Ubiquity of graphs with nowhere‐linear end structure
A graph G $G$ is said to be ≼ $\preccurlyeq $‐ubiquitous, where ≼ $\preccurlyeq $ is the minor relation between graphs, if whenever Γ ${\rm{\Gamma }}$ is a graph with nG≼Γ $nG\preccurlyeq {\rm{\Gamma }}$ for all n∈N $n\in {\mathbb{N}}$, then one also has ℵ0G≼Γ ${\aleph }_{0}G\preccurlyeq {\rm{\Gamma...
Saved in:
Published in | Journal of graph theory Vol. 103; no. 3; pp. 564 - 598 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2023
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0364-9024 1097-0118 |
DOI | 10.1002/jgt.22936 |
Cover
Abstract | A graph G $G$ is said to be ≼ $\preccurlyeq $‐ubiquitous, where ≼ $\preccurlyeq $ is the minor relation between graphs, if whenever Γ ${\rm{\Gamma }}$ is a graph with nG≼Γ $nG\preccurlyeq {\rm{\Gamma }}$ for all n∈N $n\in {\mathbb{N}}$, then one also has ℵ0G≼Γ ${\aleph }_{0}G\preccurlyeq {\rm{\Gamma }}$, where αG $\alpha G$ is the disjoint union of α $\alpha $ many copies of G $G$. A well‐known conjecture of Andreae is that every locally finite connected graph is ≼ $\preccurlyeq $‐ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G $G$ which implies that G $G$ is ≼ $\preccurlyeq $‐ubiquitous. In particular this implies that the full‐grid is ≼ $\preccurlyeq $‐ubiquitous. |
---|---|
AbstractList | A graph G is said to be ≼-ubiquitous, where ≼ is the minor relation between graphs, if whenever Γ is a graph with nG≼Γ for all n∈N, then one also has ℵ0G≼Γ, where αG is the disjoint union of α many copies of G. A well-known conjecture of Andreae is that every locally finite connected graph is ≼-ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G which implies that G is ≼-ubiquitous. In particular this implies that the full-grid is ≼-ubiquitous.A graph G is said to be ≼-ubiquitous, where ≼ is the minor relation between graphs, if whenever Γ is a graph with nG≼Γ for all n∈N, then one also has ℵ0G≼Γ, where αG is the disjoint union of α many copies of G. A well-known conjecture of Andreae is that every locally finite connected graph is ≼-ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G which implies that G is ≼-ubiquitous. In particular this implies that the full-grid is ≼-ubiquitous. A graph G $G$ is said to be ≼ $\preccurlyeq $‐ubiquitous, where ≼ $\preccurlyeq $ is the minor relation between graphs, if whenever Γ ${\rm{\Gamma }}$ is a graph with nG≼Γ $nG\preccurlyeq {\rm{\Gamma }}$ for all n∈N $n\in {\mathbb{N}}$, then one also has ℵ0G≼Γ ${\aleph }_{0}G\preccurlyeq {\rm{\Gamma }}$, where αG $\alpha G$ is the disjoint union of α $\alpha $ many copies of G $G$. A well‐known conjecture of Andreae is that every locally finite connected graph is ≼ $\preccurlyeq $‐ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G $G$ which implies that G $G$ is ≼ $\preccurlyeq $‐ubiquitous. In particular this implies that the full‐grid is ≼ $\preccurlyeq $‐ubiquitous. A graph is said to be ‐ ubiquitous , where is the minor relation between graphs, if whenever is a graph with for all , then one also has , where is the disjoint union of many copies of . A well‐known conjecture of Andreae is that every locally finite connected graph is ‐ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph which implies that is ‐ubiquitous. In particular this implies that the full‐grid is ‐ubiquitous. A graph is said to be - , where is the minor relation between graphs, if whenever is a graph with for all , then one also has , where is the disjoint union of many copies of . A well-known conjecture of Andreae is that every locally finite connected graph is -ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph which implies that is -ubiquitous. In particular this implies that the full-grid is -ubiquitous. A graph G is said to be ≼ ‐ ubiquitous , where ≼ is the minor relation between graphs, if whenever Γ is a graph with n G ≼ Γ for all n ∈ N , then one also has ℵ 0 G ≼ Γ , where α G is the disjoint union of α many copies of G . A well‐known conjecture of Andreae is that every locally finite connected graph is ≼ ‐ubiquitous. In this paper we give a sufficient condition on the structure of the ends of a graph G which implies that G is ≼ ‐ubiquitous. In particular this implies that the full‐grid is ≼ ‐ubiquitous. |
Author | Heuer, Karl Elbracht, Christian Erde, Joshua Gollin, J. Pascal Bowler, Nathan Teegen, Maximilian Pitz, Max |
AuthorAffiliation | 3 Discrete Mathematics Group Institute for Basic Science (IBS) Daejeon Republic of Korea 2 Institute of Discrete Mathematics Graz University of Technology Graz Austria 1 Department of Mathematics Universität Hamburg Hamburg Germany 4 Department of Applied Mathematics and Computer Science Technical University of Denmark Kongens Lyngby Denmark |
AuthorAffiliation_xml | – name: 2 Institute of Discrete Mathematics Graz University of Technology Graz Austria – name: 1 Department of Mathematics Universität Hamburg Hamburg Germany – name: 4 Department of Applied Mathematics and Computer Science Technical University of Denmark Kongens Lyngby Denmark – name: 3 Discrete Mathematics Group Institute for Basic Science (IBS) Daejeon Republic of Korea |
Author_xml | – sequence: 1 givenname: Nathan surname: Bowler fullname: Bowler, Nathan organization: Universität Hamburg – sequence: 2 givenname: Christian orcidid: 0000-0003-2481-364X surname: Elbracht fullname: Elbracht, Christian organization: Universität Hamburg – sequence: 3 givenname: Joshua orcidid: 0000-0003-1129-4270 surname: Erde fullname: Erde, Joshua organization: Graz University of Technology – sequence: 4 givenname: J. Pascal orcidid: 0000-0003-2095-7101 surname: Gollin fullname: Gollin, J. Pascal email: pascalgollin@ibs.re.kr organization: Institute for Basic Science (IBS) – sequence: 5 givenname: Karl orcidid: 0000-0002-6841-9815 surname: Heuer fullname: Heuer, Karl organization: Technical University of Denmark – sequence: 6 givenname: Max surname: Pitz fullname: Pitz, Max organization: Universität Hamburg – sequence: 7 givenname: Maximilian orcidid: 0000-0001-7384-742X surname: Teegen fullname: Teegen, Maximilian organization: Universität Hamburg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38516045$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9uEzEYxC3UiqaFAy-AVuICh239f70nhCooVJW4tGfL6_02cbSxU9vbKLc-Qp-RJ8ElKYIKTpbs34zGM8fowAcPCL0h-JRgTM-W83xKacvkCzQjuG1qTIg6QDPMJK9bTPkROk5picu1wOolOmJKEIm5mCF507nbyeVtFYZqHs16kaqNy4vKh80CIvy4fxidBxMr8H2VcpxsniK8QoeDGRO83p8n6ObL5-vzr_XV94tv55-uass5lzUVpAM7NJZjGIRtFeWKtp3pFTRSmrYjA0gurRS8t3ygsmdqMCWdgEYxRtgJ-rjzXU_dCnoLPkcz6nV0KxO3Ohin_37xbqHn4U6XGgTDgheH93uHGG4nSFmvXLIwjsZDmJKmbcNLh5TQgr57hi7DFH35n6aKMC654KJQb_-M9DvLU6cFONsBNoaUIgzaumyyC48J3Vii6cfVdFlN_1qtKD48UzyZ_ovdu2_cCNv_g_ry4nqn-AmV06bF |
CitedBy_id | crossref_primary_10_1002_jgt_23114 crossref_primary_10_1002_jgt_23216 crossref_primary_10_1016_j_jctb_2023_04_002 |
Cites_doi | 10.1137/060652063 10.1006/jctb.1998.1886 10.1109/SFCS.1984.715921 10.2307/1970754 10.1002/jgt.10016 10.1017/S0305004100064616 10.1016/j.jctb.2012.11.003 10.1016/j.jctb.2022.05.011 10.1016/j.jctb.2022.08.004 10.1002/mana.19650300106 10.1007/978-3-662-53622-3 10.1007/BF02995937 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Wiley Periodicals LLC. 2023 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC. – notice: 2023 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1002/jgt.22936 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | BOWLER et al |
EISSN | 1097-0118 |
EndPage | 598 |
ExternalDocumentID | PMC10953054 38516045 10_1002_jgt_22936 JGT22936 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme funderid: ERC consolidator grant DISTRUCT, Agreement No. 648527 – fundername: Institute for Basic Scienc fund funderid: IBS‐R029‐Y3 – fundername: Austrian Science Fund funderid: FWF P36131 – fundername: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grantid: ERC consolidator grant DISTRUCT, Agreement No. 648527 |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 24P 3-9 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 VJK VQA W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XJT XPP XV2 XXG YQT ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4446-251becf7c40ef5c9824829bad8e766a9b1fe646c654dc4f26d38fa3855e783313 |
IEDL.DBID | DR2 |
ISSN | 0364-9024 |
IngestDate | Thu Aug 21 18:35:04 EDT 2025 Fri Jul 11 08:12:13 EDT 2025 Fri Jul 25 12:06:43 EDT 2025 Mon Jul 21 05:55:04 EDT 2025 Tue Jul 01 01:47:45 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Wed Jan 22 16:23:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | infinite graphs graph minors ubiquity |
Language | English |
License | Attribution 2023 The Authors. Journal of Graph Theory published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4446-251becf7c40ef5c9824829bad8e766a9b1fe646c654dc4f26d38fa3855e783313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7384-742X 0000-0003-1129-4270 0000-0003-2481-364X 0000-0003-2095-7101 0000-0002-6841-9815 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22936 |
PMID | 38516045 |
PQID | 2813464545 |
PQPubID | 1006407 |
PageCount | 35 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10953054 proquest_miscellaneous_2974002212 proquest_journals_2813464545 pubmed_primary_38516045 crossref_citationtrail_10_1002_jgt_22936 crossref_primary_10_1002_jgt_22936 wiley_primary_10_1002_jgt_22936_JGT22936 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of graph theory |
PublicationTitleAlternate | J Graph Theory |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1988; 103 2002; 39 1965; 30 2013; 103 1999; 76 1984 1971; 93 2008; 22 1975; 43 2022; 157 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_2_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
References_xml | – volume: 93 start-page: 89 year: 1971 end-page: 111 article-title: On Fraïssé's order type conjecture publication-title: Ann. of Math – volume: 43 start-page: 79 issue: 1 year: 1975 end-page: 84 article-title: A problem in infinite graph‐theory publication-title: Abh. Math. Semin. Univ. Hambg – start-page: 241 year: 1984 end-page: 250 – volume: 157 start-page: 70 year: 2022 end-page: 95 article-title: Topological ubiquity of trees publication-title: J. Combin. Theory Ser. B – volume: 22 start-page: 124 issue: 1 year: 2008 end-page: 138 article-title: Reconfigurations in graphs and grids publication-title: SIAM J. Discrete Math – volume: 76 start-page: 41 issue: 1 year: 1999 end-page: 67 article-title: Excluding a countable clique publication-title: J. Combin. Theory Ser. B – volume: 103 start-page: 274 issue: 2 year: 2013 end-page: 290 article-title: Classes of locally finite ubiquitous graphs publication-title: J. Combin. Theory Ser. B – volume: 103 start-page: 55 issue: 1 year: 1988 end-page: 57 article-title: A counter‐example to ‘Wagner's conjecture’ for infinite graphs publication-title: Math. Proc. Cambridge Philos. Soc – volume: 39 start-page: 222 issue: 4 year: 2002 end-page: 229 article-title: On disjoint configurations in infinite graphs publication-title: J. Graph Theory – volume: 30 start-page: 63 issue: 1–2 year: 1965 end-page: 85 article-title: Über die Maximalzahl fremder unendlicher Wege in Graphen publication-title: Math. Nachr – volume: 157 start-page: 451 year: 2022 end-page: 499 article-title: Characterising ‐connected sets in infinite graphs publication-title: J. Combin. Theory Ser. B – ident: e_1_2_12_6_1 doi: 10.1137/060652063 – ident: e_1_2_12_8_1 doi: 10.1006/jctb.1998.1886 – ident: e_1_2_12_12_1 doi: 10.1109/SFCS.1984.715921 – ident: e_1_2_12_4_1 – ident: e_1_2_12_13_1 doi: 10.2307/1970754 – ident: e_1_2_12_2_1 doi: 10.1002/jgt.10016 – ident: e_1_2_12_14_1 doi: 10.1017/S0305004100064616 – ident: e_1_2_12_3_1 doi: 10.1016/j.jctb.2012.11.003 – ident: e_1_2_12_5_1 doi: 10.1016/j.jctb.2022.05.011 – ident: e_1_2_12_9_1 doi: 10.1016/j.jctb.2022.08.004 – ident: e_1_2_12_10_1 doi: 10.1002/mana.19650300106 – ident: e_1_2_12_7_1 doi: 10.1007/978-3-662-53622-3 – ident: e_1_2_12_11_1 doi: 10.1007/BF02995937 |
SSID | ssj0011508 |
Score | 2.3620076 |
Snippet | A graph G $G$ is said to be ≼ $\preccurlyeq $‐ubiquitous, where ≼ $\preccurlyeq $ is the minor relation between graphs, if whenever Γ ${\rm{\Gamma }}$ is a... A graph is said to be ‐ ubiquitous , where is the minor relation between graphs, if whenever is a graph with for all , then one also has , where is the... A graph is said to be - , where is the minor relation between graphs, if whenever is a graph with for all , then one also has , where is the disjoint union of... A graph G is said to be ≼-ubiquitous, where ≼ is the minor relation between graphs, if whenever Γ is a graph with nG≼Γ for all n∈N, then one also has ℵ0G≼Γ,... A graph G is said to be ≼ ‐ ubiquitous , where ≼ is the minor relation between graphs, if whenever Γ is a graph with n G ≼ Γ for all n ∈ N , then one also has... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 564 |
SubjectTerms | graph minors Graphs infinite graphs ubiquity |
Title | Ubiquity of graphs with nowhere‐linear end structure |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgt.22936 https://www.ncbi.nlm.nih.gov/pubmed/38516045 https://www.proquest.com/docview/2813464545 https://www.proquest.com/docview/2974002212 https://pubmed.ncbi.nlm.nih.gov/PMC10953054 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1La9wwEMeHNKf00DTpa5sHbumhF--uZFmWyCnkyUJKKVnIoWAkrdxuW7zpepdAT_kI-Yz5JBlJtptNUgi9GIPGWNJ4PH89_DPAhwJVucZMFKdKFjhAUTyWmpPYBZdVmbSCue-dTz7x4yEbnKVnS7DTfAsT-BDthJuLDP--dgGudNX7Cw398W3WpZisHG6bJNxx8_e_tOgoJ3REWKdkscRE1FCF-rTXXrmYi-4JzPv7JG_rV5-ADlfha1P1sO_kZ3c-013z5w7V8T_b9hye1cI02g1P0hos2XIdnp60VNfqBfChHv-eo2yPJkXkSddV5OZxo3Jyga6315dX7tZqGtlyFAUy7XxqX8Lw8OB07ziu_7sQG4ajwxglD3q2yAzr2yI1UlAmqNRqJGzGuZKaFJYzbnjKRoaht0eJKFQi0tRmIklI8gqWy0lp30BEBAoCpUxCtGKUZZJLozM8cLf8K3kHPjYeyE0NJXf_xviVB5wyzbErct8VHXjfmp4HEsdDRpuNG_M6GKucCpJ4clnagXdtMYaRWxtRpZ3M0QbHVU7PENqB18Hr7V2wZYT33dVi4XloDRyie7GkHH_3qG7icH6oirGd3t__rnk-ODr1J28fb7oBKxQ1V9g9vAnL6Fe7hRppprfhCWWft31I3ACyFA5b |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADYqesAXHgElo7jmNLXBACylLEoZW4RU7qsAilQKm48gl8I1_CjNMGKkDiElnyWIlnPJlnj_0MsJMhKk8wEvmh0RlOUIz0dSKZT85lTaStEnTeuXEp6y1xdh1ej8D-4CxMwQ9RLriRZ7j_NTk4LUhXv1hD729e9jhGKzkK4wJxOW3o4-KqzCEQ03mRqRS-xlA04BWq8WrZdDga_YCYP3dKfkewLgQdz8B0Hzt6B4WxZ2HE5nMw1SiJV7vzIFvJ3VMPkbXXyTxHRt31aKnVyzuvaB378fZOPTfPns3bXkEe23u2C9A6Pmoe1v3-1Qh-KnAC5yMqQeVnUSpqNgtTrbhQXCemrWwkpdEJy6wUMpWhaKcCDdIOVGYCFYY2UkHAgkUYyzu5XQaPKYzZxqQBS4zgItJSp0mED0kZWi0rsDtQUZz2ecPp-oqHuGA85jFqM3barMB2KfpYkGX8JrQ20HPc95duzBULHLlYWIGtshpHOqUvTG47PZTBqQ9BDsYrsFSYpXwL9ozJGrVWQwYrBYhFe7gmv7t1bNqMGPcQuGI_nW3__vL47KTpCiv_F92EiXqzcRFfnF6er8IkXVZfbPZdgzG0sV1HSPOSbLiR-wkArvDV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxQxFD5BTIg8qIjgKpeR-MDLLNtOp9OGJyMsF4UYwyY8kEzaToebmUV2NyY--RP8jf4STtudkRVIjC-TSXqaXr6eOV9v3wC8K5GVa4xEcapkiRMUxWOpOYmdc1mVSSuYu-98cMh3e2z_OD2egs36LkzQh2gW3Jxn-O-1c_Crotz4Ixp6cTpsUwxW_BE8ZhyZhGNEXxrtKMd0RNioZLHESFTLCnXoRpN1MhjdYZh3D0reJrA-AnWfwUld93Dw5LI9Guq2-fGXrON_Nu45PB0z0-h9GEpzMGWrFzB70Mi6DuaB9_T5txHy9qhfRl7qehC5hdyo6n9H7O3vn79c0eo6slURBWna0bV9Cb3u9tGH3Xj844XYMJwexsh5ENoyM6xjy9RIQZmgUqtC2IxzJTUpLWfc8JQVhiHcRSJKlYg0tZlIEpIswHTVr-wriIhARqCUSYhWjLJMcml0hg_u9n8lb8F6jUBuxqrk7ucYX_Ogp0xz7Ircd0UL1hrTqyDFcZ_RUg1jPvbGQU4FSbx0WdqCt00y-pHbHFGV7Y_QBidWjtAQ2oLFgHpTCraM8I7LLSbGQ2PgNLonU6rzM6_VTZyeH9JibKfH--Ga5_s7R_7l9b-brsLM561u_mnv8OMbeEKRf4WTxEswjRDbZeRLQ73i_eIG84oQUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ubiquity+of+graphs+with+nowhere%E2%80%90linear+end+structure&rft.jtitle=Journal+of+graph+theory&rft.au=Bowler%2C+Nathan&rft.au=Elbracht%2C+Christian&rft.au=Erde%2C+Joshua&rft.au=Gollin%2C+J.+Pascal&rft.date=2023-07-01&rft.issn=0364-9024&rft.eissn=1097-0118&rft.volume=103&rft.issue=3&rft.spage=564&rft.epage=598&rft_id=info:doi/10.1002%2Fjgt.22936&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jgt_22936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9024&client=summon |