Assessing within‐subject rates of change of placental MRI diffusion metrics in normal pregnancy

Purpose Studying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in indi...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 90; no. 3; pp. 1137 - 1150
Main Authors Cromb, Daniel, Slator, Paddy J., De La Fuente, Miguel, Price, Anthony N., Rutherford, Mary, Egloff, Alexia, Counsell, Serena J., Hutter, Jana
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Studying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. Methods Seventy‐nine pregnant, low‐risk participants (17 scanned twice and 62 scanned once) were included. T2‐weighted anatomical imaging and a combined multi‐echo spin‐echo diffusion‐weighted sequence were acquired at 3 T. Combined diffusion–relaxometry models were performed using both a T2*$$ {\mathrm{T}}_2^{\ast } $$‐ADC and a bicompartmental T2*$$ {\mathrm{T}}_2^{\ast } $$‐intravoxel‐incoherent‐motion (T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$) model fit. Results There was a significant decline in placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T2*$$ {\mathrm{T}}_2^{\ast } $$ (covariance = −0.47), but not ADC (covariance = −1.04). The T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T2*$$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). Conclusion Whole placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T2*$$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T2*$$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low‐risk pregnancies provide a useful benchmark for clinical cohorts.
AbstractList PurposeStudying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation.MethodsSeventy‐nine pregnant, low‐risk participants (17 scanned twice and 62 scanned once) were included. T2‐weighted anatomical imaging and a combined multi‐echo spin‐echo diffusion‐weighted sequence were acquired at 3 T. Combined diffusion–relaxometry models were performed using both a T2*$$ {\mathrm{T}}_2^{\ast } $$‐ADC and a bicompartmental T2*$$ {\mathrm{T}}_2^{\ast } $$‐intravoxel‐incoherent‐motion (T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$) model fit.ResultsThere was a significant decline in placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T2*$$ {\mathrm{T}}_2^{\ast } $$ (covariance = −0.47), but not ADC (covariance = −1.04). The T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T2*$$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57).ConclusionWhole placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T2*$$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T2*$$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low‐risk pregnancies provide a useful benchmark for clinical cohorts.
Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation.PURPOSEStudying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation.Seventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T2 -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both a T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -ADC and a bicompartmental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel-incoherent-motion ( T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ ) model fit.METHODSSeventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T2 -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both a T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -ADC and a bicompartmental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel-incoherent-motion ( T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ ) model fit.There was a significant decline in placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T 2 * $$ {\mathrm{T}}_2^{\ast } $$ (covariance = -0.47), but not ADC (covariance = -1.04). The T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57).RESULTSThere was a significant decline in placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T 2 * $$ {\mathrm{T}}_2^{\ast } $$ (covariance = -0.47), but not ADC (covariance = -1.04). The T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57).Whole placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts.CONCLUSIONWhole placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts.
Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. Seventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both a -ADC and a bicompartmental -intravoxel-incoherent-motion ( ) model fit. There was a significant decline in placental and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for (covariance = -0.47), but not ADC (covariance = -1.04). The model identified a consistent decline in individuals over gestation in from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). Whole placental and ADC values decrease over gestation, although only values showed consistent trends within subjects. There was minimal individual variation in rates of change of values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts.
Purpose Studying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. Methods Seventy‐nine pregnant, low‐risk participants (17 scanned twice and 62 scanned once) were included. T2‐weighted anatomical imaging and a combined multi‐echo spin‐echo diffusion‐weighted sequence were acquired at 3 T. Combined diffusion–relaxometry models were performed using both a T2*$$ {\mathrm{T}}_2^{\ast } $$‐ADC and a bicompartmental T2*$$ {\mathrm{T}}_2^{\ast } $$‐intravoxel‐incoherent‐motion (T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$) model fit. Results There was a significant decline in placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals for T2*$$ {\mathrm{T}}_2^{\ast } $$ (covariance = −0.47), but not ADC (covariance = −1.04). The T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation in T2*$$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). Conclusion Whole placental T2*$$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although only T2*$$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change of T2*$$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmental T2*IVIM$$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low‐risk pregnancies provide a useful benchmark for clinical cohorts.
Author Counsell, Serena J.
Egloff, Alexia
Hutter, Jana
Rutherford, Mary
Slator, Paddy J.
De La Fuente, Miguel
Cromb, Daniel
Price, Anthony N.
AuthorAffiliation 4 MRC Centre for Neurodevelopmental Disorders King's College London London UK
2 Centre for Medical Image Computing, Department of Computer Science University College London London UK
1 Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London London UK
3 Centre for Medical Engineering School of Biomedical Engineering and Imaging Sciences, King's College London London UK
AuthorAffiliation_xml – name: 1 Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences King's College London London UK
– name: 4 MRC Centre for Neurodevelopmental Disorders King's College London London UK
– name: 2 Centre for Medical Image Computing, Department of Computer Science University College London London UK
– name: 3 Centre for Medical Engineering School of Biomedical Engineering and Imaging Sciences, King's College London London UK
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-9814-8841
  surname: Cromb
  fullname: Cromb, Daniel
  organization: King's College London
– sequence: 2
  givenname: Paddy J.
  orcidid: 0000-0001-6967-989X
  surname: Slator
  fullname: Slator, Paddy J.
  organization: University College London
– sequence: 3
  givenname: Miguel
  surname: De La Fuente
  fullname: De La Fuente, Miguel
  organization: King's College London
– sequence: 4
  givenname: Anthony N.
  orcidid: 0000-0002-6907-7554
  surname: Price
  fullname: Price, Anthony N.
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London
– sequence: 5
  givenname: Mary
  surname: Rutherford
  fullname: Rutherford, Mary
  organization: King's College London
– sequence: 6
  givenname: Alexia
  surname: Egloff
  fullname: Egloff, Alexia
  organization: King's College London
– sequence: 7
  givenname: Serena J.
  surname: Counsell
  fullname: Counsell, Serena J.
  email: serena.counsell@kcl.ac.uk
  organization: King's College London
– sequence: 8
  givenname: Jana
  orcidid: 0000-0003-3476-3500
  surname: Hutter
  fullname: Hutter, Jana
  organization: School of Biomedical Engineering and Imaging Sciences, King's College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37183839$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS3Uik4LC14AWWIDi7SOf5J4haoKSqWOkCpYW45zPeNRYg92QjU7HoFn5EnqYaYVrcrKlu53jo_vOUYHPnhA6E1JTktC6NkQh1Mqq0q8QLNSUFpQIfkBmpGak4KVkh-h45RWhBApa_4SHbG6bFjD5Azp85QgJecX-NaNS-f__PqdpnYFZsRRj5BwsNgstV_A9rbutQE_6h7Pb65w56ydkgseDzBGZxJ2HvsQhzxfR1h47c3mFTq0uk_wen-eoO-fP327-FJcf728uji_LgznXBRAqK2B2ZY0LbNEcGhbXUPFqSip6SqwhjYlFUxUlTVdyy2lrchKLZrKso6doI873_XUDtBtY0bdq3V0g44bFbRTjyfeLdUi_FQlkRUVNckO7_cOMfyYII1qcMlA32sPYUoqv8-appGszOi7J-gqTNHn_2WKESa4FDxTb_-N9JDlfv0ZONsBJoaUIlhl3KjHvNGc0PU5mtoWrHLB6m_BWfHhieLe9Dl2737retj8H1Tzm_lOcQcejbc_
CitedBy_id crossref_primary_10_1016_j_placenta_2023_11_002
crossref_primary_10_1111_1471_0528_17901
crossref_primary_10_1002_jmri_29498
crossref_primary_10_1038_s41598_024_77406_6
crossref_primary_10_1038_s41598_024_63087_8
Cites_doi 10.1016/j.placenta.2021.06.005
10.1007/978-3-642-23941-0_6
10.1055/a-0717-5275
10.1080/14767058.2022.2050365
10.1002/mrm.27036
10.1097/RMR.0000000000000221
10.1148/radiology.161.2.3763909
10.1002/uog.14917
10.1016/j.placenta.2022.01.005
10.1002/uog.20855
10.1038/s41598-017-16461-8
10.1016/j.ogc.2019.10.009
10.1016/j.placenta.2013.04.018
10.1007/978-3-642-23941-0_7
10.1002/mrm.27733
10.1161/HYPERTENSIONAHA.120.14701
10.1038/s41598-022-22008-3
10.1007/s00261-012-9929-8
10.1002/mrm.28075
10.1038/s41467-017-02499-9
10.1016/j.placenta.2018.07.001
10.1016/j.placenta.2021.07.290
10.1016/j.ajogmf.2022.100578
10.1097/RCT.0000000000000844
10.1016/j.placenta.2020.12.006
10.1148/radiol.10092283
10.1016/j.siny.2005.05.001
10.1016/j.placenta.2022.08.011
10.1113/JP280569
10.1002/mrm.26052
10.1016/S0301-5629(02)00695-6
10.1161/HYPERTENSIONAHA.120.14855
10.1016/j.placenta.2020.04.008
10.1002/mrm.27406
10.1038/s41598-018-33463-2
10.1002/mrm.27910
10.1371/journal.pbio.3000676
10.1002/mrm.26598
10.3389/fninf.2014.00008
10.1002/mrm.22055
10.3389/fninf.2019.00064
10.1371/journal.pone.0270360
10.1016/j.media.2021.102045
10.1016/j.placenta.2021.02.015
10.1016/j.placenta.2021.07.304
10.1080/14767058.2017.1378334
10.1098/rstb.2014.0066
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29665
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Cromb et al
EISSN 1522-2594
EndPage 1150
ExternalDocumentID PMC10962570
37183839
10_1002_mrm_29665
MRM29665
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: UK Research and Innovation
  funderid: MR/T018119/1
– fundername: Wellcome/EPSRC Centre for Medical Engineering
  funderid: WT203148/Z/16/Z
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/V034537/1
– fundername: NIH Human Placenta Project
  funderid: 1U01HD087202‐01
– fundername: Medical Research Council
  funderid: MR/K006355/1; MR/N026063/1; MR/V002465/1
– fundername: Wellcome Trust
  funderid: 201374/Z/16/Z
– fundername: NICHD NIH HHS
  grantid: U01 HD087202
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MR/N026063/1
– fundername: Wellcome Trust
  grantid: 201374/Z/16/Z
– fundername: Medical Research Council
  grantid: MR/K006355/1
– fundername: Medical Research Council
  grantid: MR/V002465/1
– fundername: Medical Research Council
  grantid: MR/T018119/1
– fundername: Wellcome Trust
  grantid: WT203148/Z/16/Z
– fundername: NIH Human Placenta Project
  grantid: 1U01HD087202‐01
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4445-e02f7e3fb08b3f054ebba7e642512cd6efc281253566fcdb4f22b5445a586f3d3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:35:38 EDT 2025
Fri Jul 11 11:58:12 EDT 2025
Fri Jul 25 12:07:00 EDT 2025
Mon Jul 21 06:06:27 EDT 2025
Tue Jul 01 04:27:06 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Wed Jan 22 16:19:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords placental MRI
relaxometry
diffusion imaging
longitudinal imaging
Language English
License Attribution
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4445-e02f7e3fb08b3f054ebba7e642512cd6efc281253566fcdb4f22b5445a586f3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3476-3500
0000-0002-9814-8841
0000-0001-6967-989X
0000-0002-6907-7554
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29665
PMID 37183839
PQID 2830354954
PQPubID 1016391
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10962570
proquest_miscellaneous_2813888931
proquest_journals_2830354954
pubmed_primary_37183839
crossref_citationtrail_10_1002_mrm_29665
crossref_primary_10_1002_mrm_29665
wiley_primary_10_1002_mrm_29665_MRM29665
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 7
2009; 62
2012
2021; 104
2019; 32
2020; 83
2019; 13
2019; 79
2021; 108
1983; 5
2016; 76
2018; 80
2020; 55
2022; 119
2020 ;75
2021; 71
2018; 69
2020; 18
2015; 370
2018; 9
2018; 8
2019; 82
2019; 81
2013; 38
2020; 75
2021; 112
2022; 4
2021
2020; 95
2021; 599
2019; 43
2021; 114
2013; 34
2010; 257
1986; 161
2017; 78
2019; 28
2022; 12
2022; 35
2005; 10
2020; 47
2017
2003; 29
2021; 111
2014; 8
2022; 128
2016; 47
2022; 17
e_1_2_8_28_1
Harding R (e_1_2_8_45_1) 1983; 5
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Zeidan AM (e_1_2_8_21_1) 2021
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 55
  start-page: 293
  year: 2020
  end-page: 302
  article-title: ‐weighted placental MRI: basic research tool or emerging clinical test for placental dysfunction?
  publication-title: Ultrasound Obstet Gynecol
– volume: 78
  start-page: 2373
  year: 2017
  end-page: 2387
  article-title: A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion‐weighted MRI
  publication-title: Magn Reson Med
– volume: 62
  start-page: 717
  year: 2009
  end-page: 730
  article-title: Free water elimination and mapping from diffusion MRI
  publication-title: Magn Reson Med
– volume: 82
  start-page: 95
  year: 2019
  end-page: 106
  article-title: Combined diffusion‐relaxometry MRI to identify dysfunction in the human placenta
  publication-title: Magn Reson Med
– volume: 71
  year: 2021
  article-title: Data‐driven multi‐contrast spectral microstructure imaging with InSpect: INtegrated SPECTral component estimation and mapping
  publication-title: Med Image Anal
– volume: 370
  year: 2015
  article-title: The placenta: a multifaceted, transient organ
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 69
  start-page: 26
  year: 2018
  end-page: 31
  article-title: Decreased apparent diffusion coefficient in the placentas of monochorionic twins with selective intrauterine growth restriction
  publication-title: Placenta
– volume: 8
  start-page: 8
  year: 2014
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front Neuroinform
– volume: 47
  start-page: 197
  year: 2020
  end-page: 213
  article-title: Placental magnetic resonance imaging: a method to evaluate placental function In vivo
  publication-title: Obstet Gynecol Clin North Am
– volume: 257
  start-page: 810
  year: 2010
  end-page: 819
  article-title: Diffusion‐weighted MR imaging of the placenta in fetuses with placental insufficiency
  publication-title: Radiology
– volume: 28
  start-page: 285
  year: 2019
  end-page: 297
  article-title: Placental MRI: developing accurate quantitative measures of oxygenation
  publication-title: Top Magn Reson Imaging
– volume: 75
  start-page: 1412
  year: 2020
  end-page: 1413
  article-title: Preeclamptic placenta
  publication-title: Hypertension
– volume: 83
  start-page: 312
  year: 2020
  end-page: 321
  article-title: Deep learning how to fit an intravoxel incoherent motion model to diffusion‐weighted MRI
  publication-title: Magn Reson Med
– volume: 80
  start-page: 756
  year: 2018
  end-page: 766
  article-title: Placenta microstructure and microcirculation imaging with diffusion MRI
  publication-title: Magn Reson Med
– volume: 76
  start-page: 1551
  year: 2016
  end-page: 1562
  article-title: Functional imaging of the non‐human primate placenta with endogenous BOLD contrast
  publication-title: Magn Reson Med
– volume: 32
  start-page: 293
  year: 2019
  end-page: 300
  article-title: Assessment of human placental perfusion by intravoxel incoherent motion MR imaging
  publication-title: J Matern Fetal Neonatal Med
– volume: 119
  start-page: 1
  year: 2022
  end-page: 7
  article-title: Perfusion fraction derived from IVIM analysis of diffusion‐weighted MRI in the assessment of placental vascular malperfusion antenatally
  publication-title: Placenta
– volume: 9
  start-page: 263
  year: 2018
  article-title: Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology
  publication-title: Nat Commun
– volume: 34
  start-page: 676
  year: 2013
  end-page: 680
  article-title: In vivo assessment of putative functional placental tissue volume in placental intrauterine growth restriction (IUGR) in human fetuses using diffusion tensor magnetic resonance imaging
  publication-title: Placenta
– volume: 47
  start-page: 748
  year: 2016
  end-page: 754
  article-title: Placental magnetic resonance imaging measurements in normal pregnancies and in those complicated by fetal growth restriction
  publication-title: Ultrasound Obstet Gynecol
– volume: 7
  year: 2017
  article-title: Non‐invasive placental perfusion imaging in pregnancies complicated by fetal heart disease using velocity‐selective arterial spin labeled MRI
  publication-title: Sci Rep
– volume: 10
  start-page: 485
  year: 2005
  end-page: 490
  article-title: Placental MRI
  publication-title: Semin Fetal Neonatal Med
– volume: 43
  start-page: 507
  year: 2019
  end-page: 512
  article-title: Apparent diffusion coefficient of the placenta and fetal organs in intrauterine growth restriction
  publication-title: J Comput Assist Tomogr
– volume: 95
  start-page: 69
  year: 2020
  end-page: 77
  article-title: Placental MRI: effect of maternal position and uterine contractions on placental BOLD MRI measurements
  publication-title: Placenta
– volume: 81
  start-page: 350
  year: 2019
  end-page: 361
  article-title: Separating fetal and maternal placenta circulations using multiparametric MRI
  publication-title: Magn Reson Med
– volume: 29
  start-page: 19
  year: 2003
  end-page: 23
  article-title: Assessment of placental fractional moving blood volume using quantitative three‐dimensional power doppler ultrasound
  publication-title: Ultrasound Med Biol
– start-page: 253
  year: 2021
  end-page: 262
– start-page: 101
  year: 2012
  end-page: 144
– volume: 38
  start-page: 573
  year: 2013
  end-page: 587
  article-title: MR imaging of the placenta: what a radiologist should know
  publication-title: Abdom Imaging
– volume: 79
  start-page: 396
  year: 2019
  end-page: 401
  article-title: Evaluation of placental perfusion based on intravoxel incoherent motion diffusion weighted imaging (IVIM‐DWI) and its predictive value for late‐onset fetal growth restriction
  publication-title: Geburtshilfe Frauenheilkd
– volume: 108
  start-page: 23
  year: 2021
  end-page: 31
  article-title: placental MRI in pregnancies complicated with fetal congenital heart disease
  publication-title: Placenta
– volume: 114
  start-page: 52
  year: 2021
  end-page: 55
  article-title: weighted placental MRI in relation to placental histology and birth weight
  publication-title: Placenta
– volume: 17
  year: 2022
  article-title: Quantitative longitudinal mapping for assessing placental function and association with adverse pregnancy outcomes across gestation
  publication-title: PloS One
– volume: 13
  start-page: 64
  year: 2019
  article-title: The Dmipy toolbox: diffusion MRI multi‐compartment modeling and microstructure recovery made easy
  publication-title: Front Neuroinform
– volume: 83
  start-page: 2160
  year: 2020
  end-page: 2172
  article-title: Improved fetal blood oxygenation and placental estimated measurements of diffusion‐weighted MRI using data‐driven Bayesian modeling
  publication-title: Magn Reson Med
– volume: 599
  start-page: 1901
  year: 2021
  end-page: 1915
  article-title: The effects of maternal position, in late gestation pregnancy, on placental blood flow and oxygenation: an MRI study
  publication-title: J Physiol
– start-page: 1523
  year: 2020 ;75
  end-page: 1531
  article-title: placental magnetic resonance imaging in preterm preeclampsia:: an observational cohort study
  publication-title: Hypertension (1979)
– volume: 111
  start-page: 47
  year: 2021
  end-page: 53
  article-title: Comparative study of placental and intravoxel incoherent motion in the prediction of fetal growth restriction
  publication-title: Placenta
– start-page: 55
  year: 2012
  end-page: 100
– volume: 128
  start-page: 69
  year: 2022
  end-page: 71
  article-title: Change in measurements of placenta and fetal organs during Braxton Hicks contractions
  publication-title: Placenta
– volume: 104
  start-page: 138
  year: 2021
  end-page: 145
  article-title: Placental magnetic resonance imaging in chronic hypertension: a case‐control study
  publication-title: Placenta
– volume: 161
  start-page: 401
  year: 1986
  end-page: 407
  article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
– volume: 112
  start-page: 111
  year: 2021
  end-page: 122
  article-title: Multiscale and multimodal imaging of utero‐placental anatomy and function in pregnancy
  publication-title: Placenta
– volume: 4
  year: 2022
  article-title: ‐weighted placental magnetic resonance imaging: a biomarker of placental dysfunction in small‐for‐gestational‐age pregnancies
  publication-title: Am J Obstet Gynecol MFM
– volume: 12
  year: 2022
  article-title: Dynamics of and deformation in the placenta and myometrium during pre‐labour contractions
  publication-title: Sci Rep
– year: 2017
– volume: 8
  year: 2018
  article-title: Integrated and efficient diffusion‐relaxometry using ZEBRA
  publication-title: Sci Rep
– volume: 5
  start-page: 267
  year: 1983
  end-page: 276
  article-title: Fetal and maternal influences on arterial oxygen levels in the sheep fetus
  publication-title: J Dev Physiol
– volume: 18
  year: 2020
  article-title: The haemodynamics of the human placenta in utero
  publication-title: PLoS Biol
– volume: 35
  start-page: 9667
  year: 2022
  end-page: 9674
  article-title: Human placental microperfusion and microstructural assessment by intra‐voxel incoherent motion MRI for discriminating intrauterine growth restriction: a pilot study
  publication-title: J Matern Fetal Neonatal Med
– ident: e_1_2_8_39_1
  doi: 10.1016/j.placenta.2021.06.005
– start-page: 253
  volume-title: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis
  year: 2021
  ident: e_1_2_8_21_1
– ident: e_1_2_8_33_1
  doi: 10.1007/978-3-642-23941-0_6
– ident: e_1_2_8_37_1
  doi: 10.1055/a-0717-5275
– ident: e_1_2_8_36_1
  doi: 10.1080/14767058.2022.2050365
– ident: e_1_2_8_23_1
  doi: 10.1002/mrm.27036
– ident: e_1_2_8_7_1
  doi: 10.1097/RMR.0000000000000221
– ident: e_1_2_8_19_1
  doi: 10.1148/radiology.161.2.3763909
– ident: e_1_2_8_17_1
  doi: 10.1002/uog.14917
– ident: e_1_2_8_28_1
  doi: 10.1016/j.placenta.2022.01.005
– volume: 5
  start-page: 267
  year: 1983
  ident: e_1_2_8_45_1
  article-title: Fetal and maternal influences on arterial oxygen levels in the sheep fetus
  publication-title: J Dev Physiol
– ident: e_1_2_8_11_1
  doi: 10.1002/uog.20855
– ident: e_1_2_8_44_1
  doi: 10.1038/s41598-017-16461-8
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ogc.2019.10.009
– ident: e_1_2_8_41_1
  doi: 10.1016/j.placenta.2013.04.018
– ident: e_1_2_8_35_1
  doi: 10.1007/978-3-642-23941-0_7
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.27733
– ident: e_1_2_8_3_1
  doi: 10.1161/HYPERTENSIONAHA.120.14701
– ident: e_1_2_8_10_1
  doi: 10.1038/s41598-022-22008-3
– ident: e_1_2_8_51_1
  doi: 10.1007/s00261-012-9929-8
– ident: e_1_2_8_49_1
  doi: 10.1002/mrm.28075
– ident: e_1_2_8_47_1
  doi: 10.1038/s41467-017-02499-9
– ident: e_1_2_8_42_1
  doi: 10.1016/j.placenta.2018.07.001
– ident: e_1_2_8_32_1
  doi: 10.1016/j.placenta.2021.07.290
– ident: e_1_2_8_40_1
  doi: 10.1016/j.ajogmf.2022.100578
– ident: e_1_2_8_4_1
  doi: 10.1097/RCT.0000000000000844
– ident: e_1_2_8_43_1
  doi: 10.1016/j.placenta.2020.12.006
– ident: e_1_2_8_20_1
– ident: e_1_2_8_13_1
  doi: 10.1148/radiol.10092283
– ident: e_1_2_8_6_1
  doi: 10.1016/j.siny.2005.05.001
– ident: e_1_2_8_9_1
  doi: 10.1016/j.placenta.2022.08.011
– ident: e_1_2_8_46_1
  doi: 10.1113/JP280569
– ident: e_1_2_8_12_1
  doi: 10.1002/mrm.26052
– ident: e_1_2_8_38_1
  doi: 10.1016/S0301-5629(02)00695-6
– ident: e_1_2_8_16_1
  doi: 10.1161/HYPERTENSIONAHA.120.14855
– ident: e_1_2_8_29_1
  doi: 10.1016/j.placenta.2020.04.008
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.27406
– ident: e_1_2_8_22_1
  doi: 10.1038/s41598-018-33463-2
– ident: e_1_2_8_50_1
  doi: 10.1002/mrm.27910
– ident: e_1_2_8_30_1
  doi: 10.1371/journal.pbio.3000676
– ident: e_1_2_8_48_1
  doi: 10.1002/mrm.26598
– ident: e_1_2_8_24_1
  doi: 10.3389/fninf.2014.00008
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.22055
– ident: e_1_2_8_25_1
  doi: 10.3389/fninf.2019.00064
– ident: e_1_2_8_27_1
  doi: 10.1371/journal.pone.0270360
– ident: e_1_2_8_15_1
  doi: 10.1016/j.media.2021.102045
– ident: e_1_2_8_5_1
  doi: 10.1016/j.placenta.2021.02.015
– ident: e_1_2_8_18_1
  doi: 10.1016/j.placenta.2021.07.304
– ident: e_1_2_8_14_1
  doi: 10.1080/14767058.2017.1378334
– ident: e_1_2_8_34_1
  doi: 10.1098/rstb.2014.0066
SSID ssj0009974
Score 2.4718196
Snippet Purpose Studying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of...
Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual...
PurposeStudying placental development informs when development is abnormal. Most placental MRI studies are cross‐sectional and do not study the extent of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1137
SubjectTerms Benchmarking
Compartments
Covariance
Cross-Sectional Studies
diffusion imaging
Diffusion Magnetic Resonance Imaging - methods
Diffusion rate
Female
Gestation
Humans
longitudinal imaging
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Microstructure
Motion
Placenta
Placenta - diagnostic imaging
placental MRI
Preclinical and Clinical Imaging
Pregnancy
T2$$ {\mathrm{T}}_2^{\ast } $$ relaxometry
Trends
Title Assessing within‐subject rates of change of placental MRI diffusion metrics in normal pregnancy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29665
https://www.ncbi.nlm.nih.gov/pubmed/37183839
https://www.proquest.com/docview/2830354954
https://www.proquest.com/docview/2813888931
https://pubmed.ncbi.nlm.nih.gov/PMC10962570
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSiAuBcorUCqDOHDJNvFjk4gTQlQFKQitqNQDUmQ7dlnRzVabzaGc-An8Rn4JHjtJWQoS4mbJE8Wvsb8Zj78BeJ5LVqeS5rFUWsScSh0rkemYT60zDhRV3GdrKN9Pj475uxNxsgUvh7cwgR9idLihZvj9GhVcqvbgkjR0sVpMqAPr-MAcY7UQEM0uqaOKIjAwZxz3mYIPrEIJPRi_3DyLrgDMq3GSv-JXfwAd3oJPQ9ND3MmXSbdWE_31N1bH_-zbbdjpgSl5FVbSHdgyzS7cKPur91247mNFdXsXZLgodmceQS_uvPnx7XvbKXToECSeaMnSkvCgGEs-6gvfXJJy9pZgQpYOPXRkgbm8dEvmDWkQOJ-R85U5Rf6Pi3twfPjm4-ujuM_UEGvOuYhNQm1mmFVJrph1KNAoJTPjbBuHJ3Q9NVZThyQEc-DR6lpxS6lCGiAp8qllNbsP282yMQ-B8CJJtBC1yIua1wWTicyc2SPTWie1ZkkEL4Y5q3RPY47ZNM6qQMBMKzd4lR-8CJ6NoueBu-NPQnvDxFe9-rYVsqIxZzkLHsHTsdopHt6myMYsO5RJWZ47uJdG8CCsk_EvzJ34zvQvIsg3VtAogKTemzXN_LMn906dTYmZBV0__Qr5e8urclb6wqN_F30MN6lDaSFIbg-216vOPHGoaq324RrlH_a9Ev0EgJchmg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHqVAoIBBHLhkm_ixSSQuCKi20PSwaqVeUGQ7DqzoZqvN5gAnfgK_kV-Cx05SloKEuFnyRPFr7G_G428AnqeSlbGkaSiVFiGnUodKJDrk48oaB4oq7rI15IfjyTF_dyJONuBl_xbG80MMDjfUDLdfo4KjQ3r3nDV0vpyPqEXr4hJcxozeyJz_ZnpOHpVlnoM54bjTZLznFYro7vDp-ml0AWJejJT8FcG6I2jvJnzoG-8jTz6P2pUa6a-_8Tr-b-9uwY0Om5JXfjHdhg1Tb8HVvLt934IrLlxUN3dA-rtie-wRdOTO6h_fvjetQp8OQe6Jhiwq4t8UY8kFfuGzS5JP9wnmZGnRSUfmmM5LN2RWkxqx8yk5W5qPSAHyZRuO994evZ6EXbKGUHPORWgiWiWGVSpKFassEDRKycRY88ZCCl2OTaWpBROCWfxY6VLxilKFTEBSpOOKlewubNaL2twHwrMo0kKUIs1KXmZMRjKxlo-MSx2VmkUBvOgnrdAdkzkm1DgtPAczLezgFW7wAng2iJ55-o4_Ce30M190GtwUSIzGrPEseABPh2qre3ihImuzaFEmZmlqEV8cwD2_UIa_MHvoW-s_CyBdW0KDAPJ6r9fUs0-O3zu2ZiUmF7T9dEvk7y0v8mnuCg_-XfQJXJsc5QfFwf7h-4dwnVrQ5mPmdmBztWzNIwuyVuqx06Wfoz4k3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIiouqJRXoIBBHLiEJn5sEvVUAasWSFVVVOot8hNW6mZXm-6BGz-B38gvqcfOpqwKEjdLniiJx-N5-huAN6VkJpe0TKXSIuVU6lSJQqd85LxzoKjioVtDfTw6POOfzsX5Buyv7sJEfIgh4IaSEc5rFPC5cXvXoKHTxfQd9ca6uAW3MdmH9VyUn1wj7lYRgrngeNBUfAUrlNG94dF1ZXTDwrxZKPmnARs00Hgb7vWmIzmIvL4PG7bdga26T47vwJ1Qzam7ByBjKtdrJYJx1kn7--evbqkw5EIQGqIjM0filV8chbosvBVJ6tMjgi1TlhhDI1PstqU7MmlJi6btBZkv7DdE6PjxEM7GH7--P0z7Xgqp5pyL1GbUFZY5lZWKOW-nWaVkYb334TW-NiPrNPW6XjBv3jltFHeUKgTqkaIcOWbYI9hsZ619AoRXWaaFMKKsDDcVk5ksvGMic6Mzo1mWwNvVoja6BxrHfhcXTYRIpo1f_yasfwKvB9J5RNf4G9HuijNNL2Bdg7hlzPu2gifwapj2ooH5Dtna2RJpcuYd_IrlCTyOjBzewrxO9s55lUC5xuKBAGG312fayfcAv517rw97__n_DLvh31_e1Kd1GDz9f9KXsHXyYdx8OTr-_AzuYnP7WNG2C5uXi6V97k2gS_UibPUrM-cDRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+within%E2%80%90subject+rates+of+change+of+placental+MRI+diffusion+metrics+in+normal+pregnancy&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Cromb%2C+Daniel&rft.au=Slator%2C+Paddy+J&rft.au=De+La+Fuente%2C+Miguel&rft.au=Price%2C+Anthony+N&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=90&rft.issue=3&rft.spage=1137&rft.epage=1150&rft_id=info:doi/10.1002%2Fmrm.29665&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon