Fecal microbiota transplantation and short‐chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion
Aims Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short‐chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)‐induced gut microbiota an...
Saved in:
Published in | CNS neuroscience & therapeutics Vol. 29; no. S1; pp. 98 - 114 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.06.2023
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short‐chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)‐induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH‐induced hippocampal neuronal injury.
Methods
Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography–mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope.
Results
Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti‐neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH‐induced cognitive impairment.
Conclusion
Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota‐based strategy to mitigate chronic cerebral ischemia‐induced neuronal injury.
Fecal microbiota transplantation (FMT) and short‐chain fatty acids (SCFAs) replenishment exerted anti‐neuroinflammatory effects through switching microglial phenotype from M1 toward M2. Furthermore, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. |
---|---|
AbstractList | Fecal microbiota transplantation (FMT) and short‐chain fatty acids (SCFAs) replenishment exerted anti‐neuroinflammatory effects through switching microglial phenotype from M1 toward M2. Furthermore, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury. Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography-mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope. Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment. Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury. AimsClear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury.MethodsBilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography–mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope.ResultsChronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment.ConclusionOur findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury. Aims Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short‐chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)‐induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH‐induced hippocampal neuronal injury. Methods Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography–mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope. Results Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti‐neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH‐induced cognitive impairment. Conclusion Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota‐based strategy to mitigate chronic cerebral ischemia‐induced neuronal injury. Fecal microbiota transplantation (FMT) and short‐chain fatty acids (SCFAs) replenishment exerted anti‐neuroinflammatory effects through switching microglial phenotype from M1 toward M2. Furthermore, FMT and SCFAs treatment alleviated neuronal loss and microglia‐mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury.AIMSClear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury.Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography-mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope.METHODSBilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography-mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope.Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment.RESULTSChronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment.Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury.CONCLUSIONOur findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury. |
Author | Chen, Ming Lin, Qi Su, Shao‐Hua Sun, Jun Hai, Jian Wang, Da‐Peng Wu, Yi‐Fang |
AuthorAffiliation | 2 Department of Neurosurgery, Xinhua hospital, School of Medicine Shanghai Jiao Tong University Shanghai China 3 Department of Pharmacy, Institutes of Medical Sciences, School of Medicine Shanghai Jiao Tong University Shanghai China 1 Department of Neurosurgery, Tongji Hospital, School of Medicine Tongji University Shanghai China |
AuthorAffiliation_xml | – name: 3 Department of Pharmacy, Institutes of Medical Sciences, School of Medicine Shanghai Jiao Tong University Shanghai China – name: 1 Department of Neurosurgery, Tongji Hospital, School of Medicine Tongji University Shanghai China – name: 2 Department of Neurosurgery, Xinhua hospital, School of Medicine Shanghai Jiao Tong University Shanghai China |
Author_xml | – sequence: 1 givenname: Shao‐Hua orcidid: 0000-0002-1583-5102 surname: Su fullname: Su, Shao‐Hua email: sushdoc@tongji.edu.cn organization: Tongji University – sequence: 2 givenname: Ming surname: Chen fullname: Chen, Ming organization: Shanghai Jiao Tong University – sequence: 3 givenname: Yi‐Fang surname: Wu fullname: Wu, Yi‐Fang organization: Tongji University – sequence: 4 givenname: Qi surname: Lin fullname: Lin, Qi organization: Shanghai Jiao Tong University – sequence: 5 givenname: Da‐Peng surname: Wang fullname: Wang, Da‐Peng organization: Tongji University – sequence: 6 givenname: Jun surname: Sun fullname: Sun, Jun organization: Tongji University – sequence: 7 givenname: Jian surname: Hai fullname: Hai, Jian email: jianhai@tongji.edu.cn organization: Tongji University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36627762$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Ustu1DAUjVARfcCCH0CW2MBiWjt2nHiFqhEFpAoWwNpy_Ji4ytjBdoqy4xPY8X98CZfOtIIKvLHle87Ruffc4-ogxGCr6inBpwTOmQ75lDDciQfVEWmbZtUIJg7u3hQfVsc5X2HM6050j6pDynndtrw-qn5cWK1GtPU6xd7HolBJKuRpVKGo4mNAKhiUh5jKz2_f9aB8QE6VsiClvcloSrFYXaxBagO1XJCOm-CLv7bILNnNQd-oAE2hpAraRmNHFB3SQ4rBa6Rtsn0CD8MyxckmN2cgPK4eOjVm-2R_n1SfL15_Wr9dXX548259frnSjDGxahrTUVP3zHHu-rprNVYNN6o11FBCjIN_05mWCG5YQ2gjrG2NcFgx13Fb05Pq1U53mvutNdoG6H-UU_JblRYZlZd_V4If5CZeS4IpYTB8UHixV0jxy2xzkVuftR1hgjbOWdYtB6sUYwrQ5_egV3FOAfqTdUcJF0K0DFDP_rR05-U2NACc7QCQWc7JOqn9Lixw6EewJn-vhYS1kDdrAYyX9xi3ov_C7tW_-tEu_wfK9fuPO8YvHQjMVA |
CitedBy_id | crossref_primary_10_1016_j_neuint_2023_105614 crossref_primary_10_1111_nyas_15299 crossref_primary_10_1016_j_micres_2025_128101 crossref_primary_10_1038_s41467_024_51094_2 crossref_primary_10_3724_abbs_2024217 crossref_primary_10_3389_fphar_2024_1428242 crossref_primary_10_1021_acs_jafc_4c01922 crossref_primary_10_1007_s11064_024_04206_9 crossref_primary_10_1016_j_amolm_2024_100047 crossref_primary_10_3390_nu15234915 crossref_primary_10_1016_j_nbd_2025_106836 crossref_primary_10_1136_gpsych_2023_101374 crossref_primary_10_1016_j_intimp_2023_111108 crossref_primary_10_1016_j_phymed_2024_156019 crossref_primary_10_3390_ijms26031373 crossref_primary_10_3390_ijms24065520 crossref_primary_10_1016_j_pbb_2025_173972 crossref_primary_10_1016_j_tifs_2025_104942 crossref_primary_10_1186_s12866_024_03276_7 crossref_primary_10_3390_nu16244355 crossref_primary_10_3389_fimmu_2025_1519925 crossref_primary_10_1016_j_bbi_2024_10_002 crossref_primary_10_1097_MD_0000000000037960 crossref_primary_10_1007_s12264_023_01123_9 crossref_primary_10_1016_j_aehs_2024_11_001 |
Cites_doi | 10.1016/j.bbr.2022.114002 10.1038/s41575-019-0157-3 10.1177/0963689719873890 10.1111/cns.13988 10.1016/j.expneurol.2018.01.009 10.1016/j.nbd.2017.08.009 10.1203/01.PDR.0000150721.83224.89 10.14309/ajg.0000000000000102 10.1038/s41380-019-0425-1 10.7150/thno.54210 10.1016/j.phrs.2020.105082 10.1016/j.chom.2016.07.001 10.1523/JNEUROSCI.1359-19.2019 10.1186/s12974-022-02523-w 10.1038/nature18283 10.1038/emm.2017.122 10.1038/nsmb.1450 10.3389/fneur.2019.00661 10.1101/gr.107987.110 10.1016/j.ejmech.2021.113874 10.1016/j.chom.2017.11.003 10.3390/nu11030521 10.1016/j.chom.2015.04.011 10.3389/fnbeh.2017.00035 10.1177/0271678X20951995 10.3389/fnut.2021.805465 10.1038/s41420-022-01175-2 10.1186/s12974-022-02675-9 10.1016/j.jep.2022.115281 10.3390/ijms12107199 10.1038/s41467-019-13812-z 10.1016/j.neuint.2016.06.011 10.3389/fneur.2020.00598 10.1016/j.freeradbiomed.2020.11.032 10.1016/j.cell.2018.08.040 10.1186/s40168-021-01172-0 10.1016/j.brainresrev.2007.01.003 10.7150/thno.35841 10.1111/j.1471-4159.2007.04676.x 10.1021/acs.jafc.0c02807 10.1128/spectrum.02776-21 10.1111/jnc.13077 10.3390/molecules24081583 10.3390/nu12113471 10.1007/s12035-018-1380-6 10.1016/j.neuroscience.2015.07.084 10.1016/j.neuint.2007.04.019 10.1016/j.cpr.2020.101943 10.1016/j.neuroscience.2015.03.021 10.3389/fnut.2021.746515 10.1016/j.neuroscience.2015.01.020 10.1186/s40168-019-0713-7 10.1016/j.phrs.2019.104403 10.1186/s40168-021-01088-9 10.3389/fmicb.2020.564271 10.3233/JAD-161141 10.1016/j.cbi.2021.109452 10.3390/ijms23031184 10.1038/s41380-021-01369-7 10.3389/fneur.2020.00137 10.2174/1570159X19666210609160017 10.1016/j.celrep.2016.09.069 10.1038/s41579-020-00460-0 10.1161/CIRCRESAHA.119.316448 10.1016/j.jad.2020.11.121 10.1016/j.intimp.2021.108072 10.1038/nmeth.f.303 10.1139/w03-075 10.18632/aging.202277 10.3748/wjg.v20.i47.17727 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/cns.14089 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Su et al |
EISSN | 1755-5949 |
EndPage | 114 |
ExternalDocumentID | PMC10314111 36627762 10_1111_cns_14089 CNS14089 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81601146; 81771410; 81902521; 81974209 – fundername: Shanghai Sailing Program funderid: 19YF1432800 – fundername: National Natural Science Foundation of China grantid: 81771410 – fundername: National Natural Science Foundation of China grantid: 81601146 – fundername: National Natural Science Foundation of China grantid: 81974209 – fundername: Shanghai Sailing Program grantid: 19YF1432800 – fundername: National Natural Science Foundation of China grantid: 81902521 – fundername: ; grantid: 81601146; 81771410; 81902521; 81974209 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8AO 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABDBF ABEML ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACMXC ACPRK ACSCC ACUHS ACXQS ADBBV ADEOM ADIZJ ADKYN ADPDF ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFKRA AFPKN AFPWT AFZJQ AHMBA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AOIJS ATUGU AVUZU AZBYB AZVAB BAFTC BBNVY BCNDV BENPR BFHJK BHBCM BHPHI BMXJE BROTX BRXPI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DU5 EBC EBD EBS EJD EMB EMOBN ESX F00 F01 F04 F5P FUBAC FYUFA G-S G.N GODZA GROUPED_DOAJ H.X HCIFZ HF~ HMCUK HYE HZ~ IAO IHR INH ITC IX1 J0M LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 M7P MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2W P2X P2Z P4B P4D PIMPY PQQKQ Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ SV3 TEORI TUS UB1 UKHRP W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WQJ WRC WXI WYISQ XG1 ~IA ~WT AAFWJ AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 1OB 3V. 7TK 7XB 8FE 8FH 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. LK8 PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c4449-55d83d2b4f66fb287c0a56da7d3d311dff66d8d7196d451359ee7d9f0a4f86e23 |
IEDL.DBID | 7X7 |
ISSN | 1755-5930 1755-5949 |
IngestDate | Thu Aug 21 18:37:42 EDT 2025 Fri Jul 11 16:07:52 EDT 2025 Wed Aug 13 09:35:37 EDT 2025 Wed Feb 19 02:09:57 EST 2025 Thu Apr 24 22:59:14 EDT 2025 Tue Jul 01 00:33:49 EDT 2025 Wed Jan 22 16:21:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S1 |
Keywords | synaptic plasticity short-chain fatty acids chronic cerebral hypoperfusion cognitive dysfunction microglia fecal microbiota transplantation oxidative phosphorylation |
Language | English |
License | Attribution 2023 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4449-55d83d2b4f66fb287c0a56da7d3d311dff66d8d7196d451359ee7d9f0a4f86e23 |
Notes | Shao‐Hua Su and Ming Chen contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1583-5102 |
OpenAccessLink | https://www.proquest.com/docview/2831699974?pq-origsite=%requestingapplication% |
PMID | 36627762 |
PQID | 2831699974 |
PQPubID | 946372 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10314111 proquest_miscellaneous_2764443003 proquest_journals_2831699974 pubmed_primary_36627762 crossref_citationtrail_10_1111_cns_14089 crossref_primary_10_1111_cns_14089 wiley_primary_10_1111_cns_14089_CNS14089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | CNS neuroscience & therapeutics |
PublicationTitleAlternate | CNS Neurosci Ther |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2007; 102 2022; 293 2019; 11 2015; 301 2019; 10 2017; 49 2019; 56 2020; 160 2021; 281 2022; 23 2019; 16 2020; 127 2021; 162 2015; 309 2022; 20 2020; 12 2011; 12 2020; 11 2020; 10 2022; 27 2014; 20 2018; 175 2010; 20 2015; 290 2019; 24 2015; 133 2019; 28 2003; 49 2019; 114 2021; 83 2010; 7 2021; 9 2021; 8 2019; 7 2015; 17 2020; 40 2021; 226 2018; 302 2019; 148 2008; 15 2007; 50 2021; 341 2018; 23 2007; 54 2016; 17 2016; 99 2022; 433 2017; 108 2021; 99 2021; 11 2017; 58 2022 2017; 11 2022; 8 2021; 19 2016; 20 2020; 25 2020; 24 2020; 68 2016; 534 2022; 10 2005; 57 2022; 19 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 Yang CX (e_1_2_9_21_1) 2020; 24 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 7 start-page: 98 year: 2019 article-title: Dietary fructose‐induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short‐chain fatty acids publication-title: Microbiome – volume: 11 start-page: 35 year: 2017 article-title: The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders publication-title: Front Behav Neurosci – volume: 12 start-page: 3471 year: 2020 article-title: Associations between pro‐ and anti‐inflammatory gastro‐intestinal microbiota, diet, and cognitive functioning in Dutch healthy older adults: the NU‐AGE study publication-title: Nutrients – volume: 9 start-page: 223 year: 2021 article-title: A fiber‐deprived diet causes cognitive impairment and hippocampal microglia‐mediated synaptic loss through the gut microbiota and metabolites publication-title: Microbiome – volume: 27 start-page: 1683 issue: 3 year: 2022 end-page: 1693 article-title: Spatial and temporal dynamics of HDACs class IIa following mild traumatic brain injury in adult rats publication-title: Mol Psychiatry – volume: 114 start-page: 1080 year: 2019 end-page: 1090 article-title: Specific gut and salivary microbiota patterns are linked with different cognitive testing strategies in minimal hepatic encephalopathy publication-title: Am J Gastroenterol – volume: 28 start-page: 1507 year: 2019 end-page: 1527 article-title: The gut microbiota in multiple sclerosis: an overview of clinical trials publication-title: Cell Transplant – volume: 58 start-page: 1 year: 2017 end-page: 15 article-title: The gut microbiota and Alzheimer's disease publication-title: J Alzheimers Dis – volume: 341 year: 2021 article-title: Sodium butyrate ameliorates the impairment of synaptic plasticity by inhibiting the neuroinflammation in 5XFAD mice publication-title: Chem Biol Interact – volume: 56 start-page: 4549 year: 2019 end-page: 4565 article-title: Resveratrol preconditioning induces genomic and metabolic adaptations within the long‐term window of cerebral ischemic tolerance leading to bioenergetic efficiency publication-title: Mol Neurobiol – volume: 534 start-page: 538 year: 2016 end-page: 543 article-title: A complement‐microglial axis drives synapse loss during virus‐induced memory impairment publication-title: Nature – volume: 11 start-page: 521 year: 2019 article-title: Autism Spectrum disorders and the gut microbiota publication-title: Nutrients – volume: 57 start-page: 201 year: 2005 end-page: 204 article-title: Short‐chain fatty acids induce colonic mucosal injury in rats with various postnatal ages publication-title: Pediatr Res – volume: 20 start-page: 202 year: 2016 end-page: 214 article-title: Gut microbial metabolites fuel host antibody responses publication-title: Cell Host Microbe – volume: 226 year: 2021 article-title: Inhibition of histone deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: a review (2010‐2020) publication-title: Eur J Med Chem – volume: 25 start-page: 2567 year: 2020 end-page: 2583 article-title: Mid‐life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome publication-title: Mol Psychiatry – volume: 11 start-page: 598 year: 2020 article-title: Gut microbiota in acute ischemic stroke: from pathophysiology to therapeutic implications publication-title: Front Neurol – volume: 54 start-page: 162 year: 2007 end-page: 180 article-title: Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion‐related neurodegenerative diseases publication-title: Brain Res Rev – volume: 15 start-page: 665 year: 2008 end-page: 674 article-title: Synaptic vesicle fusion publication-title: Nat Struct Mol Biol – volume: 40 start-page: 1162 year: 2020 end-page: 1173 article-title: Short‐chain fatty acids improve poststroke recovery via immunological mechanisms publication-title: J Neurosci – volume: 11 start-page: 4616 year: 2021 end-page: 4636 article-title: Decreased neuronal synaptosome associated protein 29 contributes to poststroke cognitive impairment by disrupting presynaptic maintenance publication-title: Theranostics – volume: 162 start-page: 104 year: 2021 end-page: 117 article-title: Atorvastatin alleviates microglia‐mediated neuroinflammation via modulating the microbial composition and the intestinal barrier function in ischemic stroke mice publication-title: Free Radic Biol Med – volume: 8 year: 2022 article-title: Prevotella histicola mitigated estrogen deficiency‐induced depression via gut microbiota‐dependent modulation of inflammation in Ovariectomized mice publication-title: Front Nutr – volume: 8 year: 2021 article-title: Gut microbiota composition and predicted microbial metabolic pathways of obesity prone and obesity resistant outbred Sprague‐Dawley CD rats may account for differences in their phenotype publication-title: Front Nutr – volume: 24 start-page: 1583 year: 2019 article-title: Oxidative stress: a key modulator in neurodegenerative diseases publication-title: Molecules – volume: 99 year: 2021 article-title: Irf1‐ and Egr1‐activated transcription plays a key role in macrophage polarization: a multiomics sequencing study with partial validation publication-title: Int Immunopharmacol – volume: 10 year: 2022 article-title: Survival strategies and metabolic interactions between and , isolated from human bile publication-title: Microbiol Spectr – volume: 83 year: 2021 article-title: The gut microbiota in anxiety and depression – a systematic review publication-title: Clin Psychol Rev – volume: 11 year: 2020 article-title: Orally administered antibiotics vancomycin and ampicillin cause cognitive impairment with gut Dysbiosis in mice with transient global forebrain ischemia publication-title: Front Microbiol – volume: 23 start-page: 1184 year: 2022 article-title: Gut‐brain axis as a pathological and therapeutic target for neurodegenerative disorders publication-title: Int J Mol Sci – year: 2022 article-title: Getting the guts to expand stroke treatment: the potential for microbiome targeted therapies publication-title: CNS Neurosci Ther – volume: 40 start-page: S6 year: 2020 end-page: S24 article-title: Regulation of blood‐brain barrier integrity by microglia in health and disease: a therapeutic opportunity publication-title: J Cereb Blood Flow Metab – volume: 50 start-page: 1014 year: 2007 end-page: 1027 article-title: Role of transcription factors in mediating post‐ischemic cerebral inflammation and brain damage publication-title: Neurochem Int – volume: 102 start-page: 1941 year: 2007 end-page: 1952 article-title: Cholesterol supports the retinoic acid‐induced synaptic vesicle formation in differentiating human SH‐SY5Y neuroblastoma cells publication-title: J Neurochem – volume: 302 start-page: 145 year: 2018 end-page: 154 article-title: Early activation of Egr‐1 promotes neuroinflammation and dopaminergic neurodegeneration in an experimental model of Parkinson's disease publication-title: Exp Neurol – volume: 20 start-page: 17727 year: 2014 end-page: 17736 article-title: Impact of the gut microbiota on rodent models of human disease publication-title: World J Gastroenterol – volume: 10 start-page: 74 year: 2020 end-page: 90 article-title: Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion publication-title: Theranostics – volume: 108 start-page: 115 year: 2017 end-page: 127 article-title: Alternative microglial activation is associated with cessation of progressive dopamine neuron loss in mice systemically administered lipopolysaccharide publication-title: Neurobiol Dis – volume: 175 start-page: 502 year: 2018 end-page: 513 article-title: Acetate production from glucose and coupling to mitochondrial metabolism in mammals publication-title: Cell – volume: 127 start-page: 453 year: 2020 end-page: 465 article-title: Gut microbiota‐derived short‐chain fatty acids promote Poststroke recovery in aged mice publication-title: Circ Res – volume: 19 start-page: 169 year: 2022 article-title: Gut microbiota depletion by antibiotics ameliorates somatic neuropathic pain induced by nerve injury, chemotherapy, and diabetes in mice publication-title: J Neuroinflammation – volume: 293 year: 2022 article-title: Integrated 16S rRNA gene sequencing and LC/MS‐based metabolomics ascertained synergistic influences of the combination of acupuncture and NaoMaiTong on ischemic stroke publication-title: J Ethnopharmacol – volume: 49 start-page: 589 year: 2003 end-page: 601 article-title: Culture‐independent phylogenetic analysis of the faecal flora of the rat publication-title: Can J Microbiol – volume: 290 start-page: 509 year: 2015 end-page: 517 article-title: Over‐expressed EGR1 may exaggerate ischemic injury after experimental stroke by decreasing BDNF expression publication-title: Neuroscience – volume: 23 start-page: 41 year: 2018 end-page: 53 article-title: Fiber‐mediated nourishment of gut microbiota protects against diet‐induced obesity by restoring IL‐22‐mediated colonic health publication-title: Cell Host Microbe – volume: 24 start-page: 10194 year: 2020 end-page: 10202 article-title: The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction publication-title: Eur Rev Med Pharmacol Sci – volume: 17 start-page: 1037 year: 2016 end-page: 1052 article-title: ATP‐citrate Lyase controls a glucose‐to‐acetate metabolic switch publication-title: Cell Rep – volume: 19 start-page: 241 year: 2021 end-page: 255 article-title: The gut microbiota‐brain axis in behaviour and brain disorders publication-title: Nat Rev Microbiol – volume: 19 start-page: 313 year: 2022 article-title: Fecal microbiota transplantation and replenishment of short‐chain fatty acids protect against chronic cerebral hypoperfusion‐induced colonic dysfunction by regulating gut microbiota, differentiation of Th17 cells, and mitochondrial energy metabolism publication-title: J Neuroinflammation – volume: 148 year: 2019 article-title: Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota publication-title: Pharmacol Res – volume: 12 start-page: 24371 year: 2020 end-page: 24393 article-title: Mental awareness improved mild cognitive impairment and modulated gut microbiome publication-title: Aging (Albany NY) – volume: 160 year: 2020 article-title: Butyrate, but not propionate, reverses maternal diet‐induced neurocognitive deficits in offspring publication-title: Pharmacol Res – volume: 11 start-page: 137 year: 2020 article-title: Gut microbiota altered in mild cognitive impairment compared with Normal cognition in sporadic Parkinson's disease publication-title: Front Neurol – volume: 301 start-page: 563 year: 2015 end-page: 575 article-title: Cannabinoid receptor agonist WIN55,212‐2 and fatty acid amide hydrolase inhibitor URB597 suppress chronic cerebral hypoperfusion‐induced neuronal apoptosis by inhibiting c‐Jun N‐terminal kinase signaling publication-title: Neuroscience – volume: 10 start-page: 661 year: 2019 article-title: Persistence of gut microbiota Dysbiosis and chronic systemic inflammation after cerebral infarction in Cynomolgus monkeys publication-title: Front Neurol – volume: 10 start-page: 5816 year: 2019 article-title: Dual microglia effects on blood brain barrier permeability induced by systemic inflammation publication-title: Nat Commun – volume: 281 start-page: 51 year: 2021 end-page: 60 article-title: Acetate supplementation produces antidepressant‐like effect via enhanced histone acetylation publication-title: J Affect Disord – volume: 133 start-page: 489 year: 2015 end-page: 500 article-title: Early growth response 1 (Egr‐1) directly regulates GABAA receptor α2, α4, and θ subunits in the hippocampus publication-title: J Neurochem – volume: 20 start-page: 158 year: 2022 end-page: 178 article-title: Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: current targets and future perspective publication-title: Curr Neuropharmacol – volume: 9 start-page: 145 year: 2021 article-title: Depletion of acetate‐producing bacteria from the gut microbiota facilitates cognitive impairment through the gut‐brain neural mechanism in diabetic mice publication-title: Microbiome – volume: 20 start-page: 1411 year: 2010 end-page: 1419 article-title: Reshaping the gut microbiome with bacterial transplantation and antibiotic intake publication-title: Genome Res – volume: 68 start-page: 7152 year: 2020 end-page: 7161 article-title: Anti‐neuroinflammatory effect of short‐chain fatty acid acetate against Alzheimer's disease via upregulating GPR41 and inhibiting ERK/JNK/NF‐κB publication-title: J Agric Food Chem – volume: 49 year: 2017 article-title: Enteric dysbiosis‐linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice publication-title: Exp Mol Med – volume: 7 start-page: 335 year: 2010 end-page: 336 article-title: QIIME allows analysis of high‐throughput community sequencing data publication-title: Nat Methods – volume: 433 year: 2022 article-title: HDAC3 of dorsal hippocampus induces postoperative cognitive dysfunction in aged mice publication-title: Behav Brain Res – volume: 8 start-page: 396 year: 2022 article-title: Inflammatory gut as a pathologic and therapeutic target in Parkinson's disease publication-title: Cell Death Dis – volume: 16 start-page: 461 year: 2019 end-page: 478 article-title: The role of short‐chain fatty acids in microbiota–gut–brain communication publication-title: Nat Rev Gastroenterol Hepatol – volume: 309 start-page: 1 year: 2015 end-page: 16 article-title: The hippocampus in aging and disease: from plasticity to vulnerability publication-title: Neuroscience – volume: 17 start-page: 565 year: 2015 end-page: 576 article-title: Control of brain development, function, and behavior by the microbiome publication-title: Cell Host Microbe – volume: 99 start-page: 110 year: 2016 end-page: 132 article-title: The neuropharmacology of butyrate: the bread and butter of the microbiota‐gut‐brain axis? publication-title: Neurochem Int – volume: 12 start-page: 7199 year: 2011 end-page: 7215 article-title: Roles of oxidative stress, apoptosis, PGC‐1α and mitochondrial biogenesis in cerebral ischemia publication-title: Int J Mol Sci – ident: e_1_2_9_22_1 doi: 10.1016/j.bbr.2022.114002 – ident: e_1_2_9_18_1 doi: 10.1038/s41575-019-0157-3 – ident: e_1_2_9_5_1 doi: 10.1177/0963689719873890 – ident: e_1_2_9_72_1 doi: 10.1111/cns.13988 – ident: e_1_2_9_39_1 doi: 10.1016/j.expneurol.2018.01.009 – ident: e_1_2_9_63_1 doi: 10.1016/j.nbd.2017.08.009 – ident: e_1_2_9_29_1 doi: 10.1203/01.PDR.0000150721.83224.89 – ident: e_1_2_9_45_1 doi: 10.14309/ajg.0000000000000102 – ident: e_1_2_9_49_1 doi: 10.1038/s41380-019-0425-1 – ident: e_1_2_9_58_1 doi: 10.7150/thno.54210 – ident: e_1_2_9_59_1 doi: 10.1016/j.phrs.2020.105082 – ident: e_1_2_9_32_1 doi: 10.1016/j.chom.2016.07.001 – ident: e_1_2_9_57_1 doi: 10.1523/JNEUROSCI.1359-19.2019 – ident: e_1_2_9_53_1 doi: 10.1186/s12974-022-02523-w – ident: e_1_2_9_65_1 doi: 10.1038/nature18283 – ident: e_1_2_9_27_1 doi: 10.1038/emm.2017.122 – ident: e_1_2_9_37_1 doi: 10.1038/nsmb.1450 – ident: e_1_2_9_12_1 doi: 10.3389/fneur.2019.00661 – ident: e_1_2_9_14_1 doi: 10.1101/gr.107987.110 – ident: e_1_2_9_23_1 doi: 10.1016/j.ejmech.2021.113874 – ident: e_1_2_9_28_1 doi: 10.1016/j.chom.2017.11.003 – ident: e_1_2_9_6_1 doi: 10.3390/nu11030521 – ident: e_1_2_9_16_1 doi: 10.1016/j.chom.2015.04.011 – ident: e_1_2_9_68_1 doi: 10.3389/fnbeh.2017.00035 – ident: e_1_2_9_40_1 doi: 10.1177/0271678X20951995 – ident: e_1_2_9_54_1 doi: 10.3389/fnut.2021.805465 – ident: e_1_2_9_4_1 doi: 10.1038/s41420-022-01175-2 – ident: e_1_2_9_31_1 doi: 10.1186/s12974-022-02675-9 – ident: e_1_2_9_55_1 doi: 10.1016/j.jep.2022.115281 – ident: e_1_2_9_69_1 doi: 10.3390/ijms12107199 – ident: e_1_2_9_41_1 doi: 10.1038/s41467-019-13812-z – ident: e_1_2_9_17_1 doi: 10.1016/j.neuint.2016.06.011 – ident: e_1_2_9_10_1 doi: 10.3389/fneur.2020.00598 – ident: e_1_2_9_9_1 doi: 10.1016/j.freeradbiomed.2020.11.032 – ident: e_1_2_9_43_1 doi: 10.1016/j.cell.2018.08.040 – ident: e_1_2_9_66_1 doi: 10.1186/s40168-021-01172-0 – ident: e_1_2_9_26_1 doi: 10.1016/j.brainresrev.2007.01.003 – ident: e_1_2_9_62_1 doi: 10.7150/thno.35841 – ident: e_1_2_9_61_1 doi: 10.1111/j.1471-4159.2007.04676.x – ident: e_1_2_9_51_1 doi: 10.1021/acs.jafc.0c02807 – ident: e_1_2_9_52_1 doi: 10.1128/spectrum.02776-21 – ident: e_1_2_9_67_1 doi: 10.1111/jnc.13077 – ident: e_1_2_9_42_1 doi: 10.3390/molecules24081583 – ident: e_1_2_9_48_1 doi: 10.3390/nu12113471 – ident: e_1_2_9_70_1 doi: 10.1007/s12035-018-1380-6 – ident: e_1_2_9_36_1 doi: 10.1016/j.neuroscience.2015.07.084 – ident: e_1_2_9_33_1 doi: 10.1016/j.neuint.2007.04.019 – ident: e_1_2_9_7_1 doi: 10.1016/j.cpr.2020.101943 – ident: e_1_2_9_35_1 doi: 10.1016/j.neuroscience.2015.03.021 – ident: e_1_2_9_56_1 doi: 10.3389/fnut.2021.746515 – ident: e_1_2_9_34_1 doi: 10.1016/j.neuroscience.2015.01.020 – ident: e_1_2_9_64_1 doi: 10.1186/s40168-019-0713-7 – ident: e_1_2_9_11_1 doi: 10.1016/j.phrs.2019.104403 – ident: e_1_2_9_50_1 doi: 10.1186/s40168-021-01088-9 – ident: e_1_2_9_8_1 doi: 10.3389/fmicb.2020.564271 – volume: 24 start-page: 10194 year: 2020 ident: e_1_2_9_21_1 article-title: The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction publication-title: Eur Rev Med Pharmacol Sci – ident: e_1_2_9_3_1 doi: 10.3233/JAD-161141 – ident: e_1_2_9_60_1 doi: 10.1016/j.cbi.2021.109452 – ident: e_1_2_9_71_1 doi: 10.3390/ijms23031184 – ident: e_1_2_9_24_1 doi: 10.1038/s41380-021-01369-7 – ident: e_1_2_9_46_1 doi: 10.3389/fneur.2020.00137 – ident: e_1_2_9_20_1 doi: 10.2174/1570159X19666210609160017 – ident: e_1_2_9_44_1 doi: 10.1016/j.celrep.2016.09.069 – ident: e_1_2_9_2_1 doi: 10.1038/s41579-020-00460-0 – ident: e_1_2_9_19_1 doi: 10.1161/CIRCRESAHA.119.316448 – ident: e_1_2_9_25_1 doi: 10.1016/j.jad.2020.11.121 – ident: e_1_2_9_38_1 doi: 10.1016/j.intimp.2021.108072 – ident: e_1_2_9_30_1 doi: 10.1038/nmeth.f.303 – ident: e_1_2_9_13_1 doi: 10.1139/w03-075 – ident: e_1_2_9_47_1 doi: 10.18632/aging.202277 – ident: e_1_2_9_15_1 doi: 10.3748/wjg.v20.i47.17727 |
SSID | ssj0062898 |
Score | 2.4661496 |
Snippet | Aims
Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short‐chain fatty acids (SCFAs) alterations in chronic cerebral... Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral... AimsClear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral... Fecal microbiota transplantation (FMT) and short‐chain fatty acids (SCFAs) replenishment exerted anti‐neuroinflammatory effects through switching microglial... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 98 |
SubjectTerms | Acetic acid Alzheimer's disease Animal cognition Animals Antibiotics Brain Ischemia - therapy Carotid arteries Carotid artery Cerebral blood flow chronic cerebral hypoperfusion Cognitive ability cognitive dysfunction Cognitive Dysfunction - etiology Cognitive Dysfunction - therapy Community structure Discriminant analysis Dysbacteriosis Enzyme-linked immunosorbent assay Fatty acids Fatty Acids, Volatile - analysis fecal microbiota transplantation Fecal Microbiota Transplantation - methods Fecal microflora Feces Feces - chemistry Gas chromatography Genetic testing Hippocampus Immunofluorescence Immunoprecipitation Inflammation Intestinal microflora Ischemia Laboratory animals Mass spectroscopy Metabolism Microbiota Microglia Original Oxidative phosphorylation Phenotypes Phosphorylation Propionic acid Rats rRNA 16S short‐chain fatty acids Sodium Stroke Synapses synaptic plasticity Transplantation Veins & arteries Vesicle fusion |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnrjwfiwUNCBUcWiqTWznIU6oYlUhUVXQSj0gRX6yqy7Z1SZ7SE_9Cdz4f_wSxnaSdilIiFsUjxNbM2N_tmc-E_J6rK1iiS6iJPcpOXESCSmVS86xVAthC-W2Bj4epYen7MMZP9sib_tcmMAPMWy4Oc_w47VzcCHra06uUCm4Oshd8p6L1XKA6NNAHZXiQsKnwWWcR7yg445VyEXxDDU356IbAPNmnOR1_OonoMkd8qVveog7Od9fN3JfXfzG6viffbtLbnfAFN4FS7pHtkx1n-weB2brdg9OrhK16j3YheMrzuv2AfkxMahs-DYLvE6NgMazps9FSG2qQFQa6imC_Z-X39VUzCqwomlaEGqma-joIowG8RXL6gaGuCbQbe1mX_8VrCYAjRb8DT6wsKACuy8os3Jn4HOYtsvF0qzs2u0DPiSnk_cnB4dRd-dDpBhjRcS5zqlOJLNpaiUu59RY8FSLTFNN41hbfK9zneHAoRmPKS-MyXRhx4LZPDUJfUS2q0VlnhCgiePqV8IksWQyc2GTrJBJqrIUMSHnI_Km136pOkJ0dy_HvOwXRqiG0qthRF4NosvAAvInoZ3ehMpuIKhLRG9xiiA8YyPycihGF3bnMqIyizXKZAhKGcXxdUQeB4sb_kIdQT9OWCOSb9jiIODowTdLqtnU04S7CzwYthD76W3t7y0vD44--4en_y76jNxKEO-FqLkdst2s1uY54rNGvvCO-AsMwj0V priority: 102 providerName: Wiley-Blackwell |
Title | Fecal microbiota transplantation and short‐chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcns.14089 https://www.ncbi.nlm.nih.gov/pubmed/36627762 https://www.proquest.com/docview/2831699974 https://www.proquest.com/docview/2764443003 https://pubmed.ncbi.nlm.nih.gov/PMC10314111 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R9sIF8cZQogGhikMt4n34cUJQNaqQiKLSSrlZ6300kYIdYufgH8L_ZXbtOK0KXKIou3ZszezON7Mz3xDyYayt4lRnIU19SU5EQ1kUyhXnWKaltJlyoYHv0_jimn-bi3kfcKv7tMrdnug3al0pFyP_hGYwihHNJPzz-lfouka509W-hcYBOXLUZS6lK5kPDleMzoQvhUuECEXGxj2zkMvkUShS9C1cd_fb9ugeyLyfK3kbw3ojNHlMHvXoEb504n5CHpjyKTmZdfTT7Slc7aup6lM4gdmemLp9Rn5PDEoEfi478qVGQuOpzVeyqz8qQZYa6gUi8lAt5LIEK5umBamWuoae0cFokDc4VjcwpB6BbmtnIP098DIJqFfgm-xAZUF1BLygzMYdU69g0a6rtdnYrQvVPSfXk_Ors4uwb8sQKs55FgqhU6ZpwW0c2wI9LjWWItYy0UyzKNIWf9epTnBtay4iJjJjEp3ZseQ2jQ1lL8hhWZXmFQFGHZ2-koZGBS8Sl9nIs4LGKokRtgkRkI874eSq5yx3rTNW-c53QTnmXo4BeT9MXXdEHX-bdLyTcN6v1Trfa1ZA3g3DuMrc0YksTbXFOQniRs5wCwzIy04hhn9hjkMfbUpA0juqMkxwDN53R8rlwjN5ux4bHJ8Q39Nr1b-fPD-b_vBfXv__Fd6QhxRhWJfMdkwOm83WvEXY1BQjckD5bORXyIgcfT2fzi5HPgThPi_pH5A0H4k |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiDeGAgOCikMtYnvXjwNCUBqltI0iSKXe3PU-SKRgh9gR8g_hb_AbmV3bSasCt94i79qxNd_OY3fmG0Je9aUW1JeJ68e2JMfzXZ5lwhTn6EByrhNhtgZORuHwlH4-Y2db5HdXC2PSKjudaBW1LITZI3-LZtAL0ZuJ6PvFD9d0jTKnq10LjQYWR6r-iSFb-e7wE8r3te8PDib7Q7ftKuAKSmniMibjQPoZ1WGoMwwYRJ-zUPJIBjLwPKnxuoxlhNCUlHkBS5SKZKL7nOo4VIboAFX-Ng0wlOmR7Y8Ho_GXTveHGL7Y4ruIMZclQb_lMjK5QwJBhNGM6Sd_0QJecWuvZmde9Jqt2RvcJrdafxU-NAC7Q7ZUfpfsjhvC63oPJpv6rXIPdmG8ocKu75FfA4UYgO-zhu6p4lBZMvU5byqecuC5hHKKMYArpnyWg-ZVVQMXM1lCyyGhJPBvOFZWsE52AlmXxiTbZ-BtHBDJYNv6QKFBNJS_INTSHIzPYVovioVa6pXZHLxPTq9FZA9ILy9y9YhA4BsCf8GV72U0i0wuJU0yPxRRiI4iYw550wknFS1LumnWMU-7aAnlmFo5OuTleuqioQb526SdTsJpqx3KdINlh7xYD-O6Noc1PFfFCudE6KnSAJWuQx42gFj_S2BY-9GKOSS-BJX1BMMZfnkkn00td7jp6kHxDfE7Lar-_ebp_uir_fH4_5_wnNwYTk6O0-PD0dETctNHJ7BJpdshvWq5Uk_RaauyZ-1KAXJ-3YvzD2wRWWE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRUJcEG8MBQYEFYdaje1dr31ACLVELYUoEq2Um1nvo4kUnBA7Qv4h_Bl-HbPrR1oVuPUWedeOrflmdmZ35htCXg-UkTRUqR8mriQnCH2R59IW55hICWFSabcGvoziozP6acImW-R3Vwtj0yo7m-gMtVpIu0e-j8tgEKM3w-m-adMixofD98sfvu0gZU9au3YaDUROdP0Tw7fy3fEhyvpNGA4_nh4c-W2HAV9SSlOfMZVEKsypiWOTY_AgB4LFSnAVqSgIlMHrKlEcYaooCyKWas1VagaCmiTWlvQAzf8NHuEY6hKf9MFejIGMK8PjjPksjQYtq5HNIpIIJ4xrbGf5i2vhFQf3ap7mRf_ZLYDDO-R267nChwZqd8mWLu6R3XFDfV3vwemmkqvcg10Yb0ix6_vk11AjGuD7rCF-qgRUjlZ9LprapwJEoaCcYjTgy6mYFWBEVdUg5EyV0LJJaAXiHMfKCvq0J1B1aRdn9wy8TQBiGlyDH1gYkA35L0i9skfkc5jWy8VSr8zabhM-IGfXIrCHZLtYFPoxgSi0VP5S6DDIac5tViVN8zCWPEaXkTGPvO2Ek8mWL9227ZhnXdyEcsycHD3yqp-6bEhC_jZpp5Nw1tqJMtug2iMv-2HUcHtsIwq9WOMcjj4rjdD8euRRA4j-XyLL34_rmUeSS1DpJ1j28MsjxWzqWMRtfw-Kb4jf6VD17zfPDkZf3Y8n__-EF-QmqmT2-Xh08pTcCtEbbHLqdsh2tVrrZ-i9VflzpyZAvl23Xv4Bb2ZcMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fecal+microbiota+transplantation+and+short-chain+fatty+acids+protected+against+cognitive+dysfunction+in+a+rat+model+of+chronic+cerebral+hypoperfusion&rft.jtitle=CNS+neuroscience+%26+therapeutics&rft.au=Su%2C+Shao-Hua&rft.au=Chen%2C+Ming&rft.au=Wu%2C+Yi-Fang&rft.au=Lin%2C+Qi&rft.date=2023-06-01&rft.issn=1755-5949&rft.eissn=1755-5949&rft.volume=29+Suppl+1&rft.spage=98&rft_id=info:doi/10.1111%2Fcns.14089&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-5930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-5930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-5930&client=summon |