A group sequential type design for three-arm non-inferiority trials with binary endpoints
The three‐arm design with a test treatment, an active control and a placebo group is the gold standard design for non‐inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing proced...
Saved in:
Published in | Biometrical journal Vol. 52; no. 4; pp. 504 - 518 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.08.2010
WILEY‐VCH Verlag Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 0323-3847 1521-4036 1521-4036 |
DOI | 10.1002/bimj.200900188 |
Cover
Abstract | The three‐arm design with a test treatment, an active control and a placebo group is the gold standard design for non‐inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing procedure for the multiple comparisons involved in the three‐arm design. For the effect preservation test we derive the explicit formula for the optimal allocation ratios. We propose a group sequential type design, which naturally accommodates the hierarchical testing procedure. Under this proposed design, Monte Carlo simulations are conducted to evaluate the performance of the sequential effect preservation test when the variance of the test statistic is estimated based on the restricted maximum likelihood estimators of the response rates under the null hypothesis. When there are uncertainties for the placebo response rate, the proposed design demonstrates better operating characteristics than the fixed sample design. |
---|---|
AbstractList | The three-arm design with a test treatment, an active control and a placebo group is the gold standard design for non-inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing procedure for the multiple comparisons involved in the three-arm design. For the effect preservation test we derive the explicit formula for the optimal allocation ratios. We propose a group sequential type design, which naturally accommodates the hierarchical testing procedure. Under this proposed design, Monte Carlo simulations are conducted to evaluate the performance of the sequential effect preservation test when the variance of the test statistic is estimated based on the restricted maximum likelihood estimators of the response rates under the null hypothesis. When there are uncertainties for the placebo response rate, the proposed design demonstrates better operating characteristics than the fixed sample design.The three-arm design with a test treatment, an active control and a placebo group is the gold standard design for non-inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing procedure for the multiple comparisons involved in the three-arm design. For the effect preservation test we derive the explicit formula for the optimal allocation ratios. We propose a group sequential type design, which naturally accommodates the hierarchical testing procedure. Under this proposed design, Monte Carlo simulations are conducted to evaluate the performance of the sequential effect preservation test when the variance of the test statistic is estimated based on the restricted maximum likelihood estimators of the response rates under the null hypothesis. When there are uncertainties for the placebo response rate, the proposed design demonstrates better operating characteristics than the fixed sample design. The three‐arm design with a test treatment, an active control and a placebo group is the gold standard design for non‐inferiority trials if it is ethically justifiable to expose patients to placebo. In this paper, we first use the closed testing principle to establish the hierarchical testing procedure for the multiple comparisons involved in the three‐arm design. For the effect preservation test we derive the explicit formula for the optimal allocation ratios. We propose a group sequential type design, which naturally accommodates the hierarchical testing procedure. Under this proposed design, Monte Carlo simulations are conducted to evaluate the performance of the sequential effect preservation test when the variance of the test statistic is estimated based on the restricted maximum likelihood estimators of the response rates under the null hypothesis. When there are uncertainties for the placebo response rate, the proposed design demonstrates better operating characteristics than the fixed sample design. |
Author | Gao, Shan Li, Gang |
Author_xml | – sequence: 1 givenname: Gang surname: Li fullname: Li, Gang email: gang.6.li@gsk.com organization: GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA – sequence: 2 givenname: Shan surname: Gao fullname: Gao, Shan organization: Techdata LLC, 700 American Ave., King of Prussia, PA 19406, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23152039$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20645389$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFK0fkC-KUZfyR2DmWim5blcIBhDhZ3mTSuiROantV9t_j1W4XhIR68mGeZ8Yz7xE58KNHQl4zmDMA_n7phrs5B6gBmNbPyIyVnBUSRHVAZiC4KISW6pAcxXgHG0zyF-SQQyVLoesZ-XFCb8K4mmjE-xX65GxP03pC2mJ0N552Y6DpNiAWNgw0Dy-c7zC4Mbi0pilkPtIHl27p0nkb1hR9O43Op_iSPO9yEV_t3mPy7ezj19Pz4urz4uL05KpopJS6qLtScCXz15BLpWoU0FWWQ13xpe4sa7RsG9QcSp55W7ZYqYYJq1QDaKETx-Tdtu8UxrxCTGZwscG-tx7HVTRaa6hrzdmTpJI1MKWYzuSbHblaDtiaKbghL2ce75aBtzvAxsb2XbC-cfEPJ3IMIDbcfMs1YYwxYLdHGJhNgGYToNkHmAX5j9C4ZJMbfQrW9f_X6q324HpcPzHEfLj4dPm3W2xdFxP-2rs2_DSVEqo0368X5kxfKwWXX8xC_Aat4r3t |
CODEN | BIJODN |
CitedBy_id | crossref_primary_10_1016_j_conctc_2024_101383 crossref_primary_10_1002_sim_5461 crossref_primary_10_1080_10543406_2013_789893 crossref_primary_10_1002_sim_4299 crossref_primary_10_1002_sim_5950 crossref_primary_10_1080_19466315_2020_1766551 crossref_primary_10_1186_s12874_022_01792_6 crossref_primary_10_1002_sim_4313 crossref_primary_10_1186_1471_2288_14_134 crossref_primary_10_1080_10543406_2016_1148710 crossref_primary_10_1002_bimj_201800394 |
Cites_doi | 10.2307/2530245 10.1002/bimj.200800219 10.1002/sim.1450 10.1002/bimj.200410084 10.1214/aoms/1177729380 10.1080/10543400601177343 10.1081/BIP-120017724 10.1081/BIP-120037182 10.1081/BIP-100101201 10.1093/biomet/63.3.655 10.1002/sim.2543 10.1093/biomet/64.2.191 10.1081/BIP-120037184 |
ContentType | Journal Article |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1002/bimj.200900188 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Statistics Mathematics |
EISSN | 1521-4036 |
EndPage | 518 |
ExternalDocumentID | 20645389 23152039 10_1002_bimj_200900188 BIMJ200900188 ark_67375_WNG_F8N770JP_G |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c4448-9f53274009e24779e30f6a20962b8fa1c84dce82052444a5de67c13a77c0ea0f3 |
IEDL.DBID | DR2 |
ISSN | 0323-3847 1521-4036 |
IngestDate | Fri Jul 11 00:25:40 EDT 2025 Fri Jul 11 03:16:13 EDT 2025 Thu Apr 03 07:09:25 EDT 2025 Mon Jul 21 09:14:22 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Tue Jul 01 04:17:55 EDT 2025 Wed Jan 22 16:24:29 EST 2025 Wed Oct 30 09:50:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Biometrics Paired comparison Statistical distribution Stochastic method Variance Hypothesis test Statistical test Optimal allocation Sequential method Non-inferiority Approximation theory Three-arm trial Effect preservation test Monte Carlo method Sequential test Sequential design Test statistic Covariance analysis Life science Group sequential design Multiple comparison Variance analysis Placebo effect Group design Statistical method Statistical regression Numerical analysis Simulation Experimental design Maximum likelihood Sequential estimation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4448-9f53274009e24779e30f6a20962b8fa1c84dce82052444a5de67c13a77c0ea0f3 |
Notes | ArticleID:BIMJ200900188 istex:64189D588EF5D96CFE83A710BA4492711094460F ark:/67375/WNG-F8N770JP-G ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 20645389 |
PQID | 749017718 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_888099821 proquest_miscellaneous_749017718 pubmed_primary_20645389 pascalfrancis_primary_23152039 crossref_primary_10_1002_bimj_200900188 crossref_citationtrail_10_1002_bimj_200900188 wiley_primary_10_1002_bimj_200900188_BIMJ200900188 istex_primary_ark_67375_WNG_F8N770JP_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2010 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 08 year: 2010 text: August 2010 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Biometrical journal |
PublicationTitleAlternate | Biom. J |
PublicationYear | 2010 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH |
References | O'Brien, P. C. and Fleming, T. R., (1979). A multiple testing procedure for clinical trials. Biometrics. 35, 549-556. Cochran, W. G. (1952). The χ2 test of goodness of fit. Annals of Mathematical Statistics 23, 315-345. Hung, H. M. J., Wang, S. J., O'Neill, R. (2007). Issues with statistical risks for testing methods in non-inferiority trial without a placebo arm. Journal of Biopharmaceutical Statistics 17, 201-213. Hung, H. M. J., Wang, S. J., O'Neill, R. (2009). Challenges and regulatory experiences with non-inferiority trial design without placebo arm. Biometrical Journal 51, 324-334. Koch, A. and Röhmel, J. (2004). Hypothesis testing in the "gold standard" design for proving the efficacy of an experimental treatment relative to placebo and a reference. Journal of Biopharmaceutical Statistics 14, 315-325. Marcus, R., Peritz, E. and Gabriel, K. R. (1976). On closed testing procedure with special reference to ordered analysis of variance. Biometrika 63, 655-660. Kieser, M., and Friede, T. (2007). Planning and analysis of three-arm non-inferiority trials with binary endpoints. Statistics in Medicine, 26, 253-273. Hung, H. M. J., Wang, S. J., O'Neill, R. (2005). A regulatory perspective on choice of margin and statistical inference issue in non-inferiority trials. Biometrical Journal 47, 28-36. Tsong, Y., Wang, S. J., Hung, H. M. J. and Cui, L. (2003). Statistical issues on objective, design and analysis of non-inferiority active controlled trial. Journal of Biopharmaceutical Statistics 13, 29-42. FDA. (2010). Draft guidance for industry on non-inferioirty clinical trials. Food and Drug Administration, HHS. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM202140.pdf. Tang, M-L and Tang, N-S. (2004). Tests of non-inferiority via rate difference for three-arm clinical trials with placebo. Journal of Biopharmaceutical Statistics, 14, 337-347. Holmgren, E. B. (1999). Establishing equivalence by showing that a prespecified percentage of the effect of the active control over placebo is maintained. Journal of Biopharmaceutical Statistics 9, 651-659. Pigeot, I., Schafer, J., Röhmel, J. and Hauschke, D. (2003). Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Statistics in Medicine 22, 883-899. Fleming, T. R. (1987). Treatment evaluation in active control studies. Cancer Treatment Report 71, 1061-1064. Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika. 64, 191-199. 2007; 17 1952; 23 1976; 63 1979; 35 2009; 51 1987; 71 2000 2010 2004; 14 2003; 13 2007 1977; 64 2007; 26 2003; 22 1999; 9 2005; 47 e_1_2_7_6_1 FDA (e_1_2_7_4_1) 2010 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 Fleming T. R. (e_1_2_7_5_1) 1987; 71 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 |
References_xml | – reference: Marcus, R., Peritz, E. and Gabriel, K. R. (1976). On closed testing procedure with special reference to ordered analysis of variance. Biometrika 63, 655-660. – reference: Hung, H. M. J., Wang, S. J., O'Neill, R. (2007). Issues with statistical risks for testing methods in non-inferiority trial without a placebo arm. Journal of Biopharmaceutical Statistics 17, 201-213. – reference: Fleming, T. R. (1987). Treatment evaluation in active control studies. Cancer Treatment Report 71, 1061-1064. – reference: Kieser, M., and Friede, T. (2007). Planning and analysis of three-arm non-inferiority trials with binary endpoints. Statistics in Medicine, 26, 253-273. – reference: FDA. (2010). Draft guidance for industry on non-inferioirty clinical trials. Food and Drug Administration, HHS. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM202140.pdf. – reference: Pigeot, I., Schafer, J., Röhmel, J. and Hauschke, D. (2003). Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Statistics in Medicine 22, 883-899. – reference: Tang, M-L and Tang, N-S. (2004). Tests of non-inferiority via rate difference for three-arm clinical trials with placebo. Journal of Biopharmaceutical Statistics, 14, 337-347. – reference: Koch, A. and Röhmel, J. (2004). Hypothesis testing in the "gold standard" design for proving the efficacy of an experimental treatment relative to placebo and a reference. Journal of Biopharmaceutical Statistics 14, 315-325. – reference: Holmgren, E. B. (1999). Establishing equivalence by showing that a prespecified percentage of the effect of the active control over placebo is maintained. Journal of Biopharmaceutical Statistics 9, 651-659. – reference: Tsong, Y., Wang, S. J., Hung, H. M. J. and Cui, L. (2003). Statistical issues on objective, design and analysis of non-inferiority active controlled trial. Journal of Biopharmaceutical Statistics 13, 29-42. – reference: Cochran, W. G. (1952). The χ2 test of goodness of fit. Annals of Mathematical Statistics 23, 315-345. – reference: Pocock, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika. 64, 191-199. – reference: Hung, H. M. J., Wang, S. J., O'Neill, R. (2009). Challenges and regulatory experiences with non-inferiority trial design without placebo arm. Biometrical Journal 51, 324-334. – reference: Hung, H. M. J., Wang, S. J., O'Neill, R. (2005). A regulatory perspective on choice of margin and statistical inference issue in non-inferiority trials. Biometrical Journal 47, 28-36. – reference: O'Brien, P. C. and Fleming, T. R., (1979). A multiple testing procedure for clinical trials. Biometrics. 35, 549-556. – volume: 14 start-page: 315 year: 2004 end-page: 325 article-title: Hypothesis testing in the “gold standard” design for proving the efficacy of an experimental treatment relative to placebo and a reference publication-title: Journal of Biopharmaceutical Statistics – volume: 71 start-page: 1061 year: 1987 end-page: 1064 article-title: Treatment evaluation in active control studies publication-title: Cancer Treatment Report – volume: 9 start-page: 651 year: 1999 end-page: 659 article-title: Establishing equivalence by showing that a prespecified percentage of the effect of the active control over placebo is maintained publication-title: Journal of Biopharmaceutical Statistics – volume: 64 start-page: 191 year: 1977 end-page: 199 article-title: Group sequential methods in the design and analysis of clinical trials publication-title: Biometrika. – year: 2007 – volume: 47 start-page: 28 year: 2005 end-page: 36 article-title: A regulatory perspective on choice of margin and statistical inference issue in non‐inferiority trials publication-title: Biometrical Journal – volume: 17 start-page: 201 year: 2007 end-page: 213 article-title: Issues with statistical risks for testing methods in non‐inferiority trial without a placebo arm publication-title: Journal of Biopharmaceutical Statistics – volume: 63 start-page: 655 year: 1976 end-page: 660 article-title: On closed testing procedure with special reference to ordered analysis of variance publication-title: Biometrika – year: 2000 – volume: 13 start-page: 29 year: 2003 end-page: 42 article-title: Statistical issues on objective, design and analysis of non‐inferiority active controlled trial publication-title: Journal of Biopharmaceutical Statistics – volume: 26 start-page: 253 year: 2007 end-page: 273 article-title: Planning and analysis of three‐arm non‐inferiority trials with binary endpoints publication-title: Statistics in Medicine – volume: 14 start-page: 337 year: 2004 end-page: 347 article-title: Tests of non‐inferiority via rate difference for three‐arm clinical trials with placebo publication-title: Journal of Biopharmaceutical Statistics – volume: 51 start-page: 324 year: 2009 end-page: 334 article-title: Challenges and regulatory experiences with non‐inferiority trial design without placebo arm publication-title: Biometrical Journal – volume: 22 start-page: 883 year: 2003 end-page: 899 article-title: Assessing non‐inferiority of a new treatment in a three‐arm clinical trial including a placebo publication-title: Statistics in Medicine – volume: 23 start-page: 315 year: 1952 end-page: 345 article-title: The χ test of goodness of fit publication-title: Annals of Mathematical Statistics – year: 2010 – volume: 35 start-page: 549 year: 1979 end-page: 556 article-title: A multiple testing procedure for clinical trials publication-title: Biometrics. – ident: e_1_2_7_14_1 doi: 10.2307/2530245 – ident: e_1_2_7_10_1 – ident: e_1_2_7_9_1 doi: 10.1002/bimj.200800219 – ident: e_1_2_7_15_1 doi: 10.1002/sim.1450 – ident: e_1_2_7_7_1 doi: 10.1002/bimj.200410084 – ident: e_1_2_7_3_1 – ident: e_1_2_7_2_1 doi: 10.1214/aoms/1177729380 – ident: e_1_2_7_8_1 doi: 10.1080/10543400601177343 – volume-title: Draft guidance for industry on non‐inferioirty clinical trials year: 2010 ident: e_1_2_7_4_1 – ident: e_1_2_7_18_1 doi: 10.1081/BIP-120017724 – ident: e_1_2_7_12_1 doi: 10.1081/BIP-120037182 – ident: e_1_2_7_6_1 doi: 10.1081/BIP-100101201 – ident: e_1_2_7_13_1 doi: 10.1093/biomet/63.3.655 – volume: 71 start-page: 1061 year: 1987 ident: e_1_2_7_5_1 article-title: Treatment evaluation in active control studies publication-title: Cancer Treatment Report – ident: e_1_2_7_11_1 doi: 10.1002/sim.2543 – ident: e_1_2_7_16_1 doi: 10.1093/biomet/64.2.191 – ident: e_1_2_7_17_1 doi: 10.1081/BIP-120037184 |
SSID | ssj0009042 |
Score | 1.9169009 |
Snippet | The three‐arm design with a test treatment, an active control and a placebo group is the gold standard design for non‐inferiority trials if it is ethically... The three-arm design with a test treatment, an active control and a placebo group is the gold standard design for non-inferiority trials if it is ethically... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 504 |
SubjectTerms | Applications Biology, psychology, social sciences Biometrics Clinical trials Clinical Trials as Topic - methods Effect preservation test Exact sciences and technology Experimental design General topics Group sequential design Humans Mathematics Monte Carlo Method Monte Carlo simulation Non-inferiority Preservation Probability and statistics Risk Sciences and techniques of general use Sequential methods Statistics Three-arm trial |
Title | A group sequential type design for three-arm non-inferiority trials with binary endpoints |
URI | https://api.istex.fr/ark:/67375/WNG-F8N770JP-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.200900188 https://www.ncbi.nlm.nih.gov/pubmed/20645389 https://www.proquest.com/docview/749017718 https://www.proquest.com/docview/888099821 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQERIb3o_wqLxAsHKb-BEny_KYlpEYIURFN8iyHVsa2maqSUZqWfEJfCNfwrU9k2EQFRLsEsm2Yuf6-tg-91yEnjWAuo0ThlTCMMIL35BaO04ob0QTTvprG1m-k_LgkI-PxNEvUfxJH2I4cAszI_rrMMG16XbXoqFmevolBu-FvHIh2rdgZRDPf_1hrR9V5zxdI1BGGPjhlWpjTnc3q2-sSlfDAJ8HlqTuYKB8ynDxJwi6iWjjkjS6ifSqM4mJcryz6M2O_fqbzuP_9PYWurHEq3gvGdhtdMW1d9C1lMHy4i76vIdjXAhOlGxwFyc4nOriJjJDMEBi3IO5uB_fvuv5KW5nLTwFBth8Ogt583BMG9LhcB6MTQwOxq5tzmbTtu_uocPRm4-vDsgyYwOxHPZ5pPaCwTYXPtNRLmXtWO5LTWGbRE3ldWEr3lgHoEMAquBaNK6UtmBaSps7nXt2H23Bh7iHCDfQhuWFY6V33DGrpQfnLCvOXQ1N-wyR1R9TdilnHrJqnKgkxExVGDI1DFmGXgzlz5KQx6Uln0cDGIrp-XGgv0mhPk321aiaSJmP36v9DG1vWMhQATCzoDmrM4RXJqNg1oarGN262aJTkgMOk4ALLi9SgWeFvTAtMvQgWdu6_SAyCEgzQzTazF86pF6-fTce3h79S6XH6HqiTQTm4xO01c8X7imgsd5sxxn3E_TPLLM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwQX3o_wKD4gOKVNbGedHMtju13aFUKt4IIsx3GkpW222ocEnPgJ_EZ-CTP2JqtFVEhwSyTbip3x5JvJ528AnlWIukuXlXGelSKWaV3FhXEy5rLKKsr0F9azfEe9wbEcfsxaNiGdhQn6EF3CjXaG99e0wSkhvbNSDS3HZ5_96T0qLJdfhk2JaIPir9fvVwpSRSLDjwQuYoGeuNVtTPjOev-179ImLfEX4kmaGS5VHWpc_AmErmNa_1Hq34CynU7gopxsL-bltv32m9Ljf833JlxfQla2G2zsFlxyzW24EopYfr0Dn3aZPxrCAisbPcYpo8Quqzw5hCEqZnO0GPfz-w8zPWPNpMErIoFNxxMqncd85ZAZo5QwK_35YOaa6nwybuazu3Dcf3P0ahAvizbEVmKoFxd1JjDSxcd0XCpVOJHUPcMxUuJlXpvU5rKyDnFHhsBCmqxyPWVTYZSyiTNJLe7BBj6IewCswjGsTJ3o1U46YY2q0T-rXEpX4NB1BHH7yrRdKppTYY1THbSYuaYl092SRfCia38etDwubPncW0DXzExPiAGnMv1htKf7-UipZPhO70WwtWYiXQeEzRlPRBEBa21G48alvzGmcZPFTCuJUEwhNLi4SY7OFcNhnkZwP5jbanzSGUSwGQH3RvOXCemX-4fD7u7hv3R6ClcHR4cH-mB_9PYRXAssCiJCPoaN-XThniA4m5dbfvv9ArYSMNI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CViA2vB_hUbxAsEqb2E6cLMtj2g4wqhAV3SDL8UMa2mZG85CAFZ_AN_IlXNszGQZRIcEukWwrvrm-PraPzwV4YhB1N7Zo0qpoWMpzZ9JaWZ5Sbgrjd_prHVi-g3L_iPePi-NfbvFHfYhuw82PjBCv_QAfG7ezEg1thmefwuU9n1euugibvEQ44WHRu5WAVJ3xeI5AWcowEC9lGzO6s15_bVra9Bb-7GmSaoqWcjHFxZ8w6DqkDXNS7xqoZW8iFeVkez5rtvXX34Qe_6e71-HqArCS3ehhN-CCbW_CpZjC8sst-LhLwsUQEjnZGC9Oid_WJSZQQwhiYjJDf7E_vn1XkzPSjlp88hSwyXDkE-eRkDdkSvyGMGnC7WBiWzMeDdvZ9DYc9V69f7GfLlI2pJrjQi-tXcFwnYufaSkXorYsc6WiuE6iTeVUritutEXUUSCs4KowthQ6Z0oInVmVOXYHNvBD7D0gBtvQPLesdJZbppVwGJ1FxbmtsWmXQLr8Y1Iv9Mx9Wo1TGZWYqfQmk53JEnjWlR9HJY9zSz4NDtAVU5MTz38Thfww2JO9aiBE1j-UewlsrXlIVwFBc0EzVidAli4jcdj6sxjV2tF8KgVHICYQGJxfpMLQiothmidwN3rbqn2vMohQMwEafOYvHZLPD972u7f7_1LpMVw-fNmTbw4Grx_AlUih8CzIh7Axm8ztI0Rms2YrDL6f-vAvgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+group+sequential+type+design+for+three-arm+non-inferiority+trials+with+binary+endpoints&rft.jtitle=Biometrical+journal&rft.au=Li%2C+Gang&rft.au=Gao%2C+Shan&rft.date=2010-08-01&rft.issn=1521-4036&rft.eissn=1521-4036&rft.volume=52&rft.issue=4&rft.spage=504&rft_id=info:doi/10.1002%2Fbimj.200900188&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |