Real‐Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core–Shell Nanowire Electrodes
Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical pe...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 42; pp. 12997 - 13000 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.10.2017
Wiley-VCH Verlag |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC‐core–shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano‐core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles.
Nanoelectrodes for biology: A facile and robust strategy for the fabrication of high performance nanowire electrodes (NWEs) was developed. The NWEs allowed the measurement of reactive oxygen and nitrogen species (ROS/RNS) within individual phagolysosomes inside living macrophages. |
---|---|
AbstractList | Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles.Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC‐core–shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano‐core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. Nanoelectrodes for biology: A facile and robust strategy for the fabrication of high performance nanowire electrodes (NWEs) was developed. The NWEs allowed the measurement of reactive oxygen and nitrogen species (ROS/RNS) within individual phagolysosomes inside living macrophages. Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC‐core–shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano‐core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. |
Author | Huang, Wei‐Hua Qiu, Quan‐Fa Amatore, Christian Zhang, Xin‐Wei Zhang, Fu‐Li Jiang, Hong Liu, Yan‐Lin |
Author_xml | – sequence: 1 givenname: Xin‐Wei surname: Zhang fullname: Zhang, Xin‐Wei organization: Wuhan University – sequence: 2 givenname: Quan‐Fa surname: Qiu fullname: Qiu, Quan‐Fa organization: Wuhan University – sequence: 3 givenname: Hong surname: Jiang fullname: Jiang, Hong organization: Wuhan University – sequence: 4 givenname: Fu‐Li surname: Zhang fullname: Zhang, Fu‐Li organization: Wuhan University – sequence: 5 givenname: Yan‐Lin surname: Liu fullname: Liu, Yan‐Lin organization: Wuhan University – sequence: 6 givenname: Christian surname: Amatore fullname: Amatore, Christian email: christian.amatore@ens.fr organization: UPMC Univ. Paris 06 – sequence: 7 givenname: Wei‐Hua orcidid: 0000-0001-8951-075X surname: Huang fullname: Huang, Wei‐Hua email: whhuang@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28809456$$D View this record in MEDLINE/PubMed https://hal.science/hal-03991338$$DView record in HAL |
BookMark | eNqFkc1qGzEUhYeS0vy02y6LoJt0Ma400kiapTFuY3AdsNO10MzcqRVkKZVmYrLLIxT6hnmSanCSQqB0dSXd71xxzznNjpx3kGXvCZ4QjIvP2hmYFJgILIgUr7ITUhYkp0LQo3RmlOZCluQ4O43xOvFSYv4mOx5rxUp-koU1aPtw_-vK7AAtXB90A9YOVgf0DXQcAuzA9RH5Dq0vN0i7Fq1XG2QcWppb436gWcIj2pt-izbpbgHNfICH-9-bbeqglXZ-bwKguYWmD76F-DZ73Wkb4d1jPcu-f5lfzS7y5eXXxWy6zBvGmMg7UXAJddW2tOVaiAqXNa7LsuhYLWquy0Y20JVNh6GruJDQ8YbjEkOhWY1lTc-yT4e5W23VTTA7He6U10ZdTJdqfMO0qgil8pYk9vzA3gT_c4DYq52JoxPagR-iIlVREcypFAn9-AK99kNwaZNEMU6SrZwl6sMjNdQ7aJ__f3I-AewANMHHGKBTjel1b_yYgbGKYDUGrMaA1XPASTZ5IXua_E9BdRDsjYW7_9BqulrM_2r_AFfiuQ0 |
CitedBy_id | crossref_primary_10_1039_D1TB01885J crossref_primary_10_1002_smll_202310300 crossref_primary_10_34133_2022_9859101 crossref_primary_10_1002_ange_202115820 crossref_primary_10_1039_D2CC06729C crossref_primary_10_1063_5_0052666 crossref_primary_10_1039_D3CC06078K crossref_primary_10_1007_s41871_023_00203_8 crossref_primary_10_1007_s00216_019_01734_0 crossref_primary_10_1021_acs_analchem_0c02013 crossref_primary_10_1021_jacs_1c09986 crossref_primary_10_1038_s41378_024_00819_w crossref_primary_10_1007_s00604_024_06202_w crossref_primary_10_1021_acs_analchem_9b04139 crossref_primary_10_1002_ange_202111608 crossref_primary_10_1002_anie_202106251 crossref_primary_10_1021_acsnano_4c07379 crossref_primary_10_3390_cancers15041327 crossref_primary_10_1002_anie_202215801 crossref_primary_10_1021_jacs_2c01857 crossref_primary_10_3390_bios13100907 crossref_primary_10_1002_ange_201902734 crossref_primary_10_1038_s41565_023_01575_0 crossref_primary_10_1002_ange_202002323 crossref_primary_10_1016_j_coelec_2020_04_003 crossref_primary_10_1016_j_trac_2020_115886 crossref_primary_10_1016_j_bios_2024_116087 crossref_primary_10_1021_acssensors_1c00978 crossref_primary_10_1039_D0CC05889K crossref_primary_10_1002_anie_201808537 crossref_primary_10_1021_acs_analchem_1c00336 crossref_primary_10_1149_1945_7111_ab64be crossref_primary_10_1021_jacs_9b01217 crossref_primary_10_1149_2_0151812jes crossref_primary_10_1002_ange_202300083 crossref_primary_10_1007_s12274_023_6210_0 crossref_primary_10_1038_s41598_018_25852_4 crossref_primary_10_1073_pnas_1719844115 crossref_primary_10_1002_smll_202407685 crossref_primary_10_1021_acsnano_8b00781 crossref_primary_10_1002_ange_202302930 crossref_primary_10_1007_s00216_020_02899_9 crossref_primary_10_1021_acssensors_1c00463 crossref_primary_10_1002_cjoc_202100178 crossref_primary_10_3390_bios13070704 crossref_primary_10_1002_ange_202215801 crossref_primary_10_1002_anie_202300083 crossref_primary_10_1021_acs_langmuir_2c00915 crossref_primary_10_1021_acs_analchem_0c05025 crossref_primary_10_1021_acssensors_7b00711 crossref_primary_10_1039_D1CC00787D crossref_primary_10_1002_smll_201901787 crossref_primary_10_1039_D0SC02787A crossref_primary_10_1002_smll_202407950 crossref_primary_10_1021_acsami_2c06306 crossref_primary_10_1002_anie_202111608 crossref_primary_10_1021_acs_analchem_3c00331 crossref_primary_10_1002_anie_202002417 crossref_primary_10_1002_anie_202302930 crossref_primary_10_1002_celc_201801424 crossref_primary_10_1002_ange_202313612 crossref_primary_10_1021_acssensors_4c01689 crossref_primary_10_1016_j_bios_2023_115198 crossref_primary_10_1021_acschemneuro_8b00722 crossref_primary_10_1021_acs_analchem_0c00140 crossref_primary_10_1021_acs_analchem_1c00879 crossref_primary_10_1021_acs_analchem_9b01056 crossref_primary_10_1002_anie_202006318 crossref_primary_10_3390_s21093038 crossref_primary_10_1007_s41664_022_00223_1 crossref_primary_10_1021_acs_analchem_4c05482 crossref_primary_10_1021_acs_analchem_1c05492 crossref_primary_10_1002_ange_202002417 crossref_primary_10_1021_acs_analchem_8b00303 crossref_primary_10_1002_cbic_202000622 crossref_primary_10_1002_ange_202100882 crossref_primary_10_1016_j_snb_2020_129071 crossref_primary_10_1021_acs_analchem_0c00931 crossref_primary_10_1149_2_0201812jes crossref_primary_10_1016_j_bios_2024_116173 crossref_primary_10_1002_cjoc_202200520 crossref_primary_10_1021_acs_analchem_1c03997 crossref_primary_10_1002_anie_202115820 crossref_primary_10_1360_TB_2023_0214 crossref_primary_10_3390_bios8040100 crossref_primary_10_1016_j_bios_2022_114899 crossref_primary_10_1016_j_coelec_2021_100746 crossref_primary_10_1016_j_electacta_2024_145214 crossref_primary_10_1016_j_coelec_2020_05_008 crossref_primary_10_1007_s00216_020_02655_z crossref_primary_10_1021_acs_analchem_4c01542 crossref_primary_10_1039_C9SC05538J crossref_primary_10_1021_acs_analchem_0c04628 crossref_primary_10_1364_BOE_501914 crossref_primary_10_1039_D4CC05423G crossref_primary_10_1002_EXP_20220025 crossref_primary_10_1016_j_trac_2025_118161 crossref_primary_10_1002_smll_202100503 crossref_primary_10_1016_j_coelec_2020_100654 crossref_primary_10_1021_acssensors_3c02420 crossref_primary_10_1039_D4SC05977H crossref_primary_10_1039_D4AN00511B crossref_primary_10_1002_ange_202106251 crossref_primary_10_3389_fchem_2020_591311 crossref_primary_10_1039_D0SC02807J crossref_primary_10_1002_cjoc_202000722 crossref_primary_10_1016_j_bios_2022_114928 crossref_primary_10_1016_j_bios_2021_113667 crossref_primary_10_1002_ange_202006318 crossref_primary_10_1002_anie_201902734 crossref_primary_10_1021_acs_analchem_8b01539 crossref_primary_10_1002_anie_202002323 crossref_primary_10_1021_acs_analchem_8b05179 crossref_primary_10_1002_ange_201711427 crossref_primary_10_1002_ange_201808537 crossref_primary_10_1002_mame_201800630 crossref_primary_10_1039_C9NR01997A crossref_primary_10_1021_acs_analchem_0c04015 crossref_primary_10_1016_j_bios_2023_115741 crossref_primary_10_1021_acssensors_8b00185 crossref_primary_10_1002_anie_202313612 crossref_primary_10_1021_acsnano_2c03929 crossref_primary_10_1021_acs_nanolett_4c00563 crossref_primary_10_1002_smll_202406796 crossref_primary_10_1021_acs_analchem_3c05027 crossref_primary_10_1002_elan_202100343 crossref_primary_10_1007_s00216_018_1108_5 crossref_primary_10_1039_C9AN02390A crossref_primary_10_1039_D2MH01143C crossref_primary_10_1002_anie_202100882 crossref_primary_10_1016_j_talanta_2023_125132 crossref_primary_10_1016_j_bios_2018_06_020 crossref_primary_10_1002_anie_201711427 crossref_primary_10_1515_pac_2020_0902 crossref_primary_10_1021_acs_analchem_0c00569 |
Cites_doi | 10.1021/ja050385r 10.1021/cr068062g 10.1039/C6SC01978A 10.1021/acs.analchem.5b04542 10.1073/pnas.1203570109 10.1002/ange.201404744 10.1021/ja512972f 10.1021/nn405612q 10.1002/anie.201503801 10.1073/pnas.1201552109 10.1016/j.elecom.2008.05.008 10.1038/nnano.2010.241 10.1002/adma.200500104 10.1039/B9NR00231F 10.1242/jcs.94.1.143 10.1186/1556-276X-6-306 10.1039/C5NR06021D 10.1021/ac902486x 10.1073/pnas.1609618113 10.1002/ange.201504839 10.1002/ange.201503801 10.1038/nri2591 10.1016/j.electacta.2014.08.046 10.1039/C6FD00102E 10.1016/j.trac.2016.01.018 10.1021/nn5024522 10.1083/jcb.137.1.113 10.1021/ac0508595 10.1021/ac5042999 10.1002/elan.201501157 10.1038/nmeth782 10.1002/cbic.200500359 10.1089/ars.2016.6747 10.1002/anie.201504839 10.1021/nn700171x 10.1002/anie.201404744 10.1021/ac0342931 10.1126/science.277.5334.1971 10.1002/elan.201200456 10.1182/blood.V92.9.3007 10.1002/1521-3765(20011001)7:19<4171::AID-CHEM4171>3.0.CO;2-5 10.1042/bj20020691 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 1XC |
DOI | 10.1002/anie.201707187 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 13000 |
ExternalDocumentID | oai_HAL_hal_03991338v1 28809456 10_1002_anie_201707187 ANIE201707187 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21375099, 21675121 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 1XC UMC |
ID | FETCH-LOGICAL-c4447-f7268eb9dd3d6a77905b0b552f4b7b6a5c8cef5cf0ef9678ef6c6050e2a4b08b3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri May 09 12:17:56 EDT 2025 Thu Jul 10 19:31:20 EDT 2025 Fri Jul 25 10:22:19 EDT 2025 Tue Apr 08 05:57:02 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 Tue Jul 01 02:26:09 EDT 2025 Wed Jan 22 17:06:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | amperometry reactive nitrogen species reactive oxygen species nanoelectrodes phagolysosomes |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4447-f7268eb9dd3d6a77905b0b552f4b7b6a5c8cef5cf0ef9678ef6c6050e2a4b08b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8951-075X |
PMID | 28809456 |
PQID | 1946145664 |
PQPubID | 946352 |
PageCount | 4 |
ParticipantIDs | hal_primary_oai_HAL_hal_03991338v1 proquest_miscellaneous_1929106387 proquest_journals_1946145664 pubmed_primary_28809456 crossref_citationtrail_10_1002_anie_201707187 crossref_primary_10_1002_anie_201707187 wiley_primary_10_1002_anie_201707187_ANIE201707187 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 9, 2017 |
PublicationDateYYYYMMDD | 2017-10-09 |
PublicationDate_xml | – month: 10 year: 2017 text: October 9, 2017 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | 2014 2014; 53 126 1997; 137 2013; 25 2006; 78 1997; 277 2006; 7 2008; 108 2008; 10 2011; 6 2015; 8 2003; 75 2016; 79 2012; 109 2010; 82 2016; 7 1989; 94 2015; 137 2001; 7 2002; 366 2005; 127 2015; 87 2016; 113 2015 2015; 54 127 2009; 9 1998; 92 2005; 2 2016; 193 2014; 8 2010; 2 2007; 1 2014; 144 2016; 28 2005; 17 2016; 25 2010; 6 2016; 88 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_45_2 e_1_2_2_8_3 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_2 e_1_2_2_30_1 e_1_2_2_53_2 e_1_2_2_19_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_34_2 e_1_2_2_15_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_48_1 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_44_1 e_1_2_2_9_3 e_1_2_2_27_1 e_1_2_2_9_2 e_1_2_2_46_2 Toyohara A. (e_1_2_2_41_2) 1989; 94 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_39_2 e_1_2_2_10_1 e_1_2_2_52_1 e_1_2_2_50_2 e_1_2_2_31_2 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_54_2 e_1_2_2_14_3 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – volume: 87 start-page: 5531 year: 2015 end-page: 5538 publication-title: Anal. Chem. – volume: 2 start-page: 363 year: 2010 end-page: 372 publication-title: Nanoscale – volume: 8 start-page: 8182 year: 2014 end-page: 8189 publication-title: ACS Nano – volume: 8 start-page: 214 year: 2015 end-page: 218 publication-title: Nanoscale – volume: 54 127 start-page: 11978 12146 year: 2015 2015 end-page: 11982 12150 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 4171 year: 2001 end-page: 4179 publication-title: Chem. Eur. J. – volume: 1 start-page: 440 year: 2007 end-page: 448 publication-title: ACS Nano – volume: 10 start-page: 1125 year: 2008 end-page: 1128 publication-title: Electrochem. Commun. – volume: 8 start-page: 875 year: 2014 end-page: 884 publication-title: ACS Nano – volume: 193 start-page: 65 year: 2016 end-page: 79 publication-title: Faraday Discuss. – volume: 88 start-page: 414 year: 2016 end-page: 430 publication-title: Anal. Chem. – volume: 6 start-page: 57 year: 2010 end-page: 64 publication-title: Nat. Nanotechnol. – volume: 28 start-page: 1865 year: 2016 end-page: 1872 publication-title: Electroanalysis – volume: 75 start-page: 3962 year: 2003 end-page: 3971 publication-title: Anal. Chem. – volume: 78 start-page: 617 year: 2006 end-page: 620 publication-title: Anal. Chem. – volume: 53 126 start-page: 12456 12664 year: 2014 2014 end-page: 12460 12668 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 109 start-page: 11534 year: 2012 end-page: 11539 publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 564 year: 2016 end-page: 576 publication-title: Antioxid. Redox Signaling – volume: 277 start-page: 1971 year: 1997 end-page: 1975 publication-title: Science – volume: 113 start-page: 11436 year: 2016 end-page: 11440 publication-title: Proc. Natl. Acad. Sci. USA – volume: 82 start-page: 1411 year: 2010 end-page: 1419 publication-title: Anal. Chem. – volume: 79 start-page: 46 year: 2016 end-page: 59 publication-title: TrAC Trends Anal. Chem. – volume: 94 start-page: 143 year: 1989 end-page: 153 publication-title: J. Cell Sci. – volume: 366 start-page: 689 year: 2002 end-page: 704 publication-title: Biochem. J. – volume: 109 start-page: 11540 year: 2012 end-page: 11545 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 113 year: 1997 end-page: 129 publication-title: J. Cell Biol. – volume: 92 start-page: 3007 year: 1998 end-page: 3017 publication-title: Blood – volume: 9 start-page: 594 year: 2009 end-page: 600 publication-title: Nat. Rev. Immunol. – volume: 17 start-page: 1519 year: 2005 end-page: 1523 publication-title: Adv. Mater. – volume: 2 start-page: 651 year: 2005 end-page: 658 publication-title: Nat. Methods – volume: 7 start-page: 6684 year: 2016 end-page: 6688 publication-title: Chem. Sci. – volume: 144 start-page: 111 year: 2014 end-page: 118 publication-title: Electrochim. Acta – volume: 25 start-page: 895 year: 2013 end-page: 902 publication-title: Electroanalysis – volume: 108 start-page: 2585 year: 2008 end-page: 2621 publication-title: Chem. Rev. – volume: 127 start-page: 8914 year: 2005 end-page: 8915 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 4344 year: 2015 end-page: 4346 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 306 year: 2011 end-page: 311 publication-title: Nanoscale Res. Lett. – volume: 7 start-page: 653 year: 2006 end-page: 661 publication-title: ChemBioChem – volume: 54 127 start-page: 9313 9445 year: 2015 2015 end-page: 9318 9450 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_5_2 doi: 10.1021/ja050385r – ident: e_1_2_2_39_2 doi: 10.1021/cr068062g – ident: e_1_2_2_40_1 – ident: e_1_2_2_32_2 doi: 10.1039/C6SC01978A – ident: e_1_2_2_2_2 doi: 10.1021/acs.analchem.5b04542 – ident: e_1_2_2_31_2 doi: 10.1073/pnas.1203570109 – ident: e_1_2_2_8_3 doi: 10.1002/ange.201404744 – ident: e_1_2_2_45_2 doi: 10.1021/ja512972f – ident: e_1_2_2_11_2 doi: 10.1021/nn405612q – ident: e_1_2_2_15_1 – ident: e_1_2_2_4_1 – ident: e_1_2_2_9_2 doi: 10.1002/anie.201503801 – ident: e_1_2_2_13_2 doi: 10.1073/pnas.1201552109 – ident: e_1_2_2_25_1 doi: 10.1016/j.elecom.2008.05.008 – ident: e_1_2_2_33_1 – ident: e_1_2_2_16_2 doi: 10.1038/nnano.2010.241 – ident: e_1_2_2_28_2 doi: 10.1002/adma.200500104 – ident: e_1_2_2_22_1 – ident: e_1_2_2_30_1 – ident: e_1_2_2_17_2 doi: 10.1039/B9NR00231F – volume: 94 start-page: 143 year: 1989 ident: e_1_2_2_41_2 publication-title: J. Cell Sci. doi: 10.1242/jcs.94.1.143 – ident: e_1_2_2_44_1 – ident: e_1_2_2_52_1 – ident: e_1_2_2_21_2 doi: 10.1186/1556-276X-6-306 – ident: e_1_2_2_24_2 doi: 10.1039/C5NR06021D – ident: e_1_2_2_34_2 doi: 10.1021/ac902486x – ident: e_1_2_2_12_2 doi: 10.1073/pnas.1609618113 – ident: e_1_2_2_47_1 – ident: e_1_2_2_14_3 doi: 10.1002/ange.201504839 – ident: e_1_2_2_9_3 doi: 10.1002/ange.201503801 – ident: e_1_2_2_7_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_51_2 doi: 10.1038/nri2591 – ident: e_1_2_2_37_2 doi: 10.1016/j.electacta.2014.08.046 – ident: e_1_2_2_46_2 doi: 10.1039/C6FD00102E – ident: e_1_2_2_3_2 doi: 10.1016/j.trac.2016.01.018 – ident: e_1_2_2_23_2 doi: 10.1021/nn5024522 – ident: e_1_2_2_27_1 – ident: e_1_2_2_42_2 doi: 10.1083/jcb.137.1.113 – ident: e_1_2_2_20_2 doi: 10.1021/ac0508595 – ident: e_1_2_2_6_2 doi: 10.1021/ac5042999 – ident: e_1_2_2_38_2 doi: 10.1002/elan.201501157 – ident: e_1_2_2_48_1 – ident: e_1_2_2_53_2 doi: 10.1038/nmeth782 – ident: e_1_2_2_35_2 doi: 10.1002/cbic.200500359 – ident: e_1_2_2_49_2 doi: 10.1089/ars.2016.6747 – ident: e_1_2_2_14_2 doi: 10.1002/anie.201504839 – ident: e_1_2_2_26_1 doi: 10.1021/nn700171x – ident: e_1_2_2_8_2 doi: 10.1002/anie.201404744 – ident: e_1_2_2_18_1 doi: 10.1021/ac0342931 – ident: e_1_2_2_29_2 doi: 10.1126/science.277.5334.1971 – ident: e_1_2_2_19_1 – ident: e_1_2_2_36_2 doi: 10.1002/elan.201200456 – ident: e_1_2_2_50_2 doi: 10.1182/blood.V92.9.3007 – ident: e_1_2_2_54_2 doi: 10.1002/1521-3765(20011001)7:19<4171::AID-CHEM4171>3.0.CO;2-5 – ident: e_1_2_2_10_1 – ident: e_1_2_2_43_2 doi: 10.1042/bj20020691 |
SSID | ssj0028806 |
Score | 2.5760434 |
Snippet | Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire... Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12997 |
SubjectTerms | amperometry Analytical chemistry Animals Biological activity Biomonitoring Carbon Compounds, Inorganic - chemistry Chemical Sciences Cylindrical shells Electrochemical analysis Electrochemical Techniques Electrochemistry Electrodes HeLa Cells Humans Intracellular Macrophages Macrophages - cytology Macrophages - metabolism Mice Microscopy, Fluorescence nanoelectrodes Nanotechnology Nanowires Nanowires - chemistry Organelles Phagolysosomes Phagosomes - metabolism RAW 264.7 Cells reactive nitrogen species Reactive Nitrogen Species - analysis Reactive Nitrogen Species - metabolism reactive oxygen species Reactive Oxygen Species - analysis Reactive Oxygen Species - metabolism Real time Robustness (mathematics) Silicon carbide Silicon Compounds - chemistry |
Title | Real‐Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core–Shell Nanowire Electrodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201707187 https://www.ncbi.nlm.nih.gov/pubmed/28809456 https://www.proquest.com/docview/1946145664 https://www.proquest.com/docview/1929106387 https://hal.science/hal-03991338 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwfgQKMgiJk9vUcRLnuFpttUXtIu1SqbfIj7GoqBK02eXAqT8BiX_YX8JMsklZEEKCWx5jObHH48-jmW8YewMWcYTJrfDgjVCp80L7YITx2suQJl63NZZOZtn0VL07S89-yuLv-CEGhxutjNZe0wI3ttm_Jg2lDGwKzcpxk9SUTk4BW4SK5gN_lETl7NKLkkRQFfqetTGW-9vNt3almx8pJvJ3wLmNX9sN6PAuM_2nd3Enn_bWK7vnvv7C6vg__3aP3dmgUz7q1Ok-uwHVA3Zr3BeFe8iWcwSWV5ffKHOEH5FjmDz_FMrKT669jQ2vA5-_X3BTeT6fLfh5xY_PyXXBxyjecPL-8gXeXwAf10u4uvy-oIhUjsa-JvZkPunK83hoHrHTw8mH8VRsyjYIp5TKRchlpsEW3ice1YAYwGxs01QGZXObmdRpByF1IYZQ4F4JIXN4qIpBGmVjbZPHbKeqK3jKOBpi49CiuFyBMt5ZB1J6MJn2ujBpHDHRT1vpNpzmVFrjouzYmGVJI1kOIxmxt4P8547N44-Sr1ELBiEi4Z6Ojkt6FiOmo5P9l4OI7fZKUm6WflMeFAohD6JkFbFXw2ucJpoPU0G9JhmJMA1NH_bzpFOuoStS2gLbR0y2KvKXDy1Hs6PJcPfsXxo9Z7fpug1RLHbZzmq5hhcItVb2ZbucfgCxSCH- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RciiX8oZAAYOQOLlNHSdxjqvVVruwu0i7rcQt8iuiokqqfXDg1J-AxD_sL2Em2aRaEEKCo52x7Njj8efR-BuAt94gjtCp4c47zWVsHVeu0Fw75UQRR07VOZYm02R4Jt9_ittoQnoL0_BDdA432hm1vaYNTg7poxvWUHqCTbFZKZ6SKt2B25TWu75VzToGKYHq2TwwiiJOeehb3sZQHG233zqXdj5TVOTvkHMbwdZH0MldMO3gm8iTL4frlTm0337hdfyvv7sH-xuAynqNRt2HW758AHv9Ni_cQ1jMEFteX32nxyNsRL5hcv5TNCub3Dgcl6wq2OzjnOnSsdl0zs5LNj4n7wXro_iSkQOYzbF84Vm_Wvjrqx9zCkplaO8rIlBmgyZDj_PLR3B2MjjtD_kmcwO3UsqUF6lIlDeZc5FDTSASMBOaOBaFNKlJdGyV9UVsi9AXGR6Xvkgs3qtCL7Q0oTLRY9gtq9I_BYa2WFs0KjaVXmpnjfVCOK8T5VSm4zAA3q5bbje05pRd4yJvCJlFTjOZdzMZwLtO_rIh9Pij5BtUg06IeLiHvXFOdSHCOrrcfz0O4KDVknyz-5f5cSYR9SBQlgG87j7jMtF66NJXa5IRiNTQ-mE_Txrt6roirc2wfQCi1pG_DDTvTUeDrvTsXxq9gr3h6WScj0fTD8_hDtXXEYvZAeyuFmv_ApHXyrys99ZPv4ImGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RIgEX3oVAgQUhcXLrrtf2-hiliRJIA0qo1Ju1T1FR2VUeHDj1JyDxD_tLmLFjl4AQEhy9ntXa3m9nP49mvwF47TTyCJXqwDqrAhEbG0jrVaCstNzHkZVVjaWjSTI8Fm9P4pOfTvHX-hBtwI1WRuWvaYGfW79_JRpKJ7ApNSvFTVKmW3BdJKEkXB9OWwEpjuiszxdFUUBl6BvZxpDvb_bf2Ja2PlFS5O-Mc5PAVjvQ4A6o5tnrxJPPe6ul3jNff5F1_J-Xuwu31_SUdWs83YNrrrgPN3tNVbgHMJ8is7y8-EZHR9iIIsMU-qdcVnZ0FW5csNKz6fsZU4Vl08mMnRZsfEqxC9ZD8wWj8C-b4fWZY71y7i4vvs8oJZWhty9JPpn16_o81i0ewvGg_7E3DNZ1GwIjhEgDn_JEOp1ZG1nEAUmA6VDHMfdCpzpRsZHG-dj40PkMN0vnE4N_VaHjSuhQ6mgHtouycI-BoSdWBl2KSYUTyhptHOfWqURamak47EDQTFtu1qLmVFvjLK_lmHlOXzJvv2QH3rT257Wcxx8tXyEKWiNS4R52xzm1hUjq6Nf-y0EHdhuQ5Ou1v8gPMoGcB2my6MDL9jZOE82HKly5IhuOPA19H47zqAZXOxSBNsP-HeAVRP7yoHl3Muq3V0_-pdMLuPHhcJCPR5N3T-EWNVfpitkubC_nK_cMaddSP69W1g9KxyTR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Intracellular+Measurements+of+ROS+and+RNS+in+Living+Cells+with+Single+Core-Shell+Nanowire+Electrodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Xin-Wei&rft.au=Qiu%2C+Quan-Fa&rft.au=Jiang%2C+Hong&rft.au=Zhang%2C+Fu-Li&rft.date=2017-10-09&rft.eissn=1521-3773&rft.volume=56&rft.issue=42&rft.spage=12997&rft_id=info:doi/10.1002%2Fanie.201707187&rft_id=info%3Apmid%2F28809456&rft.externalDocID=28809456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |