The utilization of copper and its role in the biosynthesis of copper-containing proteins in the fungus, Dactylium dendroides
Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complet...
Saved in:
Published in | Biochimica et biophysica acta Vol. 544; no. 1; pp. 163 - 179 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.11.1978
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/0304-4165(78)90220-9 |
Cover
Abstract | Aspects of the utilization of copper by the fungus,
Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth.
The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN
−-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of
D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein. |
---|---|
AbstractList | Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein. Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN −-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein. Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, and extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (holoenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (less than 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 micrometer, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 micrometer medium copper, holoenzyme secretion is maintained throughout cell growth. The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN(-)-insensitive, manganese form of this enzyme. Cells grown at 10 micrometer copper show 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein. |
Author | Shatzman, Allan R. Kosman, Daniel J. |
Author_xml | – sequence: 1 givenname: Allan R. surname: Shatzman fullname: Shatzman, Allan R. – sequence: 2 givenname: Daniel J. surname: Kosman fullname: Kosman, Daniel J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/568946$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFTEQhoPUj9PqPyiYK6ngapLNpxdCqZ9Q8ML2OmSz2ePInuSYZIUj_fHu6dYKXrRzk4F53pnAc4gOYooBoWNKXlNC5RvSEt5wKsWJ0i8NYYw05gFaUa1YowmRB2h1izxBh6X8IHMJIx6jR0Jqw-UKXV18D3iqMMJvVyFFnAbs03YbMnaxx1ALzmkMGCKuM9lBKrs4dwXKP7TxKVYHEeIab3OqAWL5mximuJ7KK_ze-bobYdrgPsQ-J-hDeYoeDm4s4dnNe4QuP364OPvcnH_99OXs9LzxnPPaUM6E6wepNGd-0KKlRGrlvO5o4ET2bUeZYl4oIw1pDWPeq44oz03LAvGyPUIvlr3z535OoVS7geLDOLoY0lSsmg8wTdp7QS5aTpjebzy5E2RGCy65UmJGj2_QqduE3m4zbFze2cXAPObL2OdUSg7DLUCJ3Wu2e4d279Aqba81WzPH3v4X81CvDdbsYLwv_HwJDy5Zt85Q7OU3RmhLGJdKCDYT7xYizFp-Qci2eAjRhx5y8NX2Ce4-8QfxwsmA |
CitedBy_id | crossref_primary_10_1017_S0043174500081066 crossref_primary_10_1016_0003_2697_80_90437_6 crossref_primary_10_1016_S0176_1617_11_82069_9 crossref_primary_10_1081_PLN_100108836 crossref_primary_10_1016_S0044_328X_81_80004_9 crossref_primary_10_1016_0003_9861_79_90613_1 crossref_primary_10_1073_pnas_1422492112 crossref_primary_10_1111_j_1399_3054_1982_tb02289_x crossref_primary_10_1016_0167_4838_83_90057_2 crossref_primary_10_1111_j_1399_3054_1985_tb08677_x crossref_primary_10_3109_10408448409044213 crossref_primary_10_1017_S0022149X00009548 crossref_primary_10_1016_0163_7258_89_90068_5 crossref_primary_10_1099_mic_0_26177_0 crossref_primary_10_1016_0304_4165_88_90114_6 crossref_primary_10_1016_0891_5849_88_90111_6 crossref_primary_10_1111_j_1751_1097_1983_tb04540_x crossref_primary_10_1016_j_bbamcr_2020_118822 crossref_primary_10_3109_10409238709083738 crossref_primary_10_1016_S0305_0491_96_00329_X crossref_primary_10_1111_j_1399_3054_1988_tb06382_x crossref_primary_10_1078_0176_1617_00507 crossref_primary_10_1016_0147_5975_86_90013_7 crossref_primary_10_3109_10715769109145863 crossref_primary_10_1134_S1021443713060113 crossref_primary_10_1128_jb_137_1_313_320_1979 |
Cites_doi | 10.1016/0014-5793(73)80577-0 10.1016/S0021-9258(19)43969-0 10.1016/S0021-9258(19)42327-2 10.1016/S0021-9258(19)44219-1 10.1007/BF01899902 10.3891/acta.chem.scand.28b-0960 10.1016/0003-9861(75)90117-4 10.1111/j.1432-1033.1975.tb02380.x 10.1016/0003-9861(75)90503-2 10.1128/JB.117.2.456-460.1974 10.1042/bj0800649 10.1016/0006-291X(69)90786-4 10.1016/0006-291X(75)90563-X 10.1128/JB.114.2.543-548.1973 10.1128/JB.114.3.1193-1197.1973 10.1128/JB.130.1.455-463.1977 10.1016/S0021-9258(19)45228-9 10.1016/0005-2795(73)90267-5 10.1016/0003-9861(74)90271-9 10.1016/0006-291X(67)90078-2 10.1042/bj1341051 10.1016/S0021-9258(18)96691-3 10.1016/0304-4165(74)90037-3 10.1016/0003-9861(67)90498-5 10.1016/0003-9861(75)90502-0 10.1128/JB.86.5.1037-1040.1963 10.1007/978-1-4684-3270-1_45 10.1128/AEM.13.5.686-693.1965 10.1152/ajplegacy.1973.224.3.682 10.1016/S0021-9258(19)43735-6 10.1128/JB.108.3.1087-1096.1971 10.1016/0003-9861(75)90118-6 10.1016/0005-2795(73)90268-7 10.1016/S0021-9258(18)63504-5 10.1016/0014-5793(72)80070-X 10.1111/j.1432-1033.1974.tb03864.x 10.1016/0014-5793(71)80580-X 10.1016/0006-291X(70)90201-9 10.1016/0003-2697(71)90370-8 10.1016/S0021-9258(18)63159-X 10.1099/00221287-51-3-325 10.1016/S0021-9258(18)63158-8 10.1016/0003-9861(75)90116-2 |
ContentType | Journal Article |
Copyright | 1978 |
Copyright_xml | – notice: 1978 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1016/0304-4165(78)90220-9 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 179 |
ExternalDocumentID | 9916235870507426 568946 10_1016_0304_4165_78_90220_9 US201302467552 0304416578902209 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- -~X .55 .GJ AAYJJ ABJNI ABWVN ACRPL ADNMO AFFNX AI. AKRWK F5P FBQ H~9 K-O MVM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM AAHBH AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c444t-1425adf67842cf85310687ac8b1e406d3b1272c5796903922cc7b07c4932e0c63 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Fri Jul 11 06:01:21 EDT 2025 Fri Jul 11 04:41:05 EDT 2025 Fri Jul 11 10:44:16 EDT 2025 Wed Feb 19 02:35:00 EST 2025 Thu Apr 24 22:55:27 EDT 2025 Tue Jul 01 03:49:20 EDT 2025 Thu Apr 03 09:40:40 EDT 2025 Fri Feb 23 02:29:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c444t-1425adf67842cf85310687ac8b1e406d3b1272c5796903922cc7b07c4932e0c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 568946 |
PQID | 2985464775 |
PQPubID | 24069 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_74252803 proquest_miscellaneous_45340286 proquest_miscellaneous_2985464775 pubmed_primary_568946 crossref_primary_10_1016_0304_4165_78_90220_9 crossref_citationtrail_10_1016_0304_4165_78_90220_9 fao_agris_US201302467552 elsevier_sciencedirect_doi_10_1016_0304_4165_78_90220_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1978-11-15 |
PublicationDateYYYYMMDD | 1978-11-15 |
PublicationDate_xml | – month: 11 year: 1978 text: 1978-11-15 day: 15 |
PublicationDecade | 1970 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 1978 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Garrick, Dembure, Garrick (BIB46) 1975; 58 Keyhani, Chance (BIB5) 1971; 17 Johnson, Cohen, Rajagopolan (BIB37) 1974; 5046–5055 Neifakh, Monakhov, Shaposhnikov, Zubzhitski (BIB30) 1969; 15.4 Holtzman, Gaumnitz (BIB31) 1970; 245 Gancedo, Gancedo, Asensio (BIB12) 1967; 119 Light (BIB3) 1972; 19 Evans, Majors, Cornatzer (BIB29) 1970; 41 Riordan, Gower (BIB7) 1975; 66 Johnson, Waud, Cohen, Rajagopolan (BIB38) 1974; 249 Giorgio, Cartwright, Wintrobe (BIB1) 1963; 86 Gregory, Goscin, Fridovich (BIB42) 1974; 117 Silver, Kralovic (BIB27) 1969; 34 Schwab (BIB26) 1973; 35 Marceau, Aspin (BIB50) 1973; 328 Keyhani, Keyhani (BIB2) 1975; 167 Lambowitz, Skayman (BIB34) 1971; 108 Nagatani, Brill (BIB36) 1974; 362 Premakumar, Winge, Wiley, Rajapolan (BIB10) 1975; 170 Weisiger, Fridovich (BIB20) 1973; 248 Beauchamp, Fridovich (BIB19) 1971; 44 Keyhani, Keyhani (BIB23) 1975; 167 Weisiger, Fridovich (BIB40) 1973; 248 Downie, Garland (BIB33) 1973; 134 Markus, Miller, Avaigad (BIB15) 1965; 13 Duncan, Mackler (BIB22) 1966; 241 Evans, Wolenetz, Grace (BIB6) 1975 Werner, Schwab, Neupert (BIB35) 1974; 44 Winge, Premakumar, Wiley, Rajagopolan (BIB8) 1975; 170 Gregory, Fridovich (BIB41) 1973; 114 Fridovich (BIB13) 1974; 41 Premakumar, Winge, Wiley, Rajagopolan (BIB9) 1975; 170 Misra, Fridovich (BIB17) 1972; 247 Terao, Owen (BIB48) 1973; 224 Marceau, Aspin (BIB49) 1973; 293 Frieden, Osaki, Kobayashi (BIB45) 1965 Palmiter, Schmike (BIB47) 1973; 248 Webb (BIB24) 1968; 51 McCord, Fridovich (BIB18) 1969; 244 Vallee (BIB25) 1976; 1 Shatzman, Kosman (BIB14) 1977; 130 Wohlrab, Jacobs (BIB4) 1967; 28 Harris (BIB11) 1976; 73 Pennington (BIB21) 1961; 80 McCord (BIB39) 1976; 74 Kosman, Ettinger, Weiner, Massaro (BIB16) 1974; 165 Lehninger, Carafoli, Rossi (BIB28) 1967; 24 Holtzman, Gaumnitz (BIB32) 1970; 245 Ehrenberg, Fedorcsak, Harms-Ringdahl, Nuslund (BIB44) 1974; 28 Gregory, Fridovich (BIB43) 1973; 114 Gancedo (10.1016/0304-4165(78)90220-9_BIB12) 1967; 119 Keyhani (10.1016/0304-4165(78)90220-9_BIB2) 1975; 167 Riordan (10.1016/0304-4165(78)90220-9_BIB7) 1975; 66 Weisiger (10.1016/0304-4165(78)90220-9_BIB20) 1973; 248 Lambowitz (10.1016/0304-4165(78)90220-9_BIB34) 1971; 108 Gregory (10.1016/0304-4165(78)90220-9_BIB43) 1973; 114 Markus (10.1016/0304-4165(78)90220-9_BIB15) 1965; 13 Weisiger (10.1016/0304-4165(78)90220-9_BIB40) 1973; 248 Johnson (10.1016/0304-4165(78)90220-9_BIB37) 1974; 5046–5055 Downie (10.1016/0304-4165(78)90220-9_BIB33) 1973; 134 Silver (10.1016/0304-4165(78)90220-9_BIB27) 1969; 34 Misra (10.1016/0304-4165(78)90220-9_BIB17) 1972; 247 Werner (10.1016/0304-4165(78)90220-9_BIB35) 1974; 44 Nagatani (10.1016/0304-4165(78)90220-9_BIB36) 1974; 362 Holtzman (10.1016/0304-4165(78)90220-9_BIB32) 1970; 245 Light (10.1016/0304-4165(78)90220-9_BIB3) 1972; 19 Giorgio (10.1016/0304-4165(78)90220-9_BIB1) 1963; 86 Garrick (10.1016/0304-4165(78)90220-9_BIB46) 1975; 58 Palmiter (10.1016/0304-4165(78)90220-9_BIB47) 1973; 248 Harris (10.1016/0304-4165(78)90220-9_BIB11) 1976; 73 Beauchamp (10.1016/0304-4165(78)90220-9_BIB19) 1971; 44 Johnson (10.1016/0304-4165(78)90220-9_BIB38) 1974; 249 Premakumar (10.1016/0304-4165(78)90220-9_BIB9) 1975; 170 McCord (10.1016/0304-4165(78)90220-9_BIB39) 1976; 74 McCord (10.1016/0304-4165(78)90220-9_BIB18) 1969; 244 Lehninger (10.1016/0304-4165(78)90220-9_BIB28) 1967; 24 Shatzman (10.1016/0304-4165(78)90220-9_BIB14) 1977; 130 Gregory (10.1016/0304-4165(78)90220-9_BIB42) 1974; 117 Pennington (10.1016/0304-4165(78)90220-9_BIB21) 1961; 80 Vallee (10.1016/0304-4165(78)90220-9_BIB25) 1976; 1 Evans (10.1016/0304-4165(78)90220-9_BIB6) 1975 Frieden (10.1016/0304-4165(78)90220-9_BIB45) 1965 Terao (10.1016/0304-4165(78)90220-9_BIB48) 1973; 224 Marceau (10.1016/0304-4165(78)90220-9_BIB50) 1973; 328 Duncan (10.1016/0304-4165(78)90220-9_BIB22) 1966; 241 Holtzman (10.1016/0304-4165(78)90220-9_BIB31) 1970; 245 Fridovich (10.1016/0304-4165(78)90220-9_BIB13) 1974; 41 Winge (10.1016/0304-4165(78)90220-9_BIB8) 1975; 170 Keyhani (10.1016/0304-4165(78)90220-9_BIB23) 1975; 167 Marceau (10.1016/0304-4165(78)90220-9_BIB49) 1973; 293 Keyhani (10.1016/0304-4165(78)90220-9_BIB5) 1971; 17 Neifakh (10.1016/0304-4165(78)90220-9_BIB30) 1969; 15.4 Webb (10.1016/0304-4165(78)90220-9_BIB24) 1968; 51 Gregory (10.1016/0304-4165(78)90220-9_BIB41) 1973; 114 Premakumar (10.1016/0304-4165(78)90220-9_BIB10) 1975; 170 Evans (10.1016/0304-4165(78)90220-9_BIB29) 1970; 41 Wohlrab (10.1016/0304-4165(78)90220-9_BIB4) 1967; 28 Ehrenberg (10.1016/0304-4165(78)90220-9_BIB44) 1974; 28 Schwab (10.1016/0304-4165(78)90220-9_BIB26) 1973; 35 Kosman (10.1016/0304-4165(78)90220-9_BIB16) 1974; 165 |
References_xml | – volume: 117 start-page: 456 year: 1974 end-page: 460 ident: BIB42 publication-title: J. Bacteriol. – volume: 244 start-page: 6049 year: 1969 end-page: 6055 ident: BIB18 publication-title: J. Biol. Chem. – volume: 134 start-page: 1051 year: 1973 end-page: 1061 ident: BIB33 publication-title: Biochem. J. – volume: 28 start-page: 991 year: 1967 end-page: 1002 ident: BIB4 publication-title: Biochem. Biophys. Res. Commun. – volume: 362 start-page: 160 year: 1974 end-page: 166 ident: BIB36 publication-title: Biochim. Biophys. Acta – volume: 328 start-page: 351 year: 1973 end-page: 358 ident: BIB50 publication-title: Biochim. Biophys. Acta – volume: 17 start-page: 127 year: 1971 end-page: 132 ident: BIB5 publication-title: FEBS Lett. – volume: 170 start-page: 253 year: 1975 end-page: 266 ident: BIB8 publication-title: Arch. Biochem. Biophys. – volume: 58 start-page: 339 year: 1975 end-page: 350 ident: BIB46 publication-title: Eur. J. Biochem. – volume: 24 start-page: 259 year: 1967 end-page: 320 ident: BIB28 publication-title: Adv. Enzymol. – volume: 119 start-page: 588 year: 1967 end-page: 590 ident: BIB12 publication-title: Arch. Biochem. Biophys. – volume: 165 start-page: 456 year: 1974 end-page: 467 ident: BIB16 publication-title: Arch. Biochem. Biophys. – volume: 28 start-page: 960 year: 1974 end-page: 962 ident: BIB44 publication-title: Acta Chem. Scand. B – volume: 245 start-page: 2350 year: 1970 end-page: 2353 ident: BIB31 publication-title: J. Biol. Chem. – start-page: 261 year: 1975 end-page: 269 ident: BIB6 publication-title: Nutrition Reports International – volume: 241 start-page: 1694 year: 1966 end-page: 1697 ident: BIB22 publication-title: J. Biol. Chem. – volume: 74 start-page: 540 year: 1976 end-page: 550 ident: BIB39 publication-title: Adv. Exp. Med. Biol. – volume: 248 start-page: 1502 year: 1973 end-page: 1512 ident: BIB47 publication-title: J. Biol. Chem. – volume: 170 start-page: 278 year: 1975 end-page: 288 ident: BIB9 publication-title: Arch. Biochem. Biophys. – volume: 114 start-page: 1193 year: 1973 end-page: 1197 ident: BIB43 publication-title: J. Bacteriol. – volume: 15.4 start-page: 337 year: 1969 end-page: 348 ident: BIB30 publication-title: Experientia – volume: 249 start-page: 5056 year: 1974 end-page: 5061 ident: BIB38 publication-title: J. Biol. Chem. – volume: 224 start-page: 682 year: 1973 end-page: 686 ident: BIB48 publication-title: Am. J. Physiol. – volume: 86 start-page: 1032 year: 1963 end-page: 1040 ident: BIB1 publication-title: J. Bacteriol. – volume: 44 start-page: 276 year: 1971 end-page: 287 ident: BIB19 publication-title: Anal. Biochem. – volume: 293 start-page: 338 year: 1973 end-page: 350 ident: BIB49 publication-title: Biochim. Biophys. Acta – volume: 44 start-page: 607 year: 1974 end-page: 617 ident: BIB35 publication-title: Eur. J. Biochem. – volume: 35 start-page: 63 year: 1973 end-page: 66 ident: BIB26 publication-title: FEBS Lett. – volume: 167 start-page: 596 year: 1975 end-page: 602 ident: BIB2 publication-title: Arch. Biochem. Biophys. – volume: 13 start-page: 686 year: 1965 end-page: 693 ident: BIB15 publication-title: Appl. Microbiol. – volume: 73 start-page: 371 year: 1976 end-page: 374 ident: BIB11 publication-title: Proc. Natl. Acad. Sci. U.S. – volume: 34 start-page: 640 year: 1969 end-page: 645 ident: BIB27 publication-title: Biochem. Biophys. Res. Commun. – volume: 248 start-page: 3582 year: 1973 end-page: 3592 ident: BIB20 publication-title: J. Biol. Chem. – volume: 41 start-page: 35 year: 1974 end-page: 97 ident: BIB13 publication-title: Adv. Enzymol. – volume: 80 start-page: 649 year: 1961 end-page: 655 ident: BIB21 publication-title: Biochem. J. – volume: 167 start-page: 588 year: 1975 end-page: 595 ident: BIB23 publication-title: Arch. Biochem. Biophys. – volume: 51 start-page: 325 year: 1968 end-page: 335 ident: BIB24 publication-title: J. Gen. Microbiol. – volume: 247 start-page: 3170 year: 1972 end-page: 3175 ident: BIB17 publication-title: J. Biol. Chem. – volume: 1 start-page: 88 year: 1976 end-page: 91 ident: BIB25 publication-title: Trends Biochem. Sci. – volume: 108 start-page: 1087 year: 1971 end-page: 1096 ident: BIB34 publication-title: J. Bacteriol. – start-page: 213 year: 1965 end-page: 248 ident: BIB45 publication-title: Oxygen—Proceedings of a Symposium – volume: 19 start-page: 319 year: 1972 end-page: 322 ident: BIB3 publication-title: FEBS Lett. – volume: 130 start-page: 455 year: 1977 end-page: 463 ident: BIB14 publication-title: J. Bacteriol. – volume: 66 start-page: 678 year: 1975 end-page: 686 ident: BIB7 publication-title: Biochem. Biophys. Res. Commun. – volume: 248 start-page: 4793 year: 1973 end-page: 4796 ident: BIB40 publication-title: J. Biol. Chem. – volume: 114 start-page: 543 year: 1973 end-page: 548 ident: BIB41 publication-title: J. Bacteriol. – volume: 245 start-page: 2354 year: 1970 end-page: 2358 ident: BIB32 publication-title: J. Biol. Chem. – volume: 5046–5055 year: 1974 ident: BIB37 publication-title: J. Biol. Chem. – volume: 41 start-page: 1120 year: 1970 end-page: 1125 ident: BIB29 publication-title: Biochem. Biophys. Res. Commun. – volume: 170 start-page: 267 year: 1975 end-page: 277 ident: BIB10 publication-title: Arch. Biochem. Biophys. – volume: 35 start-page: 63 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB26 publication-title: FEBS Lett. doi: 10.1016/0014-5793(73)80577-0 – volume: 248 start-page: 3582 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB20 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)43969-0 – volume: 249 start-page: 5056 year: 1974 ident: 10.1016/0304-4165(78)90220-9_BIB38 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)42327-2 – volume: 248 start-page: 1502 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB47 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)44219-1 – volume: 15.4 start-page: 337 year: 1969 ident: 10.1016/0304-4165(78)90220-9_BIB30 publication-title: Experientia doi: 10.1007/BF01899902 – volume: 28 start-page: 960 year: 1974 ident: 10.1016/0304-4165(78)90220-9_BIB44 publication-title: Acta Chem. Scand. B doi: 10.3891/acta.chem.scand.28b-0960 – volume: 170 start-page: 267 year: 1975 ident: 10.1016/0304-4165(78)90220-9_BIB10 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(75)90117-4 – volume: 73 start-page: 371 year: 1976 ident: 10.1016/0304-4165(78)90220-9_BIB11 – volume: 1 start-page: 88 year: 1976 ident: 10.1016/0304-4165(78)90220-9_BIB25 publication-title: Trends Biochem. Sci. – volume: 58 start-page: 339 year: 1975 ident: 10.1016/0304-4165(78)90220-9_BIB46 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1975.tb02380.x – volume: 167 start-page: 596 year: 1975 ident: 10.1016/0304-4165(78)90220-9_BIB2 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(75)90503-2 – volume: 117 start-page: 456 year: 1974 ident: 10.1016/0304-4165(78)90220-9_BIB42 publication-title: J. Bacteriol. doi: 10.1128/JB.117.2.456-460.1974 – volume: 80 start-page: 649 year: 1961 ident: 10.1016/0304-4165(78)90220-9_BIB21 publication-title: Biochem. J. doi: 10.1042/bj0800649 – volume: 34 start-page: 640 year: 1969 ident: 10.1016/0304-4165(78)90220-9_BIB27 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(69)90786-4 – volume: 66 start-page: 678 year: 1975 ident: 10.1016/0304-4165(78)90220-9_BIB7 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(75)90563-X – volume: 114 start-page: 543 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB41 publication-title: J. Bacteriol. doi: 10.1128/JB.114.2.543-548.1973 – volume: 114 start-page: 1193 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB43 publication-title: J. Bacteriol. doi: 10.1128/JB.114.3.1193-1197.1973 – volume: 5046–5055 year: 1974 ident: 10.1016/0304-4165(78)90220-9_BIB37 publication-title: J. Biol. Chem. – volume: 130 start-page: 455 year: 1977 ident: 10.1016/0304-4165(78)90220-9_BIB14 publication-title: J. Bacteriol. doi: 10.1128/JB.130.1.455-463.1977 – volume: 247 start-page: 3170 year: 1972 ident: 10.1016/0304-4165(78)90220-9_BIB17 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)45228-9 – volume: 24 start-page: 259 year: 1967 ident: 10.1016/0304-4165(78)90220-9_BIB28 publication-title: Adv. Enzymol. – volume: 293 start-page: 338 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB49 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2795(73)90267-5 – volume: 165 start-page: 456 year: 1974 ident: 10.1016/0304-4165(78)90220-9_BIB16 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(74)90271-9 – volume: 28 start-page: 991 year: 1967 ident: 10.1016/0304-4165(78)90220-9_BIB4 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(67)90078-2 – volume: 134 start-page: 1051 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB33 publication-title: Biochem. J. doi: 10.1042/bj1341051 – volume: 241 start-page: 1694 year: 1966 ident: 10.1016/0304-4165(78)90220-9_BIB22 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96691-3 – volume: 362 start-page: 160 year: 1974 ident: 10.1016/0304-4165(78)90220-9_BIB36 publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4165(74)90037-3 – volume: 119 start-page: 588 year: 1967 ident: 10.1016/0304-4165(78)90220-9_BIB12 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(67)90498-5 – start-page: 261 year: 1975 ident: 10.1016/0304-4165(78)90220-9_BIB6 publication-title: Nutrition Reports International – volume: 167 start-page: 588 year: 1975 ident: 10.1016/0304-4165(78)90220-9_BIB23 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(75)90502-0 – volume: 86 start-page: 1032 year: 1963 ident: 10.1016/0304-4165(78)90220-9_BIB1 publication-title: J. Bacteriol. doi: 10.1128/JB.86.5.1037-1040.1963 – volume: 74 start-page: 540 year: 1976 ident: 10.1016/0304-4165(78)90220-9_BIB39 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4684-3270-1_45 – volume: 13 start-page: 686 year: 1965 ident: 10.1016/0304-4165(78)90220-9_BIB15 publication-title: Appl. Microbiol. doi: 10.1128/AEM.13.5.686-693.1965 – volume: 224 start-page: 682 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB48 publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1973.224.3.682 – volume: 248 start-page: 4793 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB40 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)43735-6 – volume: 108 start-page: 1087 year: 1971 ident: 10.1016/0304-4165(78)90220-9_BIB34 publication-title: J. Bacteriol. doi: 10.1128/JB.108.3.1087-1096.1971 – volume: 170 start-page: 278 year: 1975 ident: 10.1016/0304-4165(78)90220-9_BIB9 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(75)90118-6 – volume: 328 start-page: 351 year: 1973 ident: 10.1016/0304-4165(78)90220-9_BIB50 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2795(73)90268-7 – volume: 244 start-page: 6049 year: 1969 ident: 10.1016/0304-4165(78)90220-9_BIB18 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63504-5 – volume: 19 start-page: 319 year: 1972 ident: 10.1016/0304-4165(78)90220-9_BIB3 publication-title: FEBS Lett. doi: 10.1016/0014-5793(72)80070-X – volume: 44 start-page: 607 year: 1974 ident: 10.1016/0304-4165(78)90220-9_BIB35 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1974.tb03864.x – volume: 17 start-page: 127 year: 1971 ident: 10.1016/0304-4165(78)90220-9_BIB5 publication-title: FEBS Lett. doi: 10.1016/0014-5793(71)80580-X – volume: 41 start-page: 1120 year: 1970 ident: 10.1016/0304-4165(78)90220-9_BIB29 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(70)90201-9 – volume: 44 start-page: 276 year: 1971 ident: 10.1016/0304-4165(78)90220-9_BIB19 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(71)90370-8 – volume: 245 start-page: 2354 year: 1970 ident: 10.1016/0304-4165(78)90220-9_BIB32 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63159-X – volume: 51 start-page: 325 year: 1968 ident: 10.1016/0304-4165(78)90220-9_BIB24 publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-51-3-325 – volume: 41 start-page: 35 year: 1974 ident: 10.1016/0304-4165(78)90220-9_BIB13 publication-title: Adv. Enzymol. – start-page: 213 year: 1965 ident: 10.1016/0304-4165(78)90220-9_BIB45 – volume: 245 start-page: 2350 year: 1970 ident: 10.1016/0304-4165(78)90220-9_BIB31 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63158-8 – volume: 170 start-page: 253 year: 1975 ident: 10.1016/0304-4165(78)90220-9_BIB8 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(75)90116-2 |
SSID | ssj0000595 ssj0025309 |
Score | 1.3051144 |
Snippet | Aspects of the utilization of copper by the fungus,
Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells... Aspects of the utilization of copper by the fungus, Dactylium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 163 |
SubjectTerms | Biological Transport biosynthesis Copper Copper - metabolism Fungal Proteins Fungal Proteins - biosynthesis Galactose Oxidase Galactose Oxidase - metabolism Kinetics metabolism Metalloproteins Metalloproteins - biosynthesis Mitosporic Fungi Mitosporic Fungi - metabolism plant biochemistry plant physiology Superoxide Dismutase Superoxide Dismutase - metabolism |
Title | The utilization of copper and its role in the biosynthesis of copper-containing proteins in the fungus, Dactylium dendroides |
URI | https://dx.doi.org/10.1016/0304-4165(78)90220-9 https://www.ncbi.nlm.nih.gov/pubmed/568946 https://www.proquest.com/docview/2985464775 https://www.proquest.com/docview/45340286 https://www.proquest.com/docview/74252803 |
Volume | 544 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbY9gAviMvQwtVIIIFKRuL4kjxWY9NEx5BYK_pmJU6yRSpJ1aYPm_jxHMdO0gmqAi9RZdlJ2-_LufhcjNAbEudcMR64AYlyl0Zh7iZ5yuHFA11CMuqnSu9DfjnnpxP6ecqmfUOFprqkTg7VzR_rSv4HVRgDXHWV7D8g290UBuAz4AtXQBiuf40x3H5maylNivh8ni36kIBOHrSpjElRLa9L-GR7kNipOlndHBMxaJo2FCa1XK8ApXe5MnZ2rOrrWbH6MQA5lS6qIrW5h208uKjUVaFbDwyyWj_J7JjEuldHJ_gvruL6xu64DvtMxVG1tIOfbJAqNWV52vP0XVOH2UlWnUPn3ZKszLR2vEUhIyd9K9WMyvXNeTK_SXOzsaCDty7YjQxMbhG-1fqTgM8b9Rqsjdqff5Unk7MzOT6ejnfQHhFCR-73hqNv30edF84Cm_djv3BbT-nzj92T3onwvX3KJntlJ4-rzV5JY52MH6D71q3AQ8ORh-hOVj5Cd4_a0_weo5_AFbzGFVzl2BAAA1cwcAVrruCixIA8XufK2tSeK7jlSrvCcOUD7piCe6bso8nJ8fjo1LUnb7iKUlq7PkjyOM3BkKFE5WDR-R4PRazCxM_AAkyDxCeCKF3HHHlgYROlROIJRcEbyDzFgydot6zK7ABhIfIcRn2SeBkNAw76lCtw81XMopRHykFB-_9KZdvS69NRZrLNP9SoSI2KFKFsUJGRg9xu1dy0ZdkyX7TQSWtaGpNRAte2rDwApGV8CTpXTi5IE-kH64Ix4qDXLfwS0NSRtrjMqtVSkihkVJd4Mwe92jCHsoCCcc83zxCAgj48zkH7hlvdT2U8jCh_uvXez9C9_mV9jnbrxSp7AUZ0nby0r8UvB0TCtw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+utilization+of+copper+and+its+role+in+the+biosynthesis+of+copper+containing+proteins+in+the+fungus%2C+Dactylium+dendroides&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Shatzman%2C+A+R&rft.au=Kosman%2C+D+J&rft.date=1978-11-15&rft.issn=0006-3002&rft.volume=544&rft.issue=1&rft.spage=163&rft.epage=179&rft_id=info:doi/10.1016%2F0304-4165%2878%2990220-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |