The utilization of copper and its role in the biosynthesis of copper-containing proteins in the fungus, Dactylium dendroides

Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complet...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 544; no. 1; pp. 163 - 179
Main Authors Shatzman, Allan R., Kosman, Daniel J.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.11.1978
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/0304-4165(78)90220-9

Cover

Abstract Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN −-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.
AbstractList Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.
Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN −-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.
Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.
Author Shatzman, Allan R.
Kosman, Daniel J.
Author_xml – sequence: 1
  givenname: Allan R.
  surname: Shatzman
  fullname: Shatzman, Allan R.
– sequence: 2
  givenname: Daniel J.
  surname: Kosman
  fullname: Kosman, Daniel J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/568946$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFTEQhoPUj9PqPyiYK6ngapLNpxdCqZ9Q8ML2OmSz2ePInuSYZIUj_fHu6dYKXrRzk4F53pnAc4gOYooBoWNKXlNC5RvSEt5wKsWJ0i8NYYw05gFaUa1YowmRB2h1izxBh6X8IHMJIx6jR0Jqw-UKXV18D3iqMMJvVyFFnAbs03YbMnaxx1ALzmkMGCKuM9lBKrs4dwXKP7TxKVYHEeIab3OqAWL5mximuJ7KK_ze-bobYdrgPsQ-J-hDeYoeDm4s4dnNe4QuP364OPvcnH_99OXs9LzxnPPaUM6E6wepNGd-0KKlRGrlvO5o4ET2bUeZYl4oIw1pDWPeq44oz03LAvGyPUIvlr3z535OoVS7geLDOLoY0lSsmg8wTdp7QS5aTpjebzy5E2RGCy65UmJGj2_QqduE3m4zbFze2cXAPObL2OdUSg7DLUCJ3Wu2e4d279Aqba81WzPH3v4X81CvDdbsYLwv_HwJDy5Zt85Q7OU3RmhLGJdKCDYT7xYizFp-Qci2eAjRhx5y8NX2Ce4-8QfxwsmA
CitedBy_id crossref_primary_10_1017_S0043174500081066
crossref_primary_10_1016_0003_2697_80_90437_6
crossref_primary_10_1016_S0176_1617_11_82069_9
crossref_primary_10_1081_PLN_100108836
crossref_primary_10_1016_S0044_328X_81_80004_9
crossref_primary_10_1016_0003_9861_79_90613_1
crossref_primary_10_1073_pnas_1422492112
crossref_primary_10_1111_j_1399_3054_1982_tb02289_x
crossref_primary_10_1016_0167_4838_83_90057_2
crossref_primary_10_1111_j_1399_3054_1985_tb08677_x
crossref_primary_10_3109_10408448409044213
crossref_primary_10_1017_S0022149X00009548
crossref_primary_10_1016_0163_7258_89_90068_5
crossref_primary_10_1099_mic_0_26177_0
crossref_primary_10_1016_0304_4165_88_90114_6
crossref_primary_10_1016_0891_5849_88_90111_6
crossref_primary_10_1111_j_1751_1097_1983_tb04540_x
crossref_primary_10_1016_j_bbamcr_2020_118822
crossref_primary_10_3109_10409238709083738
crossref_primary_10_1016_S0305_0491_96_00329_X
crossref_primary_10_1111_j_1399_3054_1988_tb06382_x
crossref_primary_10_1078_0176_1617_00507
crossref_primary_10_1016_0147_5975_86_90013_7
crossref_primary_10_3109_10715769109145863
crossref_primary_10_1134_S1021443713060113
crossref_primary_10_1128_jb_137_1_313_320_1979
Cites_doi 10.1016/0014-5793(73)80577-0
10.1016/S0021-9258(19)43969-0
10.1016/S0021-9258(19)42327-2
10.1016/S0021-9258(19)44219-1
10.1007/BF01899902
10.3891/acta.chem.scand.28b-0960
10.1016/0003-9861(75)90117-4
10.1111/j.1432-1033.1975.tb02380.x
10.1016/0003-9861(75)90503-2
10.1128/JB.117.2.456-460.1974
10.1042/bj0800649
10.1016/0006-291X(69)90786-4
10.1016/0006-291X(75)90563-X
10.1128/JB.114.2.543-548.1973
10.1128/JB.114.3.1193-1197.1973
10.1128/JB.130.1.455-463.1977
10.1016/S0021-9258(19)45228-9
10.1016/0005-2795(73)90267-5
10.1016/0003-9861(74)90271-9
10.1016/0006-291X(67)90078-2
10.1042/bj1341051
10.1016/S0021-9258(18)96691-3
10.1016/0304-4165(74)90037-3
10.1016/0003-9861(67)90498-5
10.1016/0003-9861(75)90502-0
10.1128/JB.86.5.1037-1040.1963
10.1007/978-1-4684-3270-1_45
10.1128/AEM.13.5.686-693.1965
10.1152/ajplegacy.1973.224.3.682
10.1016/S0021-9258(19)43735-6
10.1128/JB.108.3.1087-1096.1971
10.1016/0003-9861(75)90118-6
10.1016/0005-2795(73)90268-7
10.1016/S0021-9258(18)63504-5
10.1016/0014-5793(72)80070-X
10.1111/j.1432-1033.1974.tb03864.x
10.1016/0014-5793(71)80580-X
10.1016/0006-291X(70)90201-9
10.1016/0003-2697(71)90370-8
10.1016/S0021-9258(18)63159-X
10.1099/00221287-51-3-325
10.1016/S0021-9258(18)63158-8
10.1016/0003-9861(75)90116-2
ContentType Journal Article
Copyright 1978
Copyright_xml – notice: 1978
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1016/0304-4165(78)90220-9
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 179
ExternalDocumentID 9916235870507426
568946
10_1016_0304_4165_78_90220_9
US201302467552
0304416578902209
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
-~X
.55
.GJ
AAYJJ
ABJNI
ABWVN
ACRPL
ADNMO
AFFNX
AI.
AKRWK
F5P
FBQ
H~9
K-O
MVM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7S9
L.6
7X8
ID FETCH-LOGICAL-c444t-1425adf67842cf85310687ac8b1e406d3b1272c5796903922cc7b07c4932e0c63
ISSN 0304-4165
0006-3002
IngestDate Fri Jul 11 06:01:21 EDT 2025
Fri Jul 11 04:41:05 EDT 2025
Fri Jul 11 10:44:16 EDT 2025
Wed Feb 19 02:35:00 EST 2025
Thu Apr 24 22:55:27 EDT 2025
Tue Jul 01 03:49:20 EDT 2025
Thu Apr 03 09:40:40 EDT 2025
Fri Feb 23 02:29:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-1425adf67842cf85310687ac8b1e406d3b1272c5796903922cc7b07c4932e0c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 568946
PQID 2985464775
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_74252803
proquest_miscellaneous_45340286
proquest_miscellaneous_2985464775
pubmed_primary_568946
crossref_primary_10_1016_0304_4165_78_90220_9
crossref_citationtrail_10_1016_0304_4165_78_90220_9
fao_agris_US201302467552
elsevier_sciencedirect_doi_10_1016_0304_4165_78_90220_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1978-11-15
PublicationDateYYYYMMDD 1978-11-15
PublicationDate_xml – month: 11
  year: 1978
  text: 1978-11-15
  day: 15
PublicationDecade 1970
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 1978
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Garrick, Dembure, Garrick (BIB46) 1975; 58
Keyhani, Chance (BIB5) 1971; 17
Johnson, Cohen, Rajagopolan (BIB37) 1974; 5046–5055
Neifakh, Monakhov, Shaposhnikov, Zubzhitski (BIB30) 1969; 15.4
Holtzman, Gaumnitz (BIB31) 1970; 245
Gancedo, Gancedo, Asensio (BIB12) 1967; 119
Light (BIB3) 1972; 19
Evans, Majors, Cornatzer (BIB29) 1970; 41
Riordan, Gower (BIB7) 1975; 66
Johnson, Waud, Cohen, Rajagopolan (BIB38) 1974; 249
Giorgio, Cartwright, Wintrobe (BIB1) 1963; 86
Gregory, Goscin, Fridovich (BIB42) 1974; 117
Silver, Kralovic (BIB27) 1969; 34
Schwab (BIB26) 1973; 35
Marceau, Aspin (BIB50) 1973; 328
Keyhani, Keyhani (BIB2) 1975; 167
Lambowitz, Skayman (BIB34) 1971; 108
Nagatani, Brill (BIB36) 1974; 362
Premakumar, Winge, Wiley, Rajapolan (BIB10) 1975; 170
Weisiger, Fridovich (BIB20) 1973; 248
Beauchamp, Fridovich (BIB19) 1971; 44
Keyhani, Keyhani (BIB23) 1975; 167
Weisiger, Fridovich (BIB40) 1973; 248
Downie, Garland (BIB33) 1973; 134
Markus, Miller, Avaigad (BIB15) 1965; 13
Duncan, Mackler (BIB22) 1966; 241
Evans, Wolenetz, Grace (BIB6) 1975
Werner, Schwab, Neupert (BIB35) 1974; 44
Winge, Premakumar, Wiley, Rajagopolan (BIB8) 1975; 170
Gregory, Fridovich (BIB41) 1973; 114
Fridovich (BIB13) 1974; 41
Premakumar, Winge, Wiley, Rajagopolan (BIB9) 1975; 170
Misra, Fridovich (BIB17) 1972; 247
Terao, Owen (BIB48) 1973; 224
Marceau, Aspin (BIB49) 1973; 293
Frieden, Osaki, Kobayashi (BIB45) 1965
Palmiter, Schmike (BIB47) 1973; 248
Webb (BIB24) 1968; 51
McCord, Fridovich (BIB18) 1969; 244
Vallee (BIB25) 1976; 1
Shatzman, Kosman (BIB14) 1977; 130
Wohlrab, Jacobs (BIB4) 1967; 28
Harris (BIB11) 1976; 73
Pennington (BIB21) 1961; 80
McCord (BIB39) 1976; 74
Kosman, Ettinger, Weiner, Massaro (BIB16) 1974; 165
Lehninger, Carafoli, Rossi (BIB28) 1967; 24
Holtzman, Gaumnitz (BIB32) 1970; 245
Ehrenberg, Fedorcsak, Harms-Ringdahl, Nuslund (BIB44) 1974; 28
Gregory, Fridovich (BIB43) 1973; 114
Gancedo (10.1016/0304-4165(78)90220-9_BIB12) 1967; 119
Keyhani (10.1016/0304-4165(78)90220-9_BIB2) 1975; 167
Riordan (10.1016/0304-4165(78)90220-9_BIB7) 1975; 66
Weisiger (10.1016/0304-4165(78)90220-9_BIB20) 1973; 248
Lambowitz (10.1016/0304-4165(78)90220-9_BIB34) 1971; 108
Gregory (10.1016/0304-4165(78)90220-9_BIB43) 1973; 114
Markus (10.1016/0304-4165(78)90220-9_BIB15) 1965; 13
Weisiger (10.1016/0304-4165(78)90220-9_BIB40) 1973; 248
Johnson (10.1016/0304-4165(78)90220-9_BIB37) 1974; 5046–5055
Downie (10.1016/0304-4165(78)90220-9_BIB33) 1973; 134
Silver (10.1016/0304-4165(78)90220-9_BIB27) 1969; 34
Misra (10.1016/0304-4165(78)90220-9_BIB17) 1972; 247
Werner (10.1016/0304-4165(78)90220-9_BIB35) 1974; 44
Nagatani (10.1016/0304-4165(78)90220-9_BIB36) 1974; 362
Holtzman (10.1016/0304-4165(78)90220-9_BIB32) 1970; 245
Light (10.1016/0304-4165(78)90220-9_BIB3) 1972; 19
Giorgio (10.1016/0304-4165(78)90220-9_BIB1) 1963; 86
Garrick (10.1016/0304-4165(78)90220-9_BIB46) 1975; 58
Palmiter (10.1016/0304-4165(78)90220-9_BIB47) 1973; 248
Harris (10.1016/0304-4165(78)90220-9_BIB11) 1976; 73
Beauchamp (10.1016/0304-4165(78)90220-9_BIB19) 1971; 44
Johnson (10.1016/0304-4165(78)90220-9_BIB38) 1974; 249
Premakumar (10.1016/0304-4165(78)90220-9_BIB9) 1975; 170
McCord (10.1016/0304-4165(78)90220-9_BIB39) 1976; 74
McCord (10.1016/0304-4165(78)90220-9_BIB18) 1969; 244
Lehninger (10.1016/0304-4165(78)90220-9_BIB28) 1967; 24
Shatzman (10.1016/0304-4165(78)90220-9_BIB14) 1977; 130
Gregory (10.1016/0304-4165(78)90220-9_BIB42) 1974; 117
Pennington (10.1016/0304-4165(78)90220-9_BIB21) 1961; 80
Vallee (10.1016/0304-4165(78)90220-9_BIB25) 1976; 1
Evans (10.1016/0304-4165(78)90220-9_BIB6) 1975
Frieden (10.1016/0304-4165(78)90220-9_BIB45) 1965
Terao (10.1016/0304-4165(78)90220-9_BIB48) 1973; 224
Marceau (10.1016/0304-4165(78)90220-9_BIB50) 1973; 328
Duncan (10.1016/0304-4165(78)90220-9_BIB22) 1966; 241
Holtzman (10.1016/0304-4165(78)90220-9_BIB31) 1970; 245
Fridovich (10.1016/0304-4165(78)90220-9_BIB13) 1974; 41
Winge (10.1016/0304-4165(78)90220-9_BIB8) 1975; 170
Keyhani (10.1016/0304-4165(78)90220-9_BIB23) 1975; 167
Marceau (10.1016/0304-4165(78)90220-9_BIB49) 1973; 293
Keyhani (10.1016/0304-4165(78)90220-9_BIB5) 1971; 17
Neifakh (10.1016/0304-4165(78)90220-9_BIB30) 1969; 15.4
Webb (10.1016/0304-4165(78)90220-9_BIB24) 1968; 51
Gregory (10.1016/0304-4165(78)90220-9_BIB41) 1973; 114
Premakumar (10.1016/0304-4165(78)90220-9_BIB10) 1975; 170
Evans (10.1016/0304-4165(78)90220-9_BIB29) 1970; 41
Wohlrab (10.1016/0304-4165(78)90220-9_BIB4) 1967; 28
Ehrenberg (10.1016/0304-4165(78)90220-9_BIB44) 1974; 28
Schwab (10.1016/0304-4165(78)90220-9_BIB26) 1973; 35
Kosman (10.1016/0304-4165(78)90220-9_BIB16) 1974; 165
References_xml – volume: 117
  start-page: 456
  year: 1974
  end-page: 460
  ident: BIB42
  publication-title: J. Bacteriol.
– volume: 244
  start-page: 6049
  year: 1969
  end-page: 6055
  ident: BIB18
  publication-title: J. Biol. Chem.
– volume: 134
  start-page: 1051
  year: 1973
  end-page: 1061
  ident: BIB33
  publication-title: Biochem. J.
– volume: 28
  start-page: 991
  year: 1967
  end-page: 1002
  ident: BIB4
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 362
  start-page: 160
  year: 1974
  end-page: 166
  ident: BIB36
  publication-title: Biochim. Biophys. Acta
– volume: 328
  start-page: 351
  year: 1973
  end-page: 358
  ident: BIB50
  publication-title: Biochim. Biophys. Acta
– volume: 17
  start-page: 127
  year: 1971
  end-page: 132
  ident: BIB5
  publication-title: FEBS Lett.
– volume: 170
  start-page: 253
  year: 1975
  end-page: 266
  ident: BIB8
  publication-title: Arch. Biochem. Biophys.
– volume: 58
  start-page: 339
  year: 1975
  end-page: 350
  ident: BIB46
  publication-title: Eur. J. Biochem.
– volume: 24
  start-page: 259
  year: 1967
  end-page: 320
  ident: BIB28
  publication-title: Adv. Enzymol.
– volume: 119
  start-page: 588
  year: 1967
  end-page: 590
  ident: BIB12
  publication-title: Arch. Biochem. Biophys.
– volume: 165
  start-page: 456
  year: 1974
  end-page: 467
  ident: BIB16
  publication-title: Arch. Biochem. Biophys.
– volume: 28
  start-page: 960
  year: 1974
  end-page: 962
  ident: BIB44
  publication-title: Acta Chem. Scand. B
– volume: 245
  start-page: 2350
  year: 1970
  end-page: 2353
  ident: BIB31
  publication-title: J. Biol. Chem.
– start-page: 261
  year: 1975
  end-page: 269
  ident: BIB6
  publication-title: Nutrition Reports International
– volume: 241
  start-page: 1694
  year: 1966
  end-page: 1697
  ident: BIB22
  publication-title: J. Biol. Chem.
– volume: 74
  start-page: 540
  year: 1976
  end-page: 550
  ident: BIB39
  publication-title: Adv. Exp. Med. Biol.
– volume: 248
  start-page: 1502
  year: 1973
  end-page: 1512
  ident: BIB47
  publication-title: J. Biol. Chem.
– volume: 170
  start-page: 278
  year: 1975
  end-page: 288
  ident: BIB9
  publication-title: Arch. Biochem. Biophys.
– volume: 114
  start-page: 1193
  year: 1973
  end-page: 1197
  ident: BIB43
  publication-title: J. Bacteriol.
– volume: 15.4
  start-page: 337
  year: 1969
  end-page: 348
  ident: BIB30
  publication-title: Experientia
– volume: 249
  start-page: 5056
  year: 1974
  end-page: 5061
  ident: BIB38
  publication-title: J. Biol. Chem.
– volume: 224
  start-page: 682
  year: 1973
  end-page: 686
  ident: BIB48
  publication-title: Am. J. Physiol.
– volume: 86
  start-page: 1032
  year: 1963
  end-page: 1040
  ident: BIB1
  publication-title: J. Bacteriol.
– volume: 44
  start-page: 276
  year: 1971
  end-page: 287
  ident: BIB19
  publication-title: Anal. Biochem.
– volume: 293
  start-page: 338
  year: 1973
  end-page: 350
  ident: BIB49
  publication-title: Biochim. Biophys. Acta
– volume: 44
  start-page: 607
  year: 1974
  end-page: 617
  ident: BIB35
  publication-title: Eur. J. Biochem.
– volume: 35
  start-page: 63
  year: 1973
  end-page: 66
  ident: BIB26
  publication-title: FEBS Lett.
– volume: 167
  start-page: 596
  year: 1975
  end-page: 602
  ident: BIB2
  publication-title: Arch. Biochem. Biophys.
– volume: 13
  start-page: 686
  year: 1965
  end-page: 693
  ident: BIB15
  publication-title: Appl. Microbiol.
– volume: 73
  start-page: 371
  year: 1976
  end-page: 374
  ident: BIB11
  publication-title: Proc. Natl. Acad. Sci. U.S.
– volume: 34
  start-page: 640
  year: 1969
  end-page: 645
  ident: BIB27
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 248
  start-page: 3582
  year: 1973
  end-page: 3592
  ident: BIB20
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 35
  year: 1974
  end-page: 97
  ident: BIB13
  publication-title: Adv. Enzymol.
– volume: 80
  start-page: 649
  year: 1961
  end-page: 655
  ident: BIB21
  publication-title: Biochem. J.
– volume: 167
  start-page: 588
  year: 1975
  end-page: 595
  ident: BIB23
  publication-title: Arch. Biochem. Biophys.
– volume: 51
  start-page: 325
  year: 1968
  end-page: 335
  ident: BIB24
  publication-title: J. Gen. Microbiol.
– volume: 247
  start-page: 3170
  year: 1972
  end-page: 3175
  ident: BIB17
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 88
  year: 1976
  end-page: 91
  ident: BIB25
  publication-title: Trends Biochem. Sci.
– volume: 108
  start-page: 1087
  year: 1971
  end-page: 1096
  ident: BIB34
  publication-title: J. Bacteriol.
– start-page: 213
  year: 1965
  end-page: 248
  ident: BIB45
  publication-title: Oxygen—Proceedings of a Symposium
– volume: 19
  start-page: 319
  year: 1972
  end-page: 322
  ident: BIB3
  publication-title: FEBS Lett.
– volume: 130
  start-page: 455
  year: 1977
  end-page: 463
  ident: BIB14
  publication-title: J. Bacteriol.
– volume: 66
  start-page: 678
  year: 1975
  end-page: 686
  ident: BIB7
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 248
  start-page: 4793
  year: 1973
  end-page: 4796
  ident: BIB40
  publication-title: J. Biol. Chem.
– volume: 114
  start-page: 543
  year: 1973
  end-page: 548
  ident: BIB41
  publication-title: J. Bacteriol.
– volume: 245
  start-page: 2354
  year: 1970
  end-page: 2358
  ident: BIB32
  publication-title: J. Biol. Chem.
– volume: 5046–5055
  year: 1974
  ident: BIB37
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 1120
  year: 1970
  end-page: 1125
  ident: BIB29
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 170
  start-page: 267
  year: 1975
  end-page: 277
  ident: BIB10
  publication-title: Arch. Biochem. Biophys.
– volume: 35
  start-page: 63
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB26
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(73)80577-0
– volume: 248
  start-page: 3582
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB20
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)43969-0
– volume: 249
  start-page: 5056
  year: 1974
  ident: 10.1016/0304-4165(78)90220-9_BIB38
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)42327-2
– volume: 248
  start-page: 1502
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB47
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)44219-1
– volume: 15.4
  start-page: 337
  year: 1969
  ident: 10.1016/0304-4165(78)90220-9_BIB30
  publication-title: Experientia
  doi: 10.1007/BF01899902
– volume: 28
  start-page: 960
  year: 1974
  ident: 10.1016/0304-4165(78)90220-9_BIB44
  publication-title: Acta Chem. Scand. B
  doi: 10.3891/acta.chem.scand.28b-0960
– volume: 170
  start-page: 267
  year: 1975
  ident: 10.1016/0304-4165(78)90220-9_BIB10
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(75)90117-4
– volume: 73
  start-page: 371
  year: 1976
  ident: 10.1016/0304-4165(78)90220-9_BIB11
– volume: 1
  start-page: 88
  year: 1976
  ident: 10.1016/0304-4165(78)90220-9_BIB25
  publication-title: Trends Biochem. Sci.
– volume: 58
  start-page: 339
  year: 1975
  ident: 10.1016/0304-4165(78)90220-9_BIB46
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1975.tb02380.x
– volume: 167
  start-page: 596
  year: 1975
  ident: 10.1016/0304-4165(78)90220-9_BIB2
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(75)90503-2
– volume: 117
  start-page: 456
  year: 1974
  ident: 10.1016/0304-4165(78)90220-9_BIB42
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.117.2.456-460.1974
– volume: 80
  start-page: 649
  year: 1961
  ident: 10.1016/0304-4165(78)90220-9_BIB21
  publication-title: Biochem. J.
  doi: 10.1042/bj0800649
– volume: 34
  start-page: 640
  year: 1969
  ident: 10.1016/0304-4165(78)90220-9_BIB27
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(69)90786-4
– volume: 66
  start-page: 678
  year: 1975
  ident: 10.1016/0304-4165(78)90220-9_BIB7
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(75)90563-X
– volume: 114
  start-page: 543
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB41
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.114.2.543-548.1973
– volume: 114
  start-page: 1193
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB43
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.114.3.1193-1197.1973
– volume: 5046–5055
  year: 1974
  ident: 10.1016/0304-4165(78)90220-9_BIB37
  publication-title: J. Biol. Chem.
– volume: 130
  start-page: 455
  year: 1977
  ident: 10.1016/0304-4165(78)90220-9_BIB14
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.130.1.455-463.1977
– volume: 247
  start-page: 3170
  year: 1972
  ident: 10.1016/0304-4165(78)90220-9_BIB17
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)45228-9
– volume: 24
  start-page: 259
  year: 1967
  ident: 10.1016/0304-4165(78)90220-9_BIB28
  publication-title: Adv. Enzymol.
– volume: 293
  start-page: 338
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB49
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2795(73)90267-5
– volume: 165
  start-page: 456
  year: 1974
  ident: 10.1016/0304-4165(78)90220-9_BIB16
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(74)90271-9
– volume: 28
  start-page: 991
  year: 1967
  ident: 10.1016/0304-4165(78)90220-9_BIB4
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(67)90078-2
– volume: 134
  start-page: 1051
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB33
  publication-title: Biochem. J.
  doi: 10.1042/bj1341051
– volume: 241
  start-page: 1694
  year: 1966
  ident: 10.1016/0304-4165(78)90220-9_BIB22
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96691-3
– volume: 362
  start-page: 160
  year: 1974
  ident: 10.1016/0304-4165(78)90220-9_BIB36
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4165(74)90037-3
– volume: 119
  start-page: 588
  year: 1967
  ident: 10.1016/0304-4165(78)90220-9_BIB12
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(67)90498-5
– start-page: 261
  year: 1975
  ident: 10.1016/0304-4165(78)90220-9_BIB6
  publication-title: Nutrition Reports International
– volume: 167
  start-page: 588
  year: 1975
  ident: 10.1016/0304-4165(78)90220-9_BIB23
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(75)90502-0
– volume: 86
  start-page: 1032
  year: 1963
  ident: 10.1016/0304-4165(78)90220-9_BIB1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.86.5.1037-1040.1963
– volume: 74
  start-page: 540
  year: 1976
  ident: 10.1016/0304-4165(78)90220-9_BIB39
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4684-3270-1_45
– volume: 13
  start-page: 686
  year: 1965
  ident: 10.1016/0304-4165(78)90220-9_BIB15
  publication-title: Appl. Microbiol.
  doi: 10.1128/AEM.13.5.686-693.1965
– volume: 224
  start-page: 682
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB48
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1973.224.3.682
– volume: 248
  start-page: 4793
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB40
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)43735-6
– volume: 108
  start-page: 1087
  year: 1971
  ident: 10.1016/0304-4165(78)90220-9_BIB34
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.108.3.1087-1096.1971
– volume: 170
  start-page: 278
  year: 1975
  ident: 10.1016/0304-4165(78)90220-9_BIB9
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(75)90118-6
– volume: 328
  start-page: 351
  year: 1973
  ident: 10.1016/0304-4165(78)90220-9_BIB50
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2795(73)90268-7
– volume: 244
  start-page: 6049
  year: 1969
  ident: 10.1016/0304-4165(78)90220-9_BIB18
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)63504-5
– volume: 19
  start-page: 319
  year: 1972
  ident: 10.1016/0304-4165(78)90220-9_BIB3
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(72)80070-X
– volume: 44
  start-page: 607
  year: 1974
  ident: 10.1016/0304-4165(78)90220-9_BIB35
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1974.tb03864.x
– volume: 17
  start-page: 127
  year: 1971
  ident: 10.1016/0304-4165(78)90220-9_BIB5
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(71)80580-X
– volume: 41
  start-page: 1120
  year: 1970
  ident: 10.1016/0304-4165(78)90220-9_BIB29
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(70)90201-9
– volume: 44
  start-page: 276
  year: 1971
  ident: 10.1016/0304-4165(78)90220-9_BIB19
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(71)90370-8
– volume: 245
  start-page: 2354
  year: 1970
  ident: 10.1016/0304-4165(78)90220-9_BIB32
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)63159-X
– volume: 51
  start-page: 325
  year: 1968
  ident: 10.1016/0304-4165(78)90220-9_BIB24
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-51-3-325
– volume: 41
  start-page: 35
  year: 1974
  ident: 10.1016/0304-4165(78)90220-9_BIB13
  publication-title: Adv. Enzymol.
– start-page: 213
  year: 1965
  ident: 10.1016/0304-4165(78)90220-9_BIB45
– volume: 245
  start-page: 2350
  year: 1970
  ident: 10.1016/0304-4165(78)90220-9_BIB31
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)63158-8
– volume: 170
  start-page: 253
  year: 1975
  ident: 10.1016/0304-4165(78)90220-9_BIB8
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(75)90116-2
SSID ssj0000595
ssj0025309
Score 1.3051144
Snippet Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells...
Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 163
SubjectTerms Biological Transport
biosynthesis
Copper
Copper - metabolism
Fungal Proteins
Fungal Proteins - biosynthesis
Galactose Oxidase
Galactose Oxidase - metabolism
Kinetics
metabolism
Metalloproteins
Metalloproteins - biosynthesis
Mitosporic Fungi
Mitosporic Fungi - metabolism
plant biochemistry
plant physiology
Superoxide Dismutase
Superoxide Dismutase - metabolism
Title The utilization of copper and its role in the biosynthesis of copper-containing proteins in the fungus, Dactylium dendroides
URI https://dx.doi.org/10.1016/0304-4165(78)90220-9
https://www.ncbi.nlm.nih.gov/pubmed/568946
https://www.proquest.com/docview/2985464775
https://www.proquest.com/docview/45340286
https://www.proquest.com/docview/74252803
Volume 544
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbY9gAviMvQwtVIIIFKRuL4kjxWY9NEx5BYK_pmJU6yRSpJ1aYPm_jxHMdO0gmqAi9RZdlJ2-_LufhcjNAbEudcMR64AYlyl0Zh7iZ5yuHFA11CMuqnSu9DfjnnpxP6ecqmfUOFprqkTg7VzR_rSv4HVRgDXHWV7D8g290UBuAz4AtXQBiuf40x3H5maylNivh8ni36kIBOHrSpjElRLa9L-GR7kNipOlndHBMxaJo2FCa1XK8ApXe5MnZ2rOrrWbH6MQA5lS6qIrW5h208uKjUVaFbDwyyWj_J7JjEuldHJ_gvruL6xu64DvtMxVG1tIOfbJAqNWV52vP0XVOH2UlWnUPn3ZKszLR2vEUhIyd9K9WMyvXNeTK_SXOzsaCDty7YjQxMbhG-1fqTgM8b9Rqsjdqff5Unk7MzOT6ejnfQHhFCR-73hqNv30edF84Cm_djv3BbT-nzj92T3onwvX3KJntlJ4-rzV5JY52MH6D71q3AQ8ORh-hOVj5Cd4_a0_weo5_AFbzGFVzl2BAAA1cwcAVrruCixIA8XufK2tSeK7jlSrvCcOUD7piCe6bso8nJ8fjo1LUnb7iKUlq7PkjyOM3BkKFE5WDR-R4PRazCxM_AAkyDxCeCKF3HHHlgYROlROIJRcEbyDzFgydot6zK7ABhIfIcRn2SeBkNAw76lCtw81XMopRHykFB-_9KZdvS69NRZrLNP9SoSI2KFKFsUJGRg9xu1dy0ZdkyX7TQSWtaGpNRAte2rDwApGV8CTpXTi5IE-kH64Ix4qDXLfwS0NSRtrjMqtVSkihkVJd4Mwe92jCHsoCCcc83zxCAgj48zkH7hlvdT2U8jCh_uvXez9C9_mV9jnbrxSp7AUZ0nby0r8UvB0TCtw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+utilization+of+copper+and+its+role+in+the+biosynthesis+of+copper+containing+proteins+in+the+fungus%2C+Dactylium+dendroides&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Shatzman%2C+A+R&rft.au=Kosman%2C+D+J&rft.date=1978-11-15&rft.issn=0006-3002&rft.volume=544&rft.issue=1&rft.spage=163&rft.epage=179&rft_id=info:doi/10.1016%2F0304-4165%2878%2990220-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon