A group sequential type design for three-arm non-inferiority trials with binary endpoints

The three‐arm design with a test treatment, an active control and a placebo group is the gold standard design for non‐inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing proced...

Full description

Saved in:
Bibliographic Details
Published inBiometrical journal Vol. 52; no. 4; pp. 504 - 518
Main Authors Li, Gang, Gao, Shan
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.08.2010
WILEY‐VCH Verlag
Wiley-VCH
Subjects
Online AccessGet full text
ISSN0323-3847
1521-4036
1521-4036
DOI10.1002/bimj.200900188

Cover

Abstract The three‐arm design with a test treatment, an active control and a placebo group is the gold standard design for non‐inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing procedure for the multiple comparisons involved in the three‐arm design. For the effect preservation test we derive the explicit formula for the optimal allocation ratios. We propose a group sequential type design, which naturally accommodates the hierarchical testing procedure. Under this proposed design, Monte Carlo simulations are conducted to evaluate the performance of the sequential effect preservation test when the variance of the test statistic is estimated based on the restricted maximum likelihood estimators of the response rates under the null hypothesis. When there are uncertainties for the placebo response rate, the proposed design demonstrates better operating characteristics than the fixed sample design.
AbstractList The three-arm design with a test treatment, an active control and a placebo group is the gold standard design for non-inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing procedure for the multiple comparisons involved in the three-arm design. For the effect preservation test we derive the explicit formula for the optimal allocation ratios. We propose a group sequential type design, which naturally accommodates the hierarchical testing procedure. Under this proposed design, Monte Carlo simulations are conducted to evaluate the performance of the sequential effect preservation test when the variance of the test statistic is estimated based on the restricted maximum likelihood estimators of the response rates under the null hypothesis. When there are uncertainties for the placebo response rate, the proposed design demonstrates better operating characteristics than the fixed sample design.The three-arm design with a test treatment, an active control and a placebo group is the gold standard design for non-inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing procedure for the multiple comparisons involved in the three-arm design. For the effect preservation test we derive the explicit formula for the optimal allocation ratios. We propose a group sequential type design, which naturally accommodates the hierarchical testing procedure. Under this proposed design, Monte Carlo simulations are conducted to evaluate the performance of the sequential effect preservation test when the variance of the test statistic is estimated based on the restricted maximum likelihood estimators of the response rates under the null hypothesis. When there are uncertainties for the placebo response rate, the proposed design demonstrates better operating characteristics than the fixed sample design.
The three‐arm design with a test treatment, an active control and a placebo group is the gold standard design for non‐inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing procedure for the multiple comparisons involved in the three‐arm design. For the effect preservation test we derive the explicit formula for the optimal allocation ratios. We propose a group sequential type design, which naturally accommodates the hierarchical testing procedure. Under this proposed design, Monte Carlo simulations are conducted to evaluate the performance of the sequential effect preservation test when the variance of the test statistic is estimated based on the restricted maximum likelihood estimators of the response rates under the null hypothesis. When there are uncertainties for the placebo response rate, the proposed design demonstrates better operating characteristics than the fixed sample design.
Author Gao, Shan
Li, Gang
Author_xml – sequence: 1
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  email: gang.6.li@gsk.com
  organization: GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
– sequence: 2
  givenname: Shan
  surname: Gao
  fullname: Gao, Shan
  organization: Techdata LLC, 700 American Ave., King of Prussia, PA 19406, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23152039$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20645389$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFK0fkC-KUZfyR2DmWim5blcIBhDhZ3mTSuiROantV9t_j1W4XhIR68mGeZ8Yz7xE58KNHQl4zmDMA_n7phrs5B6gBmNbPyIyVnBUSRHVAZiC4KISW6pAcxXgHG0zyF-SQQyVLoesZ-XFCb8K4mmjE-xX65GxP03pC2mJ0N552Y6DpNiAWNgw0Dy-c7zC4Mbi0pilkPtIHl27p0nkb1hR9O43Op_iSPO9yEV_t3mPy7ezj19Pz4urz4uL05KpopJS6qLtScCXz15BLpWoU0FWWQ13xpe4sa7RsG9QcSp55W7ZYqYYJq1QDaKETx-Tdtu8UxrxCTGZwscG-tx7HVTRaa6hrzdmTpJI1MKWYzuSbHblaDtiaKbghL2ce75aBtzvAxsb2XbC-cfEPJ3IMIDbcfMs1YYwxYLdHGJhNgGYToNkHmAX5j9C4ZJMbfQrW9f_X6q324HpcPzHEfLj4dPm3W2xdFxP-2rs2_DSVEqo0368X5kxfKwWXX8xC_Aat4r3t
CODEN BIJODN
CitedBy_id crossref_primary_10_1016_j_conctc_2024_101383
crossref_primary_10_1002_sim_5461
crossref_primary_10_1080_10543406_2013_789893
crossref_primary_10_1002_sim_4299
crossref_primary_10_1002_sim_5950
crossref_primary_10_1080_19466315_2020_1766551
crossref_primary_10_1186_s12874_022_01792_6
crossref_primary_10_1002_sim_4313
crossref_primary_10_1186_1471_2288_14_134
crossref_primary_10_1080_10543406_2016_1148710
crossref_primary_10_1002_bimj_201800394
Cites_doi 10.2307/2530245
10.1002/bimj.200800219
10.1002/sim.1450
10.1002/bimj.200410084
10.1214/aoms/1177729380
10.1080/10543400601177343
10.1081/BIP-120017724
10.1081/BIP-120037182
10.1081/BIP-100101201
10.1093/biomet/63.3.655
10.1002/sim.2543
10.1093/biomet/64.2.191
10.1081/BIP-120037184
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1002/bimj.200900188
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic

CrossRef
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
Mathematics
EISSN 1521-4036
EndPage 518
ExternalDocumentID 20645389
23152039
10_1002_bimj_200900188
BIMJ200900188
ark_67375_WNG_F8N770JP_G
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c4448-9f53274009e24779e30f6a20962b8fa1c84dce82052444a5de67c13a77c0ea0f3
IEDL.DBID DR2
ISSN 0323-3847
1521-4036
IngestDate Fri Jul 11 00:25:40 EDT 2025
Fri Jul 11 03:16:13 EDT 2025
Thu Apr 03 07:09:25 EDT 2025
Mon Jul 21 09:14:22 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Tue Jul 01 04:17:55 EDT 2025
Wed Jan 22 16:24:29 EST 2025
Wed Oct 30 09:50:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Biometrics
Paired comparison
Statistical distribution
Stochastic method
Variance
Hypothesis test
Statistical test
Optimal allocation
Sequential method
Non-inferiority
Approximation theory
Three-arm trial
Effect preservation test
Monte Carlo method
Sequential test
Sequential design
Test statistic
Covariance analysis
Life science
Group sequential design
Multiple comparison
Variance analysis
Placebo effect
Group design
Statistical method
Statistical regression
Numerical analysis
Simulation
Experimental design
Maximum likelihood
Sequential estimation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4448-9f53274009e24779e30f6a20962b8fa1c84dce82052444a5de67c13a77c0ea0f3
Notes ArticleID:BIMJ200900188
istex:64189D588EF5D96CFE83A710BA4492711094460F
ark:/67375/WNG-F8N770JP-G
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20645389
PQID 749017718
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_888099821
proquest_miscellaneous_749017718
pubmed_primary_20645389
pascalfrancis_primary_23152039
crossref_primary_10_1002_bimj_200900188
crossref_citationtrail_10_1002_bimj_200900188
wiley_primary_10_1002_bimj_200900188_BIMJ200900188
istex_primary_ark_67375_WNG_F8N770JP_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom. J
PublicationYear 2010
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
References O'Brien, P. C. and Fleming, T. R., (1979). A multiple testing procedure for clinical trials. Biometrics. 35, 549-556.
Cochran, W. G. (1952). The χ2 test of goodness of fit. Annals of Mathematical Statistics 23, 315-345.
Hung, H. M. J., Wang, S. J., O'Neill, R. (2007). Issues with statistical risks for testing methods in non-inferiority trial without a placebo arm. Journal of Biopharmaceutical Statistics 17, 201-213.
Hung, H. M. J., Wang, S. J., O'Neill, R. (2009). Challenges and regulatory experiences with non-inferiority trial design without placebo arm. Biometrical Journal 51, 324-334.
Koch, A. and Röhmel, J. (2004). Hypothesis testing in the "gold standard" design for proving the efficacy of an experimental treatment relative to placebo and a reference. Journal of Biopharmaceutical Statistics 14, 315-325.
Marcus, R., Peritz, E. and Gabriel, K. R. (1976). On closed testing procedure with special reference to ordered analysis of variance. Biometrika 63, 655-660.
Kieser, M., and Friede, T. (2007). Planning and analysis of three-arm non-inferiority trials with binary endpoints. Statistics in Medicine, 26, 253-273.
Hung, H. M. J., Wang, S. J., O'Neill, R. (2005). A regulatory perspective on choice of margin and statistical inference issue in non-inferiority trials. Biometrical Journal 47, 28-36.
Tsong, Y., Wang, S. J., Hung, H. M. J. and Cui, L. (2003). Statistical issues on objective, design and analysis of non-inferiority active controlled trial. Journal of Biopharmaceutical Statistics 13, 29-42.
FDA. (2010). Draft guidance for industry on non-inferioirty clinical trials. Food and Drug Administration, HHS. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM202140.pdf.
Tang, M-L and Tang, N-S. (2004). Tests of non-inferiority via rate difference for three-arm clinical trials with placebo. Journal of Biopharmaceutical Statistics, 14, 337-347.
Holmgren, E. B. (1999). Establishing equivalence by showing that a prespecified percentage of the effect of the active control over placebo is maintained. Journal of Biopharmaceutical Statistics 9, 651-659.
Pigeot, I., Schafer, J., Röhmel, J. and Hauschke, D. (2003). Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Statistics in Medicine 22, 883-899.
Fleming, T. R. (1987). Treatment evaluation in active control studies. Cancer Treatment Report 71, 1061-1064.
Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika. 64, 191-199.
2007; 17
1952; 23
1976; 63
1979; 35
2009; 51
1987; 71
2000
2010
2004; 14
2003; 13
2007
1977; 64
2007; 26
2003; 22
1999; 9
2005; 47
e_1_2_7_6_1
FDA (e_1_2_7_4_1) 2010
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Fleming T. R. (e_1_2_7_5_1) 1987; 71
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
References_xml – reference: Marcus, R., Peritz, E. and Gabriel, K. R. (1976). On closed testing procedure with special reference to ordered analysis of variance. Biometrika 63, 655-660.
– reference: Hung, H. M. J., Wang, S. J., O'Neill, R. (2007). Issues with statistical risks for testing methods in non-inferiority trial without a placebo arm. Journal of Biopharmaceutical Statistics 17, 201-213.
– reference: Fleming, T. R. (1987). Treatment evaluation in active control studies. Cancer Treatment Report 71, 1061-1064.
– reference: Kieser, M., and Friede, T. (2007). Planning and analysis of three-arm non-inferiority trials with binary endpoints. Statistics in Medicine, 26, 253-273.
– reference: FDA. (2010). Draft guidance for industry on non-inferioirty clinical trials. Food and Drug Administration, HHS. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM202140.pdf.
– reference: Pigeot, I., Schafer, J., Röhmel, J. and Hauschke, D. (2003). Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Statistics in Medicine 22, 883-899.
– reference: Tang, M-L and Tang, N-S. (2004). Tests of non-inferiority via rate difference for three-arm clinical trials with placebo. Journal of Biopharmaceutical Statistics, 14, 337-347.
– reference: Koch, A. and Röhmel, J. (2004). Hypothesis testing in the "gold standard" design for proving the efficacy of an experimental treatment relative to placebo and a reference. Journal of Biopharmaceutical Statistics 14, 315-325.
– reference: Holmgren, E. B. (1999). Establishing equivalence by showing that a prespecified percentage of the effect of the active control over placebo is maintained. Journal of Biopharmaceutical Statistics 9, 651-659.
– reference: Tsong, Y., Wang, S. J., Hung, H. M. J. and Cui, L. (2003). Statistical issues on objective, design and analysis of non-inferiority active controlled trial. Journal of Biopharmaceutical Statistics 13, 29-42.
– reference: Cochran, W. G. (1952). The χ2 test of goodness of fit. Annals of Mathematical Statistics 23, 315-345.
– reference: Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika. 64, 191-199.
– reference: Hung, H. M. J., Wang, S. J., O'Neill, R. (2009). Challenges and regulatory experiences with non-inferiority trial design without placebo arm. Biometrical Journal 51, 324-334.
– reference: Hung, H. M. J., Wang, S. J., O'Neill, R. (2005). A regulatory perspective on choice of margin and statistical inference issue in non-inferiority trials. Biometrical Journal 47, 28-36.
– reference: O'Brien, P. C. and Fleming, T. R., (1979). A multiple testing procedure for clinical trials. Biometrics. 35, 549-556.
– volume: 14
  start-page: 315
  year: 2004
  end-page: 325
  article-title: Hypothesis testing in the “gold standard” design for proving the efficacy of an experimental treatment relative to placebo and a reference
  publication-title: Journal of Biopharmaceutical Statistics
– volume: 71
  start-page: 1061
  year: 1987
  end-page: 1064
  article-title: Treatment evaluation in active control studies
  publication-title: Cancer Treatment Report
– volume: 9
  start-page: 651
  year: 1999
  end-page: 659
  article-title: Establishing equivalence by showing that a prespecified percentage of the effect of the active control over placebo is maintained
  publication-title: Journal of Biopharmaceutical Statistics
– volume: 64
  start-page: 191
  year: 1977
  end-page: 199
  article-title: Group sequential methods in the design and analysis of clinical trials
  publication-title: Biometrika.
– year: 2007
– volume: 47
  start-page: 28
  year: 2005
  end-page: 36
  article-title: A regulatory perspective on choice of margin and statistical inference issue in non‐inferiority trials
  publication-title: Biometrical Journal
– volume: 17
  start-page: 201
  year: 2007
  end-page: 213
  article-title: Issues with statistical risks for testing methods in non‐inferiority trial without a placebo arm
  publication-title: Journal of Biopharmaceutical Statistics
– volume: 63
  start-page: 655
  year: 1976
  end-page: 660
  article-title: On closed testing procedure with special reference to ordered analysis of variance
  publication-title: Biometrika
– year: 2000
– volume: 13
  start-page: 29
  year: 2003
  end-page: 42
  article-title: Statistical issues on objective, design and analysis of non‐inferiority active controlled trial
  publication-title: Journal of Biopharmaceutical Statistics
– volume: 26
  start-page: 253
  year: 2007
  end-page: 273
  article-title: Planning and analysis of three‐arm non‐inferiority trials with binary endpoints
  publication-title: Statistics in Medicine
– volume: 14
  start-page: 337
  year: 2004
  end-page: 347
  article-title: Tests of non‐inferiority via rate difference for three‐arm clinical trials with placebo
  publication-title: Journal of Biopharmaceutical Statistics
– volume: 51
  start-page: 324
  year: 2009
  end-page: 334
  article-title: Challenges and regulatory experiences with non‐inferiority trial design without placebo arm
  publication-title: Biometrical Journal
– volume: 22
  start-page: 883
  year: 2003
  end-page: 899
  article-title: Assessing non‐inferiority of a new treatment in a three‐arm clinical trial including a placebo
  publication-title: Statistics in Medicine
– volume: 23
  start-page: 315
  year: 1952
  end-page: 345
  article-title: The χ test of goodness of fit
  publication-title: Annals of Mathematical Statistics
– year: 2010
– volume: 35
  start-page: 549
  year: 1979
  end-page: 556
  article-title: A multiple testing procedure for clinical trials
  publication-title: Biometrics.
– ident: e_1_2_7_14_1
  doi: 10.2307/2530245
– ident: e_1_2_7_10_1
– ident: e_1_2_7_9_1
  doi: 10.1002/bimj.200800219
– ident: e_1_2_7_15_1
  doi: 10.1002/sim.1450
– ident: e_1_2_7_7_1
  doi: 10.1002/bimj.200410084
– ident: e_1_2_7_3_1
– ident: e_1_2_7_2_1
  doi: 10.1214/aoms/1177729380
– ident: e_1_2_7_8_1
  doi: 10.1080/10543400601177343
– volume-title: Draft guidance for industry on non‐inferioirty clinical trials
  year: 2010
  ident: e_1_2_7_4_1
– ident: e_1_2_7_18_1
  doi: 10.1081/BIP-120017724
– ident: e_1_2_7_12_1
  doi: 10.1081/BIP-120037182
– ident: e_1_2_7_6_1
  doi: 10.1081/BIP-100101201
– ident: e_1_2_7_13_1
  doi: 10.1093/biomet/63.3.655
– volume: 71
  start-page: 1061
  year: 1987
  ident: e_1_2_7_5_1
  article-title: Treatment evaluation in active control studies
  publication-title: Cancer Treatment Report
– ident: e_1_2_7_11_1
  doi: 10.1002/sim.2543
– ident: e_1_2_7_16_1
  doi: 10.1093/biomet/64.2.191
– ident: e_1_2_7_17_1
  doi: 10.1081/BIP-120037184
SSID ssj0009042
Score 1.9169009
Snippet The three‐arm design with a test treatment, an active control and a placebo group is the gold standard design for non‐inferiority trials if it is ethically...
The three-arm design with a test treatment, an active control and a placebo group is the gold standard design for non-inferiority trials if it is ethically...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 504
SubjectTerms Applications
Biology, psychology, social sciences
Biometrics
Clinical trials
Clinical Trials as Topic - methods
Effect preservation test
Exact sciences and technology
Experimental design
General topics
Group sequential design
Humans
Mathematics
Monte Carlo Method
Monte Carlo simulation
Non-inferiority
Preservation
Probability and statistics
Risk
Sciences and techniques of general use
Sequential methods
Statistics
Three-arm trial
Title A group sequential type design for three-arm non-inferiority trials with binary endpoints
URI https://api.istex.fr/ark:/67375/WNG-F8N770JP-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.200900188
https://www.ncbi.nlm.nih.gov/pubmed/20645389
https://www.proquest.com/docview/749017718
https://www.proquest.com/docview/888099821
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQERIb3o_wqLxAsHKb-BEny_KYlpEYIURFN8iyHVsa2maqSUZqWfEJfCNfwrU9k2EQFRLsEsm2Yuf6-tg-91yEnjWAuo0ThlTCMMIL35BaO04ob0QTTvprG1m-k_LgkI-PxNEvUfxJH2I4cAszI_rrMMG16XbXoqFmevolBu-FvHIh2rdgZRDPf_1hrR9V5zxdI1BGGPjhlWpjTnc3q2-sSlfDAJ8HlqTuYKB8ynDxJwi6iWjjkjS6ifSqM4mJcryz6M2O_fqbzuP_9PYWurHEq3gvGdhtdMW1d9C1lMHy4i76vIdjXAhOlGxwFyc4nOriJjJDMEBi3IO5uB_fvuv5KW5nLTwFBth8Ogt583BMG9LhcB6MTQwOxq5tzmbTtu_uocPRm4-vDsgyYwOxHPZ5pPaCwTYXPtNRLmXtWO5LTWGbRE3ldWEr3lgHoEMAquBaNK6UtmBaSps7nXt2H23Bh7iHCDfQhuWFY6V33DGrpQfnLCvOXQ1N-wyR1R9TdilnHrJqnKgkxExVGDI1DFmGXgzlz5KQx6Uln0cDGIrp-XGgv0mhPk321aiaSJmP36v9DG1vWMhQATCzoDmrM4RXJqNg1oarGN262aJTkgMOk4ALLi9SgWeFvTAtMvQgWdu6_SAyCEgzQzTazF86pF6-fTce3h79S6XH6HqiTQTm4xO01c8X7imgsd5sxxn3E_TPLLM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwQX3o_wKD4gOKVNbGedHMtju13aFUKt4IIsx3GkpW222ocEnPgJ_EZ-CTP2JqtFVEhwSyTbip3x5JvJ528AnlWIukuXlXGelSKWaV3FhXEy5rLKKsr0F9azfEe9wbEcfsxaNiGdhQn6EF3CjXaG99e0wSkhvbNSDS3HZ5_96T0qLJdfhk2JaIPir9fvVwpSRSLDjwQuYoGeuNVtTPjOev-179ImLfEX4kmaGS5VHWpc_AmErmNa_1Hq34CynU7gopxsL-bltv32m9Ljf833JlxfQla2G2zsFlxyzW24EopYfr0Dn3aZPxrCAisbPcYpo8Quqzw5hCEqZnO0GPfz-w8zPWPNpMErIoFNxxMqncd85ZAZo5QwK_35YOaa6nwybuazu3Dcf3P0ahAvizbEVmKoFxd1JjDSxcd0XCpVOJHUPcMxUuJlXpvU5rKyDnFHhsBCmqxyPWVTYZSyiTNJLe7BBj6IewCswjGsTJ3o1U46YY2q0T-rXEpX4NB1BHH7yrRdKppTYY1THbSYuaYl092SRfCia38etDwubPncW0DXzExPiAGnMv1htKf7-UipZPhO70WwtWYiXQeEzRlPRBEBa21G48alvzGmcZPFTCuJUEwhNLi4SY7OFcNhnkZwP5jbanzSGUSwGQH3RvOXCemX-4fD7u7hv3R6ClcHR4cH-mB_9PYRXAssCiJCPoaN-XThniA4m5dbfvv9ArYSMNI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CViA2vB_hUbxAsEqb2E6cLMtj2g4wqhAV3SDL8UMa2mZG85CAFZ_AN_IlXNszGQZRIcEukWwrvrm-PraPzwV4YhB1N7Zo0qpoWMpzZ9JaWZ5Sbgrjd_prHVi-g3L_iPePi-NfbvFHfYhuw82PjBCv_QAfG7ezEg1thmefwuU9n1euugibvEQ44WHRu5WAVJ3xeI5AWcowEC9lGzO6s15_bVra9Bb-7GmSaoqWcjHFxZ8w6DqkDXNS7xqoZW8iFeVkez5rtvXX34Qe_6e71-HqArCS3ehhN-CCbW_CpZjC8sst-LhLwsUQEjnZGC9Oid_WJSZQQwhiYjJDf7E_vn1XkzPSjlp88hSwyXDkE-eRkDdkSvyGMGnC7WBiWzMeDdvZ9DYc9V69f7GfLlI2pJrjQi-tXcFwnYufaSkXorYsc6WiuE6iTeVUritutEXUUSCs4KowthQ6Z0oInVmVOXYHNvBD7D0gBtvQPLesdJZbppVwGJ1FxbmtsWmXQLr8Y1Iv9Mx9Wo1TGZWYqfQmk53JEnjWlR9HJY9zSz4NDtAVU5MTz38Thfww2JO9aiBE1j-UewlsrXlIVwFBc0EzVidAli4jcdj6sxjV2tF8KgVHICYQGJxfpMLQiothmidwN3rbqn2vMohQMwEafOYvHZLPD972u7f7_1LpMVw-fNmTbw4Grx_AlUih8CzIh7Axm8ztI0Rms2YrDL6f-vAvgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+group+sequential+type+design+for+three-arm+non-inferiority+trials+with+binary+endpoints&rft.jtitle=Biometrical+journal&rft.au=Li%2C+Gang&rft.au=Gao%2C+Shan&rft.date=2010-08-01&rft.issn=1521-4036&rft.eissn=1521-4036&rft.volume=52&rft.issue=4&rft.spage=504&rft_id=info:doi/10.1002%2Fbimj.200900188&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon