Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions

► The Modified Metropolis algorithm (MMA) for sampling from complex PDFs is analyzed. ► An optimal scaling strategy for MMA is presented. ► A theoretical basis for the optimal value of the conditional probability in Subset Simulation is provided. ► A Bayesian post-processor for the original Subset S...

Full description

Saved in:
Bibliographic Details
Published inComputers & structures Vol. 92; pp. 283 - 296
Main Authors Zuev, Konstantin M., Beck, James L., Au, Siu-Kui, Katafygiotis, Lambros S.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► The Modified Metropolis algorithm (MMA) for sampling from complex PDFs is analyzed. ► An optimal scaling strategy for MMA is presented. ► A theoretical basis for the optimal value of the conditional probability in Subset Simulation is provided. ► A Bayesian post-processor for the original Subset Simulation method is developed. ► The relationship between Subset Simulation and its Bayesian post-processor is given. Estimation of small failure probabilities is one of the most important and challenging computational problems in reliability engineering. The failure probability is usually given by an integral over a high-dimensional uncertain parameter space that is difficult to evaluate numerically. This paper focuses on enhancements to Subset Simulation (SS), proposed by Au and Beck, which provides an efficient algorithm based on MCMC (Markov chain Monte Carlo) simulation for computing small failure probabilities for general high-dimensional reliability problems. First, we analyze the Modified Metropolis algorithm (MMA), an MCMC technique, which is used in SS for sampling from high-dimensional conditional distributions. The efficiency and accuracy of SS directly depends on the ergodic properties of the Markov chains generated by MMA, which control how fast the chain explores the parameter space. We present some observations on the optimal scaling of MMA for efficient exploration, and develop an optimal scaling strategy for this algorithm when it is employed within SS. Next, we provide a theoretical basis for the optimal value of the conditional failure probability p 0, an important parameter one has to choose when using SS. We demonstrate that choosing any p 0 ∈ [0.1, 0.3] will give similar efficiency as the optimal value of p 0. Finally, a Bayesian post-processor SS+ for the original SS method is developed where the uncertain failure probability that one is estimating is modeled as a stochastic variable whose possible values belong to the unit interval. Simulated samples from SS are viewed as informative data relevant to the system’s reliability. Instead of a single real number as an estimate, SS+ produces the posterior PDF of the failure probability, which takes into account both prior information and the information in the sampled data. This PDF quantifies the uncertainty in the value of the failure probability and it may be further used in risk analyses to incorporate this uncertainty. To demonstrate SS+, we consider its application to two different reliability problems: a linear reliability problem and reliability analysis of an elasto-plastic structure subjected to strong seismic ground motion. The relationship between the original SS and SS+ is also discussed.
AbstractList ► The Modified Metropolis algorithm (MMA) for sampling from complex PDFs is analyzed. ► An optimal scaling strategy for MMA is presented. ► A theoretical basis for the optimal value of the conditional probability in Subset Simulation is provided. ► A Bayesian post-processor for the original Subset Simulation method is developed. ► The relationship between Subset Simulation and its Bayesian post-processor is given. Estimation of small failure probabilities is one of the most important and challenging computational problems in reliability engineering. The failure probability is usually given by an integral over a high-dimensional uncertain parameter space that is difficult to evaluate numerically. This paper focuses on enhancements to Subset Simulation (SS), proposed by Au and Beck, which provides an efficient algorithm based on MCMC (Markov chain Monte Carlo) simulation for computing small failure probabilities for general high-dimensional reliability problems. First, we analyze the Modified Metropolis algorithm (MMA), an MCMC technique, which is used in SS for sampling from high-dimensional conditional distributions. The efficiency and accuracy of SS directly depends on the ergodic properties of the Markov chains generated by MMA, which control how fast the chain explores the parameter space. We present some observations on the optimal scaling of MMA for efficient exploration, and develop an optimal scaling strategy for this algorithm when it is employed within SS. Next, we provide a theoretical basis for the optimal value of the conditional failure probability p 0, an important parameter one has to choose when using SS. We demonstrate that choosing any p 0 ∈ [0.1, 0.3] will give similar efficiency as the optimal value of p 0. Finally, a Bayesian post-processor SS+ for the original SS method is developed where the uncertain failure probability that one is estimating is modeled as a stochastic variable whose possible values belong to the unit interval. Simulated samples from SS are viewed as informative data relevant to the system’s reliability. Instead of a single real number as an estimate, SS+ produces the posterior PDF of the failure probability, which takes into account both prior information and the information in the sampled data. This PDF quantifies the uncertainty in the value of the failure probability and it may be further used in risk analyses to incorporate this uncertainty. To demonstrate SS+, we consider its application to two different reliability problems: a linear reliability problem and reliability analysis of an elasto-plastic structure subjected to strong seismic ground motion. The relationship between the original SS and SS+ is also discussed.
Estimation of small failure probabilities is one of the most important and challenging computational problems in reliability engineering. The failure probability is usually given by an integral over a high-dimensional uncertain parameter space that is difficult to evaluate numerically. This paper focuses on enhancements to Subset Simulation (SS), proposed by Au and Beck, which provides an efficient algorithm based on MCMC (Markov chain Monte Carlo) simulation for computing small failure probabilities for general high-dimensional reliability problems. First, we analyze the Modified Metropolis algorithm (MMA), an MCMC technique, which is used in SS for sampling from high-dimensional conditional distributions. The efficiency and accuracy of SS directly depends on the ergodic properties of the Markov chains generated by MMA, which control how fast the chain explores the parameter space. We present some observations on the optimal scaling of MMA for efficient exploration, and develop an optimal scaling strategy for this algorithm when it is employed within SS. Next, we provide a theoretical basis for the optimal value of the conditional failure probability p0, an important parameter one has to choose when using SS. We demonstrate that choosing any p0 [isin] [0.1, 0.3] will give similar efficiency as the optimal value of p0. Finally, a Bayesian post-processor SS+ for the original SS method is developed where the uncertain failure probability that one is estimating is modeled as a stochastic variable whose possible values belong to the unit interval. Simulated samples from SS are viewed as informative data relevant to the system's reliability. Instead of a single real number as an estimate, SS+ produces the posterior PDF of the failure probability, which takes into account both prior information and the information in the sampled data. This PDF quantifies the uncertainty in the value of the failure probability and it may be further used in risk analyses to incorporate this uncertainty. To demonstrate SS+, we consider its application to two different reliability problems: a linear reliability problem and reliability analysis of an elasto-plastic structure subjected to strong seismic ground motion. The relationship between the original SS and SS+ is also discussed.
Author Au, Siu-Kui
Beck, James L.
Zuev, Konstantin M.
Katafygiotis, Lambros S.
Author_xml – sequence: 1
  givenname: Konstantin M.
  surname: Zuev
  fullname: Zuev, Konstantin M.
  email: zuev@caltech.edu
  organization: Division of Engineering and Applied Science, California Institute of Technology, Mail Code 104-44, Pasadena, CA 91125, USA
– sequence: 2
  givenname: James L.
  surname: Beck
  fullname: Beck, James L.
  email: jimbeck@caltech.edu
  organization: Division of Engineering and Applied Science, California Institute of Technology, Mail Code 104-44, Pasadena, CA 91125, USA
– sequence: 3
  givenname: Siu-Kui
  surname: Au
  fullname: Au, Siu-Kui
  email: siukuiau@cityu.edu.hk
  organization: Department of Building and Construction, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
– sequence: 4
  givenname: Lambros S.
  surname: Katafygiotis
  fullname: Katafygiotis, Lambros S.
  email: lambros@ust.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25424926$$DView record in Pascal Francis
BookMark eNqNkUFvVCEUhYmpidPqb5CNiZs3Ag-Gx8JFbbQ1aeKiuiYM79Jh8h6MXJ5J45-X6TRduNEVAb5zcu855-Qs5QSEvOVszRnffNivfZ4PWMvi14Jx3l7XjOsXZMUHbTohZH9GVoxJ1WkjzStyjrhnjG0kYyvy-5N7AIwu0UPG2h1K9oCYC3VppLnuoFBIO5c8zJAq0hzo3bJFqPQuzsvkasyJhsYD1ji3a7qnwcVpKUCb2dZt4xRrBKQx0V2839ExNidsMnxNXgY3Ibx5Oi_Ijy-fv1_ddLffrr9eXd52XkpZO94HPwipg-kVY4Pu5SgVA-25USrwbR8kl84Mzg9eG-a8MNorNXBuQCrR9xfk_cm3DfRzaYPaOaKHaXIJ8oK2xcgG0w-P6Lsn1KF3Uyht84j2UNpu5cEKJYU0YtM4feJ8yYgFwjPC2dFvY_f2uRZ7rOX40Wppyo9_KX2sjzHW0nL7D_3lSQ8tsV8RikUfofUzxgK-2jHHf3r8AaPJszk
CitedBy_id crossref_primary_10_20948_prepr_2019_3
crossref_primary_10_1007_s40314_020_01147_1
crossref_primary_10_1016_j_compstruc_2013_04_005
crossref_primary_10_1016_j_strusafe_2018_09_004
crossref_primary_10_1115_1_4063503
crossref_primary_10_1016_j_ndteint_2022_102626
crossref_primary_10_1016_j_strusafe_2020_102000
crossref_primary_10_1615_Int_J_UncertaintyQuantification_2022041624
crossref_primary_10_1007_s00158_019_02326_3
crossref_primary_10_1016_j_ress_2018_04_001
crossref_primary_10_1016_j_ymssp_2021_108762
crossref_primary_10_1061__ASCE_EM_1943_7889_0000839
crossref_primary_10_1155_2021_8836330
crossref_primary_10_1109_TPWRS_2014_2327753
crossref_primary_10_1016_j_compstruc_2020_106431
crossref_primary_10_1016_j_strusafe_2021_102128
crossref_primary_10_1016_j_strusafe_2023_102404
crossref_primary_10_1016_j_cma_2020_112965
crossref_primary_10_1016_j_probengmech_2022_103385
crossref_primary_10_1016_j_engappai_2021_104511
crossref_primary_10_1016_j_strusafe_2021_102134
crossref_primary_10_1016_j_strusafe_2024_102475
crossref_primary_10_1007_s40436_019_00252_7
crossref_primary_10_1063_1_4974898
crossref_primary_10_1016_j_probengmech_2023_103485
crossref_primary_10_1016_j_ymssp_2019_02_050
crossref_primary_10_1061__ASCE_ST_1943_541X_0002573
crossref_primary_10_1016_j_ress_2018_10_008
crossref_primary_10_1111_bmsp_12257
crossref_primary_10_3390_app13021036
crossref_primary_10_1016_j_ijfatigue_2023_107685
crossref_primary_10_1177_14759217241256395
crossref_primary_10_1007_s12206_022_0807_1
crossref_primary_10_1016_j_jcp_2017_04_012
crossref_primary_10_2514_1_G005786
crossref_primary_10_1080_10286608_2025_2467640
crossref_primary_10_1016_j_trgeo_2022_100868
crossref_primary_10_1007_s00158_023_03672_z
crossref_primary_10_1007_s00158_018_2176_z
crossref_primary_10_3390_e22080890
crossref_primary_10_1061_AJRUA6_0000841
crossref_primary_10_1177_1748006X19844666
crossref_primary_10_1007_s00158_016_1414_5
crossref_primary_10_1016_j_jcp_2016_04_042
crossref_primary_10_1016_j_compositesb_2013_09_025
crossref_primary_10_1016_j_compstruc_2023_107268
crossref_primary_10_1016_j_tws_2023_111138
crossref_primary_10_1080_17499518_2022_2046789
crossref_primary_10_1016_j_ress_2025_110947
crossref_primary_10_1016_j_strusafe_2016_06_002
crossref_primary_10_1016_j_strusafe_2015_10_002
crossref_primary_10_1177_09544062221099779
crossref_primary_10_1016_j_ymssp_2019_106289
crossref_primary_10_1007_s00158_022_03188_y
crossref_primary_10_1016_j_renene_2021_10_092
crossref_primary_10_1155_2020_3012471
crossref_primary_10_1016_j_cma_2024_117392
crossref_primary_10_1061__ASCE_NH_1527_6996_0000360
crossref_primary_10_1088_1742_6596_2647_19_192001
crossref_primary_10_1016_j_compstruc_2014_07_019
crossref_primary_10_1137_16M1090466
crossref_primary_10_1016_j_probengmech_2018_03_004
crossref_primary_10_1016_j_ress_2023_109513
crossref_primary_10_1016_j_ymssp_2024_111300
crossref_primary_10_1007_s10569_020_09981_5
crossref_primary_10_1016_j_ress_2022_108365
crossref_primary_10_1016_j_cma_2017_07_032
crossref_primary_10_3390_s20113197
crossref_primary_10_1007_s00158_021_03026_7
crossref_primary_10_1016_j_ress_2017_07_010
crossref_primary_10_1016_j_cma_2017_11_021
crossref_primary_10_1007_s00158_021_03023_w
crossref_primary_10_1016_j_probengmech_2024_103690
crossref_primary_10_1016_j_probengmech_2022_103293
crossref_primary_10_1016_j_engstruct_2013_03_051
crossref_primary_10_1016_j_engstruct_2017_05_063
crossref_primary_10_1177_14759217231152798
crossref_primary_10_1016_j_ress_2022_108634
crossref_primary_10_1016_j_oceaneng_2024_117040
crossref_primary_10_1016_j_ast_2022_107938
crossref_primary_10_1016_j_solener_2019_01_085
crossref_primary_10_1016_j_ymssp_2025_112547
crossref_primary_10_1016_j_cma_2015_01_012
crossref_primary_10_1016_j_ress_2019_03_002
crossref_primary_10_1177_1748006X20962258
crossref_primary_10_1016_j_probengmech_2015_02_004
crossref_primary_10_1016_j_strusafe_2021_102179
crossref_primary_10_1016_j_probengmech_2015_02_002
crossref_primary_10_3390_ma11020236
crossref_primary_10_1016_j_ijggc_2022_103613
crossref_primary_10_1016_j_enganabound_2016_10_010
crossref_primary_10_1016_j_ymssp_2022_109644
crossref_primary_10_1016_j_engappai_2024_109031
crossref_primary_10_1016_j_probengmech_2025_103729
crossref_primary_10_1016_j_strusafe_2018_04_003
crossref_primary_10_1016_j_ress_2014_05_006
crossref_primary_10_1016_j_strusafe_2017_08_001
crossref_primary_10_1016_j_compstruc_2013_01_008
crossref_primary_10_1016_j_enggeo_2020_105597
crossref_primary_10_1016_j_strusafe_2017_04_005
crossref_primary_10_1016_j_ymssp_2017_07_040
crossref_primary_10_1016_j_strusafe_2022_102268
crossref_primary_10_1016_j_ress_2017_11_010
crossref_primary_10_1109_TEMC_2016_2520205
crossref_primary_10_1016_j_cja_2019_12_032
crossref_primary_10_1016_j_ress_2023_109706
crossref_primary_10_1016_j_mechmachtheory_2020_104050
crossref_primary_10_3390_app12157479
crossref_primary_10_1016_j_probengmech_2015_06_006
crossref_primary_10_1016_j_ress_2022_108731
crossref_primary_10_1016_j_istruc_2024_106383
crossref_primary_10_1137_19M1308177
crossref_primary_10_1016_j_compstruc_2014_10_014
crossref_primary_10_1016_j_probengmech_2023_103479
crossref_primary_10_1016_j_ymssp_2016_02_024
crossref_primary_10_1016_j_ress_2014_05_012
crossref_primary_10_1016_j_compstruc_2016_11_012
crossref_primary_10_1137_22M1515240
crossref_primary_10_1016_j_strusafe_2023_102398
crossref_primary_10_1016_j_sandf_2017_11_006
crossref_primary_10_1016_j_ymssp_2020_106836
crossref_primary_10_3390_pr7040185
crossref_primary_10_1007_s00366_020_00961_9
crossref_primary_10_1016_j_ress_2016_12_005
crossref_primary_10_1016_j_apm_2023_03_041
crossref_primary_10_1061_AJRUA6_0000911
crossref_primary_10_1016_j_jcp_2019_04_071
crossref_primary_10_1016_j_ymssp_2019_106248
crossref_primary_10_1093_mnras_sty1832
crossref_primary_10_1016_j_asr_2014_09_003
crossref_primary_10_1016_j_ress_2021_107973
crossref_primary_10_1016_j_ress_2023_109794
crossref_primary_10_1016_j_ress_2016_01_003
crossref_primary_10_1016_j_strusafe_2014_08_001
crossref_primary_10_1016_j_jcp_2022_110986
Cites_doi 10.1098/rstl.1763.0053
10.1201/9781482276633
10.1214/aos/1176325750
10.12989/sem.2009.32.1.001
10.1002/stc.424
10.1080/03610929108830755
10.1063/1.1699114
10.12989/sem.2007.25.3.347
10.1016/j.probengmech.2004.05.001
10.1111/1467-9868.00123
10.1016/j.compstruc.2004.11.015
10.1214/aoms/1177730944
10.1093/biomet/57.1.97
10.1016/j.strusafe.2006.07.003
10.1016/j.cma.2004.05.028
10.1016/j.strusafe.2006.07.008
10.1016/j.probengmech.2010.11.004
10.1103/PhysRev.106.620
10.1002/cjs.5550360401
10.1016/j.probengmech.2007.12.026
10.1016/j.cma.2004.06.042
10.1016/j.probengmech.2004.09.001
10.1016/j.probengmech.2010.11.008
10.1016/S0266-8920(01)00019-4
10.1061/(ASCE)0733-9399(2003)129:8(901)
10.1093/oso/9780198523567.003.0038
10.1016/0167-7152(84)90008-7
10.1016/S0266-8920(01)00002-9
10.1119/1.1990764
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compstruc.2011.10.017
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
Physics
EISSN 1879-2243
EndPage 296
ExternalDocumentID 25424926
10_1016_j_compstruc_2011_10_017
S0045794911002720
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSW
SSZ
T5K
T9H
TAE
TN5
UAO
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c444t-13fc8247f935008734d450e7c1955f1b3f414a98ac8c790ac297c558119e45233
IEDL.DBID .~1
ISSN 0045-7949
IngestDate Tue Aug 05 09:20:28 EDT 2025
Mon Jul 21 09:14:00 EDT 2025
Tue Jul 01 02:54:10 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Fri Feb 23 02:33:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reliability engineering
Stochastic simulation methods
Subset Simulation
Bayesian approach
Markov chain Monte Carlo
Ergodic theory
Stochastic model
Conditional distribution
Conditional probability
Stochastic method
Modeling
Parameter space
Markov chain
System with n degrees of freedom
Optimal strategy
Uncertain system
Elastoplasticity
Sampling
Bayes estimation
Metropolis algorithm
Prior information
Monte Carlo method
Imprecise probability
Rupture
Ergodicity
Risk analysis
System reliability
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-13fc8247f935008734d450e7c1955f1b3f414a98ac8c790ac297c558119e45233
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1010893823
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1010893823
pascalfrancis_primary_25424926
crossref_primary_10_1016_j_compstruc_2011_10_017
crossref_citationtrail_10_1016_j_compstruc_2011_10_017
elsevier_sciencedirect_doi_10_1016_j_compstruc_2011_10_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Computers & structures
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tang, Gupta (b0200) 1984; 2
Au, Ching, Beck (b0025) 2007; 29
Ching, Au, Beck (b0045) 2005; 194
Zuev, Katafygiotis (b0225) 2011; 26
Laplace PS. Theorie analytique des probabilites. Courcier, Paris; 1812.
Hastings (b0090) 1970; 57
Jaynes (b0100) 1983
Jeffreys (b0110) 1939
Liu (b0155) 2001
Au, Beck (b0020) 2003; 129
Bedard, Rosenthal (b0040) 2008; 36
Rohatgi (b0185) 1976
Au (b0005) 2005; 83
Vision 2000: Performance based seismic engineering of buildings. Tech. rep. Sacramento, California: Structural Engineers Association of California, 2000.
Jaynes (b0095) 1957; 106
Zuev, Katafygiotis (b0220) 2011; 26
Cox (b0055) 1946; 14
Ching, Beck, Au (b0050) 2005; 20
Robert, Casella (b0175) 2004
Beck (b0035) 2010; 17
Koo H, Der Kiureghian A. FORM, SORM and simulation techniques for nonlinear random vibrations. Report No. UCB/SEMM-2003/01. Berkeley, CA, February: Department of Civil & Environmental Engineering, University of California; 2003.
Katafygiotis, Cheung (b0115) 2005; 194
Tierney (b0205) 1994; 22
Gelman, Carlin, Stern, Rubin (b0080) 2003
Roberts, Rosenthal (b0180) 1998; 60
Au, Beck (b0015) 2001; 16
Fan (b0065) 1991; 20
Doob (b0070) 1953
Au, Beck (b0010) 2001; 16
Laplace (b0150) 1951
Galambos J, Simonelli I. Products of random variables: applications to problems of physics and to arithmetical functions. New York, Basel: Chapman & Hall/CRC Pure and Applied Mathematics; 2004.
Koutsourelakis, Pradlwarter, Schuëller (b0140) 2004; 19
Gelman, Roberts, Gilks (b0085) 1996; 5
Tukey, Wilks (b0210) 1946; 17
Cox (b0060) 1961
Jaynes (b0105) 2003
Katafygiotis, Moan, Cheung (b0125) 2007; 25
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b0165) 1953; 21
Melchers (b0160) 1999
Schuëller, Pradlwarter, Beck, Au, Katafygiotis, Ghanem (b0195) 2005
Schuëller (b0190) 2009; 32
Katafygiotis, Cheung (b0120) 2007; 29
Neal RM. Probabilistic inference using Markov Chain Monte Carlo methods. Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto; 1993.
Bayes (b0030) 1763; 53
Katafygiotis, Zuev (b0130) 2008; 23
Bedard (10.1016/j.compstruc.2011.10.017_b0040) 2008; 36
Doob (10.1016/j.compstruc.2011.10.017_b0070) 1953
10.1016/j.compstruc.2011.10.017_b0075
Liu (10.1016/j.compstruc.2011.10.017_b0155) 2001
10.1016/j.compstruc.2011.10.017_b0135
Tukey (10.1016/j.compstruc.2011.10.017_b0210) 1946; 17
Melchers (10.1016/j.compstruc.2011.10.017_b0160) 1999
Au (10.1016/j.compstruc.2011.10.017_b0010) 2001; 16
Au (10.1016/j.compstruc.2011.10.017_b0005) 2005; 83
Ching (10.1016/j.compstruc.2011.10.017_b0050) 2005; 20
Tierney (10.1016/j.compstruc.2011.10.017_b0205) 1994; 22
10.1016/j.compstruc.2011.10.017_b0170
Cox (10.1016/j.compstruc.2011.10.017_b0060) 1961
Ching (10.1016/j.compstruc.2011.10.017_b0045) 2005; 194
Fan (10.1016/j.compstruc.2011.10.017_b0065) 1991; 20
Katafygiotis (10.1016/j.compstruc.2011.10.017_b0130) 2008; 23
Roberts (10.1016/j.compstruc.2011.10.017_b0180) 1998; 60
Jaynes (10.1016/j.compstruc.2011.10.017_b0095) 1957; 106
Robert (10.1016/j.compstruc.2011.10.017_b0175) 2004
Au (10.1016/j.compstruc.2011.10.017_b0020) 2003; 129
Bayes (10.1016/j.compstruc.2011.10.017_b0030) 1763; 53
Schuëller (10.1016/j.compstruc.2011.10.017_b0190) 2009; 32
Zuev (10.1016/j.compstruc.2011.10.017_b0225) 2011; 26
Jaynes (10.1016/j.compstruc.2011.10.017_b0105) 2003
Katafygiotis (10.1016/j.compstruc.2011.10.017_b0115) 2005; 194
Laplace (10.1016/j.compstruc.2011.10.017_b0150) 1951
Beck (10.1016/j.compstruc.2011.10.017_b0035) 2010; 17
Rohatgi (10.1016/j.compstruc.2011.10.017_b0185) 1976
Katafygiotis (10.1016/j.compstruc.2011.10.017_b0125) 2007; 25
Schuëller (10.1016/j.compstruc.2011.10.017_b0195) 2005
Cox (10.1016/j.compstruc.2011.10.017_b0055) 1946; 14
Gelman (10.1016/j.compstruc.2011.10.017_b0085) 1996; 5
10.1016/j.compstruc.2011.10.017_b0145
Tang (10.1016/j.compstruc.2011.10.017_b0200) 1984; 2
Zuev (10.1016/j.compstruc.2011.10.017_b0220) 2011; 26
Katafygiotis (10.1016/j.compstruc.2011.10.017_b0120) 2007; 29
Metropolis (10.1016/j.compstruc.2011.10.017_b0165) 1953; 21
Jaynes (10.1016/j.compstruc.2011.10.017_b0100) 1983
Gelman (10.1016/j.compstruc.2011.10.017_b0080) 2003
Koutsourelakis (10.1016/j.compstruc.2011.10.017_b0140) 2004; 19
Jeffreys (10.1016/j.compstruc.2011.10.017_b0110) 1939
Au (10.1016/j.compstruc.2011.10.017_b0015) 2001; 16
Hastings (10.1016/j.compstruc.2011.10.017_b0090) 1970; 57
10.1016/j.compstruc.2011.10.017_b0215
Au (10.1016/j.compstruc.2011.10.017_b0025) 2007; 29
References_xml – volume: 20
  start-page: 199
  year: 2005
  end-page: 214
  ident: b0050
  article-title: Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation
  publication-title: Prob Eng Mech
– volume: 194
  start-page: 1581
  year: 2005
  end-page: 1595
  ident: b0115
  article-title: A two-stage subset simulation-based approach for calculating the reliability of inelastic structural systems subjected to Gaussian random excitations
  publication-title: Comput Methods Appl Mech Eng
– volume: 2
  start-page: 165
  year: 1984
  end-page: 168
  ident: b0200
  article-title: On the distribution of the product of independent beta random variables
  publication-title: Stat Prob Lett
– volume: 26
  start-page: 405
  year: 2011
  end-page: 412
  ident: b0225
  article-title: Modified Metropolis–Hastings algorithm with delayed rejection
  publication-title: Prob Eng Mech
– volume: 53
  start-page: 370
  year: 1763
  end-page: 418
  ident: b0030
  article-title: An essay towards solving a problem in the doctrine of chances
  publication-title: Philos Trans Roy Soc London
– year: 2001
  ident: b0155
  article-title: Monte Carlo strategies is scientific computing
– volume: 60
  start-page: 255
  year: 1998
  end-page: 268
  ident: b0180
  article-title: Optimal scaling of discrete approximations to Langevin diffusions
  publication-title: J R Stat Soc Ser B Stat Methodol
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: b0165
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– reference: Vision 2000: Performance based seismic engineering of buildings. Tech. rep. Sacramento, California: Structural Engineers Association of California, 2000.
– volume: 25
  start-page: 347
  year: 2007
  end-page: 363
  ident: b0125
  article-title: Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures
  publication-title: Struct Eng Mech
– year: 2005
  ident: b0195
  article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview
  publication-title: Proceedings 6th European conference on structural dynamics
– volume: 129
  start-page: 901
  year: 2003
  end-page: 917
  ident: b0020
  article-title: Subset Simulation and its application to seismic risk based on dynamic analysis”
  publication-title: J Eng Mech
– volume: 106
  start-page: 620
  year: 1957
  end-page: 630
  ident: b0095
  article-title: Information theory and statistical mechanics
  publication-title: Phys Rev
– volume: 5
  start-page: 599
  year: 1996
  end-page: 607
  ident: b0085
  article-title: Efficient Metropolis jumping rules
  publication-title: Bayesian Stat
– year: 1953
  ident: b0070
  article-title: Stochastic processes
– reference: Laplace PS. Theorie analytique des probabilites. Courcier, Paris; 1812.
– volume: 17
  start-page: 825
  year: 2010
  end-page: 847
  ident: b0035
  article-title: Bayesian system identification based on probability logic
  publication-title: Struct Control Health Monit
– year: 2003
  ident: b0105
  publication-title: Probabiity theory: the logic of science
– volume: 17
  start-page: 318
  year: 1946
  end-page: 324
  ident: b0210
  article-title: Approximation of the distribution of the product of beta variables by a single beta variable
  publication-title: Ann Math Stat
– reference: Koo H, Der Kiureghian A. FORM, SORM and simulation techniques for nonlinear random vibrations. Report No. UCB/SEMM-2003/01. Berkeley, CA, February: Department of Civil & Environmental Engineering, University of California; 2003.
– year: 1999
  ident: b0160
  article-title: Structural reliability analysis and prediction
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: b0090
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 23
  start-page: 208
  year: 2008
  end-page: 218
  ident: b0130
  article-title: Geometric insight into the challenges of solving high-dimensional reliability problems
  publication-title: Prob Eng Mech
– year: 1961
  ident: b0060
  article-title: The algebra of probable inference
– volume: 16
  start-page: 193
  year: 2001
  end-page: 207
  ident: b0015
  article-title: First-excursion probabilities for linear systems by very efficient importance sampling
  publication-title: Prob Eng Mech
– year: 1983
  ident: b0100
  publication-title: Papers on probability, statistics, and statistical physics
– volume: 20
  start-page: 4043
  year: 1991
  end-page: 4052
  ident: b0065
  article-title: The distribution of the product of independent beta variables
  publication-title: Commun Stat – Theor Methods
– year: 1939
  ident: b0110
  article-title: Theory of probability
– volume: 26
  start-page: 157
  year: 2011
  end-page: 164
  ident: b0220
  article-title: Horseracing Simulation algorithm for evaluation of small failure probabilities
  publication-title: Prob Eng Mech
– year: 2003
  ident: b0080
  article-title: Bayesian data analysis
– volume: 32
  start-page: 1
  year: 2009
  end-page: 20
  ident: b0190
  article-title: Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis – recent advances
  publication-title: Struct. Eng. Mech.
– volume: 194
  start-page: 1557
  year: 2005
  end-page: 1579
  ident: b0045
  article-title: Reliability estimation of dynamical systems subject to stochastic excitation using subset simulation with splitting
  publication-title: Comput Methods Appl Mech Eng
– volume: 19
  start-page: 409
  year: 2004
  end-page: 417
  ident: b0140
  article-title: Reliability of structures in high dimensions. Part I: Algorithms and applications
  publication-title: Prob Eng Mech
– year: 1951
  ident: b0150
  article-title: Philosophical essay on probability
– volume: 83
  start-page: 1048
  year: 2005
  end-page: 1061
  ident: b0005
  article-title: Reliability based design sensitivity by efficient simulation
  publication-title: Comput Struct
– volume: 36
  start-page: 483
  year: 2008
  end-page: 503
  ident: b0040
  article-title: Optimal scaling of metropolis algorithms: heading toward general target distributions
  publication-title: Can J Stat
– year: 1976
  ident: b0185
  article-title: An introduction to probability theory and mathematical statistics
– volume: 22
  start-page: 1701
  year: 1994
  end-page: 1762
  ident: b0205
  article-title: Markov chains for exploring posterior distributions
  publication-title: Ann Stat
– volume: 14
  start-page: 1
  year: 1946
  end-page: 13
  ident: b0055
  article-title: Probability, frequency, and reasonable expectation
  publication-title: Am J Phys
– year: 2004
  ident: b0175
  article-title: Monte Carlo statistical methods
– volume: 29
  start-page: 183
  year: 2007
  end-page: 193
  ident: b0025
  article-title: Application of subset simulation methods to reliability benchmark problems
  publication-title: Struct Safe
– volume: 29
  start-page: 194
  year: 2007
  end-page: 207
  ident: b0120
  article-title: Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study
  publication-title: Struct Safe
– reference: Neal RM. Probabilistic inference using Markov Chain Monte Carlo methods. Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto; 1993.
– reference: Galambos J, Simonelli I. Products of random variables: applications to problems of physics and to arithmetical functions. New York, Basel: Chapman & Hall/CRC Pure and Applied Mathematics; 2004.
– volume: 16
  start-page: 263
  year: 2001
  end-page: 277
  ident: b0010
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Prob Eng Mech
– volume: 53
  start-page: 370
  year: 1763
  ident: 10.1016/j.compstruc.2011.10.017_b0030
  article-title: An essay towards solving a problem in the doctrine of chances
  publication-title: Philos Trans Roy Soc London
  doi: 10.1098/rstl.1763.0053
– ident: 10.1016/j.compstruc.2011.10.017_b0075
  doi: 10.1201/9781482276633
– volume: 22
  start-page: 1701
  issue: 4
  year: 1994
  ident: 10.1016/j.compstruc.2011.10.017_b0205
  article-title: Markov chains for exploring posterior distributions
  publication-title: Ann Stat
  doi: 10.1214/aos/1176325750
– year: 1976
  ident: 10.1016/j.compstruc.2011.10.017_b0185
– volume: 32
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.compstruc.2011.10.017_b0190
  article-title: Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis – recent advances
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2009.32.1.001
– volume: 17
  start-page: 825
  year: 2010
  ident: 10.1016/j.compstruc.2011.10.017_b0035
  article-title: Bayesian system identification based on probability logic
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.424
– volume: 20
  start-page: 4043
  issue: 12
  year: 1991
  ident: 10.1016/j.compstruc.2011.10.017_b0065
  article-title: The distribution of the product of independent beta variables
  publication-title: Commun Stat – Theor Methods
  doi: 10.1080/03610929108830755
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.compstruc.2011.10.017_b0165
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 25
  start-page: 347
  issue: 3
  year: 2007
  ident: 10.1016/j.compstruc.2011.10.017_b0125
  article-title: Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2007.25.3.347
– ident: 10.1016/j.compstruc.2011.10.017_b0145
– ident: 10.1016/j.compstruc.2011.10.017_b0170
– volume: 19
  start-page: 409
  issue: 4
  year: 2004
  ident: 10.1016/j.compstruc.2011.10.017_b0140
  article-title: Reliability of structures in high dimensions. Part I: Algorithms and applications
  publication-title: Prob Eng Mech
  doi: 10.1016/j.probengmech.2004.05.001
– volume: 60
  start-page: 255
  year: 1998
  ident: 10.1016/j.compstruc.2011.10.017_b0180
  article-title: Optimal scaling of discrete approximations to Langevin diffusions
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/1467-9868.00123
– volume: 83
  start-page: 1048
  year: 2005
  ident: 10.1016/j.compstruc.2011.10.017_b0005
  article-title: Reliability based design sensitivity by efficient simulation
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2004.11.015
– volume: 17
  start-page: 318
  issue: 3
  year: 1946
  ident: 10.1016/j.compstruc.2011.10.017_b0210
  article-title: Approximation of the distribution of the product of beta variables by a single beta variable
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177730944
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  ident: 10.1016/j.compstruc.2011.10.017_b0090
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 29
  start-page: 194
  issue: 3
  year: 2007
  ident: 10.1016/j.compstruc.2011.10.017_b0120
  article-title: Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study
  publication-title: Struct Safe
  doi: 10.1016/j.strusafe.2006.07.003
– volume: 194
  start-page: 1557
  issue: 12–16
  year: 2005
  ident: 10.1016/j.compstruc.2011.10.017_b0045
  article-title: Reliability estimation of dynamical systems subject to stochastic excitation using subset simulation with splitting
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.05.028
– year: 2003
  ident: 10.1016/j.compstruc.2011.10.017_b0105
– volume: 29
  start-page: 183
  year: 2007
  ident: 10.1016/j.compstruc.2011.10.017_b0025
  article-title: Application of subset simulation methods to reliability benchmark problems
  publication-title: Struct Safe
  doi: 10.1016/j.strusafe.2006.07.008
– year: 1999
  ident: 10.1016/j.compstruc.2011.10.017_b0160
– volume: 26
  start-page: 157
  issue: 2
  year: 2011
  ident: 10.1016/j.compstruc.2011.10.017_b0220
  article-title: Horseracing Simulation algorithm for evaluation of small failure probabilities
  publication-title: Prob Eng Mech
  doi: 10.1016/j.probengmech.2010.11.004
– volume: 106
  start-page: 620
  year: 1957
  ident: 10.1016/j.compstruc.2011.10.017_b0095
  article-title: Information theory and statistical mechanics
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.106.620
– year: 1983
  ident: 10.1016/j.compstruc.2011.10.017_b0100
– volume: 36
  start-page: 483
  year: 2008
  ident: 10.1016/j.compstruc.2011.10.017_b0040
  article-title: Optimal scaling of metropolis algorithms: heading toward general target distributions
  publication-title: Can J Stat
  doi: 10.1002/cjs.5550360401
– ident: 10.1016/j.compstruc.2011.10.017_b0135
– volume: 23
  start-page: 208
  issue: 2–3
  year: 2008
  ident: 10.1016/j.compstruc.2011.10.017_b0130
  article-title: Geometric insight into the challenges of solving high-dimensional reliability problems
  publication-title: Prob Eng Mech
  doi: 10.1016/j.probengmech.2007.12.026
– volume: 194
  start-page: 1581
  issue: 12-16
  year: 2005
  ident: 10.1016/j.compstruc.2011.10.017_b0115
  article-title: A two-stage subset simulation-based approach for calculating the reliability of inelastic structural systems subjected to Gaussian random excitations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.06.042
– year: 1953
  ident: 10.1016/j.compstruc.2011.10.017_b0070
– volume: 20
  start-page: 199
  issue: 3
  year: 2005
  ident: 10.1016/j.compstruc.2011.10.017_b0050
  article-title: Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation
  publication-title: Prob Eng Mech
  doi: 10.1016/j.probengmech.2004.09.001
– volume: 26
  start-page: 405
  issue: 3
  year: 2011
  ident: 10.1016/j.compstruc.2011.10.017_b0225
  article-title: Modified Metropolis–Hastings algorithm with delayed rejection
  publication-title: Prob Eng Mech
  doi: 10.1016/j.probengmech.2010.11.008
– volume: 16
  start-page: 263
  issue: 4
  year: 2001
  ident: 10.1016/j.compstruc.2011.10.017_b0010
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Prob Eng Mech
  doi: 10.1016/S0266-8920(01)00019-4
– volume: 129
  start-page: 901
  issue: 8
  year: 2003
  ident: 10.1016/j.compstruc.2011.10.017_b0020
  article-title: Subset Simulation and its application to seismic risk based on dynamic analysis”
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(2003)129:8(901)
– year: 2005
  ident: 10.1016/j.compstruc.2011.10.017_b0195
  article-title: Benchmark study on reliability estimation in higher dimensions of structural systems – an overview
– volume: 5
  start-page: 599
  year: 1996
  ident: 10.1016/j.compstruc.2011.10.017_b0085
  article-title: Efficient Metropolis jumping rules
  publication-title: Bayesian Stat
  doi: 10.1093/oso/9780198523567.003.0038
– year: 1951
  ident: 10.1016/j.compstruc.2011.10.017_b0150
– volume: 2
  start-page: 165
  year: 1984
  ident: 10.1016/j.compstruc.2011.10.017_b0200
  article-title: On the distribution of the product of independent beta random variables
  publication-title: Stat Prob Lett
  doi: 10.1016/0167-7152(84)90008-7
– year: 2004
  ident: 10.1016/j.compstruc.2011.10.017_b0175
– volume: 16
  start-page: 193
  issue: 3
  year: 2001
  ident: 10.1016/j.compstruc.2011.10.017_b0015
  article-title: First-excursion probabilities for linear systems by very efficient importance sampling
  publication-title: Prob Eng Mech
  doi: 10.1016/S0266-8920(01)00002-9
– ident: 10.1016/j.compstruc.2011.10.017_b0215
– year: 2001
  ident: 10.1016/j.compstruc.2011.10.017_b0155
– volume: 14
  start-page: 1
  year: 1946
  ident: 10.1016/j.compstruc.2011.10.017_b0055
  article-title: Probability, frequency, and reasonable expectation
  publication-title: Am J Phys
  doi: 10.1119/1.1990764
– year: 2003
  ident: 10.1016/j.compstruc.2011.10.017_b0080
– year: 1961
  ident: 10.1016/j.compstruc.2011.10.017_b0060
– year: 1939
  ident: 10.1016/j.compstruc.2011.10.017_b0110
SSID ssj0006400
Score 2.440918
Snippet ► The Modified Metropolis algorithm (MMA) for sampling from complex PDFs is analyzed. ► An optimal scaling strategy for MMA is presented. ► A theoretical basis...
Estimation of small failure probabilities is one of the most important and challenging computational problems in reliability engineering. The failure...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 283
SubjectTerms Algorithms
Applied sciences
Bayesian approach
Computer simulation
Estimating
Exact sciences and technology
Failure
Fluctuation phenomena, random processes, noise, and brownian motion
Markov chain Monte Carlo
Mathematical models
Mathematics
Monte Carlo methods
Operational research and scientific management
Operational research. Management science
Optimization
Physics
Polymethyl methacrylates
Probability and statistics
Probability theory and stochastic processes
Reliability engineering
Reliability theory. Replacement problems
Risk theory. Actuarial science
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Statistical physics, thermodynamics, and nonlinear dynamical systems
Stochastic simulation methods
Subset Simulation
Title Bayesian post-processor and other enhancements of Subset Simulation for estimating failure probabilities in high dimensions
URI https://dx.doi.org/10.1016/j.compstruc.2011.10.017
https://www.proquest.com/docview/1010893823
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yXhQRn7g-lghe626300e8qSirohcV9lbSNNGKtsVdDyL4251J29VFYQ8e25A2ZKbzaOb7hrEDT7vaGInZCWjlgAhcB71g4rhGqlQq8IyFj13fBIN7uBz6wzl22mBhqKyytv2VTbfWur7TrXezW2YZYXzBR20SRHpGp4mEYIeQtPzw87vMI4AGhkLUjCCmaryobNvytFZcnlTmZTuX_emhlko5wn0zVcOLX7bbOqTzFbZcR5L8uFrsKpvT-Rpb_MEvuM4-TuS7JpQkL4vR2CkrUEDxymWecgu94jp_JLlboBsvDCdDosf8Nnup-3pxjGo5UXFQaJs_cCMzqmTn1Imm4vjGXJtnOSfiY55SswD6ATfaYPfnZ3enA6futuAoAKCe9EZFfQiN8HwiqvMgBb-nQ-UK3zdu4hlwQYpIqkiFoidVX4TK9yPXFRownfU2WSsvcr3FuDSAWVGiokCGkGoSURKIKEKFSUySpm0WNDscq5qKnDpiPMdNzdlTPBFNTKKhARRNm_UmE8uKjWP2lKNGhPGUYsXoM2ZP7kwJffJSTKst1WKb7TdaEON3SYctMtfF24ge28NYMOp72_9ZwQ5bwKt-VSe-y1o4rvcwDBonHavnHTZ_fHE1uPkCFXoMgw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6F9gCoqsqjIqWUReJqEsfjx3KDqFFaml5opNys9XoXXIFtkXBASP3tnVnbKRGVcujV67Wtndl5eGe-D-B9YHxjraLsBI32UEa-R14w83yrdK40Bta1j80uo-kczxfhogfjrheGyypb29_YdGet2yuDdjUHdVFwjy-GpE2SQc_4NPER7CJtX6Yx-HBzV-cRYdeHwtiMKDeKvLhu2wG1NmCeXOflqMvudVF7tVrSwtmG8eI_4-080uQA9ttQUnxqvvYZ9Ez5HJ7-AzD4Av5-Vn8Mt0mKulquvLrpCqh-CVXmwvVeCVN-Z8G7TjdRWcGWxKzE1-JnS-wlKKwVjMXBsW35TVhVcCm7YCqaBuSbkm1RlIKRj0XObAH8B275EuaT06vx1GvpFjyNiExKb3UywtjKIGSkugBzDIcm1r4MQ-tngUUflUyUTnQsh0qPZKzDMPF9aZDy2eAQdsqqNK9AKIuUFmU6iVSMuWEZZZFMEtKYzGZ53oeoW-FUt1jkTInxI-2Kzq7TtWhSFg0PkGj6MFxPrBs4ju1TPnYiTDc0KyWnsX3yyYbQ1y-lvNphLfbhXacFKW1MPm1Rpal-L_mxQwoGk1Fw9JAveAuPp1ezi_Ti7PLLa3hCI6OmaPwYduhe84ZiolV24nT-FhbfDhE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+post-processor+and+other+enhancements+of+Subset+Simulation+for+estimating+failure+probabilities+in+high+dimensions&rft.jtitle=Computers+%26+structures&rft.au=Zuev%2C+Konstantin+M&rft.au=Beck%2C+James+L&rft.au=Au%2C+Siu-Kui&rft.au=Katafygiotis%2C+Lambros+S&rft.date=2012-02-01&rft.issn=0045-7949&rft.volume=92-93&rft.spage=283&rft.epage=296&rft_id=info:doi/10.1016%2Fj.compstruc.2011.10.017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon