Assessing within‐subject rates of change of placental MRI diffusion metrics in normal pregnancy
Purpose Studying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in indi...
Saved in:
Published in | Magnetic resonance in medicine Vol. 90; no. 3; pp. 1137 - 1150 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.09.2023
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Studying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation.
Methods
Seventy‐nine pregnant, low‐risk participants (17 scanned twice and 62 scanned once) were included. T2‐weighted anatomical imaging and a combined multi‐echo spin‐echo diffusion‐weighted sequence were acquired at 3 T. Combined diffusion–relaxometry models were performed using both a T2*$$ {\mathrm{T}}_2^{\ast } $$‐ADC and a bicompartmental T2*$$ {\mathrm{T}}_2^{\ast } $$‐intravoxel‐incoherent‐motion (T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$) model fit.
Results
There was a significant decline in placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T2*$$ {\mathrm{T}}_2^{\ast } $$ (covariance = −0.47), but not ADC (covariance = −1.04). The T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T2*$$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57).
Conclusion
Whole placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T2*$$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T2*$$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low‐risk pregnancies provide a useful benchmark for clinical cohorts. |
---|---|
AbstractList | PurposeStudying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation.MethodsSeventy‐nine pregnant, low‐risk participants (17 scanned twice and 62 scanned once) were included. T2‐weighted anatomical imaging and a combined multi‐echo spin‐echo diffusion‐weighted sequence were acquired at 3 T. Combined diffusion–relaxometry models were performed using both a T2*$$ {\mathrm{T}}_2^{\ast } $$‐ADC and a bicompartmental T2*$$ {\mathrm{T}}_2^{\ast } $$‐intravoxel‐incoherent‐motion (T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$) model fit.ResultsThere was a significant decline in placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T2*$$ {\mathrm{T}}_2^{\ast } $$ (covariance = −0.47), but not ADC (covariance = −1.04). The T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T2*$$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57).ConclusionWhole placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T2*$$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T2*$$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low‐risk pregnancies provide a useful benchmark for clinical cohorts. Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation.PURPOSEStudying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation.Seventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T2 -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both a T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -ADC and a bicompartmental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel-incoherent-motion ( T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ ) model fit.METHODSSeventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T2 -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both a T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -ADC and a bicompartmental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel-incoherent-motion ( T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ ) model fit.There was a significant decline in placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T 2 * $$ {\mathrm{T}}_2^{\ast } $$ (covariance = -0.47), but not ADC (covariance = -1.04). The T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57).RESULTSThere was a significant decline in placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T 2 * $$ {\mathrm{T}}_2^{\ast } $$ (covariance = -0.47), but not ADC (covariance = -1.04). The T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57).Whole placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts.CONCLUSIONWhole placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts. Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. Seventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both a -ADC and a bicompartmental -intravoxel-incoherent-motion ( ) model fit. There was a significant decline in placental and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for (covariance = -0.47), but not ADC (covariance = -1.04). The model identified a consistent decline in individuals over gestation in from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). Whole placental and ADC values decrease over gestation, although only values showed consistent trends within subjects. There was minimal individual variation in rates of change of values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts. Purpose Studying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. Methods Seventy‐nine pregnant, low‐risk participants (17 scanned twice and 62 scanned once) were included. T2‐weighted anatomical imaging and a combined multi‐echo spin‐echo diffusion‐weighted sequence were acquired at 3 T. Combined diffusion–relaxometry models were performed using both a T2*$$ {\mathrm{T}}_2^{\ast } $$‐ADC and a bicompartmental T2*$$ {\mathrm{T}}_2^{\ast } $$‐intravoxel‐incoherent‐motion (T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$) model fit. Results There was a significant decline in placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T2*$$ {\mathrm{T}}_2^{\ast } $$ (covariance = −0.47), but not ADC (covariance = −1.04). The T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T2*$$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). Conclusion Whole placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T2*$$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T2*$$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low‐risk pregnancies provide a useful benchmark for clinical cohorts. |
Author | Counsell, Serena J. Egloff, Alexia Hutter, Jana Rutherford, Mary Slator, Paddy J. De La Fuente, Miguel Cromb, Daniel Price, Anthony N. |
AuthorAffiliation | 4 MRC Centre for Neurodevelopmental Disorders King's College London London UK 2 Centre for Medical Image Computing, Department of Computer Science University College London London UK 1 Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London London UK 3 Centre for Medical Engineering School of Biomedical Engineering and Imaging Sciences, King's College London London UK |
AuthorAffiliation_xml | – name: 1 Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London London UK – name: 4 MRC Centre for Neurodevelopmental Disorders King's College London London UK – name: 2 Centre for Medical Image Computing, Department of Computer Science University College London London UK – name: 3 Centre for Medical Engineering School of Biomedical Engineering and Imaging Sciences, King's College London London UK |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-9814-8841 surname: Cromb fullname: Cromb, Daniel organization: King's College London – sequence: 2 givenname: Paddy J. orcidid: 0000-0001-6967-989X surname: Slator fullname: Slator, Paddy J. organization: University College London – sequence: 3 givenname: Miguel surname: De La Fuente fullname: De La Fuente, Miguel organization: King's College London – sequence: 4 givenname: Anthony N. orcidid: 0000-0002-6907-7554 surname: Price fullname: Price, Anthony N. organization: School of Biomedical Engineering and Imaging Sciences, King's College London – sequence: 5 givenname: Mary surname: Rutherford fullname: Rutherford, Mary organization: King's College London – sequence: 6 givenname: Alexia surname: Egloff fullname: Egloff, Alexia organization: King's College London – sequence: 7 givenname: Serena J. surname: Counsell fullname: Counsell, Serena J. email: serena.counsell@kcl.ac.uk organization: King's College London – sequence: 8 givenname: Jana orcidid: 0000-0003-3476-3500 surname: Hutter fullname: Hutter, Jana organization: School of Biomedical Engineering and Imaging Sciences, King's College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37183839$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS3Uik4LC14AWWIDi7SOf5J4haoKSqWOkCpYW45zPeNRYg92QjU7HoFn5EnqYaYVrcrKlu53jo_vOUYHPnhA6E1JTktC6NkQh1Mqq0q8QLNSUFpQIfkBmpGak4KVkh-h45RWhBApa_4SHbG6bFjD5Azp85QgJecX-NaNS-f__PqdpnYFZsRRj5BwsNgstV_A9rbutQE_6h7Pb65w56ydkgseDzBGZxJ2HvsQhzxfR1h47c3mFTq0uk_wen-eoO-fP327-FJcf728uji_LgznXBRAqK2B2ZY0LbNEcGhbXUPFqSip6SqwhjYlFUxUlTVdyy2lrchKLZrKso6doI873_XUDtBtY0bdq3V0g44bFbRTjyfeLdUi_FQlkRUVNckO7_cOMfyYII1qcMlA32sPYUoqv8-appGszOi7J-gqTNHn_2WKESa4FDxTb_-N9JDlfv0ZONsBJoaUIlhl3KjHvNGc0PU5mtoWrHLB6m_BWfHhieLe9Dl2737retj8H1Tzm_lOcQcejbc_ |
CitedBy_id | crossref_primary_10_1016_j_placenta_2023_11_002 crossref_primary_10_1111_1471_0528_17901 crossref_primary_10_1002_jmri_29498 crossref_primary_10_1038_s41598_024_77406_6 crossref_primary_10_1038_s41598_024_63087_8 |
Cites_doi | 10.1016/j.placenta.2021.06.005 10.1007/978-3-642-23941-0_6 10.1055/a-0717-5275 10.1080/14767058.2022.2050365 10.1002/mrm.27036 10.1097/RMR.0000000000000221 10.1148/radiology.161.2.3763909 10.1002/uog.14917 10.1016/j.placenta.2022.01.005 10.1002/uog.20855 10.1038/s41598-017-16461-8 10.1016/j.ogc.2019.10.009 10.1016/j.placenta.2013.04.018 10.1007/978-3-642-23941-0_7 10.1002/mrm.27733 10.1161/HYPERTENSIONAHA.120.14701 10.1038/s41598-022-22008-3 10.1007/s00261-012-9929-8 10.1002/mrm.28075 10.1038/s41467-017-02499-9 10.1016/j.placenta.2018.07.001 10.1016/j.placenta.2021.07.290 10.1016/j.ajogmf.2022.100578 10.1097/RCT.0000000000000844 10.1016/j.placenta.2020.12.006 10.1148/radiol.10092283 10.1016/j.siny.2005.05.001 10.1016/j.placenta.2022.08.011 10.1113/JP280569 10.1002/mrm.26052 10.1016/S0301-5629(02)00695-6 10.1161/HYPERTENSIONAHA.120.14855 10.1016/j.placenta.2020.04.008 10.1002/mrm.27406 10.1038/s41598-018-33463-2 10.1002/mrm.27910 10.1371/journal.pbio.3000676 10.1002/mrm.26598 10.3389/fninf.2014.00008 10.1002/mrm.22055 10.3389/fninf.2019.00064 10.1371/journal.pone.0270360 10.1016/j.media.2021.102045 10.1016/j.placenta.2021.02.015 10.1016/j.placenta.2021.07.304 10.1080/14767058.2017.1378334 10.1098/rstb.2014.0066 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.29665 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
DocumentTitleAlternate | Cromb et al |
EISSN | 1522-2594 |
EndPage | 1150 |
ExternalDocumentID | PMC10962570 37183839 10_1002_mrm_29665 MRM29665 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: UK Research and Innovation funderid: MR/T018119/1 – fundername: Wellcome/EPSRC Centre for Medical Engineering funderid: WT203148/Z/16/Z – fundername: Engineering and Physical Sciences Research Council funderid: EP/V034537/1 – fundername: NIH Human Placenta Project funderid: 1U01HD087202‐01 – fundername: Medical Research Council funderid: MR/K006355/1; MR/N026063/1; MR/V002465/1 – fundername: Wellcome Trust funderid: 201374/Z/16/Z – fundername: NICHD NIH HHS grantid: U01 HD087202 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MR/N026063/1 – fundername: Wellcome Trust grantid: 201374/Z/16/Z – fundername: Medical Research Council grantid: MR/K006355/1 – fundername: Medical Research Council grantid: MR/V002465/1 – fundername: Medical Research Council grantid: MR/T018119/1 – fundername: Wellcome Trust grantid: WT203148/Z/16/Z – fundername: NIH Human Placenta Project grantid: 1U01HD087202‐01 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c4445-e02f7e3fb08b3f054ebba7e642512cd6efc281253566fcdb4f22b5445a586f3d3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:35:38 EDT 2025 Fri Jul 11 11:58:12 EDT 2025 Fri Jul 25 12:07:00 EDT 2025 Mon Jul 21 06:06:27 EDT 2025 Tue Jul 01 04:27:06 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Wed Jan 22 16:19:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | placental MRI relaxometry diffusion imaging longitudinal imaging |
Language | English |
License | Attribution 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4445-e02f7e3fb08b3f054ebba7e642512cd6efc281253566fcdb4f22b5445a586f3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3476-3500 0000-0002-9814-8841 0000-0001-6967-989X 0000-0002-6907-7554 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29665 |
PMID | 37183839 |
PQID | 2830354954 |
PQPubID | 1016391 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10962570 proquest_miscellaneous_2813888931 proquest_journals_2830354954 pubmed_primary_37183839 crossref_citationtrail_10_1002_mrm_29665 crossref_primary_10_1002_mrm_29665 wiley_primary_10_1002_mrm_29665_MRM29665 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2017; 7 2009; 62 2012 2021; 104 2019; 32 2020; 83 2019; 13 2019; 79 2021; 108 1983; 5 2016; 76 2018; 80 2020; 55 2022; 119 2020 ;75 2021; 71 2018; 69 2020; 18 2015; 370 2018; 9 2018; 8 2019; 82 2019; 81 2013; 38 2020; 75 2021; 112 2022; 4 2021 2020; 95 2021; 599 2019; 43 2021; 114 2013; 34 2010; 257 1986; 161 2017; 78 2019; 28 2022; 12 2022; 35 2005; 10 2020; 47 2017 2003; 29 2021; 111 2014; 8 2022; 128 2016; 47 2022; 17 e_1_2_8_28_1 Harding R (e_1_2_8_45_1) 1983; 5 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Zeidan AM (e_1_2_8_21_1) 2021 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 55 start-page: 293 year: 2020 end-page: 302 article-title: ‐weighted placental MRI: basic research tool or emerging clinical test for placental dysfunction? publication-title: Ultrasound Obstet Gynecol – volume: 78 start-page: 2373 year: 2017 end-page: 2387 article-title: A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion‐weighted MRI publication-title: Magn Reson Med – volume: 62 start-page: 717 year: 2009 end-page: 730 article-title: Free water elimination and mapping from diffusion MRI publication-title: Magn Reson Med – volume: 82 start-page: 95 year: 2019 end-page: 106 article-title: Combined diffusion‐relaxometry MRI to identify dysfunction in the human placenta publication-title: Magn Reson Med – volume: 71 year: 2021 article-title: Data‐driven multi‐contrast spectral microstructure imaging with InSpect: INtegrated SPECTral component estimation and mapping publication-title: Med Image Anal – volume: 370 year: 2015 article-title: The placenta: a multifaceted, transient organ publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 69 start-page: 26 year: 2018 end-page: 31 article-title: Decreased apparent diffusion coefficient in the placentas of monochorionic twins with selective intrauterine growth restriction publication-title: Placenta – volume: 8 start-page: 8 year: 2014 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front Neuroinform – volume: 47 start-page: 197 year: 2020 end-page: 213 article-title: Placental magnetic resonance imaging: a method to evaluate placental function In vivo publication-title: Obstet Gynecol Clin North Am – volume: 257 start-page: 810 year: 2010 end-page: 819 article-title: Diffusion‐weighted MR imaging of the placenta in fetuses with placental insufficiency publication-title: Radiology – volume: 28 start-page: 285 year: 2019 end-page: 297 article-title: Placental MRI: developing accurate quantitative measures of oxygenation publication-title: Top Magn Reson Imaging – volume: 75 start-page: 1412 year: 2020 end-page: 1413 article-title: Preeclamptic placenta publication-title: Hypertension – volume: 83 start-page: 312 year: 2020 end-page: 321 article-title: Deep learning how to fit an intravoxel incoherent motion model to diffusion‐weighted MRI publication-title: Magn Reson Med – volume: 80 start-page: 756 year: 2018 end-page: 766 article-title: Placenta microstructure and microcirculation imaging with diffusion MRI publication-title: Magn Reson Med – volume: 76 start-page: 1551 year: 2016 end-page: 1562 article-title: Functional imaging of the non‐human primate placenta with endogenous BOLD contrast publication-title: Magn Reson Med – volume: 32 start-page: 293 year: 2019 end-page: 300 article-title: Assessment of human placental perfusion by intravoxel incoherent motion MR imaging publication-title: J Matern Fetal Neonatal Med – volume: 119 start-page: 1 year: 2022 end-page: 7 article-title: Perfusion fraction derived from IVIM analysis of diffusion‐weighted MRI in the assessment of placental vascular malperfusion antenatally publication-title: Placenta – volume: 9 start-page: 263 year: 2018 article-title: Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology publication-title: Nat Commun – volume: 34 start-page: 676 year: 2013 end-page: 680 article-title: In vivo assessment of putative functional placental tissue volume in placental intrauterine growth restriction (IUGR) in human fetuses using diffusion tensor magnetic resonance imaging publication-title: Placenta – volume: 47 start-page: 748 year: 2016 end-page: 754 article-title: Placental magnetic resonance imaging measurements in normal pregnancies and in those complicated by fetal growth restriction publication-title: Ultrasound Obstet Gynecol – volume: 7 year: 2017 article-title: Non‐invasive placental perfusion imaging in pregnancies complicated by fetal heart disease using velocity‐selective arterial spin labeled MRI publication-title: Sci Rep – volume: 10 start-page: 485 year: 2005 end-page: 490 article-title: Placental MRI publication-title: Semin Fetal Neonatal Med – volume: 43 start-page: 507 year: 2019 end-page: 512 article-title: Apparent diffusion coefficient of the placenta and fetal organs in intrauterine growth restriction publication-title: J Comput Assist Tomogr – volume: 95 start-page: 69 year: 2020 end-page: 77 article-title: Placental MRI: effect of maternal position and uterine contractions on placental BOLD MRI measurements publication-title: Placenta – volume: 81 start-page: 350 year: 2019 end-page: 361 article-title: Separating fetal and maternal placenta circulations using multiparametric MRI publication-title: Magn Reson Med – volume: 29 start-page: 19 year: 2003 end-page: 23 article-title: Assessment of placental fractional moving blood volume using quantitative three‐dimensional power doppler ultrasound publication-title: Ultrasound Med Biol – start-page: 253 year: 2021 end-page: 262 – start-page: 101 year: 2012 end-page: 144 – volume: 38 start-page: 573 year: 2013 end-page: 587 article-title: MR imaging of the placenta: what a radiologist should know publication-title: Abdom Imaging – volume: 79 start-page: 396 year: 2019 end-page: 401 article-title: Evaluation of placental perfusion based on intravoxel incoherent motion diffusion weighted imaging (IVIM‐DWI) and its predictive value for late‐onset fetal growth restriction publication-title: Geburtshilfe Frauenheilkd – volume: 108 start-page: 23 year: 2021 end-page: 31 article-title: placental MRI in pregnancies complicated with fetal congenital heart disease publication-title: Placenta – volume: 114 start-page: 52 year: 2021 end-page: 55 article-title: weighted placental MRI in relation to placental histology and birth weight publication-title: Placenta – volume: 17 year: 2022 article-title: Quantitative longitudinal mapping for assessing placental function and association with adverse pregnancy outcomes across gestation publication-title: PloS One – volume: 13 start-page: 64 year: 2019 article-title: The Dmipy toolbox: diffusion MRI multi‐compartment modeling and microstructure recovery made easy publication-title: Front Neuroinform – volume: 83 start-page: 2160 year: 2020 end-page: 2172 article-title: Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling publication-title: Magn Reson Med – volume: 599 start-page: 1901 year: 2021 end-page: 1915 article-title: The effects of maternal position, in late gestation pregnancy, on placental blood flow and oxygenation: an MRI study publication-title: J Physiol – start-page: 1523 year: 2020 ;75 end-page: 1531 article-title: placental magnetic resonance imaging in preterm preeclampsia:: an observational cohort study publication-title: Hypertension (1979) – volume: 111 start-page: 47 year: 2021 end-page: 53 article-title: Comparative study of placental and intravoxel incoherent motion in the prediction of fetal growth restriction publication-title: Placenta – start-page: 55 year: 2012 end-page: 100 – volume: 128 start-page: 69 year: 2022 end-page: 71 article-title: Change in measurements of placenta and fetal organs during Braxton Hicks contractions publication-title: Placenta – volume: 104 start-page: 138 year: 2021 end-page: 145 article-title: Placental magnetic resonance imaging in chronic hypertension: a case‐control study publication-title: Placenta – volume: 161 start-page: 401 year: 1986 end-page: 407 article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders publication-title: Radiology – volume: 112 start-page: 111 year: 2021 end-page: 122 article-title: Multiscale and multimodal imaging of utero‐placental anatomy and function in pregnancy publication-title: Placenta – volume: 4 year: 2022 article-title: ‐weighted placental magnetic resonance imaging: a biomarker of placental dysfunction in small‐for‐gestational‐age pregnancies publication-title: Am J Obstet Gynecol MFM – volume: 12 year: 2022 article-title: Dynamics of and deformation in the placenta and myometrium during pre‐labour contractions publication-title: Sci Rep – year: 2017 – volume: 8 year: 2018 article-title: Integrated and efficient diffusion‐relaxometry using ZEBRA publication-title: Sci Rep – volume: 5 start-page: 267 year: 1983 end-page: 276 article-title: Fetal and maternal influences on arterial oxygen levels in the sheep fetus publication-title: J Dev Physiol – volume: 18 year: 2020 article-title: The haemodynamics of the human placenta in utero publication-title: PLoS Biol – volume: 35 start-page: 9667 year: 2022 end-page: 9674 article-title: Human placental microperfusion and microstructural assessment by intra‐voxel incoherent motion MRI for discriminating intrauterine growth restriction: a pilot study publication-title: J Matern Fetal Neonatal Med – ident: e_1_2_8_39_1 doi: 10.1016/j.placenta.2021.06.005 – start-page: 253 volume-title: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis year: 2021 ident: e_1_2_8_21_1 – ident: e_1_2_8_33_1 doi: 10.1007/978-3-642-23941-0_6 – ident: e_1_2_8_37_1 doi: 10.1055/a-0717-5275 – ident: e_1_2_8_36_1 doi: 10.1080/14767058.2022.2050365 – ident: e_1_2_8_23_1 doi: 10.1002/mrm.27036 – ident: e_1_2_8_7_1 doi: 10.1097/RMR.0000000000000221 – ident: e_1_2_8_19_1 doi: 10.1148/radiology.161.2.3763909 – ident: e_1_2_8_17_1 doi: 10.1002/uog.14917 – ident: e_1_2_8_28_1 doi: 10.1016/j.placenta.2022.01.005 – volume: 5 start-page: 267 year: 1983 ident: e_1_2_8_45_1 article-title: Fetal and maternal influences on arterial oxygen levels in the sheep fetus publication-title: J Dev Physiol – ident: e_1_2_8_11_1 doi: 10.1002/uog.20855 – ident: e_1_2_8_44_1 doi: 10.1038/s41598-017-16461-8 – ident: e_1_2_8_8_1 doi: 10.1016/j.ogc.2019.10.009 – ident: e_1_2_8_41_1 doi: 10.1016/j.placenta.2013.04.018 – ident: e_1_2_8_35_1 doi: 10.1007/978-3-642-23941-0_7 – ident: e_1_2_8_2_1 doi: 10.1002/mrm.27733 – ident: e_1_2_8_3_1 doi: 10.1161/HYPERTENSIONAHA.120.14701 – ident: e_1_2_8_10_1 doi: 10.1038/s41598-022-22008-3 – ident: e_1_2_8_51_1 doi: 10.1007/s00261-012-9929-8 – ident: e_1_2_8_49_1 doi: 10.1002/mrm.28075 – ident: e_1_2_8_47_1 doi: 10.1038/s41467-017-02499-9 – ident: e_1_2_8_42_1 doi: 10.1016/j.placenta.2018.07.001 – ident: e_1_2_8_32_1 doi: 10.1016/j.placenta.2021.07.290 – ident: e_1_2_8_40_1 doi: 10.1016/j.ajogmf.2022.100578 – ident: e_1_2_8_4_1 doi: 10.1097/RCT.0000000000000844 – ident: e_1_2_8_43_1 doi: 10.1016/j.placenta.2020.12.006 – ident: e_1_2_8_20_1 – ident: e_1_2_8_13_1 doi: 10.1148/radiol.10092283 – ident: e_1_2_8_6_1 doi: 10.1016/j.siny.2005.05.001 – ident: e_1_2_8_9_1 doi: 10.1016/j.placenta.2022.08.011 – ident: e_1_2_8_46_1 doi: 10.1113/JP280569 – ident: e_1_2_8_12_1 doi: 10.1002/mrm.26052 – ident: e_1_2_8_38_1 doi: 10.1016/S0301-5629(02)00695-6 – ident: e_1_2_8_16_1 doi: 10.1161/HYPERTENSIONAHA.120.14855 – ident: e_1_2_8_29_1 doi: 10.1016/j.placenta.2020.04.008 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.27406 – ident: e_1_2_8_22_1 doi: 10.1038/s41598-018-33463-2 – ident: e_1_2_8_50_1 doi: 10.1002/mrm.27910 – ident: e_1_2_8_30_1 doi: 10.1371/journal.pbio.3000676 – ident: e_1_2_8_48_1 doi: 10.1002/mrm.26598 – ident: e_1_2_8_24_1 doi: 10.3389/fninf.2014.00008 – ident: e_1_2_8_26_1 doi: 10.1002/mrm.22055 – ident: e_1_2_8_25_1 doi: 10.3389/fninf.2019.00064 – ident: e_1_2_8_27_1 doi: 10.1371/journal.pone.0270360 – ident: e_1_2_8_15_1 doi: 10.1016/j.media.2021.102045 – ident: e_1_2_8_5_1 doi: 10.1016/j.placenta.2021.02.015 – ident: e_1_2_8_18_1 doi: 10.1016/j.placenta.2021.07.304 – ident: e_1_2_8_14_1 doi: 10.1080/14767058.2017.1378334 – ident: e_1_2_8_34_1 doi: 10.1098/rstb.2014.0066 |
SSID | ssj0009974 |
Score | 2.4718196 |
Snippet | Purpose
Studying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of... Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual... PurposeStudying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1137 |
SubjectTerms | Benchmarking Compartments Covariance Cross-Sectional Studies diffusion imaging Diffusion Magnetic Resonance Imaging - methods Diffusion rate Female Gestation Humans longitudinal imaging Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Microstructure Motion Placenta Placenta - diagnostic imaging placental MRI Preclinical and Clinical Imaging Pregnancy T2$$ {\mathrm{T}}_2^{\ast } $$ relaxometry Trends |
Title | Assessing within‐subject rates of change of placental MRI diffusion metrics in normal pregnancy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29665 https://www.ncbi.nlm.nih.gov/pubmed/37183839 https://www.proquest.com/docview/2830354954 https://www.proquest.com/docview/2813888931 https://pubmed.ncbi.nlm.nih.gov/PMC10962570 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSiAuBcorUCqDOHDJNvFjk4gTQlQFKQitqNQDUmQ7dlnRzVabzaGc-An8Rn4JHjtJWQoS4mbJE8Wvsb8Zj78BeJ5LVqeS5rFUWsScSh0rkemYT60zDhRV3GdrKN9Pj475uxNxsgUvh7cwgR9idLihZvj9GhVcqvbgkjR0sVpMqAPr-MAcY7UQEM0uqaOKIjAwZxz3mYIPrEIJPRi_3DyLrgDMq3GSv-JXfwAd3oJPQ9ND3MmXSbdWE_31N1bH_-zbbdjpgSl5FVbSHdgyzS7cKPur91247mNFdXsXZLgodmceQS_uvPnx7XvbKXToECSeaMnSkvCgGEs-6gvfXJJy9pZgQpYOPXRkgbm8dEvmDWkQOJ-R85U5Rf6Pi3twfPjm4-ujuM_UEGvOuYhNQm1mmFVJrph1KNAoJTPjbBuHJ3Q9NVZThyQEc-DR6lpxS6lCGiAp8qllNbsP282yMQ-B8CJJtBC1yIua1wWTicyc2SPTWie1ZkkEL4Y5q3RPY47ZNM6qQMBMKzd4lR-8CJ6NoueBu-NPQnvDxFe9-rYVsqIxZzkLHsHTsdopHt6myMYsO5RJWZ47uJdG8CCsk_EvzJ34zvQvIsg3VtAogKTemzXN_LMn906dTYmZBV0__Qr5e8urclb6wqN_F30MN6lDaSFIbg-216vOPHGoaq324RrlH_a9Ev0EgJchmg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHqVAoIBBHLhkm_ixSSQuCKi20PSwaqVeUGQ7DqzoZqvN5gAnfgK_kV-Cx05SloKEuFnyRPFr7G_G428AnqeSlbGkaSiVFiGnUodKJDrk48oaB4oq7rI15IfjyTF_dyJONuBl_xbG80MMDjfUDLdfo4KjQ3r3nDV0vpyPqEXr4hJcxozeyJz_ZnpOHpVlnoM54bjTZLznFYro7vDp-ml0AWJejJT8FcG6I2jvJnzoG-8jTz6P2pUa6a-_8Tr-b-9uwY0Om5JXfjHdhg1Tb8HVvLt934IrLlxUN3dA-rtie-wRdOTO6h_fvjetQp8OQe6Jhiwq4t8UY8kFfuGzS5JP9wnmZGnRSUfmmM5LN2RWkxqx8yk5W5qPSAHyZRuO994evZ6EXbKGUHPORWgiWiWGVSpKFassEDRKycRY88ZCCl2OTaWpBROCWfxY6VLxilKFTEBSpOOKlewubNaL2twHwrMo0kKUIs1KXmZMRjKxlo-MSx2VmkUBvOgnrdAdkzkm1DgtPAczLezgFW7wAng2iJ55-o4_Ce30M190GtwUSIzGrPEseABPh2qre3ihImuzaFEmZmlqEV8cwD2_UIa_MHvoW-s_CyBdW0KDAPJ6r9fUs0-O3zu2ZiUmF7T9dEvk7y0v8mnuCg_-XfQJXJsc5QfFwf7h-4dwnVrQ5mPmdmBztWzNIwuyVuqx06Wfoz4k3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIiouqJRXoIBBHLiEJn5sEvVUAasWSFVVVOot8hNW6mZXm-6BGz-B38gvqcfOpqwKEjdLniiJx-N5-huAN6VkJpe0TKXSIuVU6lSJQqd85LxzoKjioVtDfTw6POOfzsX5Buyv7sJEfIgh4IaSEc5rFPC5cXvXoKHTxfQd9ca6uAW3MdmH9VyUn1wj7lYRgrngeNBUfAUrlNG94dF1ZXTDwrxZKPmnARs00Hgb7vWmIzmIvL4PG7bdga26T47vwJ1Qzam7ByBjKtdrJYJx1kn7--evbqkw5EIQGqIjM0filV8chbosvBVJ6tMjgi1TlhhDI1PstqU7MmlJi6btBZkv7DdE6PjxEM7GH7--P0z7Xgqp5pyL1GbUFZY5lZWKOW-nWaVkYb334TW-NiPrNPW6XjBv3jltFHeUKgTqkaIcOWbYI9hsZ619AoRXWaaFMKKsDDcVk5ksvGMic6Mzo1mWwNvVoja6BxrHfhcXTYRIpo1f_yasfwKvB9J5RNf4G9HuijNNL2Bdg7hlzPu2gifwapj2ooH5Dtna2RJpcuYd_IrlCTyOjBzewrxO9s55lUC5xuKBAGG312fayfcAv517rw97__n_DLvh31_e1Kd1GDz9f9KXsHXyYdx8OTr-_AzuYnP7WNG2C5uXi6V97k2gS_UibPUrM-cDRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+within%E2%80%90subject+rates+of+change+of+placental+MRI+diffusion+metrics+in+normal+pregnancy&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Cromb%2C+Daniel&rft.au=Slator%2C+Paddy+J&rft.au=De+La+Fuente%2C+Miguel&rft.au=Price%2C+Anthony+N&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=90&rft.issue=3&rft.spage=1137&rft.epage=1150&rft_id=info:doi/10.1002%2Fmrm.29665&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |