Reproducibility of cerebral perfusion measurements using BOLD delay

BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 44; no. 7; pp. 2778 - 2789
Main Authors Khalil, Ahmed A., Tanritanir, Ayse C., Grittner, Ulrike, Kirilina, Evgeniya, Villringer, Arno, Fiebach, Jochen B., Mekle, Ralf
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test–retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions. This study investigates in detail the test–retest repeatability of a noninvasive perfusion imaging method (BOLD delay) in a large cohort of individuals. We find good overall test–retest repeatability, but longitudinal changes in BOLD delay in some areas of the brain should be interpreted with caution. The results of our study will be interesting to researchers currently using, or planning on using this method by providing them with a benchmark against which to interpret their results.
AbstractList BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test–retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions.
BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test–retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions. This study investigates in detail the test–retest repeatability of a noninvasive perfusion imaging method (BOLD delay) in a large cohort of individuals. We find good overall test–retest repeatability, but longitudinal changes in BOLD delay in some areas of the brain should be interpreted with caution. The results of our study will be interesting to researchers currently using, or planning on using this method by providing them with a benchmark against which to interpret their results.
BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test–retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions.
BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test-retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions.BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test-retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions.
Author Kirilina, Evgeniya
Khalil, Ahmed A.
Mekle, Ralf
Fiebach, Jochen B.
Grittner, Ulrike
Tanritanir, Ayse C.
Villringer, Arno
AuthorAffiliation 5 Charité ‐ Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology Berlin Germany
2 Berlin School of Mind and Brain Humboldt‐Universität zu Berlin Berlin Germany
3 Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
4 Berlin Institute of Health (BIH) Berlin Germany
7 Center for Cognitive Neuroscience Berlin Free University Berlin Germany
6 Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
1 Center for Stroke Research Berlin Charité ‐ Universitätsmedizin Berlin Berlin Germany
AuthorAffiliation_xml – name: 4 Berlin Institute of Health (BIH) Berlin Germany
– name: 1 Center for Stroke Research Berlin Charité ‐ Universitätsmedizin Berlin Berlin Germany
– name: 5 Charité ‐ Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology Berlin Germany
– name: 3 Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
– name: 7 Center for Cognitive Neuroscience Berlin Free University Berlin Germany
– name: 2 Berlin School of Mind and Brain Humboldt‐Universität zu Berlin Berlin Germany
– name: 6 Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
Author_xml – sequence: 1
  givenname: Ahmed A.
  orcidid: 0000-0003-1752-4305
  surname: Khalil
  fullname: Khalil, Ahmed A.
  email: ahmed-abdelrahim.khalil@charite.de
  organization: Berlin Institute of Health (BIH)
– sequence: 2
  givenname: Ayse C.
  surname: Tanritanir
  fullname: Tanritanir, Ayse C.
  organization: Charité ‐ Universitätsmedizin Berlin
– sequence: 3
  givenname: Ulrike
  surname: Grittner
  fullname: Grittner, Ulrike
  organization: Charité ‐ Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology
– sequence: 4
  givenname: Evgeniya
  surname: Kirilina
  fullname: Kirilina, Evgeniya
  organization: Free University
– sequence: 5
  givenname: Arno
  orcidid: 0000-0003-2604-2404
  surname: Villringer
  fullname: Villringer, Arno
  organization: Max Planck Institute for Human Cognitive and Brain Sciences
– sequence: 6
  givenname: Jochen B.
  surname: Fiebach
  fullname: Fiebach, Jochen B.
  organization: Charité ‐ Universitätsmedizin Berlin
– sequence: 7
  givenname: Ralf
  surname: Mekle
  fullname: Mekle, Ralf
  organization: Charité ‐ Universitätsmedizin Berlin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36840928$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMofh_8A1LwoofqJE2zzUl0_YQVQfQc0nSqkbZZk1bZf290VVTQXBImz7y8884aWexch4RsUdinAOzgoWz3mWCcL5BVCnKUApXZ4ttb5KnkI7pC1kJ4BKA0B7pMVjJRcJCsWCXjG5x6Vw3Glrax_SxxdWLQY-l1k0zR10Owrkta1GHw2GLXhySWuvvk-HpyklTY6NkGWap1E3Dz414nd2ent-OLdHJ9fjk-mqSGx5NWQsOIay0Z5gxyTWWeUVlyIagxlanLivNKowGNhUEpKK2LuhBa0pobWdJsnRzOdadD2WJlopnoUk29bbWfKaet-vnT2Qd1755VDKmQIGVU2P1Q8O5pwNCr1gaDTaM7dENQbFREFADyiO78Qh_d4Ls4X6SkhCxjICK1_d3Sl5fPgCOwNweMdyF4rL8QCm--mIrLU-_Li-zBL9bYXvcx_ziNbf7reLENzv6WVhfHV_OOV1ozquY
CitedBy_id crossref_primary_10_1016_j_neuroimage_2025_121097
crossref_primary_10_1002_hbm_70076
crossref_primary_10_1016_j_neuroimage_2024_120920
Cites_doi 10.1177/0271678X17709198
10.1002/jmri.26765
10.1016/j.neuroimage.2019.116041
10.1371/journal.pone.0222787
10.1002/jmri.26571
10.1016/j.ijpsycho.2018.07.217
10.1002/uog.5256
10.1080/02664760500080157
10.3389/fnins.2017.00256
10.1371/journal.pone.0219854
10.1002/9780470316856
10.3174/ajnr.A4973
10.1002/ana.23763
10.1371/journal.pone.0069224
10.3389/fneur.2020.00381
10.1016/j.neuroimage.2022.119654
10.1371/journal.pone.0170541
10.1177/0271678X17753329
10.1177/0271678X17702156
10.1016/j.neuroimage.2016.03.033
10.1161/STROKEAHA.116.015566
10.1371/journal.pone.0133717
10.1016/j.neuroimage.2011.10.018
10.1002/jnr.24360
10.1016/j.neuroimage.2016.09.008
10.1016/j.jacr.2015.03.007
10.1007/s00381-018-3770-5
10.1002/jmri.26283
10.1016/j.neuroscience.2013.03.004
10.1002/hbm.23737
10.7717/peerj.4794
10.1088/2057-1976/aae8d1
10.1016/j.neuroimage.2016.06.034
10.1016/j.mri.2009.02.004
10.1002/jmri.22345
10.1177/0271678X20982395
10.1089/brain.2014.0284
10.3389/fninf.2013.00039
10.1016/j.neuroimage.2011.07.044
10.1177/0271678X16631755
10.1016/j.ultrasmedbio.2014.03.025
10.1006/nimg.2001.0829
10.1038/sdata.2014.54
10.1016/S1474-4422(17)30158-8
10.7717/peerj.6918
10.3389/fnins.2019.00787
10.1093/cercor/bhx230
10.1016/j.neuron.2017.07.011
10.1002/jmri.24558
10.1161/01.STR.31.6.1318
10.1016/j.mri.2020.07.010
10.1038/srep41586
10.12688/wellcomeopenres.15191.1
10.1016/j.neuroimage.2006.09.032
10.2307/2289444
10.3233/JAD-2010-091261
10.1159/000016043
10.1177/0271678X18803951
10.1007/978-0-387-21706-2
10.1177/0271678X15614846
10.1148/radiol.13130982
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC.
2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC.
– notice: 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.26244
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Technology Research Database


CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Khalil et al
EISSN 1097-0193
EndPage 2789
ExternalDocumentID PMC10089099
36840928
10_1002_hbm_26244
HBM26244
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Berlin Institute of Health
– fundername: Bundesministerium für Bildung und Forschung
  funderid: 01EO0801; 01EO01301
– fundername: ;
– fundername: Bundesministerium für Bildung und Forschung
  grantid: 01EO0801; 01EO01301
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPKN
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4444-d6a074aa92e5205a195319b4661ccdcfbd44daec0ae8ce9611f8f86a91f4c9b13
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:38:32 EDT 2025
Thu Jul 10 18:28:11 EDT 2025
Sat Jul 26 02:30:15 EDT 2025
Wed Feb 19 02:24:02 EST 2025
Tue Jul 01 01:11:11 EDT 2025
Thu Apr 24 22:52:01 EDT 2025
Fri Feb 21 05:36:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords BOLD delay
perfusion
resting-state functional MRI
blood flow
reproducibility
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4444-d6a074aa92e5205a195319b4661ccdcfbd44daec0ae8ce9611f8f86a91f4c9b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2604-2404
0000-0003-1752-4305
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26244
PMID 36840928
PQID 2799033206
PQPubID 996345
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10089099
proquest_miscellaneous_2780080005
proquest_journals_2799033206
pubmed_primary_36840928
crossref_primary_10_1002_hbm_26244
crossref_citationtrail_10_1002_hbm_26244
wiley_primary_10_1002_hbm_26244_HBM26244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2019; 50
2017; 48
2019; 13
2019; 14
2019; 201
2016; 143
2013; 240
2020; 11
2008; 31
2012; 59
2013; 7
2013; 8
2007; 34
2016; 36
2018; 49
2018; 131
2018; 6
2010; 20
2014; 4
1987; 82
2017; 37
2017; 38
2000; 10
2015; 41
2005; 32
2018; 34
2021; 41
2001; 14
2018; 38
2015; 2
2015; 12
2019; 7
2019; 4
2019; 5
2020; 40
2017; 27
2018; 266
2015; 10
2019; 39
2011; 33
1992
2014; 270
2002
2014; 40
2009; 27
2017; 95
2022; 263
2020; 73
2017; 16
2017; 11
2013; 73
2017; 12
2000; 31
2019
2016; 133
2018
2016
2017; 144
2018; 97
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
Brooks J. C. W. P. (e_1_2_10_14_1) 2013; 7
Coloigner J. (e_1_2_10_21_1) 2016
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Searle S. R. (e_1_2_10_54_1) 1992
Hodgson K. (e_1_2_10_32_1) 2017; 27
R Core Team (e_1_2_10_51_1) 2016
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Lv Y. (e_1_2_10_42_1) 2018; 266
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 11
  start-page: 256
  issue: MAY
  year: 2017
  article-title: A resilient, non‐neuronal source of the spatiotemporal lag structure detected by bold signal‐based blood flow tracking
  publication-title: Frontiers in Neuroscience
– volume: 10
  start-page: 142
  issue: 2
  year: 2000
  end-page: 146
  article-title: Measurement of cerebral circulation time by contrast‐enhanced Doppler sonography
  publication-title: Cerebrovascular Diseases
– volume: 7
  start-page: 623
  issue: October
  year: 2013
  article-title: Physiological noise in brainstem fMRI
  publication-title: Frontiers in Human Neuroscience
– volume: 49
  start-page: 1099
  year: 2018
  end-page: 1104
  article-title: Detecting perfusion deficit in Alzheimer's disease and mild cognitive impairment patients by resting‐state fMRI
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 50
  start-page: 221
  issue: 1
  year: 2019
  end-page: 229
  article-title: One‐step analysis of brain perfusion and function for acute stroke patients after reperfusion: A resting‐state fMRI study
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 2
  year: 2015
  article-title: A high resolution 7‐Tesla resting‐state fMRI test‐retest dataset with cognitive and physiological measures
  publication-title: Scientific Data
– volume: 40
  start-page: 2372
  issue: 10
  year: 2014
  end-page: 2378
  article-title: A new method of measurement of cerebral circulation time: Contrast‐enhanced ultrasonography in healthy adults and patients with intracranial shunts
  publication-title: Ultrasound in Medicine & Biology
– volume: 266
  start-page: 157–164
  year: 2018
  article-title: Non‐invasive evaluation of cerebral perfusion in patients with transient ischemic attack: An fMRI study
  publication-title: Journal of Neurology
– volume: 270
  start-page: 548
  issue: 2
  year: 2014
  end-page: 555
  article-title: Cerebral hemodynamic impairment: Assessment with resting‐state functional MR imaging
  publication-title: Radiology
– volume: 97
  start-page: 456
  year: 2018
  end-page: 466
  article-title: Vascular effects of caffeine found in BOLD fMRI
  publication-title: Journal of Neuroscience Research
– volume: 14
  issue: 9
  year: 2019
  article-title: Axial variation of deoxyhemoglobin density as a source of the low‐frequency time lag structure in blood oxygenation level‐dependent signals
  publication-title: PLoS One
– volume: 27
  start-page: 1019
  issue: 8
  year: 2009
  end-page: 1029
  article-title: Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: A 7 T study
  publication-title: Magnetic Resonance Imaging
– volume: 37
  start-page: 564
  issue: 2
  year: 2017
  end-page: 576
  article-title: Perfusion information extracted from resting state functional magnetic resonance imaging
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 7
  year: 2017
  article-title: The value of resting‐state functional MRI in subacute ischemic stroke: Comparison with dynamic susceptibility contrast‐enhanced perfusion MRI
  publication-title: Scientific Reports
– year: 2018
– volume: 34
  start-page: 565
  issue: 2
  year: 2007
  end-page: 574
  article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration
  publication-title: NeuroImage
– volume: 14
  start-page: 284
  issue: 2
  year: 2001
  end-page: 297
  article-title: Quantifying head motion associated with motor tasks used in fMRI
  publication-title: NeuroImage
– volume: 240
  start-page: 269
  year: 2013
  end-page: 276
  article-title: MRI multiparametric hemodynamic characterization of the normal brain
  publication-title: Neuroscience
– volume: 32
  start-page: 855
  issue: 8
  year: 2005
  end-page: 860
  article-title: Comparing two clinical measurements: A linear mixed model approach
  publication-title: Journal of Applied Statistics
– volume: 4
  start-page: 63
  year: 2019
  article-title: Raincloud plots: A multi‐platform tool for robust data visualization
  publication-title: Wellcome Open Research
– volume: 144
  start-page: 275
  year: 2017
  end-page: 286
  article-title: The Neuro Bureau ADHD‐200 Preprocessed repository
  publication-title: NeuroImage
– volume: 8
  issue: 7
  year: 2013
  article-title: Acute effects of modafinil on brain resting state networks in young healthy subjects
  publication-title: PLoS One
– volume: 7
  start-page: 39
  year: 2013
  article-title: Explicit B‐spline regularization in diffeomorphic image registration
  publication-title: Frontiers in Neuroinformatics
– volume: 39
  start-page: 1148
  issue: 6
  year: 2019
  end-page: 1160
  article-title: The resting‐state fMRI arterial signal predicts differential blood transit time through the brain
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 37
  start-page: 2665
  issue: 8
  year: 2017
  end-page: 2678
  article-title: Measuring functional connectivity in stroke: Approaches and considerations
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 13
  start-page: 787
  year: 2019
  article-title: Low frequency systemic hemodynamic “noise” in resting state BOLD fMRI: Characteristics, causes, implications, mitigation strategies, and applications
  publication-title: Frontiers in Neuroscience
– volume: 7
  year: 2019
  article-title: We need to talk about reliability: Making better use of test‐retest studies for study design and interpretation
  publication-title: PeerJ
– volume: 73
  start-page: 111
  year: 2020
  end-page: 117
  article-title: Test‐retest reliability and reproducibility of long‐label pseudo‐continuous arterial spin labeling
  publication-title: Magnetic Resonance Imaging
– year: 2019
– volume: 143
  start-page: 141
  year: 2016
  end-page: 151
  article-title: Noise contributions to the fMRI signal: An overview
  publication-title: NeuroImage
– volume: 14
  issue: 7
  year: 2019
  article-title: Intraclass correlation—A discussion and demonstration of basic features
  publication-title: PLoS One
– volume: 27
  start-page: 5539
  issue: 12
  year: 2017
  end-page: 5546
  article-title: Shared genetic factors influence head motion during MRI and Body Mass Index
  publication-title: Cerebral Cortex
– volume: 201
  year: 2019
  article-title: Distinctions among real and apparent respiratory motions in human fMRI data
  publication-title: NeuroImage
– start-page: 1
  year: 1992
  end-page: 18
– volume: 82
  start-page: 424
  issue: 398
  year: 1987
  end-page: 436
  article-title: Scatterplot matrix techniques for large N
  publication-title: Journal of the American Statistical Association
– volume: 31
  start-page: 466
  issue: 4
  year: 2008
  end-page: 475
  article-title: Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables
  publication-title: Ultrasound in Obstetrics & Gynecology
– volume: 27
  start-page: 5415
  issue: 11
  year: 2017
  end-page: 5429
  article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cerebral Cortex
– volume: 41
  year: 2021
  article-title: Normative distribution of posterior circulation tissue time‐to‐maximum: Effects of anatomic variation, tracer kinetics, and implications for patient selection in posterior circulation ischemic stroke
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 41
  start-page: 424
  issue: 2
  year: 2015
  end-page: 430
  article-title: Noncontrast mapping of arterial delay and functional connectivity using resting‐state functional MRI: A study in Moyamoya patients
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 59
  start-page: 431
  issue: 1
  year: 2012
  end-page: 438
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: NeuroImage
– volume: 48
  start-page: 925
  issue: 4
  year: 2017
  end-page: 931
  article-title: Relationship between changes in the temporal dynamics of the blood‐oxygen‐level‐dependent signal and hypoperfusion in acute ischemic stroke
  publication-title: Stroke
– volume: 50
  start-page: 1504
  year: 2019
  end-page: 1513
  article-title: Cerebral circulation time derived from fMRI signals in large blood vessels
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 12
  start-page: 689
  issue: 7
  year: 2015
  end-page: 695
  article-title: Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations
  publication-title: Journal of the American College of Radiology
– volume: 133
  start-page: 331
  year: 2016
  end-page: 340
  article-title: Global and structured waves of rs‐fMRI signal identified as putative propagation of spontaneous neural activity
  publication-title: NeuroImage
– volume: 131
  start-page: S76
  year: 2018
  article-title: Exploring the brain contour of implicit infra‐low frequency EEG neurofeedback: A resting state fMRI study
  publication-title: International Journal of Psychophysiology
– volume: 11
  start-page: 381
  year: 2020
  article-title: The effect of scan length on the assessment of BOLD delay in ischemic stroke
  publication-title: Frontiers in Neurology
– year: 2016
– volume: 4
  start-page: 511
  issue: 7
  year: 2014
  end-page: 522
  article-title: The influence of physiological noise correction on test‐retest reliability of resting‐state functional connectivity
  publication-title: Brain Connectivity
– volume: 31
  start-page: 1318
  issue: 6
  year: 2000
  end-page: 1328
  article-title: Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute ischemic stroke with diffusion and perfusion MRI
  publication-title: Stroke
– volume: 5
  issue: 1
  year: 2019
  article-title: 4D flow MRI: Automatic assessment of blood flow in cerebral arteries
  publication-title: Biomedical Physics & Engineering Express
– volume: 6
  year: 2018
  article-title: A brief introduction to mixed effects modelling and multi‐model inference in ecology
  publication-title: PeerJ
– volume: 38
  start-page: 139
  issue: 1
  year: 2017
  end-page: 145
  article-title: The effects of acetazolamide on the evaluation of cerebral hemodynamics and functional connectivity using blood oxygen level‐dependent MR imaging in patients with chronic steno‐occlusive disease of the anterior circulation
  publication-title: American Journal of Neuroradiology
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 10
  issue: 8
  year: 2015
  article-title: Cerebral perfusion measurements in elderly with hypertension using arterial spin labeling
  publication-title: PLoS One
– volume: 12
  issue: 4
  year: 2017
  article-title: The evolution of cost‐efficiency in neural networks during recovery from traumatic brain injury
  publication-title: PLoS One
– volume: 38
  start-page: 1418
  issue: 9
  year: 2018
  end-page: 1437
  article-title: Variability of physiological brain perfusion in healthy subjects—A systematic review of modifiers. Considerations for multi‐center ASL studies
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 38
  start-page: 5331
  year: 2017
  end-page: 5342
  article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses
  publication-title: Human Brain Mapping
– volume: 34
  start-page: 901
  issue: 5
  year: 2018
  end-page: 910
  article-title: Resting state signal latency predicts laterality in pediatric medically refractory temporal lobe epilepsy
  publication-title: Child's Nervous System
– year: 2002
– volume: 95
  start-page: 791
  issue: 4
  year: 2017
  end-page: 807.e7
  article-title: Precision functional mapping of individual human brains
  publication-title: Neuron
– volume: 16
  start-page: 564
  issue: 7
  year: 2017
  end-page: 570
  article-title: Gadolinium deposition in the brain: Summary of evidence and recommendations
  publication-title: Lancet Neurology
– volume: 36
  start-page: 2162
  issue: 12
  year: 2016
  end-page: 2176
  article-title: The effects of hemodynamic lag on functional connectivity and behavior after stroke
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 33
  start-page: 940
  issue: 4
  year: 2011
  end-page: 949
  article-title: Test‐retest reliability of arterial spin labeling with common labeling strategies
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 263
  year: 2022
  article-title: Reliability and sensitivity to alterered hemodynamics measured with resting‐state fMRI metrics: Comparison with 123I‐IMP SPECT
  publication-title: NeuroImage
– volume: 40
  start-page: 23
  issue: 1
  year: 2020
  end-page: 34
  article-title: Non‐invasive monitoring of longitudinal changes in cerebral hemodynamics in acute ischemic stroke using BOLD signal delay
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 73
  start-page: 136
  issue: 1
  year: 2013
  end-page: 140
  article-title: Identifying the perfusion deficit in acute stroke with resting‐state functional magnetic resonance imaging
  publication-title: Annals of Neurology
– volume: 20
  start-page: S51
  issue: suppl 1
  year: 2010
  end-page: S62
  article-title: Caffeine and the control of cerebral hemodynamics
  publication-title: Journal of Alzheimer's Disease
– ident: e_1_2_10_57_1
  doi: 10.1177/0271678X17709198
– ident: e_1_2_10_69_1
  doi: 10.1002/jmri.26765
– volume: 266
  start-page: 157–164
  year: 2018
  ident: e_1_2_10_42_1
  article-title: Non‐invasive evaluation of cerebral perfusion in patients with transient ischemic attack: An fMRI study
  publication-title: Journal of Neurology
– ident: e_1_2_10_50_1
  doi: 10.1016/j.neuroimage.2019.116041
– ident: e_1_2_10_9_1
  doi: 10.1371/journal.pone.0222787
– ident: e_1_2_10_17_1
  doi: 10.1002/jmri.26571
– ident: e_1_2_10_22_1
  doi: 10.1016/j.ijpsycho.2018.07.217
– ident: e_1_2_10_10_1
  doi: 10.1002/uog.5256
– ident: e_1_2_10_36_1
  doi: 10.1080/02664760500080157
– ident: e_1_2_10_8_1
  doi: 10.3389/fnins.2017.00256
– ident: e_1_2_10_37_1
  doi: 10.1371/journal.pone.0219854
– start-page: 1
  volume-title: Variance components
  year: 1992
  ident: e_1_2_10_54_1
  doi: 10.1002/9780470316856
– ident: e_1_2_10_26_1
– volume-title: SPIE medical imaging
  year: 2016
  ident: e_1_2_10_21_1
– ident: e_1_2_10_66_1
  doi: 10.3174/ajnr.A4973
– ident: e_1_2_10_41_1
  doi: 10.1002/ana.23763
– ident: e_1_2_10_24_1
  doi: 10.1371/journal.pone.0069224
– ident: e_1_2_10_59_1
  doi: 10.3389/fneur.2020.00381
– ident: e_1_2_10_5_1
  doi: 10.1016/j.neuroimage.2022.119654
– ident: e_1_2_10_52_1
  doi: 10.1371/journal.pone.0170541
– ident: e_1_2_10_62_1
  doi: 10.1177/0271678X17753329
– ident: e_1_2_10_20_1
  doi: 10.1177/0271678X17702156
– ident: e_1_2_10_4_1
  doi: 10.1016/j.neuroimage.2016.03.033
– ident: e_1_2_10_34_1
  doi: 10.1161/STROKEAHA.116.015566
– ident: e_1_2_10_45_1
  doi: 10.1371/journal.pone.0133717
– ident: e_1_2_10_49_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_10_68_1
  doi: 10.1002/jnr.24360
– ident: e_1_2_10_39_1
  doi: 10.1016/j.neuroimage.2016.09.008
– ident: e_1_2_10_6_1
  doi: 10.1016/j.jacr.2015.03.007
– volume: 27
  start-page: 5539
  issue: 12
  year: 2017
  ident: e_1_2_10_32_1
  article-title: Shared genetic factors influence head motion during MRI and Body Mass Index
  publication-title: Cerebral Cortex
– volume-title: R foundation for statistical computing
  year: 2016
  ident: e_1_2_10_51_1
– ident: e_1_2_10_56_1
  doi: 10.1007/s00381-018-3770-5
– ident: e_1_2_10_67_1
  doi: 10.1002/jmri.26283
– ident: e_1_2_10_7_1
  doi: 10.1016/j.neuroscience.2013.03.004
– ident: e_1_2_10_15_1
  doi: 10.1002/hbm.23737
– ident: e_1_2_10_31_1
  doi: 10.7717/peerj.4794
– ident: e_1_2_10_23_1
  doi: 10.1088/2057-1976/aae8d1
– ident: e_1_2_10_11_1
  doi: 10.1016/j.neuroimage.2016.06.034
– ident: e_1_2_10_12_1
  doi: 10.1016/j.mri.2009.02.004
– ident: e_1_2_10_18_1
  doi: 10.1002/jmri.22345
– ident: e_1_2_10_27_1
  doi: 10.1177/0271678X20982395
– ident: e_1_2_10_13_1
  doi: 10.1089/brain.2014.0284
– ident: e_1_2_10_63_1
  doi: 10.3389/fninf.2013.00039
– ident: e_1_2_10_64_1
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: e_1_2_10_61_1
  doi: 10.1177/0271678X16631755
– volume: 7
  start-page: 623
  year: 2013
  ident: e_1_2_10_14_1
  article-title: Physiological noise in brainstem fMRI
  publication-title: Frontiers in Human Neuroscience
– ident: e_1_2_10_40_1
  doi: 10.1016/j.ultrasmedbio.2014.03.025
– ident: e_1_2_10_55_1
  doi: 10.1006/nimg.2001.0829
– ident: e_1_2_10_29_1
  doi: 10.1038/sdata.2014.54
– ident: e_1_2_10_30_1
  doi: 10.1016/S1474-4422(17)30158-8
– ident: e_1_2_10_43_1
  doi: 10.7717/peerj.6918
– ident: e_1_2_10_60_1
  doi: 10.3389/fnins.2019.00787
– ident: e_1_2_10_47_1
  doi: 10.1093/cercor/bhx230
– ident: e_1_2_10_28_1
  doi: 10.1016/j.neuron.2017.07.011
– ident: e_1_2_10_19_1
  doi: 10.1002/jmri.24558
– ident: e_1_2_10_53_1
  doi: 10.1161/01.STR.31.6.1318
– ident: e_1_2_10_38_1
  doi: 10.1016/j.mri.2020.07.010
– ident: e_1_2_10_46_1
  doi: 10.1038/srep41586
– ident: e_1_2_10_2_1
  doi: 10.12688/wellcomeopenres.15191.1
– ident: e_1_2_10_44_1
  doi: 10.1016/j.neuroimage.2006.09.032
– ident: e_1_2_10_16_1
  doi: 10.2307/2289444
– ident: e_1_2_10_48_1
  doi: 10.3233/JAD-2010-091261
– ident: e_1_2_10_25_1
– ident: e_1_2_10_33_1
  doi: 10.1159/000016043
– ident: e_1_2_10_35_1
  doi: 10.1177/0271678X18803951
– ident: e_1_2_10_65_1
  doi: 10.1007/978-0-387-21706-2
– ident: e_1_2_10_58_1
  doi: 10.1177/0271678X15614846
– ident: e_1_2_10_3_1
  doi: 10.1148/radiol.13130982
SSID ssj0011501
Score 2.4330928
Snippet BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2778
SubjectTerms Alzheimer's disease
blood flow
BOLD delay
Brain - blood supply
Cerebrovascular Circulation
Contrast agents
Contrast media
Correlation coefficient
Correlation coefficients
Datasets
Delay
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Patients
Perfusion
Reproducibility
Reproducibility of Results
resting‐state functional MRI
Stroke
Title Reproducibility of cerebral perfusion measurements using BOLD delay
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26244
https://www.ncbi.nlm.nih.gov/pubmed/36840928
https://www.proquest.com/docview/2799033206
https://www.proquest.com/docview/2780080005
https://pubmed.ncbi.nlm.nih.gov/PMC10089099
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SFEIvfSRNu226qCWEXryx5ZdET9k0YSndNIQE9hAwkiw3pVlv2Mdh--s7Iz_SbRoI9cEYPMaSNaP5ZjT-BLDr25Cjp0H7zjUGKIg5PJEY7qG4lmGQJ8Il9IcnyeAi-jKKR2vwqfkXpuKHaBNuZBluviYDV3q2f0saeqXHPZ6gd8L5l2q1CBCdtdRRBHRcsIUu1pM4AzesQj7fb59c9UV3AObdOsk_8atzQMfP4LJpelV38rO3mOue-fUXq-N_9u05PK2BKTuoNOkFrNlyE7YOSgzKx0u2x1ypqMvBb8LGsF6R34JDRPCONLaqsl2yScGMndJy9DW7sdNiQek4Nr5NRc4Y1dp_Z_1vXz8z4qhcvoSL46Pzw4FXb8zgmQgPL08UIg-lJLcx92NFS3GB1BH6emNyU-g8inJlja-sMFYmQVCIQiRKBkVkpA7CbVgvJ6V9DcwEheJ5rFMMiCl60zzlNpeB8oXUNhYd-NgMUWZq1nLaPOM6q_iWeYbfKnPfqgMfWtGbiqrjX0I7zThntbXOMp6iTw5RaZMOvG9vo53R4okq7WRBMsKhaz_uwKtKLdq3hMSYIzk2VqwoTCtAHN6rd8ofV47Lm7iVJKJ07KdTiPtbng36Q3fx5uGib-EJR1BWFWjuwPp8urDvEETNdRce8egUz-ko7cLj_tHJ6VnXJSS6zo5-AwX1HBk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BlQqXPoC2aWm7VFXVi4O9fmRX6gVoUYCEShVIXJC1u14DInGikBzSX9-Z9YOmtBKqT5Y8lvcxs_PN7PhbgI--DTl6GrTvTGOAgpjDE4nhHoprGQZZIlxCv3-SdM-io_P4fAm-1P_ClPwQTcKNLMOt12TglJDeuWMNvdLDNk_QPS3DIzrR2wVUPxryKII6LtxCJ-tJXINrXiGf7zSvLnqjexDzfqXk7wjWuaCDp3BRN76sPLlpz6a6bX7-wev4v717Bk8qbMp2S2V6Dku2WIeN3QLj8uGcfWKuWtSl4dfhcb_alN-AfQTxjje2LLSds1HOjJ3QjvSAje0kn1FGjg3vspG3jMrtL9ne995XRjSV8004O_h2ut_1qrMZPBPh5WWJQvChlOQ25n6saDcukDpCd29MZnKdRVGmrPGVFcbKJAhykYtEySCPjNRB-AJWilFhXwEzQa54FusOxsQUwGne4TaTgfKF1DYWLfhcz1FqKuJyOj9jkJaUyzzFsUrdWLXgQyM6Ltk6_ia0VU90Whnsbco76JZD1NukBdvNYzQ12j9RhR3NSEY4gO3HLXhZ6kXzlZBIcyTHxooFjWkEiMZ78UlxfeXovIleSSJQx346jfh3y9PuXt_dvH646HtY7Z72e2nv8OT4DaxxxGhlveYWrEwnM_sWMdVUv3Om8wvI2xvn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVqq4tLQFGvpgQQhxcWqv7c2uOLUNUVqaghCVekCy9mWKaJwoTQ7pr-_s-lFCQUL4ZMljeR8zO9_Mjr8FeBPamKKnQfs2CgMUxBwBZ5oGKK5EHBnGfUJ_cM76F8npZXq5BO_rf2FKfogm4eYsw6_XzsDHJj-4Jw29UsM2ZeidHsFKwkLuVLr7peGOckjHR1voYwOBS3BNKxTSg-bVRWf0AGE-LJT8FcB6D9Rbh29128vCk5_t2VS19e1vtI7_2bknsFYhU3JYqtIGLNliE7YOC4zKh3PylvhaUZ-E34TVQbUlvwXHCOE9a2xZZjsno5xoO3H70ddkbCf5zOXjyPA-F3lDXLH9d3L06axLHEnl_Clc9D58Pe4H1ckMgU7wCgyTCD2kFNSmNEyl24uLhErQ2WttdK5MkhhpdSgt11awKMp5zpkUUZ5ooaL4GSwXo8JuA9FRLqlJVQcjYhe-Kdqh1ohI4owqm_IWvKunKNMVbbk7PeM6KwmXaYZjlfmxasHrRnRccnX8SWi3nuesMtebjHbQKceotawFr5rHaGhu90QWdjRzMtzD6zBtwfNSLZqvxI4yR1BsLF9QmEbAkXgvPil-XHkyb0euJBCmYz-9Qvy95Vn_aOBvXvy76EtY_dztZWcn5x934DFFgFYWa-7C8nQys3sIqKZq3xvOHYNdGp8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+cerebral+perfusion+measurements+using+BOLD+delay&rft.jtitle=Human+brain+mapping&rft.au=Khalil%2C+Ahmed+A.&rft.au=Tanritanir%2C+Ayse+C.&rft.au=Grittner%2C+Ulrike&rft.au=Kirilina%2C+Evgeniya&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=44&rft.issue=7&rft.spage=2778&rft.epage=2789&rft_id=info:doi/10.1002%2Fhbm.26244&rft_id=info%3Apmid%2F36840928&rft.externalDocID=PMC10089099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon