Ubiquity of graphs with nowhere‐linear end structure

A graph G $G$ is said to be ≼ $\preccurlyeq $‐ubiquitous, where ≼ $\preccurlyeq $ is the minor relation between graphs, if whenever Γ ${\rm{\Gamma }}$ is a graph with nG≼Γ $nG\preccurlyeq {\rm{\Gamma }}$ for all n∈N $n\in {\mathbb{N}}$, then one also has ℵ0G≼Γ ${\aleph }_{0}G\preccurlyeq {\rm{\Gamma...

Full description

Saved in:
Bibliographic Details
Published inJournal of graph theory Vol. 103; no. 3; pp. 564 - 598
Main Authors Bowler, Nathan, Elbracht, Christian, Erde, Joshua, Gollin, J. Pascal, Heuer, Karl, Pitz, Max, Teegen, Maximilian
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0364-9024
1097-0118
DOI10.1002/jgt.22936

Cover

Abstract A graph G $G$ is said to be ≼ $\preccurlyeq $‐ubiquitous, where ≼ $\preccurlyeq $ is the minor relation between graphs, if whenever Γ ${\rm{\Gamma }}$ is a graph with nG≼Γ $nG\preccurlyeq {\rm{\Gamma }}$ for all n∈N $n\in {\mathbb{N}}$, then one also has ℵ0G≼Γ ${\aleph }_{0}G\preccurlyeq {\rm{\Gamma }}$, where αG $\alpha G$ is the disjoint union of α $\alpha $ many copies of G $G$. A well‐known conjecture of Andreae is that every locally finite connected graph is ≼ $\preccurlyeq $‐ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G $G$ which implies that G $G$ is ≼ $\preccurlyeq $‐ubiquitous. In particular this implies that the full‐grid is ≼ $\preccurlyeq $‐ubiquitous.
AbstractList A graph G is said to be ≼-ubiquitous, where ≼ is the minor relation between graphs, if whenever Γ is a graph with nG≼Γ for all n∈N, then one also has ℵ0G≼Γ, where αG is the disjoint union of α many copies of G. A well-known conjecture of Andreae is that every locally finite connected graph is ≼-ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G which implies that G is ≼-ubiquitous. In particular this implies that the full-grid is ≼-ubiquitous.A graph G is said to be ≼-ubiquitous, where ≼ is the minor relation between graphs, if whenever Γ is a graph with nG≼Γ for all n∈N, then one also has ℵ0G≼Γ, where αG is the disjoint union of α many copies of G. A well-known conjecture of Andreae is that every locally finite connected graph is ≼-ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G which implies that G is ≼-ubiquitous. In particular this implies that the full-grid is ≼-ubiquitous.
A graph G $G$ is said to be ≼ $\preccurlyeq $‐ubiquitous, where ≼ $\preccurlyeq $ is the minor relation between graphs, if whenever Γ ${\rm{\Gamma }}$ is a graph with nG≼Γ $nG\preccurlyeq {\rm{\Gamma }}$ for all n∈N $n\in {\mathbb{N}}$, then one also has ℵ0G≼Γ ${\aleph }_{0}G\preccurlyeq {\rm{\Gamma }}$, where αG $\alpha G$ is the disjoint union of α $\alpha $ many copies of G $G$. A well‐known conjecture of Andreae is that every locally finite connected graph is ≼ $\preccurlyeq $‐ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G $G$ which implies that G $G$ is ≼ $\preccurlyeq $‐ubiquitous. In particular this implies that the full‐grid is ≼ $\preccurlyeq $‐ubiquitous.
A graph is said to be ‐ ubiquitous , where is the minor relation between graphs, if whenever is a graph with for all , then one also has , where is the disjoint union of many copies of . A well‐known conjecture of Andreae is that every locally finite connected graph is ‐ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph which implies that is ‐ubiquitous. In particular this implies that the full‐grid is ‐ubiquitous.
A graph is said to be - , where is the minor relation between graphs, if whenever is a graph with for all , then one also has , where is the disjoint union of many copies of . A well-known conjecture of Andreae is that every locally finite connected graph is -ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph which implies that is -ubiquitous. In particular this implies that the full-grid is -ubiquitous.
A graph G is said to be ≼ ‐ ubiquitous , where ≼ is the minor relation between graphs, if whenever Γ is a graph with n G ≼ Γ for all n ∈ N , then one also has ℵ 0 G ≼ Γ , where α G is the disjoint union of α many copies of G . A well‐known conjecture of Andreae is that every locally finite connected graph is ≼ ‐ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G which implies that G is ≼ ‐ubiquitous. In particular this implies that the full‐grid is ≼ ‐ubiquitous.
Author Heuer, Karl
Elbracht, Christian
Erde, Joshua
Gollin, J. Pascal
Bowler, Nathan
Teegen, Maximilian
Pitz, Max
AuthorAffiliation 3 Discrete Mathematics Group Institute for Basic Science (IBS) Daejeon Republic of Korea
2 Institute of Discrete Mathematics Graz University of Technology Graz Austria
1 Department of Mathematics Universität Hamburg Hamburg Germany
4 Department of Applied Mathematics and Computer Science Technical University of Denmark Kongens Lyngby Denmark
AuthorAffiliation_xml – name: 2 Institute of Discrete Mathematics Graz University of Technology Graz Austria
– name: 1 Department of Mathematics Universität Hamburg Hamburg Germany
– name: 4 Department of Applied Mathematics and Computer Science Technical University of Denmark Kongens Lyngby Denmark
– name: 3 Discrete Mathematics Group Institute for Basic Science (IBS) Daejeon Republic of Korea
Author_xml – sequence: 1
  givenname: Nathan
  surname: Bowler
  fullname: Bowler, Nathan
  organization: Universität Hamburg
– sequence: 2
  givenname: Christian
  orcidid: 0000-0003-2481-364X
  surname: Elbracht
  fullname: Elbracht, Christian
  organization: Universität Hamburg
– sequence: 3
  givenname: Joshua
  orcidid: 0000-0003-1129-4270
  surname: Erde
  fullname: Erde, Joshua
  organization: Graz University of Technology
– sequence: 4
  givenname: J. Pascal
  orcidid: 0000-0003-2095-7101
  surname: Gollin
  fullname: Gollin, J. Pascal
  email: pascalgollin@ibs.re.kr
  organization: Institute for Basic Science (IBS)
– sequence: 5
  givenname: Karl
  orcidid: 0000-0002-6841-9815
  surname: Heuer
  fullname: Heuer, Karl
  organization: Technical University of Denmark
– sequence: 6
  givenname: Max
  surname: Pitz
  fullname: Pitz, Max
  organization: Universität Hamburg
– sequence: 7
  givenname: Maximilian
  orcidid: 0000-0001-7384-742X
  surname: Teegen
  fullname: Teegen, Maximilian
  organization: Universität Hamburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38516045$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9uEzEYxC3UiqaFAy-AVuICh239f70nhCooVJW4tGfL6_02cbSxU9vbKLc-Qp-RJ8ElKYIKTpbs34zGM8fowAcPCL0h-JRgTM-W83xKacvkCzQjuG1qTIg6QDPMJK9bTPkROk5picu1wOolOmJKEIm5mCF507nbyeVtFYZqHs16kaqNy4vKh80CIvy4fxidBxMr8H2VcpxsniK8QoeDGRO83p8n6ObL5-vzr_XV94tv55-uass5lzUVpAM7NJZjGIRtFeWKtp3pFTRSmrYjA0gurRS8t3ygsmdqMCWdgEYxRtgJ-rjzXU_dCnoLPkcz6nV0KxO3Ohin_37xbqHn4U6XGgTDgheH93uHGG4nSFmvXLIwjsZDmJKmbcNLh5TQgr57hi7DFH35n6aKMC654KJQb_-M9DvLU6cFONsBNoaUIgzaumyyC48J3Vii6cfVdFlN_1qtKD48UzyZ_ovdu2_cCNv_g_ry4nqn-AmV06bF
CitedBy_id crossref_primary_10_1002_jgt_23114
crossref_primary_10_1002_jgt_23216
crossref_primary_10_1016_j_jctb_2023_04_002
Cites_doi 10.1137/060652063
10.1006/jctb.1998.1886
10.1109/SFCS.1984.715921
10.2307/1970754
10.1002/jgt.10016
10.1017/S0305004100064616
10.1016/j.jctb.2012.11.003
10.1016/j.jctb.2022.05.011
10.1016/j.jctb.2022.08.004
10.1002/mana.19650300106
10.1007/978-3-662-53622-3
10.1007/BF02995937
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC.
2023 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC.
– notice: 2023 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1002/jgt.22936
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate BOWLER et al
EISSN 1097-0118
EndPage 598
ExternalDocumentID PMC10953054
38516045
10_1002_jgt_22936
JGT22936
Genre article
Journal Article
GrantInformation_xml – fundername: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme
  funderid: ERC consolidator grant DISTRUCT, Agreement No. 648527
– fundername: Institute for Basic Scienc fund
  funderid: IBS‐R029‐Y3
– fundername: Austrian Science Fund
  funderid: FWF P36131
– fundername: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme
  grantid: ERC consolidator grant DISTRUCT, Agreement No. 648527
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
24P
3-9
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XJT
XPP
XV2
XXG
YQT
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7X8
5PM
ID FETCH-LOGICAL-c4446-251becf7c40ef5c9824829bad8e766a9b1fe646c654dc4f26d38fa3855e783313
IEDL.DBID DR2
ISSN 0364-9024
IngestDate Thu Aug 21 18:35:04 EDT 2025
Fri Jul 11 08:12:13 EDT 2025
Fri Jul 25 12:06:43 EDT 2025
Mon Jul 21 05:55:04 EDT 2025
Tue Jul 01 01:47:45 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Wed Jan 22 16:23:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords infinite graphs
graph minors
ubiquity
Language English
License Attribution
2023 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4446-251becf7c40ef5c9824829bad8e766a9b1fe646c654dc4f26d38fa3855e783313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7384-742X
0000-0003-1129-4270
0000-0003-2481-364X
0000-0003-2095-7101
0000-0002-6841-9815
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22936
PMID 38516045
PQID 2813464545
PQPubID 1006407
PageCount 35
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10953054
proquest_miscellaneous_2974002212
proquest_journals_2813464545
pubmed_primary_38516045
crossref_citationtrail_10_1002_jgt_22936
crossref_primary_10_1002_jgt_22936
wiley_primary_10_1002_jgt_22936_JGT22936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of graph theory
PublicationTitleAlternate J Graph Theory
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1988; 103
2002; 39
1965; 30
2013; 103
1999; 76
1984
1971; 93
2008; 22
1975; 43
2022; 157
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_2_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 93
  start-page: 89
  year: 1971
  end-page: 111
  article-title: On Fraïssé's order type conjecture
  publication-title: Ann. of Math
– volume: 43
  start-page: 79
  issue: 1
  year: 1975
  end-page: 84
  article-title: A problem in infinite graph‐theory
  publication-title: Abh. Math. Semin. Univ. Hambg
– start-page: 241
  year: 1984
  end-page: 250
– volume: 157
  start-page: 70
  year: 2022
  end-page: 95
  article-title: Topological ubiquity of trees
  publication-title: J. Combin. Theory Ser. B
– volume: 22
  start-page: 124
  issue: 1
  year: 2008
  end-page: 138
  article-title: Reconfigurations in graphs and grids
  publication-title: SIAM J. Discrete Math
– volume: 76
  start-page: 41
  issue: 1
  year: 1999
  end-page: 67
  article-title: Excluding a countable clique
  publication-title: J. Combin. Theory Ser. B
– volume: 103
  start-page: 274
  issue: 2
  year: 2013
  end-page: 290
  article-title: Classes of locally finite ubiquitous graphs
  publication-title: J. Combin. Theory Ser. B
– volume: 103
  start-page: 55
  issue: 1
  year: 1988
  end-page: 57
  article-title: A counter‐example to ‘Wagner's conjecture’ for infinite graphs
  publication-title: Math. Proc. Cambridge Philos. Soc
– volume: 39
  start-page: 222
  issue: 4
  year: 2002
  end-page: 229
  article-title: On disjoint configurations in infinite graphs
  publication-title: J. Graph Theory
– volume: 30
  start-page: 63
  issue: 1–2
  year: 1965
  end-page: 85
  article-title: Über die Maximalzahl fremder unendlicher Wege in Graphen
  publication-title: Math. Nachr
– volume: 157
  start-page: 451
  year: 2022
  end-page: 499
  article-title: Characterising ‐connected sets in infinite graphs
  publication-title: J. Combin. Theory Ser. B
– ident: e_1_2_12_6_1
  doi: 10.1137/060652063
– ident: e_1_2_12_8_1
  doi: 10.1006/jctb.1998.1886
– ident: e_1_2_12_12_1
  doi: 10.1109/SFCS.1984.715921
– ident: e_1_2_12_4_1
– ident: e_1_2_12_13_1
  doi: 10.2307/1970754
– ident: e_1_2_12_2_1
  doi: 10.1002/jgt.10016
– ident: e_1_2_12_14_1
  doi: 10.1017/S0305004100064616
– ident: e_1_2_12_3_1
  doi: 10.1016/j.jctb.2012.11.003
– ident: e_1_2_12_5_1
  doi: 10.1016/j.jctb.2022.05.011
– ident: e_1_2_12_9_1
  doi: 10.1016/j.jctb.2022.08.004
– ident: e_1_2_12_10_1
  doi: 10.1002/mana.19650300106
– ident: e_1_2_12_7_1
  doi: 10.1007/978-3-662-53622-3
– ident: e_1_2_12_11_1
  doi: 10.1007/BF02995937
SSID ssj0011508
Score 2.3620076
Snippet A graph G $G$ is said to be ≼ $\preccurlyeq $‐ubiquitous, where ≼ $\preccurlyeq $ is the minor relation between graphs, if whenever Γ ${\rm{\Gamma }}$ is a...
A graph is said to be ‐ ubiquitous , where is the minor relation between graphs, if whenever is a graph with for all , then one also has , where is the...
A graph is said to be - , where is the minor relation between graphs, if whenever is a graph with for all , then one also has , where is the disjoint union of...
A graph G is said to be ≼-ubiquitous, where ≼ is the minor relation between graphs, if whenever Γ is a graph with nG≼Γ for all n∈N, then one also has ℵ0G≼Γ,...
A graph G is said to be ≼ ‐ ubiquitous , where ≼ is the minor relation between graphs, if whenever Γ is a graph with n G ≼ Γ for all n ∈ N , then one also has...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 564
SubjectTerms graph minors
Graphs
infinite graphs
ubiquity
Title Ubiquity of graphs with nowhere‐linear end structure
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22936
https://www.ncbi.nlm.nih.gov/pubmed/38516045
https://www.proquest.com/docview/2813464545
https://www.proquest.com/docview/2974002212
https://pubmed.ncbi.nlm.nih.gov/PMC10953054
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1La9wwEMeHNKf00DTpa5sHbumhF--uZFmWyCnkyUJKKVnIoWAkrdxuW7zpepdAT_kI-Yz5JBlJtptNUgi9GIPGWNJ4PH89_DPAhwJVucZMFKdKFjhAUTyWmpPYBZdVmbSCue-dTz7x4yEbnKVnS7DTfAsT-BDthJuLDP--dgGudNX7Cw398W3WpZisHG6bJNxx8_e_tOgoJ3REWKdkscRE1FCF-rTXXrmYi-4JzPv7JG_rV5-ADlfha1P1sO_kZ3c-013z5w7V8T_b9hye1cI02g1P0hos2XIdnp60VNfqBfChHv-eo2yPJkXkSddV5OZxo3Jyga6315dX7tZqGtlyFAUy7XxqX8Lw8OB07ziu_7sQG4ajwxglD3q2yAzr2yI1UlAmqNRqJGzGuZKaFJYzbnjKRoaht0eJKFQi0tRmIklI8gqWy0lp30BEBAoCpUxCtGKUZZJLozM8cLf8K3kHPjYeyE0NJXf_xviVB5wyzbErct8VHXjfmp4HEsdDRpuNG_M6GKucCpJ4clnagXdtMYaRWxtRpZ3M0QbHVU7PENqB18Hr7V2wZYT33dVi4XloDRyie7GkHH_3qG7icH6oirGd3t__rnk-ODr1J28fb7oBKxQ1V9g9vAnL6Fe7hRppprfhCWWft31I3ACyFA5b
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADYqesAXHgElo7jmNLXBACylLEoZW4RU7qsAilQKm48gl8I1_CjNMGKkDiElnyWIlnPJlnj_0MsJMhKk8wEvmh0RlOUIz0dSKZT85lTaStEnTeuXEp6y1xdh1ej8D-4CxMwQ9RLriRZ7j_NTk4LUhXv1hD729e9jhGKzkK4wJxOW3o4-KqzCEQ03mRqRS-xlA04BWq8WrZdDga_YCYP3dKfkewLgQdz8B0Hzt6B4WxZ2HE5nMw1SiJV7vzIFvJ3VMPkbXXyTxHRt31aKnVyzuvaB378fZOPTfPns3bXkEe23u2C9A6Pmoe1v3-1Qh-KnAC5yMqQeVnUSpqNgtTrbhQXCemrWwkpdEJy6wUMpWhaKcCDdIOVGYCFYY2UkHAgkUYyzu5XQaPKYzZxqQBS4zgItJSp0mED0kZWi0rsDtQUZz2ecPp-oqHuGA85jFqM3barMB2KfpYkGX8JrQ20HPc95duzBULHLlYWIGtshpHOqUvTG47PZTBqQ9BDsYrsFSYpXwL9ozJGrVWQwYrBYhFe7gmv7t1bNqMGPcQuGI_nW3__vL47KTpCiv_F92EiXqzcRFfnF6er8IkXVZfbPZdgzG0sV1HSPOSbLiR-wkArvDV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxQxFD5BTIg8qIjgKpeR-MDLLNtOp9OGJyMsF4UYwyY8kEzaToebmUV2NyY--RP8jf4STtudkRVIjC-TSXqaXr6eOV9v3wC8K5GVa4xEcapkiRMUxWOpOYmdc1mVSSuYu-98cMh3e2z_OD2egs36LkzQh2gW3Jxn-O-1c_Crotz4Ixp6cTpsUwxW_BE8ZhyZhGNEXxrtKMd0RNioZLHESFTLCnXoRpN1MhjdYZh3D0reJrA-AnWfwUld93Dw5LI9Guq2-fGXrON_Nu45PB0z0-h9GEpzMGWrFzB70Mi6DuaB9_T5txHy9qhfRl7qehC5hdyo6n9H7O3vn79c0eo6slURBWna0bV9Cb3u9tGH3Xj844XYMJwexsh5ENoyM6xjy9RIQZmgUqtC2IxzJTUpLWfc8JQVhiHcRSJKlYg0tZlIEpIswHTVr-wriIhARqCUSYhWjLJMcml0hg_u9n8lb8F6jUBuxqrk7ucYX_Ogp0xz7Ircd0UL1hrTqyDFcZ_RUg1jPvbGQU4FSbx0WdqCt00y-pHbHFGV7Y_QBidWjtAQ2oLFgHpTCraM8I7LLSbGQ2PgNLonU6rzM6_VTZyeH9JibKfH--Ga5_s7R_7l9b-brsLM561u_mnv8OMbeEKRf4WTxEswjRDbZeRLQ73i_eIG84oQUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ubiquity+of+graphs+with+nowhere%E2%80%90linear+end+structure&rft.jtitle=Journal+of+graph+theory&rft.au=Bowler%2C+Nathan&rft.au=Elbracht%2C+Christian&rft.au=Erde%2C+Joshua&rft.au=Gollin%2C+J.+Pascal&rft.date=2023-07-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=103&rft.issue=3&rft.spage=564&rft.epage=598&rft_id=info:doi/10.1002%2Fjgt.22936&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jgt_22936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon