovation in the Brassicales publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.09.017 – volume: 86 start-page: 528 issue: 4 year: 2006 ident: 10.1016/j.foodchem.2020.127519_b0155 article-title: Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables publication-title: J Sci Food Agric doi: 10.1002/jsfa.2355 – volume: 55 start-page: 4777 issue: 6 year: 2018 ident: 10.1016/j.foodchem.2020.127519_b0055 article-title: Sulforaphane Promotes Mitochondrial Protection in SH-SY5Y Cells Exposed to Hydrogen Peroxide by an Nrf2-Dependent Mechanism publication-title: Molecular Neurobiology doi: 10.1007/s12035-017-0684-2 – volume: 62 start-page: 63 issue: 1 year: 2012 ident: 10.1016/j.foodchem.2020.127519_b0115 article-title: Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component publication-title: Breed Sci doi: 10.1270/jsbbs.62.63 – volume: 96 start-page: 4329 issue: 13 year: 2016 ident: 10.1016/j.foodchem.2020.127519_b0085 article-title: Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment publication-title: J Sci Food Agric doi: 10.1002/jsfa.7629 – volume: 62 start-page: 471 issue: 3 year: 2003 ident: 10.1016/j.foodchem.2020.127519_b0035 article-title: Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana publication-title: Phytochemistry doi: 10.1016/S0031-9422(02)00549-6 – volume: 57 start-page: 303 year: 2006 ident: 10.1016/j.foodchem.2020.127519_b0095 article-title: Biology and biochemistry of glucosinolates publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.57.032905.105228 – volume: 133 start-page: 735 issue: 3 year: 2012 ident: 10.1016/j.foodchem.2020.127519_b0185 article-title: Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China publication-title: Food Chem doi: 10.1016/j.foodchem.2012.01.085 – volume: 61 start-page: 1943 issue: 8 year: 2013 ident: 10.1016/j.foodchem.2020.127519_b0190 article-title: Genotypic Variation of the Glucosinolate Profile in Pak Choi (Brassica rapa ssp chinensis) publication-title: J Agric Food Chem doi: 10.1021/jf303970k – volume: 29 start-page: 1235 issue: 6 year: 1981 ident: 10.1016/j.foodchem.2020.127519_b0040 article-title: Glucosinolates in crucifer vegetables: Turnips and rutabagas publication-title: J Agric Food Chem doi: 10.1021/jf00108a034 – volume: 106 start-page: 1116 issue: 6 year: 2003 ident: 10.1016/j.foodchem.2020.127519_b0125 article-title: In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-002-1161-4 – volume: 123 start-page: 60 issue: 1 year: 2004 ident: 10.1016/j.foodchem.2020.127519_b0065 article-title: Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli publication-title: Plant Breeding doi: 10.1046/j.0179-9541.2003.00912.x – volume: 56 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.foodchem.2020.127519_b0060 article-title: The chemical diversity and distribution of glucosinolates and isothiocyanates among plants publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)00316-2 – volume: 69 start-page: 403 issue: 2 year: 2008 ident: 10.1016/j.foodchem.2020.127519_b0045 article-title: Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain publication-title: Phytochemistry doi: 10.1016/j.phytochem.2007.08.014 – volume: 3 start-page: 141 issue: 4 year: 2017 ident: 10.1016/j.foodchem.2020.127519_b0195 article-title: Glycerolipid Profiling of Yellow Sarson Seeds Using Ultra High Performance Liquid Chromatography Coupled to Triple Time-of-Flight Mass Spectrometry publication-title: Horticultural Plant Journal doi: 10.1016/j.hpj.2017.07.002 – volume: 172 start-page: 852 year: 2015 ident: 10.1016/j.foodchem.2020.127519_b0020 article-title: Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: Highlighting the potential for improving nutritional value of rocket crops publication-title: Food Chem doi: 10.1016/j.foodchem.2014.09.116 – volume: 22 start-page: 279 issue: 3 year: 2002 ident: 10.1016/j.foodchem.2020.127519_b0145 article-title: Biosynthesis and metabolic engineering of glucosinolates publication-title: Amino Acids doi: 10.1007/s007260200014 – volume: 47 start-page: 1541 issue: 4 year: 1999 ident: 10.1016/j.foodchem.2020.127519_b0120 article-title: Variation of glucosinolates in vegetable crops of Brassica oleracea publication-title: J Agric Food Chem doi: 10.1021/jf980985s – volume: 14 issue: 3 year: 2019 ident: 10.1016/j.foodchem.2020.127519_b0130 article-title: Transcriptome reveals the gene expression patterns of sulforaphane metabolism in broccoli florets publication-title: PLoS One doi: 10.1371/journal.pone.0213902 – volume: 127 start-page: 192 issue: 1 year: 2011 ident: 10.1016/j.foodchem.2020.127519_b0075 article-title: No de novo sulforaphane biosynthesis in broccoli seedlings publication-title: Food Chem doi: 10.1016/j.foodchem.2010.12.067 – volume: 129 start-page: 1080 issue: 3 year: 2011 ident: 10.1016/j.foodchem.2020.127519_b0090 article-title: Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts publication-title: Food Chem doi: 10.1016/j.foodchem.2011.05.078 – volume: 50 start-page: 902 issue: 5 year: 2007 ident: 10.1016/j.foodchem.2020.127519_b0100 article-title: Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis publication-title: Plant Journal doi: 10.1111/j.1365-313X.2007.03101.x – volume: 128 start-page: 2775 issue: 12 year: 2011 ident: 10.1016/j.foodchem.2020.127519_b0005 article-title: The natural chemopreventive phytochemical R-sulforaphane is a far more potent inducer of the carcinogen-detoxifying enzyme systems in rat liver and lung than the S-isomer publication-title: Int J Cancer doi: 10.1002/ijc.25620 – start-page: 107 year: 2004 ident: 10.1016/j.foodchem.2020.127519_b0165 – volume: 5 start-page: 3930 year: 2014 ident: 10.1016/j.foodchem.2020.127519_b0140 article-title: The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes publication-title: Nature Communications doi: 10.1038/ncomms4930 – volume: 64 start-page: 48 issue: 1 year: 2014 ident: 10.1016/j.foodchem.2020.127519_b0110 article-title: Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables publication-title: Breed Sci doi: 10.1270/jsbbs.64.48 – ident: 10.1016/j.foodchem.2020.127519_b0180 doi: 10.1096/fasebj.24.1_supplement.928.18 – volume: 128 start-page: 1431 issue: 7 year: 2015 ident: 10.1016/j.foodchem.2020.127519_b0030 article-title: Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-015-2517-x – volume: 33 start-page: 923 issue: 5 year: 2003 ident: 10.1016/j.foodchem.2020.127519_b0050 article-title: CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis publication-title: Plant Journal doi: 10.1046/j.1365-313X.2003.01679.x – volume: 11 start-page: 89 issue: 2 year: 2006 ident: 10.1016/j.foodchem.2020.127519_b0080 article-title: Glucosinolate metabolism and its control publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2005.12.006 – volume: 15 start-page: 283 issue: 5 year: 2010 ident: 10.1016/j.foodchem.2020.127519_b0160 article-title: Biosynthesis of glucosinolates – gene discovery and beyond publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2010.02.005 – volume: 120 start-page: 1069 issue: 6 year: 1995 ident: 10.1016/j.foodchem.2020.127519_b0105 article-title: Glucosinolates in Broccoli Stored under Controlled-Atmosphere publication-title: Journal of the American Society for Horticultural Science doi: 10.21273/JASHS.120.6.1069 – volume: 268 start-page: 249 year: 2018 ident: 10.1016/j.foodchem.2020.127519_b0025 article-title: Glucoraphanin and sulforaphane evolution during juice preparation from broccoli sprouts publication-title: Food Chem doi: 10.1016/j.foodchem.2018.06.089 – volume: 70 start-page: 588 issue: Pt 6 year: 2014 ident: 10.1016/j.foodchem.2020.127519_b0175 article-title: Preparation and X-ray analysis of potassium (2,3-dichlorophenyl)glucosinolate publication-title: Acta Crystallogr C Struct Chem doi: 10.1107/S2053229614009115 – volume: 66 start-page: 8036 issue: 30 year: 2018 ident: 10.1016/j.foodchem.2020.127519_b0170 article-title: Effects of Selenium Supplementation on Glucosinolate Biosynthesis in Broccoli publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.8b03396 – volume: 33 start-page: 480 issue: 2 year: 2015 ident: 10.1016/j.foodchem.2020.127519_b0010 article-title: A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer publication-title: Invest New Drugs doi: 10.1007/s10637-014-0189-z – volume: 68 start-page: 1043 issue: 3 year: 2003 ident: 10.1016/j.foodchem.2020.127519_b0015 article-title: Relating glucosinolate content and flavor of broccoli cultivars publication-title: J Food Sci doi: 10.1111/j.1365-2621.2003.tb08285.x – volume: 56 start-page: 7746 issue: 17 year: 2008 ident: 10.1016/j.foodchem.2020.127519_b0135 article-title: Application of high-speed countercurrent chromatography for the isolation of sulforaphane from broccoli seed meal publication-title: J Agric Food Chem doi: 10.1021/jf801318v – volume: 21 start-page: 1813 issue: 6 year: 2009 ident: 10.1016/j.foodchem.2020.127519_b0070 article-title: The Plastidic Bile Acid Transporter 5 Is Required for the Biosynthesis of Methionine-Derived Glucosinolates in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.109.066399 |
SSID | ssj0002018 |
Score | 2.5985904 |
Snippet | •UHPLC-Triple-TOF-MS method was demonstrated to be good for simultaneously detecting and quantifying glucosinolates.•Twelve glucosinolate compounds were... We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 127519 |
SubjectTerms | Broccoli florets food chemistry Genotype glucobrassicin gluconapin glucoraphanin Glucosinolate mutants Organs UHPLC-Triple-TOF-MS variance |
Title | Characterization of glucosinolates in 80 broccoli genotypes and different organs using UHPLC-Triple-TOF-MS method |
URI | https://dx.doi.org/10.1016/j.foodchem.2020.127519 https://www.proquest.com/docview/2428553815 https://www.proquest.com/docview/2524224778 |
Volume | 334 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9lAuqA8QS6EyEuLmbhLbWftYBVbLowtSd6XeLD9Rqiop3fTKb8eTxKVFiB64RnZkecYz4_E33yD01hSFcYBq1NJbwqiXRMSbEHE2GENzXZYMaofPluVizT5d8IstVKVaGIBVjrZ_sOm9tR6_TMfdnF7X9fQcmFYggVUA_aDoqT8Zm4GWn_z8DfOIDk4MLwmiT3fdqxK-PAlt6-LeQEV6AUQLMw6MO393UH-Y6t7_zPfQ0zFwxKfD2vbRlm8O0G6V-rUdoMn72nf4HR6ZPq_wMhHtx3Gp_nhziH5UdxzNQwkmbgMekOt1Ey-6MfbEdYNFhk10blFPagxErpCr3WDdOJx6qnS4bwm1wYCd_47Xi29fKrK6gcw9WX2dk7NzPPSnfobW8w-rakHGxgvEMsY6kjMvufWZ1DmN8UDumQaeslwzmhnLAw_UlMyHLBgdRGDWlbKU1LrMa7iB0Odou2kb_wJh4zJXSGEFDSb-W0tOTTz3ZSikcU7SCeJpt5UdWcmhOcaVSvCzS5WkpEBKapDSBE3v5l0PvByPzpBJmOqBhqnoPB6d-yZJX0WpwpuKbnx7u1ExwhE8Oo2c_2MMj6MKNpuJl_-xhiP0pAA8TZ_-eYW2u5tb_zoGRJ057jX-GO2cfvy8WP4CO9QLiw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOZQLKgXEQgEjAbd0E9vJxgcOaMtqS3cXpO5KvRk7tqtUVVK6qRAX_hR_kJkkLh9C9IB6jewo8pvMjO03bwh5aRgzFlmNWroiEtzJKIedUGQLbwxPdJYJrB2eL7LpSrw_To83yPdQC4O0yt73dz699db9k2G_msPzshweodIKHmAxlB-EwNYzKw_d1y-wb1u_OdgHkF8xNnm3HE-jvrVAVAghmigRTqaFi6VOOES8xAmNSlyJFjw2RepTz00mnI-90T73orCZzCQvbOw05tgc3nuL3BbgLrBtwt63n7wSiKh5d3WRt-drv5Qln-75urYABpbAM1R2GKUo8fP3iPhHbGgD3mSb3O0zVfq2W4x7ZMNVO2RrHBrE7ZDBfuka-pr20qJndBGU_WFcKHhe3yefx1ei0F3NJ6097ajyZQU7a0h2aVnRPKYGoikYZklRORYPh9dUV5aGJi4NbXtQrSmS9U_oavpxNo6WF3hVEC0_TKL5Ee0aYj8gqxuB4yHZrOrKPSLU2NgymRc59wberWXKDTiazDNprJV8QNKw2qroZdCxG8eZCny3UxVQUoiS6lAakOHVvPNOCOTaGTKAqX4zaQXR6tq5LwL6ClDFSxxdufpyrSClylMwuyT9x5gURjExGuWP_-MbnpOt6XI-U7ODxeETcochmac9e9olm83FpXsK2VhjnrXWT8mnm_7dfgD2I0dF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+glucosinolates+in+80+broccoli+genotypes+and+different+organs+using+UHPLC-Triple-TOF-MS+method&rft.jtitle=Food+chemistry&rft.au=Li%2C+Zhansheng&rft.au=Zheng%2C+Shuning&rft.au=Liu%2C+Yumei&rft.au=Fang%2C+Zhiyuan&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0308-8146&rft.eissn=1873-7072&rft.volume=334&rft_id=info:doi/10.1016%2Fj.foodchem.2020.127519&rft.externalDocID=S0308814620313819 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |