γ‐Tocopherol‐enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice
γ‐tocopherol (γ‐T) alone or in combination with α‐tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to ex...
Saved in:
Published in | International journal of cancer Vol. 124; no. 7; pp. 1693 - 1699 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | γ‐tocopherol (γ‐T) alone or in combination with α‐tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to examine the effects of γ‐tocopherol‐enriched mixed tocopherol diet on prostate carcinogenesis in a murine prostate cancer model (TRAMP). 8 week old TRAMP males were fed 0.1% γ‐T‐enriched mixed tocopherol diet that contained 20‐fold higher levels of γ‐tocopherol, and roughly 3‐fold higher levels of α‐tocopherol. The effect of such diet on tumor and PIN development was observed. The expression of phase II detoxifying, antioxidant enzymes and Nrf2 mRNA and protein were determined by RT‐PCR, immunohistochemistry and western blotting techniques. Treatment with γ‐T‐enriched mixed tocopherols significantly suppressed the incidence of palpable tumor and Prostate Intraepithelial Neoplasia (PIN) development without affecting the expression of the transgene (SV‐40). Tumor progression occurred with a significant suppression of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, heme‐oxygenase‐1 and phase II detoxifying enzymes. Treatment with γ‐T‐enriched mixed tocopherol diet upregulated the expression of most detoxifying and antioxidant enzymes. Nrf2—a redox sensitive transcription factor known to mediate the expression of phase II detoxifying enzymes, was also significantly upregulated following treatment with γ‐T‐enriched mixed tocopherol diet. γ‐T‐enriched mixed tocopherols significantly up‐regulated the expression of Nrf2 and its related detoxifying and antioxidant enzymes thereby suppressing PIN and tumor development. © 2008 Wiley‐Liss, Inc. |
---|---|
AbstractList | γ-tocopherol (γ-T) alone or in combination with α-tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to examine the effects of γ-tocopherol-enriched mixed tocopherol diet on prostate carcinogenesis in a murine prostate cancer model (TRAMP). 8 week old TRAMP males were fed 0.1% γ -T-enriched mixed tocopherol diet that contained 20-fold higher levels of γ-tocopherol, and roughly 3-fold higher levels of α-tocopherol. The effect of such diet on tumor and PIN development was observed. The expression of phase II detoxifying, antioxidant enzymes and Nrf2 mRNA and protein were determined by RT-PCR, immunohistochemistry and western blotting techniques. Treatment with γ-T-enriched mixed tocopherols significantly suppressed the incidence of palpable tumor and Prostate Intraepithelial Neoplasia (PIN) development without affecting the expression of the transgene (SV-40). Tumor progression occurred with a significant suppression of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, heme-oxygenase-1 and phase II detoxifying enzymes. Treatment with γ-T-enriched mixed tocopherol diet upregulated the expression of most detoxifying and antioxidant enzymes. Nrf2—a redox sensitive transcription factor known to mediate the expression of phase II detoxifying enzymes, was also significantly upregulated following treatment with γ-T-enriched mixed tocopherol diet. γ-T-enriched mixed tocopherols significantly up-regulated the expression of Nrf2 and its related detoxifying and antioxidant enzymes thereby suppressing PIN and tumor development. γ‐tocopherol (γ‐T) alone or in combination with α‐tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to examine the effects of γ‐tocopherol‐enriched mixed tocopherol diet on prostate carcinogenesis in a murine prostate cancer model (TRAMP). 8 week old TRAMP males were fed 0.1% γ‐T‐enriched mixed tocopherol diet that contained 20‐fold higher levels of γ‐tocopherol, and roughly 3‐fold higher levels of α‐tocopherol. The effect of such diet on tumor and PIN development was observed. The expression of phase II detoxifying, antioxidant enzymes and Nrf2 mRNA and protein were determined by RT‐PCR, immunohistochemistry and western blotting techniques. Treatment with γ‐T‐enriched mixed tocopherols significantly suppressed the incidence of palpable tumor and Prostate Intraepithelial Neoplasia (PIN) development without affecting the expression of the transgene (SV‐40). Tumor progression occurred with a significant suppression of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, heme‐oxygenase‐1 and phase II detoxifying enzymes. Treatment with γ‐T‐enriched mixed tocopherol diet upregulated the expression of most detoxifying and antioxidant enzymes. Nrf2—a redox sensitive transcription factor known to mediate the expression of phase II detoxifying enzymes, was also significantly upregulated following treatment with γ‐T‐enriched mixed tocopherol diet. γ‐T‐enriched mixed tocopherols significantly up‐regulated the expression of Nrf2 and its related detoxifying and antioxidant enzymes thereby suppressing PIN and tumor development. © 2008 Wiley‐Liss, Inc. Gamma-tocopherol (gamma-T) alone or in combination with alpha-tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to examine the effects of gamma-tocopherol-enriched mixed tocopherol diet on prostate carcinogenesis in a murine prostate cancer model (TRAMP). 8 week old TRAMP males were fed 0.1% gamma-T-enriched mixed tocopherol diet that contained 20-fold higher levels of gamma-tocopherol, and roughly 3-fold higher levels of alpha-tocopherol. The effect of such diet on tumor and PIN development was observed. The expression of phase II detoxifying, antioxidant enzymes and Nrf2 mRNA and protein were determined by RT-PCR, immunohistochemistry and western blotting techniques. Treatment with gamma-T-enriched mixed tocopherols significantly suppressed the incidence of palpable tumor and Prostate Intraepithelial Neoplasia (PIN) development without affecting the expression of the transgene (SV-40). Tumor progression occurred with a significant suppression of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, heme-oxygenase-1 and phase II detoxifying enzymes. Treatment with gamma-T-enriched mixed tocopherol diet upregulated the expression of most detoxifying and antioxidant enzymes. Nrf2-a redox sensitive transcription factor known to mediate the expression of phase II detoxifying enzymes, was also significantly upregulated following treatment with gamma-T-enriched mixed tocopherol diet. Gamma-T-enriched mixed tocopherols significantly up-regulated the expression of Nrf2 and its related detoxifying and antioxidant enzymes thereby suppressing PIN and tumor development. -tocopherol (-T) alone or in combination with -tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to examine the effects of -tocopherol-enriched mixed tocopherol diet on prostate carcinogenesis in a murine prostate cancer model (TRAMP). 8 week old TRAMP males were fed 0.1% -T-enriched mixed tocopherol diet that contained 20-fold higher levels of -tocopherol, and roughly 3-fold higher levels of -tocopherol. The effect of such diet on tumor and PIN development was observed. The expression of phase II detoxifying, antioxidant enzymes and Nrf2 mRNA and protein were determined by RT-PCR, immunohistochemistry and western blotting techniques. Treatment with -T-enriched mixed tocopherols significantly suppressed the incidence of palpable tumor and Prostate Intraepithelial Neoplasia (PIN) development without affecting the expression of the transgene (SV-40). Tumor progression occurred with a significant suppression of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, heme-oxygenase-1 and phase II detoxifying enzymes. Treatment with -T-enriched mixed tocopherol diet upregulated the expression of most detoxifying and antioxidant enzymes. Nrf2 - a redox sensitive transcription factor known to mediate the expression of phase II detoxifying enzymes, was also significantly upregulated following treatment with -T-enriched mixed tocopherol diet. -T-enriched mixed tocopherols significantly up-regulated the expression of Nrf2 and its related detoxifying and antioxidant enzymes thereby suppressing PIN and tumor development. Gamma-tocopherol (gamma-T) alone or in combination with alpha-tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to examine the effects of gamma-tocopherol-enriched mixed tocopherol diet on prostate carcinogenesis in a murine prostate cancer model (TRAMP). 8 week old TRAMP males were fed 0.1% gamma-T-enriched mixed tocopherol diet that contained 20-fold higher levels of gamma-tocopherol, and roughly 3-fold higher levels of alpha-tocopherol. The effect of such diet on tumor and PIN development was observed. The expression of phase II detoxifying, antioxidant enzymes and Nrf2 mRNA and protein were determined by RT-PCR, immunohistochemistry and western blotting techniques. Treatment with gamma-T-enriched mixed tocopherols significantly suppressed the incidence of palpable tumor and Prostate Intraepithelial Neoplasia (PIN) development without affecting the expression of the transgene (SV-40). Tumor progression occurred with a significant suppression of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, heme-oxygenase-1 and phase II detoxifying enzymes. Treatment with gamma-T-enriched mixed tocopherol diet upregulated the expression of most detoxifying and antioxidant enzymes. Nrf2-a redox sensitive transcription factor known to mediate the expression of phase II detoxifying enzymes, was also significantly upregulated following treatment with gamma-T-enriched mixed tocopherol diet. Gamma-T-enriched mixed tocopherols significantly up-regulated the expression of Nrf2 and its related detoxifying and antioxidant enzymes thereby suppressing PIN and tumor development.Gamma-tocopherol (gamma-T) alone or in combination with alpha-tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to examine the effects of gamma-tocopherol-enriched mixed tocopherol diet on prostate carcinogenesis in a murine prostate cancer model (TRAMP). 8 week old TRAMP males were fed 0.1% gamma-T-enriched mixed tocopherol diet that contained 20-fold higher levels of gamma-tocopherol, and roughly 3-fold higher levels of alpha-tocopherol. The effect of such diet on tumor and PIN development was observed. The expression of phase II detoxifying, antioxidant enzymes and Nrf2 mRNA and protein were determined by RT-PCR, immunohistochemistry and western blotting techniques. Treatment with gamma-T-enriched mixed tocopherols significantly suppressed the incidence of palpable tumor and Prostate Intraepithelial Neoplasia (PIN) development without affecting the expression of the transgene (SV-40). Tumor progression occurred with a significant suppression of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, heme-oxygenase-1 and phase II detoxifying enzymes. Treatment with gamma-T-enriched mixed tocopherol diet upregulated the expression of most detoxifying and antioxidant enzymes. Nrf2-a redox sensitive transcription factor known to mediate the expression of phase II detoxifying enzymes, was also significantly upregulated following treatment with gamma-T-enriched mixed tocopherol diet. Gamma-T-enriched mixed tocopherols significantly up-regulated the expression of Nrf2 and its related detoxifying and antioxidant enzymes thereby suppressing PIN and tumor development. |
Author | Barve, Avantika Reddy, Bandaru Kong, Ah‐Ng Khor, Tin Oo Suh, Nanjoo Nair, Sujit Reuhl, Kenneth Newmark, Harold |
AuthorAffiliation | 3 Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 2 Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 1 Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 5 Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 4 Department for Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ |
AuthorAffiliation_xml | – name: 4 Department for Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ – name: 5 Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ – name: 1 Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ – name: 2 Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ – name: 3 Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ |
Author_xml | – sequence: 1 givenname: Avantika surname: Barve fullname: Barve, Avantika – sequence: 2 givenname: Tin Oo surname: Khor fullname: Khor, Tin Oo – sequence: 3 givenname: Sujit surname: Nair fullname: Nair, Sujit – sequence: 4 givenname: Kenneth surname: Reuhl fullname: Reuhl, Kenneth – sequence: 5 givenname: Nanjoo surname: Suh fullname: Suh, Nanjoo – sequence: 6 givenname: Bandaru surname: Reddy fullname: Reddy, Bandaru – sequence: 7 givenname: Harold surname: Newmark fullname: Newmark, Harold – sequence: 8 givenname: Ah‐Ng surname: Kong fullname: Kong, Ah‐Ng email: kongt@rci.rutgers.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19115203$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OGzEUhS0EgkC74AXQrCqxGLA9Hs94UwlF_aECFVXp2rI9N-SiiZ3ak1J2fYS-S9-jD9EnqWnSqCCqbvyj-52jo3v2ybYPHgg5ZPSEUcpP8cadcMGo3CIjRlVTUs7qbTLKM1o2rJJ7ZD-lG0oZq6nYJXtM5Ren1YjoH99_fv02CS4sZhBDnz_gI7oZdMUcv-Rz2MyKDmEo0M_Q4pCKRQxpMAMUzkSHPlyDh4QpA8Xkw9nlVdY7eEZ2pqZP8Hx9H5CPr19Nxm_Li_dvzsdnF6UTQsiyamXLuLCiAqhV3VgrG9k54Jwba6jijQPGlJky2kFtZKeUmyorTaOk5NZWB-TlynextHPISj9E0-tFxLmJdzoY1A8nHmf6OnzWQiol6zYbvFgbxPBpCWnQc0wO-t54CMukpWwbJVj9X5BTyVuhRAaP_o60yfJn-Rk4XQEubzJFmGqHeaEY7hNirxnV9_XqXK_-XW9WHD9SbEyfYNfut9jD3b9Bff5uvFL8AhD2uFg |
CitedBy_id | crossref_primary_10_1158_1940_6207_CAPR_09_0237 crossref_primary_10_1002_mc_22164 crossref_primary_10_1002_mc_23299 crossref_primary_10_1158_1940_6207_CAPR_10_0107 crossref_primary_10_1002_biof_1200 crossref_primary_10_3390_ijms17122107 crossref_primary_10_1021_jf501944u crossref_primary_10_3390_ph17050597 crossref_primary_10_1371_journal_pone_0008579 crossref_primary_10_3390_antiox12030771 crossref_primary_10_1002_jssc_202300285 crossref_primary_10_3390_nu10070801 crossref_primary_10_1021_tx300524p crossref_primary_10_1016_j_advnut_2024_100240 crossref_primary_10_1016_j_bcp_2011_12_027 crossref_primary_10_1038_cgt_2014_45 crossref_primary_10_1007_s10126_020_09982_3 crossref_primary_10_1016_j_canlet_2015_11_010 crossref_primary_10_1093_carcin_bgp205 crossref_primary_10_3390_cancers10100352 crossref_primary_10_1080_01635581_2012_649100 crossref_primary_10_1208_s12248_013_9493_3 crossref_primary_10_1016_j_freeradbiomed_2013_02_008 crossref_primary_10_1002_mnfr_201500847 crossref_primary_10_3390_nu15153347 crossref_primary_10_1002_pros_21360 crossref_primary_10_1016_j_bcp_2013_02_010 crossref_primary_10_3945_jn_111_153114 crossref_primary_10_1002_biof_75 crossref_primary_10_1111_j_1749_6632_2010_05561_x crossref_primary_10_1158_1940_6207_CAPR_11_0521 crossref_primary_10_1111_iep_12042 crossref_primary_10_1158_1940_6207_CAPR_13_0313_T crossref_primary_10_1158_1940_6207_CAPR_12_0263 crossref_primary_10_1016_j_biopha_2016_04_022 crossref_primary_10_3390_ijms25158250 crossref_primary_10_3945_an_117_016329 crossref_primary_10_1002_mc_22776 crossref_primary_10_1002_mc_21886 crossref_primary_10_1007_s11095_009_9948_5 crossref_primary_10_34172_jhp_2020_15 crossref_primary_10_1016_j_bcp_2011_07_065 crossref_primary_10_1016_j_biochi_2013_04_012 crossref_primary_10_1016_j_freeradbiomed_2021_12_012 crossref_primary_10_3390_ijms131012349 crossref_primary_10_1089_ars_2010_3276 crossref_primary_10_4103_2225_4110_107700 crossref_primary_10_1021_jf401076g crossref_primary_10_1016_j_freeradbiomed_2014_03_035 crossref_primary_10_1007_s10549_011_1604_1 crossref_primary_10_1002_ange_201107724 crossref_primary_10_1002_fsn3_1154 crossref_primary_10_1186_1743_7075_11_52 crossref_primary_10_1134_S0006297922050030 crossref_primary_10_1002_ijc_26054 crossref_primary_10_3390_antiox11020183 crossref_primary_10_3390_cancers3043762 crossref_primary_10_1021_tx4004038 crossref_primary_10_1016_S0003_9098_25_01538_3 crossref_primary_10_3390_ijms221810087 crossref_primary_10_1007_s11033_022_08052_2 crossref_primary_10_7314_APJCP_2014_15_5_1897 crossref_primary_10_1097_MED_0b013e328339f31e crossref_primary_10_3390_molecules15031762 crossref_primary_10_1002_mc_20841 crossref_primary_10_2119_molmed_2010_00136 crossref_primary_10_1093_carcin_bgr261 crossref_primary_10_1002_mc_22422 crossref_primary_10_1080_01635581_2020_1857412 crossref_primary_10_1089_ars_2012_4662 crossref_primary_10_18632_oncotarget_1979 crossref_primary_10_1038_onc_2010_118 crossref_primary_10_1093_carcin_bgx128 crossref_primary_10_1002_mc_23160 crossref_primary_10_1016_j_freeradbiomed_2015_06_013 crossref_primary_10_1016_j_freeradbiomed_2011_12_005 crossref_primary_10_1158_1940_6207_CAPR_10_0130 crossref_primary_10_3390_nu13020496 crossref_primary_10_3390_nu3110962 crossref_primary_10_1016_j_cca_2014_06_004 crossref_primary_10_1016_j_mad_2010_03_005 crossref_primary_10_1158_1940_6207_CAPR_12_0045 crossref_primary_10_1002_anie_201107724 crossref_primary_10_1016_j_canlet_2012_06_007 crossref_primary_10_1080_01635581003605896 crossref_primary_10_18632_oncotarget_17997 crossref_primary_10_1093_carcin_bgp332 crossref_primary_10_1016_j_arr_2014_01_001 crossref_primary_10_1016_j_canlet_2013_01_051 |
Cites_doi | 10.1016/j.juro.2007.03.138 10.1074/jbc.M607622200 10.1016/j.clinbiochem.2005.11.018 10.1016/j.freeradbiomed.2007.12.018 10.1207/s15327914nc5601_11 10.3109/10408449309117115 10.1016/j.mrfmmm.2005.04.017 10.1080/01635580701419022 10.1016/j.mrfmmm.2004.06.041 10.1073/pnas.90.5.1771 10.1016/j.humpath.2007.02.008 10.1093/jnci/92.24.2018 10.1158/1055-9965.EPI-07-0160 10.1158/0008-5472.CAN-05-1334 10.1016/S1040-8428(03)00042-8 10.1158/1055-9965.EPI-04-0679 10.1016/j.freeradbiomed.2004.02.074 10.1016/j.urology.2003.09.053 10.1016/S0002-9440(10)64228-9 10.1111/j.1745-7262.2007.00236.x 10.1081/GNC-120037931 10.1152/ajplung.00361.2007 10.1016/j.ejca.2004.09.028 10.1016/0006-2952(95)02157-4 10.1096/fj.02-0362fje 10.1096/fj.02-0877com 10.1073/pnas.200357097 10.1016/j.pathophys.2006.05.003 10.1002/cncr.20408 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U7 C1K 7X8 5PM |
DOI | 10.1002/ijc.24106 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Toxicology Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-0215 |
EndPage | 1699 |
ExternalDocumentID | PMC4699658 19115203 10_1002_ijc_24106 IJC24106 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P30 ES005022 |
GroupedDBID | --- -~X .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HZ~ IH2 IX1 J0M JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SUPJJ TEORI UB1 UDS V2E V8K V9Y W2D W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZZTAW ~IA ~WT .GJ 3O- 8WZ A6W AANHP AAYXX ABEFU ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AEYWJ AGHNM AGQPQ AGYGG AHEFC AI. ASPBG AVWKF AZFZN BDRZF CITATION EMOBN FEDTE GLUZI HVGLF M6P PALCI SAMSI VH1 Y6R ZGI ZXP CGR CUY CVF ECM EIF NPM 7U7 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K 7X8 5PM |
ID | FETCH-LOGICAL-c4446-3868124b43ee5957bb676dce222aba0927ce119af10de5a6d99cf9b6a79662bb3 |
IEDL.DBID | DR2 |
ISSN | 0020-7136 1097-0215 |
IngestDate | Thu Aug 21 14:03:20 EDT 2025 Fri Jul 11 03:18:19 EDT 2025 Fri Jul 11 00:35:56 EDT 2025 Thu Apr 03 06:59:40 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 Tue Jul 01 02:27:23 EDT 2025 Wed Apr 02 05:42:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4446-3868124b43ee5957bb676dce222aba0927ce119af10de5a6d99cf9b6a79662bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.24106 |
PMID | 19115203 |
PQID | 20628494 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4699658 proquest_miscellaneous_66879415 proquest_miscellaneous_20628494 pubmed_primary_19115203 crossref_citationtrail_10_1002_ijc_24106 crossref_primary_10_1002_ijc_24106 wiley_primary_10_1002_ijc_24106_IJC24106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 April 2009 2009-04-00 2009-Apr-01 20090401 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: 1 April 2009 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | International journal of cancer |
PublicationTitleAlternate | Int J Cancer |
PublicationYear | 2009 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | 2004; 101 2002; 16 2004; 22 1993; 23 2005; 591 2006; 56 2007; 282 2006; 13 2006; 39 2005; 41 2000; 92 2005; 65 1996; 51 2003; 17 1993; 90 2007; 59 2007; 38 2007; 16 2007; 178 2002; 161 2004; 555 2004; 36 2000; 97 2007; 9 2003; 47 2008; 44 2003; 62 2008; 294 2005; 14 e_1_2_5_26_2 e_1_2_5_27_2 e_1_2_5_24_2 e_1_2_5_25_2 e_1_2_5_22_2 e_1_2_5_23_2 e_1_2_5_20_2 e_1_2_5_21_2 Kang D (e_1_2_5_29_2) 2007; 16 e_1_2_5_28_2 e_1_2_5_14_2 e_1_2_5_13_2 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_8_2 e_1_2_5_15_2 e_1_2_5_7_2 e_1_2_5_10_2 e_1_2_5_6_2 e_1_2_5_5_2 e_1_2_5_12_2 e_1_2_5_4_2 e_1_2_5_11_2 e_1_2_5_3_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_17_2 e_1_2_5_19_2 e_1_2_5_30_2 14607218 - Urology. 2003 Nov;62(5 Suppl 1):55-62 15495199 - Cancer. 2004 Nov 15;101(10 Suppl):2371-490 15110384 - Free Radic Biol Med. 2004 May 15;36(10):1199-207 17927505 - Nutr Cancer. 2007;59(1):76-81 11005841 - Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11494-9 17646272 - Cancer Epidemiol Biomarkers Prev. 2007 Aug;16(8):1581-6 17555796 - Hum Pathol. 2007 Sep;38(9):1394-401 12724340 - FASEB J. 2003 May;17(8):816-22 16413012 - Clin Biochem. 2006 Feb;39(2):176-9 8329114 - Crit Rev Toxicol. 1993;23(2):147-69 15617991 - Eur J Cancer. 2005 Jan;41(1):61-70 16030104 - Cancer Epidemiol Biomarkers Prev. 2005 Jul;14(7):1697-702 16814530 - Pathophysiology. 2006 Aug;13(3):143-9 12368234 - FASEB J. 2002 Dec;16(14):1952-4 17644117 - J Urol. 2007 Sep;178(3 Pt 2):S9-S13 8534273 - Biochem Pharmacol. 1996 Jan 12;51(1):87-90 8446589 - Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1771-5 15476857 - Mutat Res. 2004 Nov 2;555(1-2):133-48 17334589 - Asian J Androl. 2007 Mar;9(2):206-12 17127771 - J Biol Chem. 2007 Jan 26;282(4):2529-37 18162601 - Am J Physiol Lung Cell Mol Physiol. 2008 Mar;294(3):L478-88 16054659 - Mutat Res. 2005 Dec 11;591(1-2):93-102 11121464 - J Natl Cancer Inst. 2000 Dec 20;92(24):2018-23 17176221 - Nutr Cancer. 2006;56(1):82-5 16267002 - Cancer Res. 2005 Nov 1;65(21):9807-16 15845219 - J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2004 May;22(1):1-12 12962899 - Crit Rev Oncol Hematol. 2003 Sep;47(3):249-59 18191645 - Free Radic Biol Med. 2008 Mar 15;44(6):1203-8 12163397 - Am J Pathol. 2002 Aug;161(2):727-35 |
References_xml | – volume: 92 start-page: 2018 year: 2000 end-page: 23 article-title: Association between alpha‐tocopherol, gamma‐tocopherol, selenium, and subsequent prostate cancer publication-title: J Natl Cancer Inst – volume: 41 start-page: 61 year: 2005 end-page: 70 article-title: Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: targets for chemopreventive strategies publication-title: Eur J Cancer – volume: 16 start-page: 1581 year: 2007 end-page: 6 article-title: Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study publication-title: Cancer Epidemiol Biomarkers Prev – volume: 591 start-page: 93 year: 2005 end-page: 102 article-title: Nrf2 as a target for cancer chemoprevention publication-title: Mutat Res – volume: 178 start-page: S9 year: 2007 end-page: 13 article-title: Chemoprevention of prostate cancer: agents and study designs publication-title: J Urol – volume: 44 start-page: 1203 year: 2008 end-page: 8 article-title: Gamma‐tocopherol supplementation alone and in combination with alpha‐tocopherol alters biomarkers of oxidative stress and inflammation in subjects with metabolic syndrome publication-title: Free Radic Biol Med – volume: 36 start-page: 1199 year: 2004 end-page: 207 article-title: Nrf2 signaling in coordinated activation of antioxidant gene expression publication-title: Free Radic Biol Med – volume: 555 start-page: 133 year: 2004 end-page: 48 article-title: Chemoprevention through the Keap1‐Nrf2 signaling pathway by phase 2 enzyme inducers publication-title: Mutat Res – volume: 38 start-page: 1394 year: 2007 end-page: 401 article-title: Glutathione S‐transferase: differential expression of alpha, mu, and pi isoenzymes in benign prostate, prostatic intraepithelial neoplasia, and prostatic adenocarcinoma publication-title: Hum Pathol – volume: 282 start-page: 2529 year: 2007 end-page: 37 article-title: Novel n‐3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3 publication-title: J Biol Chem – volume: 23 start-page: 147 year: 1993 end-page: 69 article-title: The role of metabolism in the antioxidant function of vitamin E publication-title: Crit Rev Toxicol – volume: 97 start-page: 11494 year: 2000 end-page: 9 article-title: Ames BN gamma‐tocopherol and its major metabolite, in contrast to alpha‐tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 1952 year: 2002 end-page: 4 article-title: Gamma‐tocopherol inhibits human cancer cell cycle progression and cell proliferation by down‐regulation of cyclins publication-title: Faseb J – volume: 101 start-page: 2371 year: 2004 end-page: 490 article-title: Human prostate cancer risk factors publication-title: Cancer – volume: 39 start-page: 176 year: 2006 end-page: 9 article-title: Oxidative stress and antioxidant status in non‐metastatic prostate cancer and benign prostatic hyperplasia publication-title: Clin Biochem – volume: 161 start-page: 727 year: 2002 end-page: 35 article-title: Prostatic intraepithelial neoplasia in genetically engineered mice publication-title: Am J Pathol – volume: 22 start-page: 1 year: 2004 end-page: 12 article-title: Mitochondrial mutagenesis and oxidative stress in human prostate cancer publication-title: J Environ Sci Health C Environ Carcinog Ecotoxicol Rev – volume: 65 start-page: 9807 year: 2005 end-page: 16 article-title: Tocopherol‐associated protein suppresses prostate cancer cell growth by inhibition of the phosphoinositide 3‐kinase pathway publication-title: Cancer Res – volume: 56 start-page: 82 year: 2006 end-page: 5 article-title: Mixed tocopherols inhibit azoxymethane‐induced aberrant crypt foci in rats publication-title: Nutr Cancer – volume: 9 start-page: 206 year: 2007 end-page: 12 article-title: Reduced expression of alpha‐tocopherol‐associated protein is associated with tumor cell proliferation and the increased risk of prostate cancer recurrence publication-title: Asian J Androl – volume: 294 start-page: L478 year: 2008 end-page: 88 article-title: Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke‐mediated oxidative stress in human lung epithelial cells publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 62 start-page: 55 year: 2003 end-page: 62 article-title: Human prostate cancer precursors and pathobiology publication-title: Urology – volume: 13 start-page: 143 year: 2006 end-page: 9 article-title: Vitamin E biokinetics, oxidative stress and cigarette smoking publication-title: Pathophysiology – volume: 47 start-page: 249 year: 2003 end-page: 59 article-title: Development of gamma (gamma)‐tocopherol as a colorectal cancer chemopreventive agent publication-title: Crit Rev Oncol Hematol – volume: 51 start-page: 87 year: 1996 end-page: 90 article-title: Glutathione and glutathione S‐transferase in benign and malignant prostate cell lines and prostate tissues publication-title: Biochem Pharmacol – volume: 17 start-page: 816 year: 2003 end-page: 22 article-title: Gamma‐tocopherol, but not alpha‐tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats publication-title: Faseb J – volume: 90 start-page: 1771 year: 1993 end-page: 5 article-title: Gamma‐tocopherol detoxification of nitrogen dioxide: superiority to alpha‐tocopherol publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 1697 year: 2005 end-page: 702 article-title: Changes in serum proteomic patterns by presurgical alpha‐tocopherol and L‐selenomethionine supplementation in prostate cancer publication-title: Cancer Epidemiol Biomarkers Prev – volume: 59 start-page: 76 year: 2007 end-page: 81 article-title: Mixed tocopherols inhibit N‐methyl‐N‐nitrosourea‐induced mammary tumor growth in rats publication-title: Nutr Cancer – ident: e_1_2_5_6_2 doi: 10.1016/j.juro.2007.03.138 – ident: e_1_2_5_28_2 doi: 10.1074/jbc.M607622200 – ident: e_1_2_5_30_2 doi: 10.1016/j.clinbiochem.2005.11.018 – ident: e_1_2_5_13_2 doi: 10.1016/j.freeradbiomed.2007.12.018 – ident: e_1_2_5_11_2 doi: 10.1207/s15327914nc5601_11 – ident: e_1_2_5_7_2 doi: 10.3109/10408449309117115 – ident: e_1_2_5_22_2 doi: 10.1016/j.mrfmmm.2005.04.017 – ident: e_1_2_5_12_2 doi: 10.1080/01635580701419022 – ident: e_1_2_5_21_2 doi: 10.1016/j.mrfmmm.2004.06.041 – ident: e_1_2_5_18_2 doi: 10.1073/pnas.90.5.1771 – ident: e_1_2_5_25_2 doi: 10.1016/j.humpath.2007.02.008 – ident: e_1_2_5_14_2 doi: 10.1093/jnci/92.24.2018 – volume: 16 start-page: 1581 year: 2007 ident: e_1_2_5_29_2 article-title: Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-07-0160 – ident: e_1_2_5_9_2 doi: 10.1158/0008-5472.CAN-05-1334 – ident: e_1_2_5_17_2 doi: 10.1016/S1040-8428(03)00042-8 – ident: e_1_2_5_10_2 doi: 10.1158/1055-9965.EPI-04-0679 – ident: e_1_2_5_23_2 doi: 10.1016/j.freeradbiomed.2004.02.074 – ident: e_1_2_5_5_2 doi: 10.1016/j.urology.2003.09.053 – ident: e_1_2_5_20_2 doi: 10.1016/S0002-9440(10)64228-9 – ident: e_1_2_5_8_2 doi: 10.1111/j.1745-7262.2007.00236.x – ident: e_1_2_5_4_2 doi: 10.1081/GNC-120037931 – ident: e_1_2_5_24_2 doi: 10.1152/ajplung.00361.2007 – ident: e_1_2_5_2_2 doi: 10.1016/j.ejca.2004.09.028 – ident: e_1_2_5_26_2 doi: 10.1016/0006-2952(95)02157-4 – ident: e_1_2_5_19_2 doi: 10.1096/fj.02-0362fje – ident: e_1_2_5_15_2 doi: 10.1096/fj.02-0877com – ident: e_1_2_5_16_2 doi: 10.1073/pnas.200357097 – ident: e_1_2_5_27_2 doi: 10.1016/j.pathophys.2006.05.003 – ident: e_1_2_5_3_2 doi: 10.1002/cncr.20408 – reference: 16814530 - Pathophysiology. 2006 Aug;13(3):143-9 – reference: 16267002 - Cancer Res. 2005 Nov 1;65(21):9807-16 – reference: 15617991 - Eur J Cancer. 2005 Jan;41(1):61-70 – reference: 17127771 - J Biol Chem. 2007 Jan 26;282(4):2529-37 – reference: 11005841 - Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11494-9 – reference: 12724340 - FASEB J. 2003 May;17(8):816-22 – reference: 17176221 - Nutr Cancer. 2006;56(1):82-5 – reference: 15110384 - Free Radic Biol Med. 2004 May 15;36(10):1199-207 – reference: 16030104 - Cancer Epidemiol Biomarkers Prev. 2005 Jul;14(7):1697-702 – reference: 15476857 - Mutat Res. 2004 Nov 2;555(1-2):133-48 – reference: 11121464 - J Natl Cancer Inst. 2000 Dec 20;92(24):2018-23 – reference: 17927505 - Nutr Cancer. 2007;59(1):76-81 – reference: 12163397 - Am J Pathol. 2002 Aug;161(2):727-35 – reference: 12368234 - FASEB J. 2002 Dec;16(14):1952-4 – reference: 18191645 - Free Radic Biol Med. 2008 Mar 15;44(6):1203-8 – reference: 8446589 - Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1771-5 – reference: 18162601 - Am J Physiol Lung Cell Mol Physiol. 2008 Mar;294(3):L478-88 – reference: 17644117 - J Urol. 2007 Sep;178(3 Pt 2):S9-S13 – reference: 14607218 - Urology. 2003 Nov;62(5 Suppl 1):55-62 – reference: 8329114 - Crit Rev Toxicol. 1993;23(2):147-69 – reference: 12962899 - Crit Rev Oncol Hematol. 2003 Sep;47(3):249-59 – reference: 16413012 - Clin Biochem. 2006 Feb;39(2):176-9 – reference: 15495199 - Cancer. 2004 Nov 15;101(10 Suppl):2371-490 – reference: 8534273 - Biochem Pharmacol. 1996 Jan 12;51(1):87-90 – reference: 17555796 - Hum Pathol. 2007 Sep;38(9):1394-401 – reference: 17646272 - Cancer Epidemiol Biomarkers Prev. 2007 Aug;16(8):1581-6 – reference: 17334589 - Asian J Androl. 2007 Mar;9(2):206-12 – reference: 16054659 - Mutat Res. 2005 Dec 11;591(1-2):93-102 – reference: 15845219 - J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2004 May;22(1):1-12 |
SSID | ssj0011504 |
Score | 2.3034697 |
Snippet | γ‐tocopherol (γ‐T) alone or in combination with α‐tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with... Gamma-tocopherol (gamma-T) alone or in combination with alpha-tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human... -tocopherol (-T) alone or in combination with -tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with... γ-tocopherol (γ-T) alone or in combination with α-tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1693 |
SubjectTerms | Animals antioxidant detoxifying enzymes Antioxidants - metabolism Antioxidants - pharmacology Blotting, Western Diet Disease Models, Animal gamma-Tocopherol - therapeutic use Immunohistochemistry Male Metabolic Detoxication, Phase II Mice NF-E2-Related Factor 2 - metabolism Nrf2 oxidative stress Oxidoreductases - metabolism prostate cancer Prostatic Neoplasms - diet therapy Prostatic Neoplasms - prevention & control Reverse Transcriptase Polymerase Chain Reaction RNA - analysis Tocopherols - therapeutic use |
Title | γ‐Tocopherol‐enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.24106 https://www.ncbi.nlm.nih.gov/pubmed/19115203 https://www.proquest.com/docview/20628494 https://www.proquest.com/docview/66879415 https://pubmed.ncbi.nlm.nih.gov/PMC4699658 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hDqgXChTapfxEFYdesiRe29mopxUCUaStKrRIHCpFtuMtoTRZdbNS1ROPwLvwHn0InoQZ5we2FKnqxUrkseKfGc_nePwZYM-K1PaVNmjiqfU5yvhaYCKZVTwiBOx4uoef5PEZPzkX5wvwoTkLU_FDtD_cyDLcfE0GrvR0_4E0NLs0XXQ_jm6bYrUIEJ221FEEdGoG5sDHhZhsWIUCtt-WnPdFTwDm0zjJx_jVOaCjl_ClqXoVd_KtOyt11_z6g9XxP9u2Ass1MPUGlSatwoLN12BpWG-9v4Lk9-3d9c2oMI6IoLjCF1Q9CiRNve_ZT0zLNs9LM1t6WX6R6aycehM6WYKY1jN0cVFefKX5NZuigDc6HQw_Y3lj1-Hs6HB0cOzXtzP4huMa0u_1ibqMa96zVsQi0lpGErsKAYfSKohZZGwYxmpMWiCUTOPYjGMtVYQrLKZ1bwMW8yK3b8ATTHE-juSYhylngVHaaq5oMSpSjviyA--bcUpMTV1ON2hcJRXpMkuwwxLXYR1414pOKr6OvwntNoOdoDXRFonKbTGbJoyOlPKYPy8hZR-nsFB04HWlHA-fQb8hWNDrQDSnNq0AMXnP5-TZhWP05jImEh5sp9OK52uefDw5cA-b_y76Fl40W2BBuAWL5Y-Z3UYkVeodZzL3LF8e6A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VRQJeyh2WWyPEAy_ZJl7b2Uh9qSqqbelWqNpKfUGW7XjbQJtUbFZCPPEJ_Zf-Rz-CL2HGuZSlVEK8RIk8VnyZsc_4cgbgrROZG2pj0cQzF3KUCY3Ah2RO84QQsOfpHu_J0QHfORSHS7De3oWp-SG6BTeyDD9ek4HTgvTaFWto_tn2cf4hvu1bFNHbO1T7HXkUQZ2GgzkK0RWTLa9QxNa6rIuz0TWIef2k5O8I1k9BW_fgU1v4-uTJl_68Mn37_Q9ex_-t3X1YabBpsFEr0wNYcsVDuD1udt8fgbq8-PnjfFJaz0VQnuAHah-dJc2C0_wbPqsuLchyVwV5cZybvJoFZ3S5BGFtYCl2UVEe0RCbz1AgmOxvjD9ifusew8HW-8nmKGwCNISWoxsZDobEXsYNHzgnUpEYIxOJbYWYQxsdpSyxLo5TPSVFEFpmaWqnqZE6QSeLGTN4AstFWbhnEAimOZ8mcsrjjLPIauMM1-SPiowjxOzBu7ajlG3YyymIxomqeZeZwgZTvsF68KYTPaspO_4mtNr2tkKDol0SXbhyPlOMbpXylN8sIeUQR7FY9OBprR1Xv8GpQ7Bo0INkQW86ASLzXkwp8mNP6s1lSjw8WE-vFjeXXG3vbPqX5_8uugp3RpPxrtrd3vvwAu62O2JR_BKWq69z9wqBVWVee_v5Be6PIwM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hkFAvLf1f-kNU9dBLlsRrOxv1hKAroF2E0CJxqGTZjgNpIVl1sxLi1Efou_Q9-hB9ks7kj24pUtWLlchjxT8znm9i-zPAaycSN9TGooknzuco4xuBiWRO84gQcMXTPT6Qu8d8_0ScLMHb9ixMzQ_R_XAjy6jmazLwaZJuXpOGZp9sH90P0W2vcBkMSaV3jjruKEI6DQVz4GMkJltaoYBtdkUXndENhHlzo-TvALbyQKN78LGte73x5HN_Xpq-vfqD1vE_G7cGdxtk6m3VqnQfllz-AFbHzdr7Q1A_vv_8-m1S2IqJoDjHF9Q92kmaeBfZJaZll-clmSu9LD_LTFbOvCkdLUFQ61m6uSgvTmmCzWYo4E2OtsaHWN66R3A8ejfZ3vWb6xl8yzGI9AdD4i7jhg-cE7GIjJGRxK5CxKGNDmIWWReGsU5JDYSWSRzbNDZSRxhiMWMGj2E5L3L3FDzBNOdpJFMeJpwFVhtnuKZoVCQcAWYP3rTjpGzDXU5XaJyrmnWZKewwVXVYD151otOasONvQhvtYCs0J1oj0bkr5jPF6Ewpj_ntElIOcQ4LRQ-e1Mpx_Rl0HIIFgx5EC2rTCRCV92JOnp1VlN5cxsTCg-2stOL2mqu9_e3qYf3fRTdg9XBnpD7sHbx_Bnfa5bAgfA7L5Ze5e4GoqjQvK-v5BZqvIbs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B3%E2%80%90Tocopherol%E2%80%90enriched+mixed+tocopherol+diet+inhibits+prostate+carcinogenesis+in+TRAMP+mice&rft.jtitle=International+journal+of+cancer&rft.au=Barve%2C+Avantika&rft.au=Khor%2C+Tin+Oo&rft.au=Nair%2C+Sujit&rft.au=Reuhl%2C+Kenneth&rft.date=2009-04-01&rft.issn=0020-7136&rft.eissn=1097-0215&rft.volume=124&rft.issue=7&rft.spage=1693&rft.epage=1699&rft_id=info:doi/10.1002%2Fijc.24106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ijc_24106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon |