Real‐Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core–Shell Nanowire Electrodes

Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical pe...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 42; pp. 12997 - 13000
Main Authors Zhang, Xin‐Wei, Qiu, Quan‐Fa, Jiang, Hong, Zhang, Fu‐Li, Liu, Yan‐Lin, Amatore, Christian, Huang, Wei‐Hua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.10.2017
Wiley-VCH Verlag
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC‐core–shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano‐core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. Nanoelectrodes for biology: A facile and robust strategy for the fabrication of high performance nanowire electrodes (NWEs) was developed. The NWEs allowed the measurement of reactive oxygen and nitrogen species (ROS/RNS) within individual phagolysosomes inside living macrophages.
AbstractList Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles.Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles.
Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC‐core–shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano‐core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. Nanoelectrodes for biology: A facile and robust strategy for the fabrication of high performance nanowire electrodes (NWEs) was developed. The NWEs allowed the measurement of reactive oxygen and nitrogen species (ROS/RNS) within individual phagolysosomes inside living macrophages.
Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC‐core–shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano‐core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles.
Author Huang, Wei‐Hua
Qiu, Quan‐Fa
Amatore, Christian
Zhang, Xin‐Wei
Zhang, Fu‐Li
Jiang, Hong
Liu, Yan‐Lin
Author_xml – sequence: 1
  givenname: Xin‐Wei
  surname: Zhang
  fullname: Zhang, Xin‐Wei
  organization: Wuhan University
– sequence: 2
  givenname: Quan‐Fa
  surname: Qiu
  fullname: Qiu, Quan‐Fa
  organization: Wuhan University
– sequence: 3
  givenname: Hong
  surname: Jiang
  fullname: Jiang, Hong
  organization: Wuhan University
– sequence: 4
  givenname: Fu‐Li
  surname: Zhang
  fullname: Zhang, Fu‐Li
  organization: Wuhan University
– sequence: 5
  givenname: Yan‐Lin
  surname: Liu
  fullname: Liu, Yan‐Lin
  organization: Wuhan University
– sequence: 6
  givenname: Christian
  surname: Amatore
  fullname: Amatore, Christian
  email: christian.amatore@ens.fr
  organization: UPMC Univ. Paris 06
– sequence: 7
  givenname: Wei‐Hua
  orcidid: 0000-0001-8951-075X
  surname: Huang
  fullname: Huang, Wei‐Hua
  email: whhuang@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28809456$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03991338$$DView record in HAL
BookMark eNqFkc1qGzEUhYeS0vy02y6LoJt0Ma400kiapTFuY3AdsNO10MzcqRVkKZVmYrLLIxT6hnmSanCSQqB0dSXd71xxzznNjpx3kGXvCZ4QjIvP2hmYFJgILIgUr7ITUhYkp0LQo3RmlOZCluQ4O43xOvFSYv4mOx5rxUp-koU1aPtw_-vK7AAtXB90A9YOVgf0DXQcAuzA9RH5Dq0vN0i7Fq1XG2QcWppb436gWcIj2pt-izbpbgHNfICH-9-bbeqglXZ-bwKguYWmD76F-DZ73Wkb4d1jPcu-f5lfzS7y5eXXxWy6zBvGmMg7UXAJddW2tOVaiAqXNa7LsuhYLWquy0Y20JVNh6GruJDQ8YbjEkOhWY1lTc-yT4e5W23VTTA7He6U10ZdTJdqfMO0qgil8pYk9vzA3gT_c4DYq52JoxPagR-iIlVREcypFAn9-AK99kNwaZNEMU6SrZwl6sMjNdQ7aJ__f3I-AewANMHHGKBTjel1b_yYgbGKYDUGrMaA1XPASTZ5IXua_E9BdRDsjYW7_9BqulrM_2r_AFfiuQ0
CitedBy_id crossref_primary_10_1039_D1TB01885J
crossref_primary_10_1002_smll_202310300
crossref_primary_10_34133_2022_9859101
crossref_primary_10_1002_ange_202115820
crossref_primary_10_1039_D2CC06729C
crossref_primary_10_1063_5_0052666
crossref_primary_10_1039_D3CC06078K
crossref_primary_10_1007_s41871_023_00203_8
crossref_primary_10_1007_s00216_019_01734_0
crossref_primary_10_1021_acs_analchem_0c02013
crossref_primary_10_1021_jacs_1c09986
crossref_primary_10_1038_s41378_024_00819_w
crossref_primary_10_1007_s00604_024_06202_w
crossref_primary_10_1021_acs_analchem_9b04139
crossref_primary_10_1002_ange_202111608
crossref_primary_10_1002_anie_202106251
crossref_primary_10_1021_acsnano_4c07379
crossref_primary_10_3390_cancers15041327
crossref_primary_10_1002_anie_202215801
crossref_primary_10_1021_jacs_2c01857
crossref_primary_10_3390_bios13100907
crossref_primary_10_1002_ange_201902734
crossref_primary_10_1038_s41565_023_01575_0
crossref_primary_10_1002_ange_202002323
crossref_primary_10_1016_j_coelec_2020_04_003
crossref_primary_10_1016_j_trac_2020_115886
crossref_primary_10_1016_j_bios_2024_116087
crossref_primary_10_1021_acssensors_1c00978
crossref_primary_10_1039_D0CC05889K
crossref_primary_10_1002_anie_201808537
crossref_primary_10_1021_acs_analchem_1c00336
crossref_primary_10_1149_1945_7111_ab64be
crossref_primary_10_1021_jacs_9b01217
crossref_primary_10_1149_2_0151812jes
crossref_primary_10_1002_ange_202300083
crossref_primary_10_1007_s12274_023_6210_0
crossref_primary_10_1038_s41598_018_25852_4
crossref_primary_10_1073_pnas_1719844115
crossref_primary_10_1002_smll_202407685
crossref_primary_10_1021_acsnano_8b00781
crossref_primary_10_1002_ange_202302930
crossref_primary_10_1007_s00216_020_02899_9
crossref_primary_10_1021_acssensors_1c00463
crossref_primary_10_1002_cjoc_202100178
crossref_primary_10_3390_bios13070704
crossref_primary_10_1002_ange_202215801
crossref_primary_10_1002_anie_202300083
crossref_primary_10_1021_acs_langmuir_2c00915
crossref_primary_10_1021_acs_analchem_0c05025
crossref_primary_10_1021_acssensors_7b00711
crossref_primary_10_1039_D1CC00787D
crossref_primary_10_1002_smll_201901787
crossref_primary_10_1039_D0SC02787A
crossref_primary_10_1002_smll_202407950
crossref_primary_10_1021_acsami_2c06306
crossref_primary_10_1002_anie_202111608
crossref_primary_10_1021_acs_analchem_3c00331
crossref_primary_10_1002_anie_202002417
crossref_primary_10_1002_anie_202302930
crossref_primary_10_1002_celc_201801424
crossref_primary_10_1002_ange_202313612
crossref_primary_10_1021_acssensors_4c01689
crossref_primary_10_1016_j_bios_2023_115198
crossref_primary_10_1021_acschemneuro_8b00722
crossref_primary_10_1021_acs_analchem_0c00140
crossref_primary_10_1021_acs_analchem_1c00879
crossref_primary_10_1021_acs_analchem_9b01056
crossref_primary_10_1002_anie_202006318
crossref_primary_10_3390_s21093038
crossref_primary_10_1007_s41664_022_00223_1
crossref_primary_10_1021_acs_analchem_4c05482
crossref_primary_10_1021_acs_analchem_1c05492
crossref_primary_10_1002_ange_202002417
crossref_primary_10_1021_acs_analchem_8b00303
crossref_primary_10_1002_cbic_202000622
crossref_primary_10_1002_ange_202100882
crossref_primary_10_1016_j_snb_2020_129071
crossref_primary_10_1021_acs_analchem_0c00931
crossref_primary_10_1149_2_0201812jes
crossref_primary_10_1016_j_bios_2024_116173
crossref_primary_10_1002_cjoc_202200520
crossref_primary_10_1021_acs_analchem_1c03997
crossref_primary_10_1002_anie_202115820
crossref_primary_10_1360_TB_2023_0214
crossref_primary_10_3390_bios8040100
crossref_primary_10_1016_j_bios_2022_114899
crossref_primary_10_1016_j_coelec_2021_100746
crossref_primary_10_1016_j_electacta_2024_145214
crossref_primary_10_1016_j_coelec_2020_05_008
crossref_primary_10_1007_s00216_020_02655_z
crossref_primary_10_1021_acs_analchem_4c01542
crossref_primary_10_1039_C9SC05538J
crossref_primary_10_1021_acs_analchem_0c04628
crossref_primary_10_1364_BOE_501914
crossref_primary_10_1039_D4CC05423G
crossref_primary_10_1002_EXP_20220025
crossref_primary_10_1016_j_trac_2025_118161
crossref_primary_10_1002_smll_202100503
crossref_primary_10_1016_j_coelec_2020_100654
crossref_primary_10_1021_acssensors_3c02420
crossref_primary_10_1039_D4SC05977H
crossref_primary_10_1039_D4AN00511B
crossref_primary_10_1002_ange_202106251
crossref_primary_10_3389_fchem_2020_591311
crossref_primary_10_1039_D0SC02807J
crossref_primary_10_1002_cjoc_202000722
crossref_primary_10_1016_j_bios_2022_114928
crossref_primary_10_1016_j_bios_2021_113667
crossref_primary_10_1002_ange_202006318
crossref_primary_10_1002_anie_201902734
crossref_primary_10_1021_acs_analchem_8b01539
crossref_primary_10_1002_anie_202002323
crossref_primary_10_1021_acs_analchem_8b05179
crossref_primary_10_1002_ange_201711427
crossref_primary_10_1002_ange_201808537
crossref_primary_10_1002_mame_201800630
crossref_primary_10_1039_C9NR01997A
crossref_primary_10_1021_acs_analchem_0c04015
crossref_primary_10_1016_j_bios_2023_115741
crossref_primary_10_1021_acssensors_8b00185
crossref_primary_10_1002_anie_202313612
crossref_primary_10_1021_acsnano_2c03929
crossref_primary_10_1021_acs_nanolett_4c00563
crossref_primary_10_1002_smll_202406796
crossref_primary_10_1021_acs_analchem_3c05027
crossref_primary_10_1002_elan_202100343
crossref_primary_10_1007_s00216_018_1108_5
crossref_primary_10_1039_C9AN02390A
crossref_primary_10_1039_D2MH01143C
crossref_primary_10_1002_anie_202100882
crossref_primary_10_1016_j_talanta_2023_125132
crossref_primary_10_1016_j_bios_2018_06_020
crossref_primary_10_1002_anie_201711427
crossref_primary_10_1515_pac_2020_0902
crossref_primary_10_1021_acs_analchem_0c00569
Cites_doi 10.1021/ja050385r
10.1021/cr068062g
10.1039/C6SC01978A
10.1021/acs.analchem.5b04542
10.1073/pnas.1203570109
10.1002/ange.201404744
10.1021/ja512972f
10.1021/nn405612q
10.1002/anie.201503801
10.1073/pnas.1201552109
10.1016/j.elecom.2008.05.008
10.1038/nnano.2010.241
10.1002/adma.200500104
10.1039/B9NR00231F
10.1242/jcs.94.1.143
10.1186/1556-276X-6-306
10.1039/C5NR06021D
10.1021/ac902486x
10.1073/pnas.1609618113
10.1002/ange.201504839
10.1002/ange.201503801
10.1038/nri2591
10.1016/j.electacta.2014.08.046
10.1039/C6FD00102E
10.1016/j.trac.2016.01.018
10.1021/nn5024522
10.1083/jcb.137.1.113
10.1021/ac0508595
10.1021/ac5042999
10.1002/elan.201501157
10.1038/nmeth782
10.1002/cbic.200500359
10.1089/ars.2016.6747
10.1002/anie.201504839
10.1021/nn700171x
10.1002/anie.201404744
10.1021/ac0342931
10.1126/science.277.5334.1971
10.1002/elan.201200456
10.1182/blood.V92.9.3007
10.1002/1521-3765(20011001)7:19<4171::AID-CHEM4171>3.0.CO;2-5
10.1042/bj20020691
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
1XC
DOI 10.1002/anie.201707187
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 13000
ExternalDocumentID oai_HAL_hal_03991338v1
28809456
10_1002_anie_201707187
ANIE201707187
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21375099, 21675121
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
1XC
UMC
ID FETCH-LOGICAL-c4447-f7268eb9dd3d6a77905b0b552f4b7b6a5c8cef5cf0ef9678ef6c6050e2a4b08b3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri May 09 12:17:56 EDT 2025
Thu Jul 10 19:31:20 EDT 2025
Fri Jul 25 10:22:19 EDT 2025
Tue Apr 08 05:57:02 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Tue Jul 01 02:26:09 EDT 2025
Wed Jan 22 17:06:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords amperometry
reactive nitrogen species
reactive oxygen species
nanoelectrodes
phagolysosomes
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4447-f7268eb9dd3d6a77905b0b552f4b7b6a5c8cef5cf0ef9678ef6c6050e2a4b08b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8951-075X
PMID 28809456
PQID 1946145664
PQPubID 946352
PageCount 4
ParticipantIDs hal_primary_oai_HAL_hal_03991338v1
proquest_miscellaneous_1929106387
proquest_journals_1946145664
pubmed_primary_28809456
crossref_citationtrail_10_1002_anie_201707187
crossref_primary_10_1002_anie_201707187
wiley_primary_10_1002_anie_201707187_ANIE201707187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 9, 2017
PublicationDateYYYYMMDD 2017-10-09
PublicationDate_xml – month: 10
  year: 2017
  text: October 9, 2017
  day: 09
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2014 2014; 53 126
1997; 137
2013; 25
2006; 78
1997; 277
2006; 7
2008; 108
2008; 10
2011; 6
2015; 8
2003; 75
2016; 79
2012; 109
2010; 82
2016; 7
1989; 94
2015; 137
2001; 7
2002; 366
2005; 127
2015; 87
2016; 113
2015 2015; 54 127
2009; 9
1998; 92
2005; 2
2016; 193
2014; 8
2010; 2
2007; 1
2014; 144
2016; 28
2005; 17
2016; 25
2010; 6
2016; 88
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_45_2
e_1_2_2_8_3
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_30_1
e_1_2_2_53_2
e_1_2_2_19_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_34_2
e_1_2_2_15_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_44_1
e_1_2_2_9_3
e_1_2_2_27_1
e_1_2_2_9_2
e_1_2_2_46_2
Toyohara A. (e_1_2_2_41_2) 1989; 94
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_39_2
e_1_2_2_10_1
e_1_2_2_52_1
e_1_2_2_50_2
e_1_2_2_31_2
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_54_2
e_1_2_2_14_3
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 87
  start-page: 5531
  year: 2015
  end-page: 5538
  publication-title: Anal. Chem.
– volume: 2
  start-page: 363
  year: 2010
  end-page: 372
  publication-title: Nanoscale
– volume: 8
  start-page: 8182
  year: 2014
  end-page: 8189
  publication-title: ACS Nano
– volume: 8
  start-page: 214
  year: 2015
  end-page: 218
  publication-title: Nanoscale
– volume: 54 127
  start-page: 11978 12146
  year: 2015 2015
  end-page: 11982 12150
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 4171
  year: 2001
  end-page: 4179
  publication-title: Chem. Eur. J.
– volume: 1
  start-page: 440
  year: 2007
  end-page: 448
  publication-title: ACS Nano
– volume: 10
  start-page: 1125
  year: 2008
  end-page: 1128
  publication-title: Electrochem. Commun.
– volume: 8
  start-page: 875
  year: 2014
  end-page: 884
  publication-title: ACS Nano
– volume: 193
  start-page: 65
  year: 2016
  end-page: 79
  publication-title: Faraday Discuss.
– volume: 88
  start-page: 414
  year: 2016
  end-page: 430
  publication-title: Anal. Chem.
– volume: 6
  start-page: 57
  year: 2010
  end-page: 64
  publication-title: Nat. Nanotechnol.
– volume: 28
  start-page: 1865
  year: 2016
  end-page: 1872
  publication-title: Electroanalysis
– volume: 75
  start-page: 3962
  year: 2003
  end-page: 3971
  publication-title: Anal. Chem.
– volume: 78
  start-page: 617
  year: 2006
  end-page: 620
  publication-title: Anal. Chem.
– volume: 53 126
  start-page: 12456 12664
  year: 2014 2014
  end-page: 12460 12668
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 109
  start-page: 11534
  year: 2012
  end-page: 11539
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 564
  year: 2016
  end-page: 576
  publication-title: Antioxid. Redox Signaling
– volume: 277
  start-page: 1971
  year: 1997
  end-page: 1975
  publication-title: Science
– volume: 113
  start-page: 11436
  year: 2016
  end-page: 11440
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 82
  start-page: 1411
  year: 2010
  end-page: 1419
  publication-title: Anal. Chem.
– volume: 79
  start-page: 46
  year: 2016
  end-page: 59
  publication-title: TrAC Trends Anal. Chem.
– volume: 94
  start-page: 143
  year: 1989
  end-page: 153
  publication-title: J. Cell Sci.
– volume: 366
  start-page: 689
  year: 2002
  end-page: 704
  publication-title: Biochem. J.
– volume: 109
  start-page: 11540
  year: 2012
  end-page: 11545
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 113
  year: 1997
  end-page: 129
  publication-title: J. Cell Biol.
– volume: 92
  start-page: 3007
  year: 1998
  end-page: 3017
  publication-title: Blood
– volume: 9
  start-page: 594
  year: 2009
  end-page: 600
  publication-title: Nat. Rev. Immunol.
– volume: 17
  start-page: 1519
  year: 2005
  end-page: 1523
  publication-title: Adv. Mater.
– volume: 2
  start-page: 651
  year: 2005
  end-page: 658
  publication-title: Nat. Methods
– volume: 7
  start-page: 6684
  year: 2016
  end-page: 6688
  publication-title: Chem. Sci.
– volume: 144
  start-page: 111
  year: 2014
  end-page: 118
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 895
  year: 2013
  end-page: 902
  publication-title: Electroanalysis
– volume: 108
  start-page: 2585
  year: 2008
  end-page: 2621
  publication-title: Chem. Rev.
– volume: 127
  start-page: 8914
  year: 2005
  end-page: 8915
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 4344
  year: 2015
  end-page: 4346
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 306
  year: 2011
  end-page: 311
  publication-title: Nanoscale Res. Lett.
– volume: 7
  start-page: 653
  year: 2006
  end-page: 661
  publication-title: ChemBioChem
– volume: 54 127
  start-page: 9313 9445
  year: 2015 2015
  end-page: 9318 9450
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_5_2
  doi: 10.1021/ja050385r
– ident: e_1_2_2_39_2
  doi: 10.1021/cr068062g
– ident: e_1_2_2_40_1
– ident: e_1_2_2_32_2
  doi: 10.1039/C6SC01978A
– ident: e_1_2_2_2_2
  doi: 10.1021/acs.analchem.5b04542
– ident: e_1_2_2_31_2
  doi: 10.1073/pnas.1203570109
– ident: e_1_2_2_8_3
  doi: 10.1002/ange.201404744
– ident: e_1_2_2_45_2
  doi: 10.1021/ja512972f
– ident: e_1_2_2_11_2
  doi: 10.1021/nn405612q
– ident: e_1_2_2_15_1
– ident: e_1_2_2_4_1
– ident: e_1_2_2_9_2
  doi: 10.1002/anie.201503801
– ident: e_1_2_2_13_2
  doi: 10.1073/pnas.1201552109
– ident: e_1_2_2_25_1
  doi: 10.1016/j.elecom.2008.05.008
– ident: e_1_2_2_33_1
– ident: e_1_2_2_16_2
  doi: 10.1038/nnano.2010.241
– ident: e_1_2_2_28_2
  doi: 10.1002/adma.200500104
– ident: e_1_2_2_22_1
– ident: e_1_2_2_30_1
– ident: e_1_2_2_17_2
  doi: 10.1039/B9NR00231F
– volume: 94
  start-page: 143
  year: 1989
  ident: e_1_2_2_41_2
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.94.1.143
– ident: e_1_2_2_44_1
– ident: e_1_2_2_52_1
– ident: e_1_2_2_21_2
  doi: 10.1186/1556-276X-6-306
– ident: e_1_2_2_24_2
  doi: 10.1039/C5NR06021D
– ident: e_1_2_2_34_2
  doi: 10.1021/ac902486x
– ident: e_1_2_2_12_2
  doi: 10.1073/pnas.1609618113
– ident: e_1_2_2_47_1
– ident: e_1_2_2_14_3
  doi: 10.1002/ange.201504839
– ident: e_1_2_2_9_3
  doi: 10.1002/ange.201503801
– ident: e_1_2_2_7_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_51_2
  doi: 10.1038/nri2591
– ident: e_1_2_2_37_2
  doi: 10.1016/j.electacta.2014.08.046
– ident: e_1_2_2_46_2
  doi: 10.1039/C6FD00102E
– ident: e_1_2_2_3_2
  doi: 10.1016/j.trac.2016.01.018
– ident: e_1_2_2_23_2
  doi: 10.1021/nn5024522
– ident: e_1_2_2_27_1
– ident: e_1_2_2_42_2
  doi: 10.1083/jcb.137.1.113
– ident: e_1_2_2_20_2
  doi: 10.1021/ac0508595
– ident: e_1_2_2_6_2
  doi: 10.1021/ac5042999
– ident: e_1_2_2_38_2
  doi: 10.1002/elan.201501157
– ident: e_1_2_2_48_1
– ident: e_1_2_2_53_2
  doi: 10.1038/nmeth782
– ident: e_1_2_2_35_2
  doi: 10.1002/cbic.200500359
– ident: e_1_2_2_49_2
  doi: 10.1089/ars.2016.6747
– ident: e_1_2_2_14_2
  doi: 10.1002/anie.201504839
– ident: e_1_2_2_26_1
  doi: 10.1021/nn700171x
– ident: e_1_2_2_8_2
  doi: 10.1002/anie.201404744
– ident: e_1_2_2_18_1
  doi: 10.1021/ac0342931
– ident: e_1_2_2_29_2
  doi: 10.1126/science.277.5334.1971
– ident: e_1_2_2_19_1
– ident: e_1_2_2_36_2
  doi: 10.1002/elan.201200456
– ident: e_1_2_2_50_2
  doi: 10.1182/blood.V92.9.3007
– ident: e_1_2_2_54_2
  doi: 10.1002/1521-3765(20011001)7:19<4171::AID-CHEM4171>3.0.CO;2-5
– ident: e_1_2_2_10_1
– ident: e_1_2_2_43_2
  doi: 10.1042/bj20020691
SSID ssj0028806
Score 2.5760434
Snippet Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire...
Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12997
SubjectTerms amperometry
Analytical chemistry
Animals
Biological activity
Biomonitoring
Carbon Compounds, Inorganic - chemistry
Chemical Sciences
Cylindrical shells
Electrochemical analysis
Electrochemical Techniques
Electrochemistry
Electrodes
HeLa Cells
Humans
Intracellular
Macrophages
Macrophages - cytology
Macrophages - metabolism
Mice
Microscopy, Fluorescence
nanoelectrodes
Nanotechnology
Nanowires
Nanowires - chemistry
Organelles
Phagolysosomes
Phagosomes - metabolism
RAW 264.7 Cells
reactive nitrogen species
Reactive Nitrogen Species - analysis
Reactive Nitrogen Species - metabolism
reactive oxygen species
Reactive Oxygen Species - analysis
Reactive Oxygen Species - metabolism
Real time
Robustness (mathematics)
Silicon carbide
Silicon Compounds - chemistry
Title Real‐Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core–Shell Nanowire Electrodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201707187
https://www.ncbi.nlm.nih.gov/pubmed/28809456
https://www.proquest.com/docview/1946145664
https://www.proquest.com/docview/1929106387
https://hal.science/hal-03991338
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwfgQKMgiJk9vUcRLnuFpttUXtIu1SqbfIj7GoqBK02eXAqT8BiX_YX8JMsklZEEKCWx5jObHH48-jmW8YewMWcYTJrfDgjVCp80L7YITx2suQJl63NZZOZtn0VL07S89-yuLv-CEGhxutjNZe0wI3ttm_Jg2lDGwKzcpxk9SUTk4BW4SK5gN_lETl7NKLkkRQFfqetTGW-9vNt3almx8pJvJ3wLmNX9sN6PAuM_2nd3Enn_bWK7vnvv7C6vg__3aP3dmgUz7q1Ok-uwHVA3Zr3BeFe8iWcwSWV5ffKHOEH5FjmDz_FMrKT669jQ2vA5-_X3BTeT6fLfh5xY_PyXXBxyjecPL-8gXeXwAf10u4uvy-oIhUjsa-JvZkPunK83hoHrHTw8mH8VRsyjYIp5TKRchlpsEW3ice1YAYwGxs01QGZXObmdRpByF1IYZQ4F4JIXN4qIpBGmVjbZPHbKeqK3jKOBpi49CiuFyBMt5ZB1J6MJn2ujBpHDHRT1vpNpzmVFrjouzYmGVJI1kOIxmxt4P8547N44-Sr1ELBiEi4Z6Ojkt6FiOmo5P9l4OI7fZKUm6WflMeFAohD6JkFbFXw2ucJpoPU0G9JhmJMA1NH_bzpFOuoStS2gLbR0y2KvKXDy1Hs6PJcPfsXxo9Z7fpug1RLHbZzmq5hhcItVb2ZbucfgCxSCH-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RciiX8oZAAYOQOLlNHSdxjqvVVruwu0i7rcQt8iuiokqqfXDg1J-AxD_sL2Em2aRaEEKCo52x7Njj8efR-BuAt94gjtCp4c47zWVsHVeu0Fw75UQRR07VOZYm02R4Jt9_ittoQnoL0_BDdA432hm1vaYNTg7poxvWUHqCTbFZKZ6SKt2B25TWu75VzToGKYHq2TwwiiJOeehb3sZQHG233zqXdj5TVOTvkHMbwdZH0MldMO3gm8iTL4frlTm0337hdfyvv7sH-xuAynqNRt2HW758AHv9Ni_cQ1jMEFteX32nxyNsRL5hcv5TNCub3Dgcl6wq2OzjnOnSsdl0zs5LNj4n7wXro_iSkQOYzbF84Vm_Wvjrqx9zCkplaO8rIlBmgyZDj_PLR3B2MjjtD_kmcwO3UsqUF6lIlDeZc5FDTSASMBOaOBaFNKlJdGyV9UVsi9AXGR6Xvkgs3qtCL7Q0oTLRY9gtq9I_BYa2WFs0KjaVXmpnjfVCOK8T5VSm4zAA3q5bbje05pRd4yJvCJlFTjOZdzMZwLtO_rIh9Pij5BtUg06IeLiHvXFOdSHCOrrcfz0O4KDVknyz-5f5cSYR9SBQlgG87j7jMtF66NJXa5IRiNTQ-mE_Txrt6roirc2wfQCi1pG_DDTvTUeDrvTsXxq9gr3h6WScj0fTD8_hDtXXEYvZAeyuFmv_ApHXyrys99ZPv4ImGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RIgEX3oVAgQUhcXLrrtf2-hiliRJIA0qo1Ju1T1FR2VUeHDj1JyDxD_tLmLFjl4AQEhy9ntXa3m9nP49mvwF47TTyCJXqwDqrAhEbG0jrVaCstNzHkZVVjaWjSTI8Fm9P4pOfTvHX-hBtwI1WRuWvaYGfW79_JRpKJ7ApNSvFTVKmW3BdJKEkXB9OWwEpjuiszxdFUUBl6BvZxpDvb_bf2Ja2PlFS5O-Mc5PAVjvQ4A6o5tnrxJPPe6ul3jNff5F1_J-Xuwu31_SUdWs83YNrrrgPN3tNVbgHMJ8is7y8-EZHR9iIIsMU-qdcVnZ0FW5csNKz6fsZU4Vl08mMnRZsfEqxC9ZD8wWj8C-b4fWZY71y7i4vvs8oJZWhty9JPpn16_o81i0ewvGg_7E3DNZ1GwIjhEgDn_JEOp1ZG1nEAUmA6VDHMfdCpzpRsZHG-dj40PkMN0vnE4N_VaHjSuhQ6mgHtouycI-BoSdWBl2KSYUTyhptHOfWqURamak47EDQTFtu1qLmVFvjLK_lmHlOXzJvv2QH3rT257Wcxx8tXyEKWiNS4R52xzm1hUjq6Nf-y0EHdhuQ5Ou1v8gPMoGcB2my6MDL9jZOE82HKly5IhuOPA19H47zqAZXOxSBNsP-HeAVRP7yoHl3Muq3V0_-pdMLuPHhcJCPR5N3T-EWNVfpitkubC_nK_cMaddSP69W1g9KxyTR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Intracellular+Measurements+of+ROS+and+RNS+in+Living+Cells+with+Single+Core-Shell+Nanowire+Electrodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Xin-Wei&rft.au=Qiu%2C+Quan-Fa&rft.au=Jiang%2C+Hong&rft.au=Zhang%2C+Fu-Li&rft.date=2017-10-09&rft.eissn=1521-3773&rft.volume=56&rft.issue=42&rft.spage=12997&rft_id=info:doi/10.1002%2Fanie.201707187&rft_id=info%3Apmid%2F28809456&rft.externalDocID=28809456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon