Fecal microbiota transplantation and short‐chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion

Aims Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short‐chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)‐induced gut microbiota an...

Full description

Saved in:
Bibliographic Details
Published inCNS neuroscience & therapeutics Vol. 29; no. S1; pp. 98 - 114
Main Authors Su, Shao‐Hua, Chen, Ming, Wu, Yi‐Fang, Lin, Qi, Wang, Da‐Peng, Sun, Jun, Hai, Jian
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.06.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short‐chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)‐induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH‐induced hippocampal neuronal injury. Methods Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography–mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope. Results Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti‐neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH‐induced cognitive impairment. Conclusion Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota‐based strategy to mitigate chronic cerebral ischemia‐induced neuronal injury. Fecal microbiota transplantation (FMT) and short‐chain fatty acids (SCFAs) replenishment exerted anti‐neuroinflammatory effects through switching microglial phenotype from M1 toward M2. Furthermore, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming.
AbstractList Fecal microbiota transplantation (FMT) and short‐chain fatty acids (SCFAs) replenishment exerted anti‐neuroinflammatory effects through switching microglial phenotype from M1 toward M2. Furthermore, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming.
Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury. Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography-mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope. Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment. Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury.
AimsClear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury.MethodsBilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography–mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope.ResultsChronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment.ConclusionOur findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury.
Aims Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short‐chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)‐induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH‐induced hippocampal neuronal injury. Methods Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography–mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope. Results Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti‐neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH‐induced cognitive impairment. Conclusion Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota‐based strategy to mitigate chronic cerebral ischemia‐induced neuronal injury. Fecal microbiota transplantation (FMT) and short‐chain fatty acids (SCFAs) replenishment exerted anti‐neuroinflammatory effects through switching microglial phenotype from M1 toward M2. Furthermore, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming.
Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury.AIMSClear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury.Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography-mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope.METHODSBilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography-mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope.Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment.RESULTSChronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment.Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury.CONCLUSIONOur findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury.
Author Chen, Ming
Lin, Qi
Su, Shao‐Hua
Sun, Jun
Hai, Jian
Wang, Da‐Peng
Wu, Yi‐Fang
AuthorAffiliation 2 Department of Neurosurgery, Xinhua hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
3 Department of Pharmacy, Institutes of Medical Sciences, School of Medicine Shanghai Jiao Tong University Shanghai China
1 Department of Neurosurgery, Tongji Hospital, School of Medicine Tongji University Shanghai China
AuthorAffiliation_xml – name: 3 Department of Pharmacy, Institutes of Medical Sciences, School of Medicine Shanghai Jiao Tong University Shanghai China
– name: 1 Department of Neurosurgery, Tongji Hospital, School of Medicine Tongji University Shanghai China
– name: 2 Department of Neurosurgery, Xinhua hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
Author_xml – sequence: 1
  givenname: Shao‐Hua
  orcidid: 0000-0002-1583-5102
  surname: Su
  fullname: Su, Shao‐Hua
  email: sushdoc@tongji.edu.cn
  organization: Tongji University
– sequence: 2
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Yi‐Fang
  surname: Wu
  fullname: Wu, Yi‐Fang
  organization: Tongji University
– sequence: 4
  givenname: Qi
  surname: Lin
  fullname: Lin, Qi
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Da‐Peng
  surname: Wang
  fullname: Wang, Da‐Peng
  organization: Tongji University
– sequence: 6
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
  organization: Tongji University
– sequence: 7
  givenname: Jian
  surname: Hai
  fullname: Hai, Jian
  email: jianhai@tongji.edu.cn
  organization: Tongji University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36627762$$D View this record in MEDLINE/PubMed
BookMark eNp1Ustu1DAUjVARfcCCH0CW2MBiWjt2nHiFqhEFpAoWwNpy_Ji4ytjBdoqy4xPY8X98CZfOtIIKvLHle87Ruffc4-ogxGCr6inBpwTOmQ75lDDciQfVEWmbZtUIJg7u3hQfVsc5X2HM6050j6pDynndtrw-qn5cWK1GtPU6xd7HolBJKuRpVKGo4mNAKhiUh5jKz2_f9aB8QE6VsiClvcloSrFYXaxBagO1XJCOm-CLv7bILNnNQd-oAE2hpAraRmNHFB3SQ4rBa6Rtsn0CD8MyxckmN2cgPK4eOjVm-2R_n1SfL15_Wr9dXX548259frnSjDGxahrTUVP3zHHu-rprNVYNN6o11FBCjIN_05mWCG5YQ2gjrG2NcFgx13Fb05Pq1U53mvutNdoG6H-UU_JblRYZlZd_V4If5CZeS4IpYTB8UHixV0jxy2xzkVuftR1hgjbOWdYtB6sUYwrQ5_egV3FOAfqTdUcJF0K0DFDP_rR05-U2NACc7QCQWc7JOqn9Lixw6EewJn-vhYS1kDdrAYyX9xi3ov_C7tW_-tEu_wfK9fuPO8YvHQjMVA
CitedBy_id crossref_primary_10_1016_j_neuint_2023_105614
crossref_primary_10_1111_nyas_15299
crossref_primary_10_1016_j_micres_2025_128101
crossref_primary_10_1038_s41467_024_51094_2
crossref_primary_10_3724_abbs_2024217
crossref_primary_10_3389_fphar_2024_1428242
crossref_primary_10_1021_acs_jafc_4c01922
crossref_primary_10_1007_s11064_024_04206_9
crossref_primary_10_1016_j_amolm_2024_100047
crossref_primary_10_3390_nu15234915
crossref_primary_10_1016_j_nbd_2025_106836
crossref_primary_10_1136_gpsych_2023_101374
crossref_primary_10_1016_j_intimp_2023_111108
crossref_primary_10_1016_j_phymed_2024_156019
crossref_primary_10_3390_ijms26031373
crossref_primary_10_3390_ijms24065520
crossref_primary_10_1016_j_pbb_2025_173972
crossref_primary_10_1016_j_tifs_2025_104942
crossref_primary_10_1186_s12866_024_03276_7
crossref_primary_10_3390_nu16244355
crossref_primary_10_3389_fimmu_2025_1519925
crossref_primary_10_1016_j_bbi_2024_10_002
crossref_primary_10_1097_MD_0000000000037960
crossref_primary_10_1007_s12264_023_01123_9
crossref_primary_10_1016_j_aehs_2024_11_001
Cites_doi 10.1016/j.bbr.2022.114002
10.1038/s41575-019-0157-3
10.1177/0963689719873890
10.1111/cns.13988
10.1016/j.expneurol.2018.01.009
10.1016/j.nbd.2017.08.009
10.1203/01.PDR.0000150721.83224.89
10.14309/ajg.0000000000000102
10.1038/s41380-019-0425-1
10.7150/thno.54210
10.1016/j.phrs.2020.105082
10.1016/j.chom.2016.07.001
10.1523/JNEUROSCI.1359-19.2019
10.1186/s12974-022-02523-w
10.1038/nature18283
10.1038/emm.2017.122
10.1038/nsmb.1450
10.3389/fneur.2019.00661
10.1101/gr.107987.110
10.1016/j.ejmech.2021.113874
10.1016/j.chom.2017.11.003
10.3390/nu11030521
10.1016/j.chom.2015.04.011
10.3389/fnbeh.2017.00035
10.1177/0271678X20951995
10.3389/fnut.2021.805465
10.1038/s41420-022-01175-2
10.1186/s12974-022-02675-9
10.1016/j.jep.2022.115281
10.3390/ijms12107199
10.1038/s41467-019-13812-z
10.1016/j.neuint.2016.06.011
10.3389/fneur.2020.00598
10.1016/j.freeradbiomed.2020.11.032
10.1016/j.cell.2018.08.040
10.1186/s40168-021-01172-0
10.1016/j.brainresrev.2007.01.003
10.7150/thno.35841
10.1111/j.1471-4159.2007.04676.x
10.1021/acs.jafc.0c02807
10.1128/spectrum.02776-21
10.1111/jnc.13077
10.3390/molecules24081583
10.3390/nu12113471
10.1007/s12035-018-1380-6
10.1016/j.neuroscience.2015.07.084
10.1016/j.neuint.2007.04.019
10.1016/j.cpr.2020.101943
10.1016/j.neuroscience.2015.03.021
10.3389/fnut.2021.746515
10.1016/j.neuroscience.2015.01.020
10.1186/s40168-019-0713-7
10.1016/j.phrs.2019.104403
10.1186/s40168-021-01088-9
10.3389/fmicb.2020.564271
10.3233/JAD-161141
10.1016/j.cbi.2021.109452
10.3390/ijms23031184
10.1038/s41380-021-01369-7
10.3389/fneur.2020.00137
10.2174/1570159X19666210609160017
10.1016/j.celrep.2016.09.069
10.1038/s41579-020-00460-0
10.1161/CIRCRESAHA.119.316448
10.1016/j.jad.2020.11.121
10.1016/j.intimp.2021.108072
10.1038/nmeth.f.303
10.1139/w03-075
10.18632/aging.202277
10.3748/wjg.v20.i47.17727
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/cns.14089
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Su et al
EISSN 1755-5949
EndPage 114
ExternalDocumentID PMC10314111
36627762
10_1111_cns_14089
CNS14089
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81601146; 81771410; 81902521; 81974209
– fundername: Shanghai Sailing Program
  funderid: 19YF1432800
– fundername: National Natural Science Foundation of China
  grantid: 81771410
– fundername: National Natural Science Foundation of China
  grantid: 81601146
– fundername: National Natural Science Foundation of China
  grantid: 81974209
– fundername: Shanghai Sailing Program
  grantid: 19YF1432800
– fundername: National Natural Science Foundation of China
  grantid: 81902521
– fundername: ;
  grantid: 81601146; 81771410; 81902521; 81974209
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8AO
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACMXC
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFKRA
AFPKN
AFPWT
AFZJQ
AHMBA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AOIJS
ATUGU
AVUZU
AZBYB
AZVAB
BAFTC
BBNVY
BCNDV
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBC
EBD
EBS
EJD
EMB
EMOBN
ESX
F00
F01
F04
F5P
FUBAC
FYUFA
G-S
G.N
GODZA
GROUPED_DOAJ
H.X
HCIFZ
HF~
HMCUK
HYE
HZ~
IAO
IHR
INH
ITC
IX1
J0M
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
M7P
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2W
P2X
P2Z
P4B
P4D
PIMPY
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TUS
UB1
UKHRP
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXI
WYISQ
XG1
~IA
~WT
AAFWJ
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
1OB
3V.
7TK
7XB
8FE
8FH
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
LK8
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4449-55d83d2b4f66fb287c0a56da7d3d311dff66d8d7196d451359ee7d9f0a4f86e23
IEDL.DBID 7X7
ISSN 1755-5930
1755-5949
IngestDate Thu Aug 21 18:37:42 EDT 2025
Fri Jul 11 16:07:52 EDT 2025
Wed Aug 13 09:35:37 EDT 2025
Wed Feb 19 02:09:57 EST 2025
Thu Apr 24 22:59:14 EDT 2025
Tue Jul 01 00:33:49 EDT 2025
Wed Jan 22 16:21:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S1
Keywords synaptic plasticity
short-chain fatty acids
chronic cerebral hypoperfusion
cognitive dysfunction
microglia
fecal microbiota transplantation
oxidative phosphorylation
Language English
License Attribution
2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4449-55d83d2b4f66fb287c0a56da7d3d311dff66d8d7196d451359ee7d9f0a4f86e23
Notes Shao‐Hua Su and Ming Chen contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1583-5102
OpenAccessLink https://www.proquest.com/docview/2831699974?pq-origsite=%requestingapplication%
PMID 36627762
PQID 2831699974
PQPubID 946372
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10314111
proquest_miscellaneous_2764443003
proquest_journals_2831699974
pubmed_primary_36627762
crossref_citationtrail_10_1111_cns_14089
crossref_primary_10_1111_cns_14089
wiley_primary_10_1111_cns_14089_CNS14089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle CNS neuroscience & therapeutics
PublicationTitleAlternate CNS Neurosci Ther
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2007; 102
2022; 293
2019; 11
2015; 301
2019; 10
2017; 49
2019; 56
2020; 160
2021; 281
2022; 23
2019; 16
2020; 127
2021; 162
2015; 309
2022; 20
2020; 12
2011; 12
2020; 11
2020; 10
2022; 27
2014; 20
2018; 175
2010; 20
2015; 290
2019; 24
2015; 133
2019; 28
2003; 49
2019; 114
2021; 83
2010; 7
2021; 9
2021; 8
2019; 7
2015; 17
2020; 40
2021; 226
2018; 302
2019; 148
2008; 15
2007; 50
2021; 341
2018; 23
2007; 54
2016; 17
2016; 99
2022; 433
2017; 108
2021; 99
2021; 11
2017; 58
2022
2017; 11
2022; 8
2021; 19
2016; 20
2020; 25
2020; 24
2020; 68
2016; 534
2022; 10
2005; 57
2022; 19
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
Yang CX (e_1_2_9_21_1) 2020; 24
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 7
  start-page: 98
  year: 2019
  article-title: Dietary fructose‐induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short‐chain fatty acids
  publication-title: Microbiome
– volume: 11
  start-page: 35
  year: 2017
  article-title: The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders
  publication-title: Front Behav Neurosci
– volume: 12
  start-page: 3471
  year: 2020
  article-title: Associations between pro‐ and anti‐inflammatory gastro‐intestinal microbiota, diet, and cognitive functioning in Dutch healthy older adults: the NU‐AGE study
  publication-title: Nutrients
– volume: 9
  start-page: 223
  year: 2021
  article-title: A fiber‐deprived diet causes cognitive impairment and hippocampal microglia‐mediated synaptic loss through the gut microbiota and metabolites
  publication-title: Microbiome
– volume: 27
  start-page: 1683
  issue: 3
  year: 2022
  end-page: 1693
  article-title: Spatial and temporal dynamics of HDACs class IIa following mild traumatic brain injury in adult rats
  publication-title: Mol Psychiatry
– volume: 114
  start-page: 1080
  year: 2019
  end-page: 1090
  article-title: Specific gut and salivary microbiota patterns are linked with different cognitive testing strategies in minimal hepatic encephalopathy
  publication-title: Am J Gastroenterol
– volume: 28
  start-page: 1507
  year: 2019
  end-page: 1527
  article-title: The gut microbiota in multiple sclerosis: an overview of clinical trials
  publication-title: Cell Transplant
– volume: 58
  start-page: 1
  year: 2017
  end-page: 15
  article-title: The gut microbiota and Alzheimer's disease
  publication-title: J Alzheimers Dis
– volume: 341
  year: 2021
  article-title: Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice
  publication-title: Chem Biol Interact
– volume: 56
  start-page: 4549
  year: 2019
  end-page: 4565
  article-title: Resveratrol preconditioning induces genomic and metabolic adaptations within the long‐term window of cerebral ischemic tolerance leading to bioenergetic efficiency
  publication-title: Mol Neurobiol
– volume: 534
  start-page: 538
  year: 2016
  end-page: 543
  article-title: A complement‐microglial axis drives synapse loss during virus‐induced memory impairment
  publication-title: Nature
– volume: 11
  start-page: 521
  year: 2019
  article-title: Autism Spectrum disorders and the gut microbiota
  publication-title: Nutrients
– volume: 57
  start-page: 201
  year: 2005
  end-page: 204
  article-title: Short‐chain fatty acids induce colonic mucosal injury in rats with various postnatal ages
  publication-title: Pediatr Res
– volume: 20
  start-page: 202
  year: 2016
  end-page: 214
  article-title: Gut microbial metabolites fuel host antibody responses
  publication-title: Cell Host Microbe
– volume: 226
  year: 2021
  article-title: Inhibition of histone deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: a review (2010‐2020)
  publication-title: Eur J Med Chem
– volume: 25
  start-page: 2567
  year: 2020
  end-page: 2583
  article-title: Mid‐life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome
  publication-title: Mol Psychiatry
– volume: 11
  start-page: 598
  year: 2020
  article-title: Gut microbiota in acute ischemic stroke: from pathophysiology to therapeutic implications
  publication-title: Front Neurol
– volume: 54
  start-page: 162
  year: 2007
  end-page: 180
  article-title: Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion‐related neurodegenerative diseases
  publication-title: Brain Res Rev
– volume: 15
  start-page: 665
  year: 2008
  end-page: 674
  article-title: Synaptic vesicle fusion
  publication-title: Nat Struct Mol Biol
– volume: 40
  start-page: 1162
  year: 2020
  end-page: 1173
  article-title: Short‐chain fatty acids improve poststroke recovery via immunological mechanisms
  publication-title: J Neurosci
– volume: 11
  start-page: 4616
  year: 2021
  end-page: 4636
  article-title: Decreased neuronal synaptosome associated protein 29 contributes to poststroke cognitive impairment by disrupting presynaptic maintenance
  publication-title: Theranostics
– volume: 162
  start-page: 104
  year: 2021
  end-page: 117
  article-title: Atorvastatin alleviates microglia‐mediated neuroinflammation via modulating the microbial composition and the intestinal barrier function in ischemic stroke mice
  publication-title: Free Radic Biol Med
– volume: 8
  year: 2022
  article-title: Prevotella histicola mitigated estrogen deficiency‐induced depression via gut microbiota‐dependent modulation of inflammation in Ovariectomized mice
  publication-title: Front Nutr
– volume: 8
  year: 2021
  article-title: Gut microbiota composition and predicted microbial metabolic pathways of obesity prone and obesity resistant outbred Sprague‐Dawley CD rats may account for differences in their phenotype
  publication-title: Front Nutr
– volume: 24
  start-page: 1583
  year: 2019
  article-title: Oxidative stress: a key modulator in neurodegenerative diseases
  publication-title: Molecules
– volume: 99
  year: 2021
  article-title: Irf1‐ and Egr1‐activated transcription plays a key role in macrophage polarization: a multiomics sequencing study with partial validation
  publication-title: Int Immunopharmacol
– volume: 10
  year: 2022
  article-title: Survival strategies and metabolic interactions between and , isolated from human bile
  publication-title: Microbiol Spectr
– volume: 83
  year: 2021
  article-title: The gut microbiota in anxiety and depression – a systematic review
  publication-title: Clin Psychol Rev
– volume: 11
  year: 2020
  article-title: Orally administered antibiotics vancomycin and ampicillin cause cognitive impairment with gut Dysbiosis in mice with transient global forebrain ischemia
  publication-title: Front Microbiol
– volume: 23
  start-page: 1184
  year: 2022
  article-title: Gut‐brain axis as a pathological and therapeutic target for neurodegenerative disorders
  publication-title: Int J Mol Sci
– year: 2022
  article-title: Getting the guts to expand stroke treatment: the potential for microbiome targeted therapies
  publication-title: CNS Neurosci Ther
– volume: 40
  start-page: S6
  year: 2020
  end-page: S24
  article-title: Regulation of blood‐brain barrier integrity by microglia in health and disease: a therapeutic opportunity
  publication-title: J Cereb Blood Flow Metab
– volume: 50
  start-page: 1014
  year: 2007
  end-page: 1027
  article-title: Role of transcription factors in mediating post‐ischemic cerebral inflammation and brain damage
  publication-title: Neurochem Int
– volume: 102
  start-page: 1941
  year: 2007
  end-page: 1952
  article-title: Cholesterol supports the retinoic acid‐induced synaptic vesicle formation in differentiating human SH‐SY5Y neuroblastoma cells
  publication-title: J Neurochem
– volume: 302
  start-page: 145
  year: 2018
  end-page: 154
  article-title: Early activation of Egr‐1 promotes neuroinflammation and dopaminergic neurodegeneration in an experimental model of Parkinson's disease
  publication-title: Exp Neurol
– volume: 20
  start-page: 17727
  year: 2014
  end-page: 17736
  article-title: Impact of the gut microbiota on rodent models of human disease
  publication-title: World J Gastroenterol
– volume: 10
  start-page: 74
  year: 2020
  end-page: 90
  article-title: Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion
  publication-title: Theranostics
– volume: 108
  start-page: 115
  year: 2017
  end-page: 127
  article-title: Alternative microglial activation is associated with cessation of progressive dopamine neuron loss in mice systemically administered lipopolysaccharide
  publication-title: Neurobiol Dis
– volume: 175
  start-page: 502
  year: 2018
  end-page: 513
  article-title: Acetate production from glucose and coupling to mitochondrial metabolism in mammals
  publication-title: Cell
– volume: 127
  start-page: 453
  year: 2020
  end-page: 465
  article-title: Gut microbiota‐derived short‐chain fatty acids promote Poststroke recovery in aged mice
  publication-title: Circ Res
– volume: 19
  start-page: 169
  year: 2022
  article-title: Gut microbiota depletion by antibiotics ameliorates somatic neuropathic pain induced by nerve injury, chemotherapy, and diabetes in mice
  publication-title: J Neuroinflammation
– volume: 293
  year: 2022
  article-title: Integrated 16S rRNA gene sequencing and LC/MS‐based metabolomics ascertained synergistic influences of the combination of acupuncture and NaoMaiTong on ischemic stroke
  publication-title: J Ethnopharmacol
– volume: 49
  start-page: 589
  year: 2003
  end-page: 601
  article-title: Culture‐independent phylogenetic analysis of the faecal flora of the rat
  publication-title: Can J Microbiol
– volume: 290
  start-page: 509
  year: 2015
  end-page: 517
  article-title: Over‐expressed EGR1 may exaggerate ischemic injury after experimental stroke by decreasing BDNF expression
  publication-title: Neuroscience
– volume: 23
  start-page: 41
  year: 2018
  end-page: 53
  article-title: Fiber‐mediated nourishment of gut microbiota protects against diet‐induced obesity by restoring IL‐22‐mediated colonic health
  publication-title: Cell Host Microbe
– volume: 24
  start-page: 10194
  year: 2020
  end-page: 10202
  article-title: The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 17
  start-page: 1037
  year: 2016
  end-page: 1052
  article-title: ATP‐citrate Lyase controls a glucose‐to‐acetate metabolic switch
  publication-title: Cell Rep
– volume: 19
  start-page: 241
  year: 2021
  end-page: 255
  article-title: The gut microbiota‐brain axis in behaviour and brain disorders
  publication-title: Nat Rev Microbiol
– volume: 19
  start-page: 313
  year: 2022
  article-title: Fecal microbiota transplantation and replenishment of short‐chain fatty acids protect against chronic cerebral hypoperfusion‐induced colonic dysfunction by regulating gut microbiota, differentiation of Th17 cells, and mitochondrial energy metabolism
  publication-title: J Neuroinflammation
– volume: 148
  year: 2019
  article-title: Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota
  publication-title: Pharmacol Res
– volume: 12
  start-page: 24371
  year: 2020
  end-page: 24393
  article-title: Mental awareness improved mild cognitive impairment and modulated gut microbiome
  publication-title: Aging (Albany NY)
– volume: 160
  year: 2020
  article-title: Butyrate, but not propionate, reverses maternal diet‐induced neurocognitive deficits in offspring
  publication-title: Pharmacol Res
– volume: 11
  start-page: 137
  year: 2020
  article-title: Gut microbiota altered in mild cognitive impairment compared with Normal cognition in sporadic Parkinson's disease
  publication-title: Front Neurol
– volume: 301
  start-page: 563
  year: 2015
  end-page: 575
  article-title: Cannabinoid receptor agonist WIN55,212‐2 and fatty acid amide hydrolase inhibitor URB597 suppress chronic cerebral hypoperfusion‐induced neuronal apoptosis by inhibiting c‐Jun N‐terminal kinase signaling
  publication-title: Neuroscience
– volume: 10
  start-page: 661
  year: 2019
  article-title: Persistence of gut microbiota Dysbiosis and chronic systemic inflammation after cerebral infarction in Cynomolgus monkeys
  publication-title: Front Neurol
– volume: 10
  start-page: 5816
  year: 2019
  article-title: Dual microglia effects on blood brain barrier permeability induced by systemic inflammation
  publication-title: Nat Commun
– volume: 281
  start-page: 51
  year: 2021
  end-page: 60
  article-title: Acetate supplementation produces antidepressant‐like effect via enhanced histone acetylation
  publication-title: J Affect Disord
– volume: 133
  start-page: 489
  year: 2015
  end-page: 500
  article-title: Early growth response 1 (Egr‐1) directly regulates GABAA receptor α2, α4, and θ subunits in the hippocampus
  publication-title: J Neurochem
– volume: 20
  start-page: 158
  year: 2022
  end-page: 178
  article-title: Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: current targets and future perspective
  publication-title: Curr Neuropharmacol
– volume: 9
  start-page: 145
  year: 2021
  article-title: Depletion of acetate‐producing bacteria from the gut microbiota facilitates cognitive impairment through the gut‐brain neural mechanism in diabetic mice
  publication-title: Microbiome
– volume: 20
  start-page: 1411
  year: 2010
  end-page: 1419
  article-title: Reshaping the gut microbiome with bacterial transplantation and antibiotic intake
  publication-title: Genome Res
– volume: 68
  start-page: 7152
  year: 2020
  end-page: 7161
  article-title: Anti‐neuroinflammatory effect of short‐chain fatty acid acetate against Alzheimer's disease via upregulating GPR41 and inhibiting ERK/JNK/NF‐κB
  publication-title: J Agric Food Chem
– volume: 49
  year: 2017
  article-title: Enteric dysbiosis‐linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice
  publication-title: Exp Mol Med
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  article-title: QIIME allows analysis of high‐throughput community sequencing data
  publication-title: Nat Methods
– volume: 433
  year: 2022
  article-title: HDAC3 of dorsal hippocampus induces postoperative cognitive dysfunction in aged mice
  publication-title: Behav Brain Res
– volume: 8
  start-page: 396
  year: 2022
  article-title: Inflammatory gut as a pathologic and therapeutic target in Parkinson's disease
  publication-title: Cell Death Dis
– volume: 16
  start-page: 461
  year: 2019
  end-page: 478
  article-title: The role of short‐chain fatty acids in microbiota–gut–brain communication
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 309
  start-page: 1
  year: 2015
  end-page: 16
  article-title: The hippocampus in aging and disease: from plasticity to vulnerability
  publication-title: Neuroscience
– volume: 17
  start-page: 565
  year: 2015
  end-page: 576
  article-title: Control of brain development, function, and behavior by the microbiome
  publication-title: Cell Host Microbe
– volume: 99
  start-page: 110
  year: 2016
  end-page: 132
  article-title: The neuropharmacology of butyrate: the bread and butter of the microbiota‐gut‐brain axis?
  publication-title: Neurochem Int
– volume: 12
  start-page: 7199
  year: 2011
  end-page: 7215
  article-title: Roles of oxidative stress, apoptosis, PGC‐1α and mitochondrial biogenesis in cerebral ischemia
  publication-title: Int J Mol Sci
– ident: e_1_2_9_22_1
  doi: 10.1016/j.bbr.2022.114002
– ident: e_1_2_9_18_1
  doi: 10.1038/s41575-019-0157-3
– ident: e_1_2_9_5_1
  doi: 10.1177/0963689719873890
– ident: e_1_2_9_72_1
  doi: 10.1111/cns.13988
– ident: e_1_2_9_39_1
  doi: 10.1016/j.expneurol.2018.01.009
– ident: e_1_2_9_63_1
  doi: 10.1016/j.nbd.2017.08.009
– ident: e_1_2_9_29_1
  doi: 10.1203/01.PDR.0000150721.83224.89
– ident: e_1_2_9_45_1
  doi: 10.14309/ajg.0000000000000102
– ident: e_1_2_9_49_1
  doi: 10.1038/s41380-019-0425-1
– ident: e_1_2_9_58_1
  doi: 10.7150/thno.54210
– ident: e_1_2_9_59_1
  doi: 10.1016/j.phrs.2020.105082
– ident: e_1_2_9_32_1
  doi: 10.1016/j.chom.2016.07.001
– ident: e_1_2_9_57_1
  doi: 10.1523/JNEUROSCI.1359-19.2019
– ident: e_1_2_9_53_1
  doi: 10.1186/s12974-022-02523-w
– ident: e_1_2_9_65_1
  doi: 10.1038/nature18283
– ident: e_1_2_9_27_1
  doi: 10.1038/emm.2017.122
– ident: e_1_2_9_37_1
  doi: 10.1038/nsmb.1450
– ident: e_1_2_9_12_1
  doi: 10.3389/fneur.2019.00661
– ident: e_1_2_9_14_1
  doi: 10.1101/gr.107987.110
– ident: e_1_2_9_23_1
  doi: 10.1016/j.ejmech.2021.113874
– ident: e_1_2_9_28_1
  doi: 10.1016/j.chom.2017.11.003
– ident: e_1_2_9_6_1
  doi: 10.3390/nu11030521
– ident: e_1_2_9_16_1
  doi: 10.1016/j.chom.2015.04.011
– ident: e_1_2_9_68_1
  doi: 10.3389/fnbeh.2017.00035
– ident: e_1_2_9_40_1
  doi: 10.1177/0271678X20951995
– ident: e_1_2_9_54_1
  doi: 10.3389/fnut.2021.805465
– ident: e_1_2_9_4_1
  doi: 10.1038/s41420-022-01175-2
– ident: e_1_2_9_31_1
  doi: 10.1186/s12974-022-02675-9
– ident: e_1_2_9_55_1
  doi: 10.1016/j.jep.2022.115281
– ident: e_1_2_9_69_1
  doi: 10.3390/ijms12107199
– ident: e_1_2_9_41_1
  doi: 10.1038/s41467-019-13812-z
– ident: e_1_2_9_17_1
  doi: 10.1016/j.neuint.2016.06.011
– ident: e_1_2_9_10_1
  doi: 10.3389/fneur.2020.00598
– ident: e_1_2_9_9_1
  doi: 10.1016/j.freeradbiomed.2020.11.032
– ident: e_1_2_9_43_1
  doi: 10.1016/j.cell.2018.08.040
– ident: e_1_2_9_66_1
  doi: 10.1186/s40168-021-01172-0
– ident: e_1_2_9_26_1
  doi: 10.1016/j.brainresrev.2007.01.003
– ident: e_1_2_9_62_1
  doi: 10.7150/thno.35841
– ident: e_1_2_9_61_1
  doi: 10.1111/j.1471-4159.2007.04676.x
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.jafc.0c02807
– ident: e_1_2_9_52_1
  doi: 10.1128/spectrum.02776-21
– ident: e_1_2_9_67_1
  doi: 10.1111/jnc.13077
– ident: e_1_2_9_42_1
  doi: 10.3390/molecules24081583
– ident: e_1_2_9_48_1
  doi: 10.3390/nu12113471
– ident: e_1_2_9_70_1
  doi: 10.1007/s12035-018-1380-6
– ident: e_1_2_9_36_1
  doi: 10.1016/j.neuroscience.2015.07.084
– ident: e_1_2_9_33_1
  doi: 10.1016/j.neuint.2007.04.019
– ident: e_1_2_9_7_1
  doi: 10.1016/j.cpr.2020.101943
– ident: e_1_2_9_35_1
  doi: 10.1016/j.neuroscience.2015.03.021
– ident: e_1_2_9_56_1
  doi: 10.3389/fnut.2021.746515
– ident: e_1_2_9_34_1
  doi: 10.1016/j.neuroscience.2015.01.020
– ident: e_1_2_9_64_1
  doi: 10.1186/s40168-019-0713-7
– ident: e_1_2_9_11_1
  doi: 10.1016/j.phrs.2019.104403
– ident: e_1_2_9_50_1
  doi: 10.1186/s40168-021-01088-9
– ident: e_1_2_9_8_1
  doi: 10.3389/fmicb.2020.564271
– volume: 24
  start-page: 10194
  year: 2020
  ident: e_1_2_9_21_1
  article-title: The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction
  publication-title: Eur Rev Med Pharmacol Sci
– ident: e_1_2_9_3_1
  doi: 10.3233/JAD-161141
– ident: e_1_2_9_60_1
  doi: 10.1016/j.cbi.2021.109452
– ident: e_1_2_9_71_1
  doi: 10.3390/ijms23031184
– ident: e_1_2_9_24_1
  doi: 10.1038/s41380-021-01369-7
– ident: e_1_2_9_46_1
  doi: 10.3389/fneur.2020.00137
– ident: e_1_2_9_20_1
  doi: 10.2174/1570159X19666210609160017
– ident: e_1_2_9_44_1
  doi: 10.1016/j.celrep.2016.09.069
– ident: e_1_2_9_2_1
  doi: 10.1038/s41579-020-00460-0
– ident: e_1_2_9_19_1
  doi: 10.1161/CIRCRESAHA.119.316448
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jad.2020.11.121
– ident: e_1_2_9_38_1
  doi: 10.1016/j.intimp.2021.108072
– ident: e_1_2_9_30_1
  doi: 10.1038/nmeth.f.303
– ident: e_1_2_9_13_1
  doi: 10.1139/w03-075
– ident: e_1_2_9_47_1
  doi: 10.18632/aging.202277
– ident: e_1_2_9_15_1
  doi: 10.3748/wjg.v20.i47.17727
SSID ssj0062898
Score 2.4661496
Snippet Aims Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short‐chain fatty acids (SCFAs) alterations in chronic cerebral...
Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral...
AimsClear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral...
Fecal microbiota transplantation (FMT) and short‐chain fatty acids (SCFAs) replenishment exerted anti‐neuroinflammatory effects through switching microglial...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 98
SubjectTerms Acetic acid
Alzheimer's disease
Animal cognition
Animals
Antibiotics
Brain Ischemia - therapy
Carotid arteries
Carotid artery
Cerebral blood flow
chronic cerebral hypoperfusion
Cognitive ability
cognitive dysfunction
Cognitive Dysfunction - etiology
Cognitive Dysfunction - therapy
Community structure
Discriminant analysis
Dysbacteriosis
Enzyme-linked immunosorbent assay
Fatty acids
Fatty Acids, Volatile - analysis
fecal microbiota transplantation
Fecal Microbiota Transplantation - methods
Fecal microflora
Feces
Feces - chemistry
Gas chromatography
Genetic testing
Hippocampus
Immunofluorescence
Immunoprecipitation
Inflammation
Intestinal microflora
Ischemia
Laboratory animals
Mass spectroscopy
Metabolism
Microbiota
Microglia
Original
Oxidative phosphorylation
Phenotypes
Phosphorylation
Propionic acid
Rats
rRNA 16S
short‐chain fatty acids
Sodium
Stroke
Synapses
synaptic plasticity
Transplantation
Veins & arteries
Vesicle fusion
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnrjwfiwUNCBUcWiqTWznIU6oYlUhUVXQSj0gRX6yqy7Z1SZ7SE_9Cdz4f_wSxnaSdilIiFsUjxNbM2N_tmc-E_J6rK1iiS6iJPcpOXESCSmVS86xVAthC-W2Bj4epYen7MMZP9sib_tcmMAPMWy4Oc_w47VzcCHra06uUCm4Oshd8p6L1XKA6NNAHZXiQsKnwWWcR7yg445VyEXxDDU356IbAPNmnOR1_OonoMkd8qVveog7Od9fN3JfXfzG6viffbtLbnfAFN4FS7pHtkx1n-weB2brdg9OrhK16j3YheMrzuv2AfkxMahs-DYLvE6NgMazps9FSG2qQFQa6imC_Z-X39VUzCqwomlaEGqma-joIowG8RXL6gaGuCbQbe1mX_8VrCYAjRb8DT6wsKACuy8os3Jn4HOYtsvF0qzs2u0DPiSnk_cnB4dRd-dDpBhjRcS5zqlOJLNpaiUu59RY8FSLTFNN41hbfK9zneHAoRmPKS-MyXRhx4LZPDUJfUS2q0VlnhCgiePqV8IksWQyc2GTrJBJqrIUMSHnI_Km136pOkJ0dy_HvOwXRqiG0qthRF4NosvAAvInoZ3ehMpuIKhLRG9xiiA8YyPycihGF3bnMqIyizXKZAhKGcXxdUQeB4sb_kIdQT9OWCOSb9jiIODowTdLqtnU04S7CzwYthD76W3t7y0vD44--4en_y76jNxKEO-FqLkdst2s1uY54rNGvvCO-AsMwj0V
  priority: 102
  providerName: Wiley-Blackwell
Title Fecal microbiota transplantation and short‐chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcns.14089
https://www.ncbi.nlm.nih.gov/pubmed/36627762
https://www.proquest.com/docview/2831699974
https://www.proquest.com/docview/2764443003
https://pubmed.ncbi.nlm.nih.gov/PMC10314111
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R9sIF8cZQogGhikMt4n34cUJQNaqQiKLSSrlZ6300kYIdYufgH8L_ZXbtOK0KXKIou3ZszezON7Mz3xDyYayt4lRnIU19SU5EQ1kUyhXnWKaltJlyoYHv0_jimn-bi3kfcKv7tMrdnug3al0pFyP_hGYwihHNJPzz-lfouka509W-hcYBOXLUZS6lK5kPDleMzoQvhUuECEXGxj2zkMvkUShS9C1cd_fb9ugeyLyfK3kbw3ojNHlMHvXoEb504n5CHpjyKTmZdfTT7Slc7aup6lM4gdmemLp9Rn5PDEoEfi478qVGQuOpzVeyqz8qQZYa6gUi8lAt5LIEK5umBamWuoae0cFokDc4VjcwpB6BbmtnIP098DIJqFfgm-xAZUF1BLygzMYdU69g0a6rtdnYrQvVPSfXk_Ors4uwb8sQKs55FgqhU6ZpwW0c2wI9LjWWItYy0UyzKNIWf9epTnBtay4iJjJjEp3ZseQ2jQ1lL8hhWZXmFQFGHZ2-koZGBS8Sl9nIs4LGKokRtgkRkI874eSq5yx3rTNW-c53QTnmXo4BeT9MXXdEHX-bdLyTcN6v1Trfa1ZA3g3DuMrc0YksTbXFOQniRs5wCwzIy04hhn9hjkMfbUpA0juqMkxwDN53R8rlwjN5ux4bHJ8Q39Nr1b-fPD-b_vBfXv__Fd6QhxRhWJfMdkwOm83WvEXY1BQjckD5bORXyIgcfT2fzi5HPgThPi_pH5A0H4k
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiDeGAgOCikMtYnvXjwNCUBqltI0iSKXe3PU-SKRgh9gR8g_hb_AbmV3bSasCt94i79qxNd_OY3fmG0Je9aUW1JeJ68e2JMfzXZ5lwhTn6EByrhNhtgZORuHwlH4-Y2db5HdXC2PSKjudaBW1LITZI3-LZtAL0ZuJ6PvFD9d0jTKnq10LjQYWR6r-iSFb-e7wE8r3te8PDib7Q7ftKuAKSmniMibjQPoZ1WGoMwwYRJ-zUPJIBjLwPKnxuoxlhNCUlHkBS5SKZKL7nOo4VIboAFX-Ng0wlOmR7Y8Ho_GXTveHGL7Y4ruIMZclQb_lMjK5QwJBhNGM6Sd_0QJecWuvZmde9Jqt2RvcJrdafxU-NAC7Q7ZUfpfsjhvC63oPJpv6rXIPdmG8ocKu75FfA4UYgO-zhu6p4lBZMvU5byqecuC5hHKKMYArpnyWg-ZVVQMXM1lCyyGhJPBvOFZWsE52AlmXxiTbZ-BtHBDJYNv6QKFBNJS_INTSHIzPYVovioVa6pXZHLxPTq9FZA9ILy9y9YhA4BsCf8GV72U0i0wuJU0yPxRRiI4iYw550wknFS1LumnWMU-7aAnlmFo5OuTleuqioQb526SdTsJpqx3KdINlh7xYD-O6Noc1PFfFCudE6KnSAJWuQx42gFj_S2BY-9GKOSS-BJX1BMMZfnkkn00td7jp6kHxDfE7Lar-_ebp_uir_fH4_5_wnNwYTk6O0-PD0dETctNHJ7BJpdshvWq5Uk_RaauyZ-1KAXJ-3YvzD2wRWWE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRUJcEG8MBQYEFYdaje1dr31ACLVELYUoEq2Um1nvo4kUnBA7Qv4h_Bl-HbPrR1oVuPUWedeOrflmdmZ35htCXg-UkTRUqR8mriQnCH2R59IW55hICWFSabcGvoziozP6acImW-R3Vwtj0yo7m-gMtVpIu0e-j8tgEKM3w-m-adMixofD98sfvu0gZU9au3YaDUROdP0Tw7fy3fEhyvpNGA4_nh4c-W2HAV9SSlOfMZVEKsypiWOTY_AgB4LFSnAVqSgIlMHrKlEcYaooCyKWas1VagaCmiTWlvQAzf8NHuEY6hKf9MFejIGMK8PjjPksjQYtq5HNIpIIJ4xrbGf5i2vhFQf3ap7mRf_ZLYDDO-R267nChwZqd8mWLu6R3XFDfV3vwemmkqvcg10Yb0ix6_vk11AjGuD7rCF-qgRUjlZ9LprapwJEoaCcYjTgy6mYFWBEVdUg5EyV0LJJaAXiHMfKCvq0J1B1aRdn9wy8TQBiGlyDH1gYkA35L0i9skfkc5jWy8VSr8zabhM-IGfXIrCHZLtYFPoxgSi0VP5S6DDIac5tViVN8zCWPEaXkTGPvO2Ek8mWL9227ZhnXdyEcsycHD3yqp-6bEhC_jZpp5Nw1tqJMtug2iMv-2HUcHtsIwq9WOMcjj4rjdD8euRRA4j-XyLL34_rmUeSS1DpJ1j28MsjxWzqWMRtfw-Kb4jf6VD17zfPDkZf3Y8n__-EF-QmqmT2-Xh08pTcCtEbbHLqdsh2tVrrZ-i9VflzpyZAvl23Xv4Bb2ZcMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fecal+microbiota+transplantation+and+short-chain+fatty+acids+protected+against+cognitive+dysfunction+in+a+rat+model+of+chronic+cerebral+hypoperfusion&rft.jtitle=CNS+neuroscience+%26+therapeutics&rft.au=Su%2C+Shao-Hua&rft.au=Chen%2C+Ming&rft.au=Wu%2C+Yi-Fang&rft.au=Lin%2C+Qi&rft.date=2023-06-01&rft.issn=1755-5949&rft.eissn=1755-5949&rft.volume=29+Suppl+1&rft.spage=98&rft_id=info:doi/10.1111%2Fcns.14089&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-5930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-5930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-5930&client=summon