Evaluating the causal effect of tobacco smoking on white matter brain aging: a two‐sample Mendelian randomization analysis in UK Biobank

Background and Aims Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging. Design Mendelian randomization (MR) analysis using two no...

Full description

Saved in:
Bibliographic Details
Published inAddiction (Abingdon, England) Vol. 118; no. 4; pp. 739 - 749
Main Authors Mo, Chen, Wang, Jingtao, Ye, Zhenyao, Ke, Hongjie, Liu, Song, Hatch, Kathryn, Gao, Si, Magidson, Jessica, Chen, Chixiang, Mitchell, Braxton D., Kochunov, Peter, Hong, L. Elliot, Ma, Tianzhou, Chen, Shuo
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Aims Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging. Design Mendelian randomization (MR) analysis using two non‐overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis. Setting United Kingdom. Participants The study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28]. Measurements Genetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006–10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life‐time. The outcome was the ‘brain age gap’ (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non‐overlapping set of never smokers. Findings The estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10−3, 0.41; P‐value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P‐value = 1.3 × 10−3; GSCAN: 95% CI = 0.02, 0.31; P‐value = 0.03). The sensitivity analyses showed consistent results. Conclusions There appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age‐related decline in cognitive function.
AbstractList Background and Aims Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging. Design Mendelian randomization (MR) analysis using two non‐overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis. Setting United Kingdom. Participants The study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28]. Measurements Genetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006–10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life‐time. The outcome was the ‘brain age gap’ (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non‐overlapping set of never smokers. Findings The estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10−3, 0.41; P‐value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P‐value = 1.3 × 10−3; GSCAN: 95% CI = 0.02, 0.31; P‐value = 0.03). The sensitivity analyses showed consistent results. Conclusions There appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age‐related decline in cognitive function.
Background and AimsTobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging.DesignMendelian randomization (MR) analysis using two non‐overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis.SettingUnited Kingdom.ParticipantsThe study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28].MeasurementsGenetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006–10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life‐time. The outcome was the ‘brain age gap’ (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non‐overlapping set of never smokers.FindingsThe estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10−3, 0.41; P‐value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P‐value = 1.3 × 10−3; GSCAN: 95% CI = 0.02, 0.31; P‐value = 0.03). The sensitivity analyses showed consistent results.ConclusionsThere appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age‐related decline in cognitive function.
Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging.BACKGROUND AND AIMSTobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging.Mendelian randomization (MR) analysis using two non-overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis.DESIGNMendelian randomization (MR) analysis using two non-overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis.United Kingdom.SETTINGUnited Kingdom.The study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28].PARTICIPANTSThe study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28].Genetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006-10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life-time. The outcome was the 'brain age gap' (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non-overlapping set of never smokers.MEASUREMENTSGenetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006-10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life-time. The outcome was the 'brain age gap' (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non-overlapping set of never smokers.The estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10-3 , 0.41; P-value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P-value = 1.3 × 10-3 ; GSCAN: 95% CI = 0.02, 0.31; P-value = 0.03). The sensitivity analyses showed consistent results.FINDINGSThe estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10-3 , 0.41; P-value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P-value = 1.3 × 10-3 ; GSCAN: 95% CI = 0.02, 0.31; P-value = 0.03). The sensitivity analyses showed consistent results.There appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age-related decline in cognitive function.CONCLUSIONSThere appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age-related decline in cognitive function.
Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging. Mendelian randomization (MR) analysis using two non-overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis. United Kingdom. The study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28]. Genetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006-10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life-time. The outcome was the 'brain age gap' (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non-overlapping set of never smokers. The estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10 , 0.41; P-value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P-value = 1.3 × 10 ; GSCAN: 95% CI = 0.02, 0.31; P-value = 0.03). The sensitivity analyses showed consistent results. There appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age-related decline in cognitive function.
Author Ye, Zhenyao
Mo, Chen
Liu, Song
Hong, L. Elliot
Hatch, Kathryn
Gao, Si
Mitchell, Braxton D.
Ke, Hongjie
Kochunov, Peter
Chen, Shuo
Chen, Chixiang
Wang, Jingtao
Ma, Tianzhou
Magidson, Jessica
AuthorAffiliation 5 Department of Psychology, University of Maryland, College Park, MD, USA
1 Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
7 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
3 Department of Mathematics, University of Maryland, College Park, MD, USA
2 Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
8 Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA
6 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
4 School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
AuthorAffiliation_xml – name: 1 Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
– name: 2 Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
– name: 5 Department of Psychology, University of Maryland, College Park, MD, USA
– name: 8 Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA
– name: 3 Department of Mathematics, University of Maryland, College Park, MD, USA
– name: 6 Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
– name: 7 Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
– name: 4 School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0003-1299-2302
  surname: Mo
  fullname: Mo, Chen
  organization: University of Maryland School of Medicine
– sequence: 2
  givenname: Jingtao
  surname: Wang
  fullname: Wang, Jingtao
  organization: Qilu Hospital of Shandong University
– sequence: 3
  givenname: Zhenyao
  surname: Ye
  fullname: Ye, Zhenyao
  organization: University of Maryland School of Medicine
– sequence: 4
  givenname: Hongjie
  surname: Ke
  fullname: Ke, Hongjie
  organization: University of Maryland
– sequence: 5
  givenname: Song
  surname: Liu
  fullname: Liu, Song
  organization: Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 6
  givenname: Kathryn
  surname: Hatch
  fullname: Hatch, Kathryn
  organization: University of Maryland School of Medicine
– sequence: 7
  givenname: Si
  orcidid: 0000-0002-4473-1142
  surname: Gao
  fullname: Gao, Si
  organization: University of Maryland School of Medicine
– sequence: 8
  givenname: Jessica
  surname: Magidson
  fullname: Magidson, Jessica
  organization: University of Maryland
– sequence: 9
  givenname: Chixiang
  surname: Chen
  fullname: Chen, Chixiang
  organization: University of Maryland School of Medicine
– sequence: 10
  givenname: Braxton D.
  surname: Mitchell
  fullname: Mitchell, Braxton D.
  organization: University of Maryland School of Medicine
– sequence: 11
  givenname: Peter
  surname: Kochunov
  fullname: Kochunov, Peter
  organization: University of Maryland School of Medicine
– sequence: 12
  givenname: L. Elliot
  surname: Hong
  fullname: Hong, L. Elliot
  organization: University of Maryland School of Medicine
– sequence: 13
  givenname: Tianzhou
  surname: Ma
  fullname: Ma, Tianzhou
  email: tma0929@umd.edu
  organization: University of Maryland
– sequence: 14
  givenname: Shuo
  surname: Chen
  fullname: Chen, Shuo
  email: shuochen@som.umaryland.edu
  organization: University of Maryland School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36401354$$D View this record in MEDLINE/PubMed
BookMark eNp9kjtvFDEQxy0URJKDgi-ALNFAcYl99r5oUEjCQwTRkNqatWfvnHjty9qb01FRU_EZ-ST4ciGCSOBmJM9v_vPcJzs-eCTkKWcHPL9DMOaAl6yuH5A9Lko2ZVKKHbLHmrKYzrhku2Q_xgvGWFU38hHZFaVkXBRyj3w_vQY3QrJ-TtMCqYYxgqPYdagTDR1NoQWtA419uNxAwdPVwiakPaSEA20HsJ7CPPteUaBpFX5--xGhXzqkn9AbdBY8HcCb0NuvOVEWAA9uHW2kOfL8I31jcw5_-Zg87MBFfHJrJ-T87emX4_fTs8_vPhwfnU21lLKeatYYyWZCaFljYYQwom1khTXPn62oeNMKXRgoC4ktbzrTzkxhGsmbuuKAXEzI663ucmx7NBp9GsCp5WB7GNYqgFV_e7xdqHm4Vnwz1pIVWeHFrcIQrkaMSfU2anQOPIYxqlklat7MRLYT8vweehHGIfe_oWouKsnrTUnP_izprpbfe8rAyy2ghxDjgN0dwpna3IDKN6BubiCzh_dYbdPN4HM31v0vYmUdrv8trY5OTrYRvwDqfsQ9
CitedBy_id crossref_primary_10_1097_HJH_0000000000003553
crossref_primary_10_1212_WNL_0000000000209530
crossref_primary_10_37586_2949_4745_2_2024_86_91
crossref_primary_10_3390_genes15101285
crossref_primary_10_1007_s11682_024_00963_x
crossref_primary_10_1093_bib_bbae587
crossref_primary_10_1016_j_brainresbull_2024_111098
crossref_primary_10_1016_j_mcn_2023_103895
crossref_primary_10_3390_s23073622
crossref_primary_10_3389_fnins_2024_1436223
Cites_doi 10.1038/s41467-019-14156-4
10.1016/j.jalz.2014.03.011
10.3389/fneur.2019.00789
10.3389/fnins.2018.00830
10.1016/j.tins.2017.10.001
10.1371/journal.pone.0067346
10.1038/s41588-018-0307-5
10.1016/j.nicl.2019.102063
10.1038/tp.2016.103
10.1523/JNEUROSCI.2092-19.2019
10.1097/EDE.0000000000000559
10.1093/hmg/ddv303
10.1016/j.pnpbp.2021.110471
10.1038/s41562-019-0557-y
10.1016/j.jhep.2010.07.040
10.1038/s41380-018-0098-1
10.1093/hmg/ddl085
10.1161/HYPERTENSIONAHA.115.06610
10.1016/j.neuroimage.2017.10.034
10.1038/s41586-018-0579-z
10.1007/s00429-020-02184-6
10.1038/s41380-019-0626-7
10.1038/s41598-020-70458-4
10.1016/j.psychres.2012.09.026
10.1093/ije/dyx034
10.1111/j.1460-9568.2006.05050.x
10.1016/j.biopsych.2018.11.024
10.1024/1662-9647/a000074
10.1093/cercor/bht425
10.1093/schbul/sbt142
10.1017/S003329172100180X
10.1023/A:1010933404324
10.1038/s41380-020-0754-0
10.3389/fnins.2021.738037
10.1093/cercor/bhy300
10.1002/ana.25443
10.3389/fnagi.2014.00299
10.1093/aje/kwaa227
10.1371/journal.pone.0014821
10.1002/sim.7221
10.1371/journal.pone.0036752
10.3390/ijerph7103760
10.1016/0304-4076(83)90096-9
10.1016/j.drugalcdep.2014.06.030
10.1007/s10072-015-2065-9
10.1016/j.neuroimage.2016.11.005
10.1038/s41380-018-0313-0
10.1016/j.neurobiolaging.2019.04.006
10.1371/journal.pmed.1001779
10.1038/s41598-019-56089-4
10.1002/sim.6835
10.1038/s41588-020-0676-4
10.1002/gepi.21965
10.1158/0008-5472.CAN-09-0786
10.1002/wps.20773
10.12688/wellcomeopenres.15555.1
10.1007/s10994-006-6226-1
10.1002/hbm.24588
10.1016/j.parkreldis.2019.01.031
10.1038/s41588-018-0099-7
10.1038/mp.2011.122
10.1016/j.biopsych.2010.09.055
10.1007/s11065-007-9035-9
10.1038/s41467-019-09432-2
10.1093/aje/kwx246
10.1016/j.neuroimage.2019.06.017
10.1192/bjp.2021.81
10.1016/S1474-4422(21)00031-4
10.1038/tp.2017.4
10.1016/j.schres.2021.02.003
10.1002/ana.24367
10.1007/s00213-014-3748-2
10.1136/pgmj.2005.036665
10.1001/jamapsychiatry.2018.1543
10.1155/2015/748212
10.1002/ana.25534
10.1002/hbm.25533
10.1016/j.neuroimage.2010.01.005
10.1158/0008-5472.CAN-16-0446
10.1371/journal.pone.0122023
10.1111/joim.12955
10.1212/WNL.0000000000013120
10.1016/j.neuropharm.2020.108234
10.1038/mp.2014.187
10.1016/j.jalz.2011.10.006
10.1016/j.cell.2012.01.003
10.1038/mp.2016.20
10.3354/cr030079
10.1016/j.neuroimage.2017.07.059
10.1016/j.tcm.2016.03.001
10.1111/add.15710
10.1002/1522-2594(200008)44:2<259::AID-MRM13>3.0.CO;2-6
10.1038/s41467-020-17117-4
ContentType Journal Article
Copyright 2022 Society for the Study of Addiction.
2023 Society for the Study of Addiction
Copyright_xml – notice: 2022 Society for the Study of Addiction.
– notice: 2023 Society for the Study of Addiction
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7TK
8BJ
FQK
JBE
K9.
NAPCQ
7X8
5PM
DOI 10.1111/add.16088
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Neurosciences Abstracts
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
International Bibliography of the Social Sciences (IBSS)
Neurosciences Abstracts
Animal Behavior Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
EISSN 1360-0443
EndPage 749
ExternalDocumentID PMC10443605
36401354
10_1111_add_16088
ADD16088
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United Kingdom
United Kingdom--UK
GeographicLocations_xml – name: United Kingdom
– name: United Kingdom--UK
GrantInformation_xml – fundername: National Institutes of Health
  funderid: EB008281; EB008432
– fundername: National Institute on Drug Abuse
  funderid: 1DP1DA04896801
– fundername: University of Maryland MPower Brain Health and Human Performance seed grant
– fundername: University of Maryland
– fundername: NIMH NIH HHS
  grantid: R01 MH116948
– fundername: NIAAA NIH HHS
  grantid: R01 AA012207
– fundername: Medical Research Council
  grantid: MC_QA137853
– fundername: NIH HHS
  grantid: EB008281
– fundername: NIBIB NIH HHS
  grantid: R01 EB008432
– fundername: NIMH NIH HHS
  grantid: RF1 MH123163
– fundername: NIDA NIH HHS
  grantid: 1DP1DA04896801
– fundername: NIH HHS
  grantid: S10 OD023696
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: NIBIB NIH HHS
  grantid: R01 EB008281
GroupedDBID ---
..I
.3N
.GA
.GJ
.Y3
0-V
04C
05W
0R~
10A
1OB
1OC
23M
2QV
31~
33P
36B
3SF
3V.
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
6PF
702
7PT
7RV
7X7
8-0
8-1
8-3
8-4
8-5
88E
8C1
8FI
8FJ
8G5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABOCM
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACHQT
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOJX
ADOZA
ADXAS
ADZJE
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALUQN
ALVPJ
AMBMR
AMYDB
AN0
ARALO
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCR
BCU
BDRZF
BEC
BENPR
BFHJK
BGRYB
BHBCM
BKEYQ
BLC
BMSDO
BMXJE
BNQBC
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DUUFO
DWQXO
DXH
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
ECF
ECT
EIHBH
EJD
EMB
EMK
EMOBN
EPS
ESI
ESX
EX3
F00
F01
F04
F5P
FD6
FEDTE
FUBAC
FYUFA
FZ0
G-S
GNUQQ
GODZA
GUQSH
H.X
HF~
HGLYW
HMCUK
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
J5H
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0O
M1P
M2M
M2O
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NAPCQ
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PCD
PQQKQ
PROAC
PSQYO
PSYQQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJFOW
SUPJJ
SV3
TEORI
TUS
UB1
UKHRP
UPT
V8K
V9Y
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XIF
XOL
YFH
YUY
ZGI
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PRQQA
PUEGO
7QG
7TK
8BJ
FQK
JBE
K9.
7X8
5PM
ID FETCH-LOGICAL-c4448-c09d40233c48e5d33d3b947e81023b3719b3c5da654eb19fdb2d5d9419871ae13
IEDL.DBID DR2
ISSN 0965-2140
1360-0443
IngestDate Thu Aug 21 18:34:58 EDT 2025
Fri Jul 11 01:21:27 EDT 2025
Fri Jul 25 03:16:29 EDT 2025
Thu Aug 28 04:23:48 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Tue Jul 01 03:51:19 EDT 2025
Wed Jan 22 16:14:52 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Brain aging
smoking behaviors
cigarette per day
smoking status
white matter fractional anisotropy
Mendelian randomization
causal inference
Language English
License 2022 Society for the Study of Addiction.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4448-c09d40233c48e5d33d3b947e81023b3719b3c5da654eb19fdb2d5d9419871ae13
Notes Funding information
University of Maryland MPower Brain Health and Human Performance seed grant; National Institute on Drug Abuse, Grant/Award Number: 1DP1DA04896801; University of Maryland; National Institutes of Health, Grant/Award Numbers: EB008281, EB008432
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
Chen Mo: Data curation; formal analysis; methodology; visualization; writing-original draft; writing-review and editing. Jingtao Wang: Formal analysis; methodology; writing-original draft; writing-review and editing. Zhenyao Ye: Data curation; methodology; visualization; writing-original draft; writing-review and editing. Hongjie Ke: Methodology; writing-original draft; writing-review and editing. Song Liu: Data curation; writing-review and editing. Kathryn Hatch: Data curation; writing-review and editing. Si Gao: Data curation; writing-review and editing. Jessica Magidson: Writing-review and editing. Chixiang Chen: Writing-review and editing. Braxton D. Mitchell: Writing-review and editing. Peter Kochunov: Writing-review and editing. L. Elliot Hong: Writing-review and editing. Tianzhou Ma: Conceptualization; methodology; supervision; writing-review and editing. Shuo Chen: Conceptualization; funding acquisition; methodology; supervision; writing-review and editing.
ORCID 0000-0003-1299-2302
0000-0002-4473-1142
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10443605
PMID 36401354
PQID 2781374181
PQPubID 37458
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10443605
proquest_miscellaneous_2738192327
proquest_journals_2781374181
pubmed_primary_36401354
crossref_primary_10_1111_add_16088
crossref_citationtrail_10_1111_add_16088
wiley_primary_10_1111_add_16088_ADD16088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Addiction (Abingdon, England)
PublicationTitleAlternate Addiction
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 40
2017; 7
2018; 166
2018; 562
2015; 36
2021; 26
2021; 20
2019; 51
2013; 207
2021; 126
2019; 10
2000; 44
2015; 77
2017; 46
2016; 76
2011; 54
2012; 17
2020; 11
2020; 10
2013; 8
2001; 45
2022; 27
2019; 200
2016; 35
2020; 19
2019; 286
2014; 5
2006; 63
2019; 62
2006; 24
2017; 36
2020; 52
2019; 24
2005; 30
2019; 29
2016; 40
2021; 230
2020; 177
2017; 163
2011; 69
2012; 25
2014; 6
2018; 75
2010; 7
1983; 22
2021; 190
2007; 17
2015; 12
2009; 69
2019; 4
2021; 42
2019; 3
2020; 40
2017; 28
2017; 22
2021; 226
2015; 11
2015; 10
2006; 15
2014; 40
2012; 148
2022; 117
2011; 6
2021; 51
2022; 113
2022; 221
2015; 24
2006; 82
2019; 80
2016; 6
2015; 25
2021; 15
2019; 40
2019; 86
2019; 85
2015; 20
2015; 232
2015; 2015
2020; 25
2016
2022; 98
2018; 50
2017; 186
2018; 12
2012; 7
2014; 142
2016; 26
2017; 148
2012; 8
2010; 50
2016; 67
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
Ringen PA (e_1_2_8_43_1) 2014; 5
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
Mo C (e_1_2_8_63_1) 2022; 27
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_96_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 22
  start-page: 82
  year: 2017
  end-page: 8
  article-title: Pathways to smoking behaviours: biological insights from the tobacco and genetics consortium meta‐analysis
  publication-title: Mol Psychiatry
– volume: 40
  start-page: 1265
  year: 2020
  end-page: 75
  article-title: A multidimensional neural maturation index reveals reproducible developmental patterns in children and adolescents
  publication-title: J Neurosci
– volume: 62
  start-page: 57
  year: 2019
  end-page: 61
  article-title: Genetic variants in nicotinic receptors and smoking cessation in Parkinson’s disease
  publication-title: Parkinsonism Relat Disord
– volume: 85
  start-page: 946
  year: 2019
  end-page: 55
  article-title: Exome chip meta‐analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use
  publication-title: Biol Psychiatry
– volume: 7
  start-page: e1075
  year: 2017
  end-page: 5
  article-title: Immune involvement in the pathogenesis of schizophrenia: a meta‐analysis on postmortem brain studies
  publication-title: Transl Psychiatry
– volume: 82
  start-page: 84
  year: 2006
  end-page: 8
  article-title: Ageing and the brain
  publication-title: Postgrad Med J
– volume: 26
  start-page: 5124
  year: 2021
  end-page: 39
  article-title: Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group
  publication-title: Mol Psychiatry
– volume: 50
  start-page: 883
  year: 2010
  end-page: 92
  article-title: Estimating the age of healthy subjects from T1‐weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
– volume: 40
  start-page: 1140
  year: 2014
  end-page: 53
  article-title: Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders
  publication-title: Schizophr Bull
– volume: 12
  year: 2018
  article-title: Insulin resistance in Alzheimer’s disease
  publication-title: Front Neurosci
– volume: 226
  start-page: 621
  year: 2021
  end-page: 45
  article-title: When your brain looks older than expected: combined lifestyle risk and BrainAGE
  publication-title: Brain Struct Funct
– volume: 27
  start-page: 73
  year: 2022
  end-page: 84
  article-title: A new Mendelian randomization method to estimate causal effects of multivariable brain imaging exposures
  publication-title: Pac Symp Biocomput
– volume: 24
  start-page: 266
  year: 2019
  end-page: 81
  article-title: Brain age and other bodily ‘ages’: implications for neuropsychiatry
  publication-title: Mol Psychiatry
– volume: 10
  year: 2019
  article-title: Ten years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained?
  publication-title: Front Neurol
– volume: 200
  start-page: 528
  year: 2019
  end-page: 39
  article-title: Estimation of brain age delta from brain imaging
  publication-title: Neuroimage
– volume: 5
  year: 2014
  article-title: Increased mortality in schizophrenia due to cardiovascular disease–a non‐systematic review of epidemiology, possible causes, and interventions
  publication-title: Front Psychol
– volume: 20
  start-page: 351
  year: 2021
  end-page: 61
  article-title: Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome‐wide association studies
  publication-title: Lancet Neurol
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  article-title: Extremely randomized trees
  publication-title: Mach Learn
– volume: 40
  start-page: 3143
  year: 2019
  end-page: 52
  article-title: Investigating systematic bias in brain age estimation with application to post‐traumatic stress disorders
  publication-title: Hum Brain Mapp
– volume: 3
  start-page: 471
  year: 2019
  end-page: 7
  article-title: GWAS of smoking behaviour in 165,436 Japanese people reveals seven new loci and shared genetic architecture
  publication-title: Nat Hum Behav
– volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Climate Res
– volume: 6
  year: 2011
  article-title: Epigenetic predictor of age
  publication-title: PLOS ONE
– volume: 126
  start-page: 3829
  year: 2021
  end-page: 38
  article-title: Brain‐age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort
  publication-title: Mol Psychiatry
– volume: 24
  year: 2019
  article-title: Bias‐adjustment in neuroimaging‐based brain age frameworks: a robust scheme
  publication-title: NeuroImage Clin
– volume: 15
  start-page: 1640
  year: 2006
  end-page: 9
  article-title: Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: the atherosclerosis risk in communities (ARIC) study
  publication-title: Hum Mol Genet
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  article-title: Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within‐family analyses
  publication-title: Nat Commun
– volume: 29
  start-page: 4169
  year: 2019
  end-page: 93
  article-title: Age‐related differences in brain morphology and the modifiers in middle‐aged and older adults
  publication-title: Cereb Cortex
– volume: 36
  start-page: 1783
  year: 2017
  end-page: 802
  article-title: A framework for the investigation of pleiotropy in two‐sample summary data Mendelian randomization
  publication-title: Stat Med
– volume: 17
  start-page: 259
  year: 2007
  end-page: 73
  article-title: The effects of tobacco smoke and nicotine on cognition and the brain
  publication-title: Neuropsychol Rev
– volume: 51
  start-page: 1593
  year: 2021
  end-page: 624
  article-title: Using Mendelian randomization analysis to better understand the relationship between mental health and substance use: a systematic review
  publication-title: Psychol Med
– volume: 75
  start-page: 960
  year: 2018
  end-page: 8
  article-title: Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk
  publication-title: JAMA Psychiatry
– volume: 166
  start-page: 400
  year: 2018
  end-page: 24
  article-title: Image processing and quality control for the first 10,000 brain imaging datasets from UK biobank
  publication-title: Neuroimage
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  article-title: Association of relative brain age with tobacco smoking, alcohol consumption, and genetic variants
  publication-title: Sci Rep
– volume: 10
  year: 2015
  article-title: Dose‐ and time‐dependent association of smoking and its cessation with glycemic control and insulin resistance in male patients with type 2 diabetes mellitus: the Fukuoka diabetes registry
  publication-title: PLOS ONE
– volume: 11
  start-page: 504
  year: 2015
  end-page: 510.e1
  article-title: Insulin resistance predicts brain amyloid deposition in late middle‐aged adults
  publication-title: Alzheimers Dement
– volume: 20
  start-page: 778
  year: 2015
  end-page: 85
  article-title: Cigarette smoking and thinning of the brain’s cortex
  publication-title: Mol Psychiatry
– volume: 25
  start-page: 1676
  year: 2015
  end-page: 84
  article-title: Imaging patterns of brain development and their relationship to cognition
  publication-title: Cereb Cortex
– volume: 117
  start-page: 1049
  year: 2022
  end-page: 59
  article-title: Long‐term associations of cigarette smoking in early mid‐life with predicted brain aging from mid‐to late life
  publication-title: Addiction
– volume: 85
  start-page: 482
  year: 2019
  end-page: 4
  article-title: Smoking and amyotrophic lateral sclerosis: a Mendelian randomization study
  publication-title: Ann Neurol
– volume: 11
  year: 2020
  article-title: A robust and efficient method for Mendelian randomization with hundreds of genetic variants
  publication-title: Nat Commun
– volume: 69
  start-page: 6848
  year: 2009
  end-page: 56
  article-title: The CHRNA5‐CHRNA3‐CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African‐Americans and in European‐Americans
  publication-title: Cancer Res
– volume: 26
  start-page: 515
  year: 2016
  end-page: 23
  article-title: Cardiovascular toxicity of nicotine: implications for electronic cigarette use
  publication-title: Trends Cardiovasc Med
– volume: 186
  start-page: 1026
  year: 2017
  end-page: 34
  article-title: Comparison of sociodemographic and health‐related characteristics of UK biobank participants with those of the general population
  publication-title: Am J Epidemiol
– volume: 51
  start-page: 237
  year: 2019
  end-page: 44
  article-title: Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use
  publication-title: Nat Genet
– volume: 207
  start-page: 25
  year: 2013
  end-page: 32
  article-title: Relationships between physical fitness, physical activity, smoking and metabolic and mental health parameters in people with schizophrenia
  publication-title: Psychiatry Res
– volume: 76
  start-page: 5768
  year: 2016
  end-page: 76
  article-title: Novel association of genetic markers affecting CYP2A6 activity and lung cancer risk
  publication-title: Cancer Res
– volume: 40
  start-page: 681
  year: 2017
  end-page: 90
  article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers
  publication-title: Trends Neurosci
– volume: 12
  year: 2015
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLOS Med
– volume: 10
  year: 2019
  article-title: Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects
  publication-title: Nat Commun
– volume: 232
  start-page: 1177
  year: 2015
  end-page: 86
  article-title: NCAM1‐TTC12‐ANKK1‐DRD2 variants and smoking motives as intermediate phenotypes for nicotine dependence
  publication-title: Psychopharmacology
– volume: 2015
  year: 2015
  article-title: Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease
  publication-title: Biomed Res Int
– volume: 221
  start-page: 377
  year: 2022
  end-page: 85
  article-title: Investigating the causal nature of the relationship of subcortical brain volume with smoking and alcohol use
  publication-title: Br J Psychiatry
– volume: 163
  start-page: 115
  year: 2017
  end-page: 24
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: Neuroimage
– volume: 142
  start-page: 262
  year: 2014
  end-page: 8
  article-title: History of cigarette smoking in cognitively‐normal elders is associated with elevated cerebrospinal fluid biomarkers of oxidative stress
  publication-title: Drug Alcohol Depend
– volume: 177
  year: 2020
  article-title: Genetic susceptibility to nicotine addiction: Advances and shortcomings in our understanding of the CHRNA5/A3/B4 gene cluster contribution
  publication-title: Neuropharmacology
– volume: 25
  start-page: 235
  year: 2012
  end-page: 45
  article-title: Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease
  publication-title: GeroPsych
– volume: 10
  year: 2020
  article-title: Associations of cigarette smoking with psychiatric disorders: evidence from a two‐sample Mendelian randomization study
  publication-title: Sci Rep
– volume: 286
  start-page: 389
  year: 2019
  end-page: 97
  article-title: The advantages of UK Biobank’s open‐access strategy for health research
  publication-title: J Intern Med
– volume: 35
  start-page: 1880
  year: 2016
  end-page: 906
  article-title: Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods
  publication-title: Stat Med
– volume: 77
  start-page: 571
  year: 2015
  end-page: 81
  article-title: Prediction of brain age suggests accelerated atrophy after traumatic brain injury
  publication-title: Ann Neurol
– year: 2016
– volume: 44
  start-page: 259
  year: 2000
  end-page: 68
  article-title: Age‐related decline in brain white matter anisotropy measured with spatially corrected echo‐planar diffusion tensor imaging
  publication-title: Magn Reson Med
– volume: 148
  start-page: 46
  year: 2012
  end-page: 57
  article-title: Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock
  publication-title: Cell
– volume: 54
  start-page: 753
  year: 2011
  end-page: 9
  article-title: Smoking and severity of hepatic fibrosis in nonalcoholic fatty liver disease
  publication-title: J Hepatol
– volume: 86
  start-page: 468
  year: 2019
  end-page: 71
  article-title: Smoking and stroke: a Mendelian randomization study
  publication-title: Ann Neurol
– volume: 562
  start-page: 203
  issue: 7726
  year: 2018
  end-page: 209
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
– volume: 22
  start-page: 113
  year: 1983
  end-page: 37
  article-title: Models and methods for the analysis of correlation coefficients
  publication-title: J Econom
– volume: 98
  start-page: e343
  year: 2022
  end-page: 51
  article-title: Cardiovascular risk factors and MRI markers of cerebral small vessel disease: a Mendelian randomization study
  publication-title: Neurology
– volume: 4
  year: 2019
  article-title: Guidelines for performing Mendelian randomization investigations
  publication-title: Wellcome Open Res
– volume: 42
  start-page: 4092
  year: 2021
  end-page: 101
  article-title: Pitfalls in brain age analyses
  publication-title: Hum Brain Mapp
– volume: 69
  start-page: 650
  year: 2011
  end-page: 60
  article-title: TTC12‐ANKK1‐DRD2 and CHRNA5‐CHRNA3‐CHRNB4 influence different pathways leading to smoking behavior from adolescence to mid‐adulthood
  publication-title: Biol Psychiatry
– volume: 19
  start-page: 360
  year: 2020
  end-page: 80
  article-title: A meta‐review of ‘lifestyle psychiatry’: the role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders
  publication-title: World Psychiatry
– volume: 36
  start-page: 497
  year: 2015
  end-page: 504
  article-title: Altered human brain anatomy in chronic smokers: a review of magnetic resonance imaging studies
  publication-title: Neurol Sci
– volume: 15
  year: 2021
  article-title: White matter integrity and nicotine dependence: evaluating vertical and horizontal pleiotropy
  publication-title: Front Neurosci
– volume: 46
  start-page: 1734
  year: 2017
  end-page: 9
  article-title: MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data
  publication-title: Int J Epidemiol
– volume: 8
  year: 2013
  article-title: BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease
  publication-title: PLOS ONE
– volume: 17
  start-page: 856
  year: 2012
  end-page: 66
  article-title: The CHRNA5–A3–B4 gene cluster in nicotine addiction
  publication-title: Mol Psychiatry
– volume: 148
  start-page: 179
  year: 2017
  end-page: 88
  article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment
  publication-title: Neuroimage
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 7
  year: 2012
  article-title: Cigarette smoking accelerated brain aging and induced pre‐Alzheimer‐like neuropathology in rats
  publication-title: PLOS ONE
– volume: 25
  start-page: 2392
  year: 2020
  end-page: 409
  article-title: Meta‐analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci
  publication-title: Mol Psychiatry
– volume: 6
  year: 2014
  article-title: Sex‐related and tissue‐specific effects of tobacco smoking on brain atrophy: assessment in a large longitudinal cohort of healthy elderly
  publication-title: Front Aging Neurosci
– volume: 113
  year: 2022
  article-title: Associations between smoking and accelerated brain ageing
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 40
  start-page: 304
  year: 2016
  end-page: 14
  article-title: Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator
  publication-title: Genet Epidemiol
– volume: 80
  start-page: 56
  year: 2019
  end-page: 70
  article-title: Associations between modifiable risk factors and white matter of the aging brain: insights from diffusion tensor imaging studies
  publication-title: Neurobiol Aging
– volume: 6
  start-page: e843
  year: 2016
  end-page: 3
  article-title: Crucial roles of the CHRNB3–CHRNA6 gene cluster on chromosome 8 in nicotine dependence: update and subjects for future research
  publication-title: Transl Psychiatry
– volume: 24
  start-page: 1744
  year: 2006
  end-page: 50
  article-title: Smoking and structural brain deficits: a volumetric MR investigation
  publication-title: Eur J Neurosci
– volume: 7
  start-page: 3760
  year: 2010
  end-page: 91
  article-title: Chronic cigarette smoking: implications for neurocognition and brain neurobiology
  publication-title: Int J Environ Res Public Health
– volume: 8
  start-page: 513
  year: 2012
  end-page: 9
  article-title: Greater regional brain atrophy rate in healthy elderly subjects with a history of cigarette smoking
  publication-title: Alzheimers Dement
– volume: 67
  start-page: 513
  year: 2016
  end-page: 9
  article-title: Association of aortic stiffness with cognition and brain aging in young and middle‐aged adults: the Framingham third generation cohort study
  publication-title: Hypertension
– volume: 28
  start-page: 30
  year: 2017
  end-page: 42
  article-title: Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants
  publication-title: Epidemiol Camb Mass
– volume: 50
  start-page: 693
  year: 2018
  end-page: 8
  article-title: Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases
  publication-title: Nat Genet
– volume: 52
  start-page: 969
  year: 2020
  end-page: 83
  article-title: Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole‐genome sequencing studies at scale
  publication-title: Nat Genet
– volume: 230
  start-page: 9
  year: 2021
  end-page: 16
  article-title: White matter brain aging in relationship to schizophrenia and its cognitive deficit
  publication-title: Schizophr Res
– volume: 24
  start-page: 5940
  year: 2015
  end-page: 54
  article-title: A multiancestry study identifies novel genetic associations with CHRNA5 methylation in human brain and risk of nicotine dependence
  publication-title: Hum Mol Genet
– volume: 190
  start-page: 875
  year: 2021
  end-page: 85
  article-title: Genome‐wide gene‐by‐smoking interaction study of chronic obstructive pulmonary disease
  publication-title: Am J Epidemiol
– ident: e_1_2_8_70_1
  doi: 10.1038/s41467-019-14156-4
– ident: e_1_2_8_76_1
– ident: e_1_2_8_84_1
  doi: 10.1016/j.jalz.2014.03.011
– ident: e_1_2_8_20_1
  doi: 10.3389/fneur.2019.00789
– ident: e_1_2_8_83_1
  doi: 10.3389/fnins.2018.00830
– ident: e_1_2_8_23_1
  doi: 10.1016/j.tins.2017.10.001
– ident: e_1_2_8_32_1
  doi: 10.1371/journal.pone.0067346
– ident: e_1_2_8_40_1
  doi: 10.1038/s41588-018-0307-5
– ident: e_1_2_8_60_1
  doi: 10.1016/j.nicl.2019.102063
– ident: e_1_2_8_90_1
  doi: 10.1038/tp.2016.103
– ident: e_1_2_8_21_1
  doi: 10.1523/JNEUROSCI.2092-19.2019
– ident: e_1_2_8_71_1
  doi: 10.1097/EDE.0000000000000559
– ident: e_1_2_8_87_1
  doi: 10.1093/hmg/ddv303
– ident: e_1_2_8_38_1
  doi: 10.1016/j.pnpbp.2021.110471
– ident: e_1_2_8_95_1
  doi: 10.1038/s41562-019-0557-y
– ident: e_1_2_8_79_1
  doi: 10.1016/j.jhep.2010.07.040
– ident: e_1_2_8_24_1
  doi: 10.1038/s41380-018-0098-1
– ident: e_1_2_8_92_1
  doi: 10.1093/hmg/ddl085
– ident: e_1_2_8_82_1
  doi: 10.1161/HYPERTENSIONAHA.115.06610
– ident: e_1_2_8_53_1
  doi: 10.1016/j.neuroimage.2017.10.034
– ident: e_1_2_8_54_1
  doi: 10.1038/s41586-018-0579-z
– ident: e_1_2_8_18_1
  doi: 10.1007/s00429-020-02184-6
– ident: e_1_2_8_77_1
  doi: 10.1038/s41380-019-0626-7
– ident: e_1_2_8_46_1
  doi: 10.1038/s41598-020-70458-4
– ident: e_1_2_8_41_1
  doi: 10.1016/j.psychres.2012.09.026
– ident: e_1_2_8_65_1
  doi: 10.1093/ije/dyx034
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1460-9568.2006.05050.x
– ident: e_1_2_8_91_1
  doi: 10.1016/j.biopsych.2018.11.024
– ident: e_1_2_8_27_1
  doi: 10.1024/1662-9647/a000074
– ident: e_1_2_8_22_1
  doi: 10.1093/cercor/bht425
– ident: e_1_2_8_28_1
  doi: 10.1093/schbul/sbt142
– ident: e_1_2_8_47_1
  doi: 10.1017/S003329172100180X
– ident: e_1_2_8_56_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_30_1
  doi: 10.1038/s41380-020-0754-0
– ident: e_1_2_8_51_1
  doi: 10.3389/fnins.2021.738037
– ident: e_1_2_8_8_1
  doi: 10.1093/cercor/bhy300
– ident: e_1_2_8_45_1
  doi: 10.1002/ana.25443
– ident: e_1_2_8_3_1
  doi: 10.3389/fnagi.2014.00299
– ident: e_1_2_8_93_1
  doi: 10.1093/aje/kwaa227
– ident: e_1_2_8_36_1
  doi: 10.1371/journal.pone.0014821
– ident: e_1_2_8_64_1
  doi: 10.1002/sim.7221
– ident: e_1_2_8_16_1
  doi: 10.1371/journal.pone.0036752
– ident: e_1_2_8_10_1
  doi: 10.3390/ijerph7103760
– ident: e_1_2_8_59_1
  doi: 10.1016/0304-4076(83)90096-9
– ident: e_1_2_8_17_1
  doi: 10.1016/j.drugalcdep.2014.06.030
– ident: e_1_2_8_11_1
  doi: 10.1007/s10072-015-2065-9
– ident: e_1_2_8_31_1
  doi: 10.1016/j.neuroimage.2016.11.005
– ident: e_1_2_8_52_1
  doi: 10.1038/s41380-018-0313-0
– ident: e_1_2_8_6_1
  doi: 10.1016/j.neurobiolaging.2019.04.006
– volume: 5
  year: 2014
  ident: e_1_2_8_43_1
  article-title: Increased mortality in schizophrenia due to cardiovascular disease–a non‐systematic review of epidemiology, possible causes, and interventions
  publication-title: Front Psychol
– ident: e_1_2_8_48_1
  doi: 10.1371/journal.pmed.1001779
– ident: e_1_2_8_2_1
  doi: 10.1038/s41598-019-56089-4
– ident: e_1_2_8_66_1
  doi: 10.1002/sim.6835
– ident: e_1_2_8_75_1
  doi: 10.1038/s41588-020-0676-4
– ident: e_1_2_8_67_1
  doi: 10.1002/gepi.21965
– ident: e_1_2_8_73_1
  doi: 10.1158/0008-5472.CAN-09-0786
– ident: e_1_2_8_14_1
  doi: 10.1002/wps.20773
– ident: e_1_2_8_55_1
  doi: 10.12688/wellcomeopenres.15555.1
– ident: e_1_2_8_57_1
  doi: 10.1007/s10994-006-6226-1
– ident: e_1_2_8_62_1
  doi: 10.1002/hbm.24588
– ident: e_1_2_8_89_1
  doi: 10.1016/j.parkreldis.2019.01.031
– ident: e_1_2_8_68_1
  doi: 10.1038/s41588-018-0099-7
– ident: e_1_2_8_72_1
  doi: 10.1038/mp.2011.122
– ident: e_1_2_8_74_1
  doi: 10.1016/j.biopsych.2010.09.055
– ident: e_1_2_8_12_1
  doi: 10.1007/s11065-007-9035-9
– ident: e_1_2_8_69_1
  doi: 10.1038/s41467-019-09432-2
– ident: e_1_2_8_96_1
  doi: 10.1093/aje/kwx246
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuroimage.2019.06.017
– ident: e_1_2_8_15_1
  doi: 10.1192/bjp.2021.81
– ident: e_1_2_8_13_1
  doi: 10.1016/S1474-4422(21)00031-4
– ident: e_1_2_8_42_1
  doi: 10.1038/tp.2017.4
– ident: e_1_2_8_29_1
  doi: 10.1016/j.schres.2021.02.003
– ident: e_1_2_8_33_1
  doi: 10.1002/ana.24367
– ident: e_1_2_8_85_1
  doi: 10.1007/s00213-014-3748-2
– ident: e_1_2_8_19_1
  doi: 10.1136/pgmj.2005.036665
– ident: e_1_2_8_61_1
  doi: 10.1001/jamapsychiatry.2018.1543
– ident: e_1_2_8_78_1
  doi: 10.1155/2015/748212
– ident: e_1_2_8_44_1
  doi: 10.1002/ana.25534
– volume: 27
  start-page: 73
  year: 2022
  ident: e_1_2_8_63_1
  article-title: A new Mendelian randomization method to estimate causal effects of multivariable brain imaging exposures
  publication-title: Pac Symp Biocomput
– ident: e_1_2_8_35_1
  doi: 10.1002/hbm.25533
– ident: e_1_2_8_25_1
  doi: 10.1016/j.neuroimage.2010.01.005
– ident: e_1_2_8_94_1
  doi: 10.1158/0008-5472.CAN-16-0446
– ident: e_1_2_8_80_1
  doi: 10.1371/journal.pone.0122023
– ident: e_1_2_8_49_1
  doi: 10.1111/joim.12955
– ident: e_1_2_8_39_1
  doi: 10.1212/WNL.0000000000013120
– ident: e_1_2_8_86_1
  doi: 10.1016/j.neuropharm.2020.108234
– ident: e_1_2_8_7_1
  doi: 10.1038/mp.2014.187
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jalz.2011.10.006
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cell.2012.01.003
– ident: e_1_2_8_88_1
  doi: 10.1038/mp.2016.20
– ident: e_1_2_8_58_1
  doi: 10.3354/cr030079
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neuroimage.2017.07.059
– ident: e_1_2_8_81_1
  doi: 10.1016/j.tcm.2016.03.001
– ident: e_1_2_8_9_1
  doi: 10.1111/add.15710
– ident: e_1_2_8_50_1
  doi: 10.1002/1522-2594(200008)44:2<259::AID-MRM13>3.0.CO;2-6
– ident: e_1_2_8_97_1
  doi: 10.1038/s41467-020-17117-4
SSID ssj0007894
Score 2.4856608
Snippet Background and Aims Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study...
Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure...
Background and AimsTobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 739
SubjectTerms Age differences
Aging
Analysis
Biobanks
Biological Specimen Banks
Brain
Brain aging
causal inference
cigarette per day
Cigarettes
Cognitive ability
Cognitive functioning
Female
Genetic diversity
Humans
Male
Mendelian randomization
Mendelian Randomization Analysis - methods
Middle Aged
Neuroimaging
Risk factors
Sensitivity analysis
Smoking
Smoking - epidemiology
Smoking - genetics
smoking behaviors
smoking status
Substantia alba
Tobacco
Tobacco smoking
Tobacco Smoking - genetics
United Kingdom - epidemiology
Variants
White Matter - diagnostic imaging
white matter fractional anisotropy
Title Evaluating the causal effect of tobacco smoking on white matter brain aging: a two‐sample Mendelian randomization analysis in UK Biobank
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fadd.16088
https://www.ncbi.nlm.nih.gov/pubmed/36401354
https://www.proquest.com/docview/2781374181
https://www.proquest.com/docview/2738192327
https://pubmed.ncbi.nlm.nih.gov/PMC10443605
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuEC5b1lWw0IIS6pSGznAaddtqsKVA6IFT0gRX4Fqu0maLOrSpw4c-I39pcw4zzoUpAQtygey3YyY8-MZ75h7IkKE66izAaxsCYQ3OhAG7pwzKwMDdfSRJScfPw2PpqJ1yfyZIu97HJhGnyI3uFGkuH3axJwpetLQo6CSa6RlBJ9KVaLFKJ3v6CjktQXQSRwkyBCK6JFFaIonr7n5ll0RcG8Gid5WX_1B9D0JvvYTb2JO5kfrFf6wHz9DdXxP9e2w260iimMGk66xbZceZsNm-xd-ODOCrV08BS6F9Vyfod9P2yxwstPgIokGLWusbGJEYGqANotjKmgXlTkkoeqhHO6t4CFh_UETQUqwBdKegEKVufVxbcftSLEYjgm5zw5YQCPU1st2oRRUC2MCmDP2RsYn-IY5fwum00P3786CtriDoERaBIG5nlm0Xbl3IjUScu55ToTiUsJS0LzJMw0N9KqWAo8TrLC6shKmwlykoTKhfwe2y6r0j1gIDJKD46d4LoQSVpoYa3iHDcUWwiZhQP2rPvNuWmRz6kAx1neWUD4vXP_vQfscU_6pYH7-BPRsOOVvJX4Oo-SNOQEBYTDPeqbUVbpAkaVrloTjcef41EyYPcb1upH4TFZulIMWLrBdD0B4YBvtpSnnz0eOFrUgqNZiuv0TPX3meejycQ_7P476UN2PcJf0kQrDdn2arl2e6iIrfQ-uzYaT8bTfS95PwGdDjKt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VcoAL70dKgAEB4uKq9q5jG4lDIa1S0vSAGtGbuy_TKo2N8lAEJ86c-CH8Ff4Ev4SZ9YOGgsSlB26Rd5y1d2fGMzsz3zD2RPoRl0FivI4w2hNcK09pCjgmJvQ1V6EOqDh5sNfpDcWbg_BghX2ra2FKfIjmwI0kw-lrEnA6kD4l5SiZdDYSx1VKZd9-XKDDNn2508XdfRoE21v7r3te1VPA0wI9EU9vJAZdJs61iG1oODdcJSKyMUEYKB75ieI6NLITCtRiSWZUYEKTCPLNfWl9jv97gV2kDuKE1N99-wusKopd20WCU_EC9FsqHCPKG2oedfnrd8akPZuZedpidp-87avse71YZabLaH0-U-v60284kv_Lal5jVyrbGzZLYbnOVmx-g7XLAmV4Z08yObHwDOoLxWR0k33ZquDQ8_eAtjJoOZ_iYJkGA0UGpBC1LmA6LijqAEUOCwrNwNghl4KiHhzgekG9AAmzRfHj89epJFBmGFD8gc6ZAC0GU4yrmliQFVIM4J3DPrw6xjny0S02PJfVuc1W8yK3dxmIhCqgO1ZwlYkozpQwRnKOOtNkIkz8Fnte81WqK3B36jFyktZOHu5v6va3xR43pB9KRJM_EbVr5kwrpTZNgyj2OaEd4XSPmmFURxRjkrkt5kTjIPZ4ELXYnZKXm1l4h5z5ULRYvMTlDQFBnS-P5MdHDvLc3xCCo-eN7-m4-O9Pnm52u-7H2r-TPmSXevuD3XR3Z69_j10OcHvK5Kw2W51N5vY-2p0z9cCJO7DD85aIn89rjVU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VIiEuvB-BAAMCxMVV7F2_kDgU0qgltEKIit7cfRmqNHaVhyI4cebE_-Cv8Cv4JcysHzQUJC49cIu846y9OzOe2Zn5hrGH0o-5DFLjRcJoT3CtPKUp4Jia0NdchTqg4uTtnWhzV7zcC_dW2LemFqbCh2gP3EgynL4mAT8y-TEhR8Gko5EkqTMqh_bjAv216bOtPm7uoyAYbLx9senVLQU8LdAR8XQvNegxca5FYkPDueEqFbFNCMFA8dhPFdehkVEoUImluVGBCU0qyDX3pfU5_u8ZdlZEvZT6RPTf_MKqihPXdZHQVLwA3ZYaxojShtpHXf74nbBoTyZmHjeY3RdvcJF9b9aqSnQZrc1nak1_-g1G8j9ZzEvsQm15w3olKpfZii2usG5Vngzv7GEuJxYeQ3OhnIyusi8bNRh68R7QUgYt51McrJJgoMyB1KHWJUzHJcUcoCxgQYEZGDvcUlDUgQNcJ6inIGG2KH98_jqVBMkM2xR9oFMmQHvBlOO6IhZkjRMDeOfuEJ4f4BzF6BrbPZXVuc5Wi7KwNxmIlOqfIyu4ykWc5EoYIzlHjWlyEaZ-hz1p2CrTNbQ7dRg5zBoXD_c3c_vbYQ9a0qMKz-RPRN2GN7NapU2zIE58TlhHON39dhiVEUWYZGHLOdE4gD0exB12o2LldhYekSsfig5Llpi8JSCg8-WR4uCDAzz3e0Jw9LvxPR0T__3Js_V-3_249e-k99i51_1B9mprZ3ibnQ9wd6rMrC5bnU3m9g4anTN11wk7sP3TFoifjhWMBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+causal+effect+of+tobacco+smoking+on+white+matter+brain+aging%3A+a+two%E2%80%90sample+Mendelian+randomization+analysis+in+UK+Biobank&rft.jtitle=Addiction+%28Abingdon%2C+England%29&rft.au=Chen%2C+Mo&rft.au=Wang%2C+Jingtao&rft.au=Ye%2C+Zhenyao&rft.au=Ke%2C+Hongjie&rft.date=2023-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0965-2140&rft.eissn=1360-0443&rft.volume=118&rft.issue=4&rft.spage=739&rft.epage=749&rft_id=info:doi/10.1111%2Fadd.16088&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-2140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-2140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-2140&client=summon