How brain structure–function decoupling supports individual cognition and its molecular mechanism

Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region‐specific and hierarchical across the neocortex. However, the relationship between hierarchical structur...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 45; no. 2; pp. e26575 - n/a
Main Authors Dong, Xiaoxi, Li, Qiongling, Wang, Xuetong, He, Yirong, Zeng, Debin, Chu, Lei, Zhao, Kun, Li, Shuyu
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region‐specific and hierarchical across the neocortex. However, the relationship between hierarchical structure–function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure–function decoupling remain incompletely characterized. Here, we used the structural‐decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region‐specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure–function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high‐level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor‐related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure–function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure–function decoupling. Practitioner Points Structure–function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. High‐level hierarchical structure–function decoupling contributes much more than low‐level decoupling to individual cognition. Structure–function decoupling could be regulated by genes associated with pivotal receptors that are crucial for neuronal function flexibility. The distribution of structure–function decoupling is hierarchical across the neocortex (a, b) and high‐level hierarchical structure–function decoupling contributes much more than low‐level decoupling to individual cognition (c, d). Structure–function decoupling was associated with receptor‐related gene terms (e) and four neurotransmitter receptors/transporters (f).
AbstractList Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region-specific and hierarchical across the neocortex. However, the relationship between hierarchical structure-function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure-function decoupling remain incompletely characterized. Here, we used the structural-decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region-specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high-level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor-related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure-function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure-function decoupling. PRACTITIONER POINTS: Structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. High-level hierarchical structure-function decoupling contributes much more than low-level decoupling to individual cognition. Structure-function decoupling could be regulated by genes associated with pivotal receptors that are crucial for neuronal function flexibility.Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region-specific and hierarchical across the neocortex. However, the relationship between hierarchical structure-function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure-function decoupling remain incompletely characterized. Here, we used the structural-decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region-specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high-level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor-related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure-function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure-function decoupling. PRACTITIONER POINTS: Structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. High-level hierarchical structure-function decoupling contributes much more than low-level decoupling to individual cognition. Structure-function decoupling could be regulated by genes associated with pivotal receptors that are crucial for neuronal function flexibility.
Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region‐specific and hierarchical across the neocortex. However, the relationship between hierarchical structure–function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure–function decoupling remain incompletely characterized. Here, we used the structural‐decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region‐specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure–function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high‐level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor‐related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure–function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure–function decoupling. Practitioner Points Structure–function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. High‐level hierarchical structure–function decoupling contributes much more than low‐level decoupling to individual cognition. Structure–function decoupling could be regulated by genes associated with pivotal receptors that are crucial for neuronal function flexibility. The distribution of structure–function decoupling is hierarchical across the neocortex (a, b) and high‐level hierarchical structure–function decoupling contributes much more than low‐level decoupling to individual cognition (c, d). Structure–function decoupling was associated with receptor‐related gene terms (e) and four neurotransmitter receptors/transporters (f).
Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region-specific and hierarchical across the neocortex. However, the relationship between hierarchical structure–function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure–function decoupling remain incompletely characterized. Here, we used the structural-decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region-specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure–function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high-level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor-related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure–function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure–function decoupling.Practitioner PointsStructure–function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks.High-level hierarchical structure–function decoupling contributes much more than low-level decoupling to individual cognition.Structure–function decoupling could be regulated by genes associated with pivotal receptors that are crucial for neuronal function flexibility.
Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region‐specific and hierarchical across the neocortex. However, the relationship between hierarchical structure–function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure–function decoupling remain incompletely characterized. Here, we used the structural‐decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region‐specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure–function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high‐level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor‐related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure–function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure–function decoupling. The distribution of structure–function decoupling is hierarchical across the neocortex (a, b) and high‐level hierarchical structure–function decoupling contributes much more than low‐level decoupling to individual cognition (c, d). Structure–function decoupling was associated with receptor‐related gene terms (e) and four neurotransmitter receptors/transporters (f).
Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human brain structure and function is region-specific and hierarchical across the neocortex. However, the relationship between hierarchical structure-function decoupling and the manifestation of individual behavior and cognition, along with the significance of the functional systems involved, and the specific molecular mechanism underlying structure-function decoupling remain incompletely characterized. Here, we used the structural-decoupling index (SDI) to quantify the dependency of functional signals on the structural connectome using a significantly larger cohort of healthy subjects. Canonical correlation analysis (CCA) was utilized to assess the general multivariate correlation pattern between region-specific SDIs across the whole brain and multiple cognitive traits. Then, we predicted five composite cognitive scores resulting from multivariate analysis using SDIs in primary networks, association networks, and all networks, respectively. Finally, we explored the molecular mechanism related to SDI by investigating its genetic factors and relationship with neurotransmitter receptors/transporters. We demonstrated that structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. We revealed better performance in cognition prediction is achieved by using high-level hierarchical SDIs, with varying significance of different brain regions in predicting cognitive processes. We found that the SDIs were associated with the gene expression level of several receptor-related terms, and we also found the spatial distributions of four receptors/transporters significantly correlated with SDIs, namely D2, NET, MOR, and mGluR5, which play an important role in the flexibility of neuronal function. Collectively, our findings corroborate the association between hierarchical macroscale structure-function decoupling and individual cognition and provide implications for comprehending the molecular mechanism of structure-function decoupling. PRACTITIONER POINTS: Structure-function decoupling is hierarchical across the neocortex, spanning from primary networks to association networks. High-level hierarchical structure-function decoupling contributes much more than low-level decoupling to individual cognition. Structure-function decoupling could be regulated by genes associated with pivotal receptors that are crucial for neuronal function flexibility.
Author Zeng, Debin
Dong, Xiaoxi
Wang, Xuetong
Chu, Lei
Li, Shuyu
He, Yirong
Li, Qiongling
Zhao, Kun
AuthorAffiliation 5 School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China
4 Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering Beihang University Beijing China
1 State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
2 Beijing Key Laboratory of Brain Imaging and Connectomics Beijing Normal University Beijing China
3 IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
AuthorAffiliation_xml – name: 5 School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China
– name: 2 Beijing Key Laboratory of Brain Imaging and Connectomics Beijing Normal University Beijing China
– name: 3 IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
– name: 4 Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering Beihang University Beijing China
– name: 1 State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
Author_xml – sequence: 1
  givenname: Xiaoxi
  surname: Dong
  fullname: Dong, Xiaoxi
  organization: Beijing Normal University
– sequence: 2
  givenname: Qiongling
  surname: Li
  fullname: Li, Qiongling
  organization: Beijing Normal University
– sequence: 3
  givenname: Xuetong
  surname: Wang
  fullname: Wang, Xuetong
  organization: Beijing Normal University
– sequence: 4
  givenname: Yirong
  surname: He
  fullname: He, Yirong
  organization: Beijing Normal University
– sequence: 5
  givenname: Debin
  surname: Zeng
  fullname: Zeng, Debin
  organization: Beihang University
– sequence: 6
  givenname: Lei
  surname: Chu
  fullname: Chu, Lei
  organization: Beihang University
– sequence: 7
  givenname: Kun
  surname: Zhao
  fullname: Zhao, Kun
  organization: Beijing University of Posts and Telecommunications
– sequence: 8
  givenname: Shuyu
  orcidid: 0000-0002-3459-6821
  surname: Li
  fullname: Li, Shuyu
  email: shuyuli@bnu.edu.cn
  organization: Beijing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38339909$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1TAURS1URB8w4AdQJCYwSGs7jhOPUKkKt1IrJjC2HD_udeXYwY5bdcY_8If9EnwfraAqo3Oks_bWtvch2PPBawDeIniMIMQnq2E8xrTt2hfgAEHW1RCxZm-907ZmpEP74DClawgRaiF6BfabvmkYg-wAyEW4rYYorK_SHLOcc9T3v36b7OVsg6-UliFPzvpllfI0hTinynplb6zKwlUyLL3dgMKrypbjGJyW2YlYjVquhLdpfA1eGuGSfrObR-DHl_PvZ4v68tvXi7PTy1oSQtp6MKY3VGLdUzT0DCrVQkXaoZOt7juEGBpI0xtsKJFK0E4YMnTYGEw1kqLBzRH4tPWd8jBqJbWfo3B8inYU8Y4HYfm_F29XfBluOII9pj1ri8OHnUMMP7NOMx9tkto54XXIiWOGCWMdwbSg75-g1yFHX963oRDFkDaFevd3pMcsDwUU4GQLyBhSitpwaWex_tGS0LoSja8r5qVivqm4KD4-UTyYPsfu3G-t03f_B_ni89VW8QdI1rke
CitedBy_id crossref_primary_10_3389_fnagi_2024_1503806
crossref_primary_10_1016_j_bpsc_2024_05_008
crossref_primary_10_1016_j_nicl_2025_103764
Cites_doi 10.1016/S0006-3223(02)01369-0
10.1152/jn.00338.2011
10.1038/s41467-019-09234-6
10.1073/pnas.1921475117
10.1093/cercor/bhr291
10.1111/ejn.15216
10.1074/mcp.M113.035600
10.1038/nn.4402
10.1093/oso/9780198507086.001.0001
10.1093/cercor/bhaa063
10.1126/sciadv.aat7854
10.1109/TMI.2010.2045126
10.1073/pnas.1801351115
10.1162/netn_a_00153
10.1038/s41562-021-01082-z
10.1371/journal.pone.0080713
10.1109/JPROC.2018.2798928
10.1126/science.1255905
10.1016/j.tins.2007.01.002
10.1038/s41592-022-01625-w
10.1126/science.1060937
10.1038/s41593-018-0312-0
10.1093/cercor/bhw089
10.1523/JNEUROSCI.0900-18.2018
10.1038/ng2142
10.1111/j.1460-9568.2007.05574.x
10.1371/journal.pbio.3000284
10.1002/hbm.25362
10.1016/j.neuroimage.2019.01.011
10.1242/jeb.196.1.263
10.1523/JNEUROSCI.2097-04.2005
10.1017/S1355617714000241
10.1093/cercor/bhy101
10.1073/pnas.1912034117
10.1016/j.neuroimage.2012.02.018
10.1038/nrn2961
10.1016/j.neuroimage.2022.119387
10.1038/nrn3963
10.1037/h0023816
10.1038/s42003-020-01622-9
10.1016/j.cortex.2014.07.007
10.1016/j.neuroimage.2013.05.041
10.1038/s41562-017-0260-9
10.1038/s41593-022-01186-3
10.1038/s41467-021-24306-2
10.1016/j.neuroimage.2017.03.045
10.1038/s41467-019-12765-7
10.1016/j.neuroimage.2013.10.067
10.1038/s41583-021-00428-w
10.1016/j.tics.2020.01.008
10.1038/nature11405
10.1038/nrn.2017.149
10.1016/j.neuroimage.2013.04.127
10.1126/sciadv.abb3417
10.1523/JNEUROSCI.2944-08.2008
10.1016/j.neuron.2010.01.016
10.1016/j.neuroimage.2022.118970
10.1038/s41467-018-04614-w
10.1016/S0891-0618(01)00122-3
10.1038/s41467-021-25184-4
10.1016/j.conb.2012.11.015
10.1016/j.tics.2017.11.002
10.1038/ncomms10340
10.1111/j.2044-8279.1967.tb01930.x
10.1002/hbm.25420
10.1016/j.neubiorev.2023.105193
10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
10.1073/pnas.1903403116
10.1038/s41593-020-00711-6
10.1073/pnas.0500334102
10.1016/j.neuroimage.2010.01.071
10.1016/j.neuroimage.2014.01.060
10.1016/0001-6918(67)90011-X
10.1126/science.1238411
10.1073/pnas.1608282113
10.1073/pnas.1018985108
10.7554/eLife.70119
10.1016/j.neuroimage.2018.05.070
10.1038/s41467-022-35680-w
10.1038/nature18933
10.1093/brain/121.6.1013
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC.
2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC.
– notice: 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
DOI 10.1002/hbm.26575
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Dong et al
EISSN 1097-0193
EndPage n/a
ExternalDocumentID PMC10826895
38339909
10_1002_hbm_26575
HBM26575
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 32271146; 81972160; 82202245
– fundername: Startup Funds for Top‐Notch Talents at Beijing Normal University
– fundername: National Natural Science Foundation of China
  grantid: 81972160
– fundername: National Natural Science Foundation of China
  grantid: 82202245
– fundername: Startup Funds for Top-Notch Talents at Beijing Normal University
– fundername: National Natural Science Foundation of China
  grantid: 32271146
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
WXSBR
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c4445-bff8f6c2e861b890dd50d45b7c5e871191b438f2f64cda67af4b72ff26e1ca323
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:35:57 EDT 2025
Thu Jul 10 19:26:46 EDT 2025
Wed Aug 13 06:22:42 EDT 2025
Mon Jul 21 05:57:45 EDT 2025
Tue Jul 01 01:11:15 EDT 2025
Thu Apr 24 22:50:39 EDT 2025
Wed Jan 22 16:15:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cortical hierarchy
structure-function decoupling
cognition
genes
neurotransmitters
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4445-bff8f6c2e861b890dd50d45b7c5e871191b438f2f64cda67af4b72ff26e1ca323
Notes Xiaoxi Dong and Qiongling Li contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3459-6821
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26575
PMID 38339909
PQID 2924162063
PQPubID 996345
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10826895
proquest_miscellaneous_2924997426
proquest_journals_2924162063
pubmed_primary_38339909
crossref_citationtrail_10_1002_hbm_26575
crossref_primary_10_1002_hbm_26575
wiley_primary_10_1002_hbm_26575_HBM26575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 February, 2024
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 1 February, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2007; 39
2022; 250
2021; 22
2002; 52
2019; 10
2013; 23
2019; 17
2022; 25
2011; 12
1967; 26
2007; 30
2015; 348
2012; 489
1966; 57
2013; 8
2022; 259
2005; 25
2014; 20
2010; 65
2018; 9
2020; 6
2020; 4
2001; 293
2018; 2
2000
2019; 22
2010; 29
2005; 102
2018; 178
2008; 28
2016; 113
2019; 116
2017; 160
2011; 22
2014; 13
1998; 121
2018; 38
2007; 25
2012; 62
2018; 28
2021; 5
2014; 92
2015; 16
2021; 42
2023; 14
2021; 4
2016; 19
2019; 5
2018; 106
1994; 196
2013; 342
2001; 22
1999; 7
2018; 22
2019; 189
2014; 87
2018; 19
2016; 7
2021; 10
2011; 108
2021; 53
2021; 12
2011; 106
2020; 30
2016; 536
2023; 150
2015; 63
2018; 115
2013; 80
2020; 117
2020; 24
2020; 23
1967; 37
2016; 26
2010; 52
2022; 19
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 52
  start-page: 759
  issue: 7
  year: 2002
  end-page: 763
  article-title: Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects
  publication-title: Biological Psychiatry
– volume: 4
  start-page: 1072
  issue: 4
  year: 2020
  end-page: 1090
  article-title: Signal propagation via cortical hierarchies
  publication-title: Network Neuroscience
– volume: 25
  start-page: 2471
  issue: 10
  year: 2005
  end-page: 2477
  article-title: Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: A positron emission tomography study using the high‐affinity dopamine D receptor ligand [ C]FLB 457
  publication-title: The Journal of Neuroscience
– volume: 42
  start-page: 2236
  issue: 7
  year: 2021
  end-page: 2249
  article-title: Correlation between cortical gene expression and resting‐state functional network centrality in healthy young adults
  publication-title: Human Brain Mapping
– volume: 65
  start-page: 445
  issue: 4
  year: 2010
  end-page: 459
  article-title: Group 1 mGluR‐dependent synaptic long‐term depression: Mechanisms and implications for circuitry and disease
  publication-title: Neuron
– volume: 22
  start-page: 167
  issue: 3
  year: 2021
  end-page: 179
  article-title: Cognitive and behavioural flexibility: Neural mechanisms and clinical considerations
  publication-title: Nature Reviews Neuroscience
– volume: 6
  issue: 39
  year: 2020
  article-title: Shaping brain structure: Genetic and phylogenetic axes of macroscale organization of cortical thickness
  publication-title: Science Advances
– volume: 196
  start-page: 263
  issue: 1
  year: 1994
  end-page: 281
  article-title: Molecular physiology of norepinephrine and serotonin transporters
  publication-title: Journal of Experimental Biology
– volume: 489
  start-page: 391
  issue: 7416
  year: 2012
  end-page: 399
  article-title: An anatomically comprehensive atlas of the adult human brain transcriptome
  publication-title: Nature
– volume: 24
  start-page: 302
  issue: 4
  year: 2020
  end-page: 315
  article-title: Linking structure and function in macroscale brain networks
  publication-title: Trends in Cognitive Sciences
– volume: 115
  start-page: 6297
  issue: 24
  year: 2018
  end-page: 6302
  article-title: Navigation of brain networks
  publication-title: Proceedings of the National Academy of Sciences
– volume: 102
  start-page: 7426
  issue: 21
  year: 2005
  end-page: 7431
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
  publication-title: Proceedings of the National Academy of Sciences
– volume: 189
  start-page: 353
  year: 2019
  end-page: 367
  article-title: A practical guide to linking brain‐wide gene expression and neuroimaging data
  publication-title: NeuroImage
– volume: 5
  start-page: 1240
  issue: 9
  year: 2021
  end-page: 1250
  article-title: Mapping gene transcription and neurocognition across human neocortex
  publication-title: Nature Human Behaviour
– volume: 150
  year: 2023
  article-title: From neurotransmitters to networks: Transcending organisational hierarchies with molecular‐informed functional imaging
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 39
  start-page: 1217
  issue: 10
  year: 2007
  end-page: 1224
  article-title: Population genomics of human gene expression
  publication-title: Nature Genetics
– volume: 259
  year: 2022
  article-title: Structural insight into the individual variability architecture of the functional brain connectome
  publication-title: NeuroImage
– volume: 19
  start-page: 1472
  issue: 11
  year: 2022
  end-page: 1479
  article-title: Neuromaps: Structural and functional interpretation of brain maps
  publication-title: Nature Methods
– volume: 10
  start-page: 1523
  issue: 1
  year: 2019
  article-title: Metascape provides a biologist‐oriented resource for the analysis of systems‐level datasets
  publication-title: Nature Communications
– volume: 2
  start-page: 156
  issue: 2
  year: 2018
  end-page: 164
  article-title: Functional alignment with anatomical networks is associated with cognitive flexibility
  publication-title: Nature Human Behaviour
– volume: 19
  start-page: 17
  issue: 1
  year: 2018
  article-title: Communication dynamics in complex brain networks
  publication-title: Nature Reviews Neuroscience
– volume: 19
  start-page: 1433
  issue: 11
  year: 2016
  end-page: 1441
  article-title: Increased burden of ultra‐rare protein‐altering variants among 4,877 individuals with schizophrenia
  publication-title: Nature Neuroscience
– volume: 53
  start-page: 3727
  issue: 11
  year: 2021
  end-page: 3739
  article-title: Cingulate networks associated with gray matter loss in Parkinson's disease show high expression of cholinergic genes in the healthy brain
  publication-title: European Journal of Neuroscience
– volume: 250
  year: 2022
  article-title: Brain structure‐function coupling provides signatures for task decoding and individual fingerprinting
  publication-title: NeuroImage
– volume: 30
  start-page: 111
  issue: 3
  year: 2007
  end-page: 118
  article-title: Hippocampal long‐term depression: Master or minion in declarative memory processes?
  publication-title: Trends in Neurosciences
– volume: 10
  year: 2021
  article-title: The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging
  publication-title: eLife
– volume: 29
  start-page: 1626
  issue: 9
  year: 2010
  end-page: 1635
  article-title: Generalized q‐sampling imaging
  publication-title: IEEE Transactions on Medical Imaging
– volume: 22
  start-page: 21
  issue: 1
  year: 2018
  end-page: 31
  article-title: Large‐scale gradients in human cortical organization
  publication-title: Trends in Cognitive Sciences
– volume: 160
  start-page: 84
  year: 2017
  end-page: 96
  article-title: Functional connectivity dynamically evolves on multiple time‐scales over a static structural connectome: Models and mechanisms
  publication-title: NeuroImage
– volume: 4
  start-page: 86
  issue: 1
  year: 2021
  article-title: Organisational and neuromodulatory underpinnings of structural‐functional connectivity decoupling in patients with Parkinson's disease
  publication-title: Communications Biology
– volume: 37
  start-page: 209
  issue: 2
  year: 1967
  end-page: 224
  article-title: The theory of fluid and crystallized general in℡ligence checked at the 5–6 year‐old level
  publication-title: British Journal of Educational Psychology
– volume: 14
  start-page: 244
  issue: 1
  year: 2023
  article-title: mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function
  publication-title: Nature Communications
– volume: 28
  start-page: 13354
  issue: 49
  year: 2008
  end-page: 13362
  article-title: A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect
  publication-title: The Journal of Neuroscience
– volume: 22
  start-page: 2241
  issue: 10
  year: 2011
  end-page: 2262
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface‐based atlases
  publication-title: Cerebral Cortex
– volume: 5
  issue: 1
  year: 2019
  article-title: Inversion of a large‐scale circuit model reveals a cortical hierarchy in the dynamic resting human brain
  publication-title: Science Advances
– volume: 57
  start-page: 253
  issue: 253–270
  year: 1966
  end-page: 270
  article-title: Refinement and test of the theory of fluid and crystallized general intelligences
  publication-title: Journal of Educational Psychology
– volume: 23
  start-page: 162
  issue: 2
  year: 2013
  end-page: 171
  article-title: Network attributes for segregation and integration in the human brain
  publication-title: Current Opinion in Neurobiology
– volume: 30
  start-page: 4607
  issue: 8
  year: 2020
  end-page: 4616
  article-title: Hierarchy of connectivity–function relationship of the human cortex revealed through predicting activity across functional domains
  publication-title: Cerebral Cortex
– volume: 22
  start-page: 127
  issue: 1
  year: 2001
  end-page: 137
  article-title: D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain
  publication-title: Journal of Chemical Neuroanatomy
– volume: 8
  issue: 11
  year: 2013
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS One
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The WU‐Minn human connectome project: An overview
  publication-title: NeuroImage
– volume: 17
  issue: 5
  year: 2019
  article-title: Microstructural and functional gradients are increasingly dissociated in transmodal cortices
  publication-title: PLoS Biology
– volume: 25
  start-page: 3185
  issue: 10
  year: 2007
  end-page: 3192
  article-title: Simulation of robustness against lesions of cortical networks
  publication-title: European Journal of Neuroscience
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 7
  article-title: Decoupling of brain function from structure reveals regional behavioral specialization in humans
  publication-title: Nature Communications
– volume: 121
  start-page: 1013
  issue: 6
  year: 1998
  end-page: 1052
  article-title: From sensation to cognition
  publication-title: Brain
– volume: 42
  start-page: 3102
  issue: 10
  year: 2021
  end-page: 3118
  article-title: Distinct functional and structural connections predict crystallised and fluid cognition in healthy adults
  publication-title: Human Brain Mapping
– volume: 9
  start-page: 2178
  issue: 1
  year: 2018
  article-title: Mapping higher‐order relations between brain structure and function with embedded vector representations of connectomes
  publication-title: Nature Communications
– volume: 12
  start-page: 4237
  issue: 1
  year: 2021
  article-title: Genetic influences on hub connectivity of the human connectome
  publication-title: Nature Communications
– volume: 12
  issue: 1
  year: 2011
  article-title: Emerging concepts for the dynamical organization of resting‐state activity in the brain
  publication-title: Nature Reviews Neuroscience
– volume: 20
  start-page: 588
  issue: 6
  year: 2014
  end-page: 598
  article-title: Reliability and validity of composite scores from the NIH toolbox cognition battery in adults
  publication-title: Journal of the International Neuropsychological Society
– volume: 92
  start-page: 381
  year: 2014
  end-page: 397
  article-title: Permutation inference for the general linear model
  publication-title: NeuroImage
– volume: 25
  start-page: 1569
  issue: 11
  year: 2022
  end-page: 1581
  article-title: Mapping neurotransmitter systems to the structural and functional organization of the human neocortex
  publication-title: Nature Neuroscience
– volume: 116
  start-page: 21219
  issue: 42
  year: 2019
  end-page: 21227
  article-title: Gradients of structure–function tethering across neocortex
  publication-title: Proceedings of the National Academy of Sciences
– volume: 106
  start-page: 868
  issue: 5
  year: 2018
  end-page: 885
  article-title: A graph signal processing perspective on functional brain imaging
  publication-title: Proceedings of the IEEE
– volume: 12
  start-page: 4894
  issue: 1
  year: 2021
  article-title: Heritability and interindividual variability of regional structure‐function coupling
  publication-title: Nature Communications
– volume: 536
  start-page: 171
  issue: 7615
  year: 2016
  end-page: 178
  article-title: A multi‐modal parcellation of human cerebral cortex
  publication-title: Nature
– year: 2000
– volume: 7
  issue: 1
  year: 2016
  article-title: Human brain networks function in connectome‐specific harmonic waves
  publication-title: Nature Communications
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 22
  start-page: 289
  issue: 2
  year: 2019
  end-page: 296
  article-title: Human cognition involves the dynamic integration of neural activity and neuromodulatory systems
  publication-title: Nature Neuroscience
– volume: 293
  start-page: 1164
  issue: 5532
  year: 2001
  end-page: 1166
  article-title: Expectation and dopamine release: Mechanism of the placebo effect in Parkinson's disease
  publication-title: Science
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– volume: 52
  start-page: 766
  issue: 3
  year: 2010
  end-page: 776
  article-title: Can structure predict function in the human brain?
  publication-title: NeuroImage
– volume: 26
  start-page: 107
  issue: 107–129
  year: 1967
  end-page: 129
  article-title: Age differences in fluid and crystallized intelligence
  publication-title: Acta Psychologica
– volume: 63
  start-page: 79
  year: 2015
  end-page: 89
  article-title: Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints
  publication-title: Cortex
– volume: 178
  start-page: 540
  year: 2018
  end-page: 551
  article-title: On testing for spatial correspondence between maps of human brain structure and function
  publication-title: NeuroImage
– volume: 28
  start-page: 2655
  issue: 7
  year: 2018
  end-page: 2664
  article-title: Network‐based asymmetry of the human auditory system
  publication-title: Cerebral Cortex
– volume: 26
  start-page: 3285
  issue: 7
  year: 2016
  end-page: 3296
  article-title: Network‐level structure‐function relationships in human neocortex
  publication-title: Cerebral Cortex
– volume: 38
  start-page: 9658
  issue: 45
  year: 2018
  end-page: 9667
  article-title: Unique mapping of structural and functional connectivity on cognition
  publication-title: Journal of Neuroscience
– volume: 117
  start-page: 771
  issue: 1
  year: 2020
  end-page: 778
  article-title: Development of structure–function coupling in human brain networks during youth
  publication-title: Proceedings of the National Academy of Sciences
– volume: 87
  start-page: 96
  year: 2014
  end-page: 110
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: NeuroImage
– volume: 16
  issue: 7
  year: 2015
  article-title: Rethinking segregation and integration: Contributions of whole‐brain modelling
  publication-title: Nature Reviews Neuroscience
– volume: 342
  issue: 6158
  year: 2013
  article-title: Structural and functional brain networks: From connections to cognition
  publication-title: Science
– volume: 113
  start-page: 12574
  issue: 44
  year: 2016
  end-page: 12579
  article-title: Situating the default‐mode network along a principal gradient of macroscale cortical organization
  publication-title: Proceedings of the National Academy of Sciences
– volume: 23
  start-page: 11
  issue: 11
  year: 2020
  article-title: Topographic organization of the human subcortex unveiled with functional connectivity gradients
  publication-title: Nature Neuroscience
– volume: 7
  start-page: 254
  issue: 4
  year: 1999
  end-page: 266
  article-title: Nonlinear spatial normalization using basis functions
  publication-title: Human Brain Mapping
– volume: 348
  start-page: 1241
  issue: 6240
  year: 2015
  end-page: 1244
  article-title: Correlated gene expression supports synchronous activity in brain networks
  publication-title: Science
– volume: 13
  start-page: 397
  issue: 2
  year: 2014
  end-page: 406
  article-title: Analysis of the human tissue‐specific expression by genome‐wide integration of transcriptomics and antibody‐based proteomics
  publication-title: Molecular & Cellular Proteomics
– volume: 117
  start-page: 9566
  issue: 17
  year: 2020
  end-page: 9576
  article-title: Dynamic coupling of whole‐brain neuronal and neurotransmitter systems
  publication-title: Proceedings of the National Academy of Sciences
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  end-page: 2231
  article-title: The human connectome project: A data acquisition perspective
  publication-title: NeuroImage
– volume: 108
  start-page: 7641
  issue: 18
  year: 2011
  end-page: 7646
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proceedings of the National Academy of Sciences
– ident: e_1_2_9_42_1
  doi: 10.1016/S0006-3223(02)01369-0
– ident: e_1_2_9_64_1
  doi: 10.1152/jn.00338.2011
– ident: e_1_2_9_79_1
  doi: 10.1038/s41467-019-09234-6
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.1921475117
– ident: e_1_2_9_68_1
  doi: 10.1093/cercor/bhr291
– ident: e_1_2_9_38_1
  doi: 10.1111/ejn.15216
– ident: e_1_2_9_19_1
  doi: 10.1074/mcp.M113.035600
– ident: e_1_2_9_20_1
  doi: 10.1038/nn.4402
– ident: e_1_2_9_41_1
  doi: 10.1093/oso/9780198507086.001.0001
– ident: e_1_2_9_75_1
  doi: 10.1093/cercor/bhaa063
– ident: e_1_2_9_73_1
  doi: 10.1126/sciadv.aat7854
– ident: e_1_2_9_77_1
  doi: 10.1109/TMI.2010.2045126
– ident: e_1_2_9_58_1
  doi: 10.1073/pnas.1801351115
– ident: e_1_2_9_72_1
  doi: 10.1162/netn_a_00153
– ident: e_1_2_9_25_1
  doi: 10.1038/s41562-021-01082-z
– ident: e_1_2_9_76_1
  doi: 10.1371/journal.pone.0080713
– ident: e_1_2_9_33_1
  doi: 10.1109/JPROC.2018.2798928
– ident: e_1_2_9_55_1
  doi: 10.1126/science.1255905
– ident: e_1_2_9_37_1
  doi: 10.1016/j.tins.2007.01.002
– ident: e_1_2_9_46_1
  doi: 10.1038/s41592-022-01625-w
– ident: e_1_2_9_15_1
  doi: 10.1126/science.1060937
– ident: e_1_2_9_59_1
  doi: 10.1038/s41593-018-0312-0
– ident: e_1_2_9_49_1
  doi: 10.1093/cercor/bhw089
– ident: e_1_2_9_82_1
  doi: 10.1523/JNEUROSCI.0900-18.2018
– ident: e_1_2_9_61_1
  doi: 10.1038/ng2142
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1460-9568.2007.05574.x
– ident: e_1_2_9_52_1
  doi: 10.1371/journal.pbio.3000284
– ident: e_1_2_9_80_1
  doi: 10.1002/hbm.25362
– ident: e_1_2_9_4_1
  doi: 10.1016/j.neuroimage.2019.01.011
– ident: e_1_2_9_11_1
  doi: 10.1242/jeb.196.1.263
– ident: e_1_2_9_2_1
  doi: 10.1523/JNEUROSCI.2097-04.2005
– ident: e_1_2_9_29_1
  doi: 10.1017/S1355617714000241
– ident: e_1_2_9_50_1
  doi: 10.1093/cercor/bhy101
– ident: e_1_2_9_10_1
  doi: 10.1073/pnas.1912034117
– ident: e_1_2_9_70_1
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: e_1_2_9_16_1
  doi: 10.1038/nrn2961
– ident: e_1_2_9_63_1
  doi: 10.1016/j.neuroimage.2022.119387
– ident: e_1_2_9_17_1
  doi: 10.1038/nrn3963
– ident: e_1_2_9_31_1
  doi: 10.1037/h0023816
– ident: e_1_2_9_78_1
  doi: 10.1038/s42003-020-01622-9
– ident: e_1_2_9_81_1
  doi: 10.1016/j.cortex.2014.07.007
– ident: e_1_2_9_69_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_9_47_1
  doi: 10.1038/s41562-017-0260-9
– ident: e_1_2_9_26_1
  doi: 10.1038/s41593-022-01186-3
– ident: e_1_2_9_5_1
  doi: 10.1038/s41467-021-24306-2
– ident: e_1_2_9_12_1
  doi: 10.1016/j.neuroimage.2017.03.045
– ident: e_1_2_9_54_1
  doi: 10.1038/s41467-019-12765-7
– ident: e_1_2_9_27_1
  doi: 10.1016/j.neuroimage.2013.10.067
– ident: e_1_2_9_66_1
  doi: 10.1038/s41583-021-00428-w
– ident: e_1_2_9_62_1
  doi: 10.1016/j.tics.2020.01.008
– ident: e_1_2_9_28_1
  doi: 10.1038/nature11405
– ident: e_1_2_9_8_1
  doi: 10.1038/nrn.2017.149
– ident: e_1_2_9_22_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_9_67_1
  doi: 10.1126/sciadv.abb3417
– ident: e_1_2_9_39_1
  doi: 10.1523/JNEUROSCI.2944-08.2008
– ident: e_1_2_9_44_1
  doi: 10.1016/j.neuron.2010.01.016
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neuroimage.2022.118970
– ident: e_1_2_9_56_1
  doi: 10.1038/s41467-018-04614-w
– ident: e_1_2_9_35_1
  doi: 10.1016/S0891-0618(01)00122-3
– ident: e_1_2_9_24_1
  doi: 10.1038/s41467-021-25184-4
– ident: e_1_2_9_60_1
  doi: 10.1016/j.conb.2012.11.015
– ident: e_1_2_9_34_1
  doi: 10.1016/j.tics.2017.11.002
– ident: e_1_2_9_7_1
  doi: 10.1038/ncomms10340
– ident: e_1_2_9_13_1
  doi: 10.1111/j.2044-8279.1967.tb01930.x
– ident: e_1_2_9_18_1
  doi: 10.1002/hbm.25420
– ident: e_1_2_9_43_1
  doi: 10.1016/j.neubiorev.2023.105193
– ident: e_1_2_9_6_1
  doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
– ident: e_1_2_9_71_1
  doi: 10.1073/pnas.1903403116
– ident: e_1_2_9_65_1
  doi: 10.1038/s41593-020-00711-6
– ident: e_1_2_9_14_1
  doi: 10.1073/pnas.0500334102
– ident: e_1_2_9_30_1
  doi: 10.1016/j.neuroimage.2010.01.071
– ident: e_1_2_9_74_1
  doi: 10.1016/j.neuroimage.2014.01.060
– ident: e_1_2_9_32_1
  doi: 10.1016/0001-6918(67)90011-X
– ident: e_1_2_9_53_1
  doi: 10.1126/science.1238411
– ident: e_1_2_9_45_1
  doi: 10.1073/pnas.1608282113
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.1018985108
– ident: e_1_2_9_51_1
  doi: 10.7554/eLife.70119
– ident: e_1_2_9_3_1
  doi: 10.1016/j.neuroimage.2018.05.070
– ident: e_1_2_9_57_1
  doi: 10.1038/s41467-022-35680-w
– ident: e_1_2_9_21_1
  doi: 10.1038/nature18933
– ident: e_1_2_9_48_1
  doi: 10.1093/brain/121.6.1013
SSID ssj0011501
Score 2.4694996
Snippet Functional signals emerge from the structural network, supporting multiple cognitive processes through underlying molecular mechanism. The link between human...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e26575
SubjectTerms Behavior
Brain
Cerebral cortex
Cognition
Cognition & reasoning
Cognitive ability
Communication
Correlation analysis
cortical hierarchy
Decoupling
Flexibility
Fourier transforms
Functional anatomy
Gene expression
genes
Genetic factors
Glutamic acid receptors (metabotropic)
Molecular modelling
Molecular structure
Multivariate analysis
Neocortex
Networks
Neurotransmitter receptors
neurotransmitters
Receptor mechanisms
Receptors
Signal processing
Spatial distribution
Structure-function relationships
structure–function decoupling
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB5BkRCXqrT8hBZkEEK9hO46juOcqoKoVkjLiUp7i-I_uhLJbrtdod76DrwhT9IZxwmsCtwieZQ4mYlnPs_4G4C3xCDjM1r9sjyjNGORlkWocNTSE0Wc4nTeefpFTs7E51k-ixtuq1hW2a-JYaG2C0N75EccgcJYcvSox8uLlLpGUXY1ttC4Dw-IuoysupgNgIuCnQC40M2mJa7CPbPQiB-d6-Y9p6TDpj-6E2TerZX8M4YNTuh0B7Zj9MhOOnU_hnuu3YW9kxaRc3PN3rFQzxk2ynfh4TSmzffATBY_mKZmEKzji11ful83P8mnkV6YRQy6pqO539hqvQxJBDYfTmqxWGKEgnVr2RwHm76pLmscHR2er5oncHb66evHSRq7K6RGCJGn2nvlpeFOybFW5cjafGRFrguTO0RRiOO0yJTnXgpja1nUXuiCe8-lG5s649lT2GoXrXsOOEspjapt6Uoragz5ZCZd4dHz5UrjjRI47L9xZSL1OHXA-F51pMm8QnVUQR0JvBlElx3fxt-EDnpFVfGXW1W_DSSB18Mw_iyUAalbt1h3MiUiKC4TeNbpdXgKQnUM1kZlAmpD44MAEXFvjrTz80DIPcY4SqoS53UYjOPfM68mH6bh4sX_X2EfHnGMnrry8APYQttwLzH6udKvgonfAichBUk
  priority: 102
  providerName: ProQuest
Title How brain structure–function decoupling supports individual cognition and its molecular mechanism
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26575
https://www.ncbi.nlm.nih.gov/pubmed/38339909
https://www.proquest.com/docview/2924162063
https://www.proquest.com/docview/2924997426
https://pubmed.ncbi.nlm.nih.gov/PMC10826895
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9qBfHFP61_ovVYRaQvud5tNpsNfWql5RCulGLhHoSQTXbt0SZXvAbRJ7-D39BP0pndJHpWQXw5AjuX20tmdn6zM_NbgNfEIGMjWv2iOKI0YxKmiatw1NISRZzi1O88PZKTU_FuFs_WYLfrhfH8EP2GG1mGW6_JwHO93PlJGnqmqyGntAGuv1SrRYDopKeOIqDjgi10sWGKK3DHKjTiO_03V33RDYB5s07yV_zqHNDhffjQTd3XnZwPmys9LL7-xur4n__tAdxrgSnb85r0ENZMvQGbezUG5dUX9oa5UlG3B78Bd6ZtRn4TisniM9N0zgTzVLTNJ_Pj23dyl_TKWYnhbUNdvx_Zsrl0-Qk275vAWFu9hIJ5XbI5Dlbdeb2sMtSVPF9Wj-D08OD920nYHtwQFkKIONTWKisLbpQca5WOyjIelSLWSREbDNAwRNQiUpZbKYoyl0luhU64tVyacZFHPHoM6_WiNk8BZyllofIyNWkpckSTMpImsehUY6XxRgFsd68wK1pWczpc4yLzfMw8w2eZuWcZwKte9NJTefxJaKvTg6y15mXGMUgdS45oLoCX_TDaISVX8tosGi-TYnDGZQBPvNr0vxKpCHHgKA1ArShUL0Ac36sj9fzMcX2PEaJJleK8tp3C_H3m2WR_6i6e_bvoc7jLEaT5KvQtWEc9MS8QZF3pAdzi4hg_k1kygNv7B0fHJwO3YTFwdnYNVDcprA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VRQIuCFp-0hYwCFAvabNO4jgHhMpPldJuT620txDHNl2JZLfdrqre-g68Bw_FkzDj_MCqwK23lWztejPjmfkyM98AvCIGGRuS9QvjkNKMiZ8mrsJRCUsUcZJTv_PwUGTH0edRPFqCH10vDJVVdjbRGWo9Kekd-TZHoDAQHD3qu-mpT1OjKLvajdBo1GLfXF4gZJu93fuI8n3N-e6now-Z304V8MsoimJfWSutKLmRYqBkGmgdBzqKVVLGBtED4hcVhdJyK6JSFyIpbKQSbi0XZlAWIREdoMm_hY43ILCXjHqAR8GVA3jo1v0UrX7HZBTw7RNVbXFKciz6v2tB7fXazD9jZuf0du_DvTZaZTuNej2AJVOvwOpOjUi9umRvmKsfdS_mV-D2sE3Tr0KZTS6YouETrOGnnZ-Zn1ffyYeSHjCNmHdOrcBf2Ww-dUkLNu47w1hb0oQbi1qzMS5W3RBfVhlqVR7PqodwfCPP_REs15PaPAE8pRClLHRqUh0VGGKKUJjEoqeNpcIv8mCze8Z52VKd08SNb3lD0sxzFEfuxOHBy37rtOH3-NumjU5QeXvFZ_lvhfTgRb-Ml5MyLkVtJvNmT4qIjQsPHjdy7X8llCEGh0HqgVyQeL-BiL8XV-rxiSMAH2DcJmSK59p0yvHvk-fZ-6H7sPb_v_Ac7mRHw4P8YO9wfx3ucozcmtL0DVhGPTFPMfI6V8-cujP4ctP36xfVp0Kg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB5VqVRxQaXlx6WUBQHqxSRZr9frA0ItbZRSElWISr0Zr71LI2EnEKKqN96Bt-nj8CTMrH8gKnDrLdKOko1nducbz8w3AM-IQcYGdPsFYUBpxsiPI1fhqKUlijjFqd95NJbDU_H2LDxbgaumF4bKKps70V3U-TSjd-RdjoFCX3L0qF1bl0WcHAxez774NEGKMq3NOI3KRI7N5QWGb_NXRweo6-ecDw4_vBn69YQBPxNChL62VlmZcaNkX6u4l-dhLxehjrLQYCSBsYwWgbLcSpHlqYxSK3TEreXS9LM0INIDvP5XI4qKOrC6fzg-ed_mMBBquXAPnbwfow9oeI16vHuui5ecUh7L3vAaxL1eqfkngnYucLAOt2vsyvYqY7sDK6bcgM29EuP24pK9YK6a1L2m34C1UZ2034RsOL1gmkZRsIqtdvHV_Pz-gzwqWQXLMQJeUGPwJzZfzFwKg03aPjFWFzihYFrmbIKLRTPSlxWGGpcn8-IunN7Ik78HnXJamgeAu5QyU2kemzgXKQJOGUgTWfS7odL4RR7sNs84yWric5q_8TmpKJt5gupInDo8eNqKziq2j78JbTeKSuoDP09-m6cHT9plPKqUf0lLM11UMjHGb1x6cL_Sa_srgQoQKvZiD9SSxlsBogFfXikn544OvI8oTqoY97XrjOPfO0-G-yP3Yev_f-ExrOHZSt4djY8fwi2OMK6qU9-GDpqJeYQw7Jveqe2dwcebPmK_AB5fSDs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+brain+structure%E2%80%93function+decoupling+supports+individual+cognition+and+its+molecular+mechanism&rft.jtitle=Human+brain+mapping&rft.au=Dong%2C+Xiaoxi&rft.au=Li%2C+Qiongling&rft.au=Wang%2C+Xuetong&rft.au=He%2C+Yirong&rft.date=2024-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=45&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fhbm.26575&rft.externalDBID=10.1002%252Fhbm.26575&rft.externalDocID=HBM26575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon