Reproducibility of cerebral perfusion measurements using BOLD delay
BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal...
Saved in:
Published in | Human brain mapping Vol. 44; no. 7; pp. 2778 - 2789 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test–retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions.
This study investigates in detail the test–retest repeatability of a noninvasive perfusion imaging method (BOLD delay) in a large cohort of individuals. We find good overall test–retest repeatability, but longitudinal changes in BOLD delay in some areas of the brain should be interpreted with caution. The results of our study will be interesting to researchers currently using, or planning on using this method by providing them with a benchmark against which to interpret their results. |
---|---|
AbstractList | BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test–retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions. BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test–retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions. This study investigates in detail the test–retest repeatability of a noninvasive perfusion imaging method (BOLD delay) in a large cohort of individuals. We find good overall test–retest repeatability, but longitudinal changes in BOLD delay in some areas of the brain should be interpreted with caution. The results of our study will be interesting to researchers currently using, or planning on using this method by providing them with a benchmark against which to interpret their results. BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test–retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions. BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test-retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions.BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus particularly suited for longitudinal monitoring. In this study, we assess the reproducibility of BOLD delay using data from 136 subjects with normal cerebral perfusion scanned on two separate occasions with scanners, sequence parameters, and intervals between scans varying between subjects. The effects of various factors on the reproducibility of BOLD delay, defined here as the differences in BOLD delay values between the scanning sessions, were investigated using a linear mixed model. Reproducibility was additionally assessed using the intraclass correlation coefficient of BOLD delay between sessions. Reproducibility was highest in the posterior cerebral artery territory. The mean BOLD delay test-retest difference after accounting for the aforementioned factors was 1.2 s (95% CI = 1.0 to 1.4 s). Overall, BOLD delay shows good reproducibility, but care should be taken when interpreting longitudinal BOLD delay changes that are either very small or are located in certain brain regions. |
Author | Kirilina, Evgeniya Khalil, Ahmed A. Mekle, Ralf Fiebach, Jochen B. Grittner, Ulrike Tanritanir, Ayse C. Villringer, Arno |
AuthorAffiliation | 5 Charité ‐ Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology Berlin Germany 2 Berlin School of Mind and Brain Humboldt‐Universität zu Berlin Berlin Germany 3 Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany 4 Berlin Institute of Health (BIH) Berlin Germany 7 Center for Cognitive Neuroscience Berlin Free University Berlin Germany 6 Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany 1 Center for Stroke Research Berlin Charité ‐ Universitätsmedizin Berlin Berlin Germany |
AuthorAffiliation_xml | – name: 4 Berlin Institute of Health (BIH) Berlin Germany – name: 1 Center for Stroke Research Berlin Charité ‐ Universitätsmedizin Berlin Berlin Germany – name: 5 Charité ‐ Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology Berlin Germany – name: 3 Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany – name: 7 Center for Cognitive Neuroscience Berlin Free University Berlin Germany – name: 2 Berlin School of Mind and Brain Humboldt‐Universität zu Berlin Berlin Germany – name: 6 Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany |
Author_xml | – sequence: 1 givenname: Ahmed A. orcidid: 0000-0003-1752-4305 surname: Khalil fullname: Khalil, Ahmed A. email: ahmed-abdelrahim.khalil@charite.de organization: Berlin Institute of Health (BIH) – sequence: 2 givenname: Ayse C. surname: Tanritanir fullname: Tanritanir, Ayse C. organization: Charité ‐ Universitätsmedizin Berlin – sequence: 3 givenname: Ulrike surname: Grittner fullname: Grittner, Ulrike organization: Charité ‐ Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology – sequence: 4 givenname: Evgeniya surname: Kirilina fullname: Kirilina, Evgeniya organization: Free University – sequence: 5 givenname: Arno orcidid: 0000-0003-2604-2404 surname: Villringer fullname: Villringer, Arno organization: Max Planck Institute for Human Cognitive and Brain Sciences – sequence: 6 givenname: Jochen B. surname: Fiebach fullname: Fiebach, Jochen B. organization: Charité ‐ Universitätsmedizin Berlin – sequence: 7 givenname: Ralf surname: Mekle fullname: Mekle, Ralf organization: Charité ‐ Universitätsmedizin Berlin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36840928$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LxDAQhoMofh_8A1LwoofqJE2zzUl0_YQVQfQc0nSqkbZZk1bZf290VVTQXBImz7y8884aWexch4RsUdinAOzgoWz3mWCcL5BVCnKUApXZ4ttb5KnkI7pC1kJ4BKA0B7pMVjJRcJCsWCXjG5x6Vw3Glrax_SxxdWLQY-l1k0zR10Owrkta1GHw2GLXhySWuvvk-HpyklTY6NkGWap1E3Dz414nd2ent-OLdHJ9fjk-mqSGx5NWQsOIay0Z5gxyTWWeUVlyIagxlanLivNKowGNhUEpKK2LuhBa0pobWdJsnRzOdadD2WJlopnoUk29bbWfKaet-vnT2Qd1755VDKmQIGVU2P1Q8O5pwNCr1gaDTaM7dENQbFREFADyiO78Qh_d4Ls4X6SkhCxjICK1_d3Sl5fPgCOwNweMdyF4rL8QCm--mIrLU-_Li-zBL9bYXvcx_ziNbf7reLENzv6WVhfHV_OOV1ozquY |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2025_121097 crossref_primary_10_1002_hbm_70076 crossref_primary_10_1016_j_neuroimage_2024_120920 |
Cites_doi | 10.1177/0271678X17709198 10.1002/jmri.26765 10.1016/j.neuroimage.2019.116041 10.1371/journal.pone.0222787 10.1002/jmri.26571 10.1016/j.ijpsycho.2018.07.217 10.1002/uog.5256 10.1080/02664760500080157 10.3389/fnins.2017.00256 10.1371/journal.pone.0219854 10.1002/9780470316856 10.3174/ajnr.A4973 10.1002/ana.23763 10.1371/journal.pone.0069224 10.3389/fneur.2020.00381 10.1016/j.neuroimage.2022.119654 10.1371/journal.pone.0170541 10.1177/0271678X17753329 10.1177/0271678X17702156 10.1016/j.neuroimage.2016.03.033 10.1161/STROKEAHA.116.015566 10.1371/journal.pone.0133717 10.1016/j.neuroimage.2011.10.018 10.1002/jnr.24360 10.1016/j.neuroimage.2016.09.008 10.1016/j.jacr.2015.03.007 10.1007/s00381-018-3770-5 10.1002/jmri.26283 10.1016/j.neuroscience.2013.03.004 10.1002/hbm.23737 10.7717/peerj.4794 10.1088/2057-1976/aae8d1 10.1016/j.neuroimage.2016.06.034 10.1016/j.mri.2009.02.004 10.1002/jmri.22345 10.1177/0271678X20982395 10.1089/brain.2014.0284 10.3389/fninf.2013.00039 10.1016/j.neuroimage.2011.07.044 10.1177/0271678X16631755 10.1016/j.ultrasmedbio.2014.03.025 10.1006/nimg.2001.0829 10.1038/sdata.2014.54 10.1016/S1474-4422(17)30158-8 10.7717/peerj.6918 10.3389/fnins.2019.00787 10.1093/cercor/bhx230 10.1016/j.neuron.2017.07.011 10.1002/jmri.24558 10.1161/01.STR.31.6.1318 10.1016/j.mri.2020.07.010 10.1038/srep41586 10.12688/wellcomeopenres.15191.1 10.1016/j.neuroimage.2006.09.032 10.2307/2289444 10.3233/JAD-2010-091261 10.1159/000016043 10.1177/0271678X18803951 10.1007/978-0-387-21706-2 10.1177/0271678X15614846 10.1148/radiol.13130982 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Wiley Periodicals LLC. 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC. – notice: 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.26244 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Khalil et al |
EISSN | 1097-0193 |
EndPage | 2789 |
ExternalDocumentID | PMC10089099 36840928 10_1002_hbm_26244 HBM26244 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Berlin Institute of Health – fundername: Bundesministerium für Bildung und Forschung funderid: 01EO0801; 01EO01301 – fundername: ; – fundername: Bundesministerium für Bildung und Forschung grantid: 01EO0801; 01EO01301 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPKN AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4444-d6a074aa92e5205a195319b4661ccdcfbd44daec0ae8ce9611f8f86a91f4c9b13 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:38:32 EDT 2025 Thu Jul 10 18:28:11 EDT 2025 Sat Jul 26 02:30:15 EDT 2025 Wed Feb 19 02:24:02 EST 2025 Tue Jul 01 01:11:11 EDT 2025 Thu Apr 24 22:52:01 EDT 2025 Fri Feb 21 05:36:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | BOLD delay perfusion resting-state functional MRI blood flow reproducibility |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4444-d6a074aa92e5205a195319b4661ccdcfbd44daec0ae8ce9611f8f86a91f4c9b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2604-2404 0000-0003-1752-4305 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26244 |
PMID | 36840928 |
PQID | 2799033206 |
PQPubID | 996345 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10089099 proquest_miscellaneous_2780080005 proquest_journals_2799033206 pubmed_primary_36840928 crossref_primary_10_1002_hbm_26244 crossref_citationtrail_10_1002_hbm_26244 wiley_primary_10_1002_hbm_26244_HBM26244 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 7 2019; 50 2017; 48 2019; 13 2019; 14 2019; 201 2016; 143 2013; 240 2020; 11 2008; 31 2012; 59 2013; 7 2013; 8 2007; 34 2016; 36 2018; 49 2018; 131 2018; 6 2010; 20 2014; 4 1987; 82 2017; 37 2017; 38 2000; 10 2015; 41 2005; 32 2018; 34 2021; 41 2001; 14 2018; 38 2015; 2 2015; 12 2019; 7 2019; 4 2019; 5 2020; 40 2017; 27 2018; 266 2015; 10 2019; 39 2011; 33 1992 2014; 270 2002 2014; 40 2009; 27 2017; 95 2022; 263 2020; 73 2017; 16 2017; 11 2013; 73 2017; 12 2000; 31 2019 2016; 133 2018 2016 2017; 144 2018; 97 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 Brooks J. C. W. P. (e_1_2_10_14_1) 2013; 7 Coloigner J. (e_1_2_10_21_1) 2016 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Searle S. R. (e_1_2_10_54_1) 1992 Hodgson K. (e_1_2_10_32_1) 2017; 27 R Core Team (e_1_2_10_51_1) 2016 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Lv Y. (e_1_2_10_42_1) 2018; 266 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 11 start-page: 256 issue: MAY year: 2017 article-title: A resilient, non‐neuronal source of the spatiotemporal lag structure detected by bold signal‐based blood flow tracking publication-title: Frontiers in Neuroscience – volume: 10 start-page: 142 issue: 2 year: 2000 end-page: 146 article-title: Measurement of cerebral circulation time by contrast‐enhanced Doppler sonography publication-title: Cerebrovascular Diseases – volume: 7 start-page: 623 issue: October year: 2013 article-title: Physiological noise in brainstem fMRI publication-title: Frontiers in Human Neuroscience – volume: 49 start-page: 1099 year: 2018 end-page: 1104 article-title: Detecting perfusion deficit in Alzheimer's disease and mild cognitive impairment patients by resting‐state fMRI publication-title: Journal of Magnetic Resonance Imaging – volume: 50 start-page: 221 issue: 1 year: 2019 end-page: 229 article-title: One‐step analysis of brain perfusion and function for acute stroke patients after reperfusion: A resting‐state fMRI study publication-title: Journal of Magnetic Resonance Imaging – volume: 2 year: 2015 article-title: A high resolution 7‐Tesla resting‐state fMRI test‐retest dataset with cognitive and physiological measures publication-title: Scientific Data – volume: 40 start-page: 2372 issue: 10 year: 2014 end-page: 2378 article-title: A new method of measurement of cerebral circulation time: Contrast‐enhanced ultrasonography in healthy adults and patients with intracranial shunts publication-title: Ultrasound in Medicine & Biology – volume: 266 start-page: 157–164 year: 2018 article-title: Non‐invasive evaluation of cerebral perfusion in patients with transient ischemic attack: An fMRI study publication-title: Journal of Neurology – volume: 270 start-page: 548 issue: 2 year: 2014 end-page: 555 article-title: Cerebral hemodynamic impairment: Assessment with resting‐state functional MR imaging publication-title: Radiology – volume: 97 start-page: 456 year: 2018 end-page: 466 article-title: Vascular effects of caffeine found in BOLD fMRI publication-title: Journal of Neuroscience Research – volume: 14 issue: 9 year: 2019 article-title: Axial variation of deoxyhemoglobin density as a source of the low‐frequency time lag structure in blood oxygenation level‐dependent signals publication-title: PLoS One – volume: 27 start-page: 1019 issue: 8 year: 2009 end-page: 1029 article-title: Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: A 7 T study publication-title: Magnetic Resonance Imaging – volume: 37 start-page: 564 issue: 2 year: 2017 end-page: 576 article-title: Perfusion information extracted from resting state functional magnetic resonance imaging publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 7 year: 2017 article-title: The value of resting‐state functional MRI in subacute ischemic stroke: Comparison with dynamic susceptibility contrast‐enhanced perfusion MRI publication-title: Scientific Reports – year: 2018 – volume: 34 start-page: 565 issue: 2 year: 2007 end-page: 574 article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration publication-title: NeuroImage – volume: 14 start-page: 284 issue: 2 year: 2001 end-page: 297 article-title: Quantifying head motion associated with motor tasks used in fMRI publication-title: NeuroImage – volume: 240 start-page: 269 year: 2013 end-page: 276 article-title: MRI multiparametric hemodynamic characterization of the normal brain publication-title: Neuroscience – volume: 32 start-page: 855 issue: 8 year: 2005 end-page: 860 article-title: Comparing two clinical measurements: A linear mixed model approach publication-title: Journal of Applied Statistics – volume: 4 start-page: 63 year: 2019 article-title: Raincloud plots: A multi‐platform tool for robust data visualization publication-title: Wellcome Open Research – volume: 144 start-page: 275 year: 2017 end-page: 286 article-title: The Neuro Bureau ADHD‐200 Preprocessed repository publication-title: NeuroImage – volume: 8 issue: 7 year: 2013 article-title: Acute effects of modafinil on brain resting state networks in young healthy subjects publication-title: PLoS One – volume: 7 start-page: 39 year: 2013 article-title: Explicit B‐spline regularization in diffeomorphic image registration publication-title: Frontiers in Neuroinformatics – volume: 39 start-page: 1148 issue: 6 year: 2019 end-page: 1160 article-title: The resting‐state fMRI arterial signal predicts differential blood transit time through the brain publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 37 start-page: 2665 issue: 8 year: 2017 end-page: 2678 article-title: Measuring functional connectivity in stroke: Approaches and considerations publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 13 start-page: 787 year: 2019 article-title: Low frequency systemic hemodynamic “noise” in resting state BOLD fMRI: Characteristics, causes, implications, mitigation strategies, and applications publication-title: Frontiers in Neuroscience – volume: 7 year: 2019 article-title: We need to talk about reliability: Making better use of test‐retest studies for study design and interpretation publication-title: PeerJ – volume: 73 start-page: 111 year: 2020 end-page: 117 article-title: Test‐retest reliability and reproducibility of long‐label pseudo‐continuous arterial spin labeling publication-title: Magnetic Resonance Imaging – year: 2019 – volume: 143 start-page: 141 year: 2016 end-page: 151 article-title: Noise contributions to the fMRI signal: An overview publication-title: NeuroImage – volume: 14 issue: 7 year: 2019 article-title: Intraclass correlation—A discussion and demonstration of basic features publication-title: PLoS One – volume: 27 start-page: 5539 issue: 12 year: 2017 end-page: 5546 article-title: Shared genetic factors influence head motion during MRI and Body Mass Index publication-title: Cerebral Cortex – volume: 201 year: 2019 article-title: Distinctions among real and apparent respiratory motions in human fMRI data publication-title: NeuroImage – start-page: 1 year: 1992 end-page: 18 – volume: 82 start-page: 424 issue: 398 year: 1987 end-page: 436 article-title: Scatterplot matrix techniques for large N publication-title: Journal of the American Statistical Association – volume: 31 start-page: 466 issue: 4 year: 2008 end-page: 475 article-title: Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables publication-title: Ultrasound in Obstetrics & Gynecology – volume: 27 start-page: 5415 issue: 11 year: 2017 end-page: 5429 article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cerebral Cortex – volume: 41 year: 2021 article-title: Normative distribution of posterior circulation tissue time‐to‐maximum: Effects of anatomic variation, tracer kinetics, and implications for patient selection in posterior circulation ischemic stroke publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 41 start-page: 424 issue: 2 year: 2015 end-page: 430 article-title: Noncontrast mapping of arterial delay and functional connectivity using resting‐state functional MRI: A study in Moyamoya patients publication-title: Journal of Magnetic Resonance Imaging – volume: 59 start-page: 431 issue: 1 year: 2012 end-page: 438 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: NeuroImage – volume: 48 start-page: 925 issue: 4 year: 2017 end-page: 931 article-title: Relationship between changes in the temporal dynamics of the blood‐oxygen‐level‐dependent signal and hypoperfusion in acute ischemic stroke publication-title: Stroke – volume: 50 start-page: 1504 year: 2019 end-page: 1513 article-title: Cerebral circulation time derived from fMRI signals in large blood vessels publication-title: Journal of Magnetic Resonance Imaging – volume: 12 start-page: 689 issue: 7 year: 2015 end-page: 695 article-title: Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations publication-title: Journal of the American College of Radiology – volume: 133 start-page: 331 year: 2016 end-page: 340 article-title: Global and structured waves of rs‐fMRI signal identified as putative propagation of spontaneous neural activity publication-title: NeuroImage – volume: 131 start-page: S76 year: 2018 article-title: Exploring the brain contour of implicit infra‐low frequency EEG neurofeedback: A resting state fMRI study publication-title: International Journal of Psychophysiology – volume: 11 start-page: 381 year: 2020 article-title: The effect of scan length on the assessment of BOLD delay in ischemic stroke publication-title: Frontiers in Neurology – year: 2016 – volume: 4 start-page: 511 issue: 7 year: 2014 end-page: 522 article-title: The influence of physiological noise correction on test‐retest reliability of resting‐state functional connectivity publication-title: Brain Connectivity – volume: 31 start-page: 1318 issue: 6 year: 2000 end-page: 1328 article-title: Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute ischemic stroke with diffusion and perfusion MRI publication-title: Stroke – volume: 5 issue: 1 year: 2019 article-title: 4D flow MRI: Automatic assessment of blood flow in cerebral arteries publication-title: Biomedical Physics & Engineering Express – volume: 6 year: 2018 article-title: A brief introduction to mixed effects modelling and multi‐model inference in ecology publication-title: PeerJ – volume: 38 start-page: 139 issue: 1 year: 2017 end-page: 145 article-title: The effects of acetazolamide on the evaluation of cerebral hemodynamics and functional connectivity using blood oxygen level‐dependent MR imaging in patients with chronic steno‐occlusive disease of the anterior circulation publication-title: American Journal of Neuroradiology – volume: 59 start-page: 2142 issue: 3 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 10 issue: 8 year: 2015 article-title: Cerebral perfusion measurements in elderly with hypertension using arterial spin labeling publication-title: PLoS One – volume: 12 issue: 4 year: 2017 article-title: The evolution of cost‐efficiency in neural networks during recovery from traumatic brain injury publication-title: PLoS One – volume: 38 start-page: 1418 issue: 9 year: 2018 end-page: 1437 article-title: Variability of physiological brain perfusion in healthy subjects—A systematic review of modifiers. Considerations for multi‐center ASL studies publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 38 start-page: 5331 year: 2017 end-page: 5342 article-title: The impact of T1 versus EPI spatial normalization templates for fMRI data analyses publication-title: Human Brain Mapping – volume: 34 start-page: 901 issue: 5 year: 2018 end-page: 910 article-title: Resting state signal latency predicts laterality in pediatric medically refractory temporal lobe epilepsy publication-title: Child's Nervous System – year: 2002 – volume: 95 start-page: 791 issue: 4 year: 2017 end-page: 807.e7 article-title: Precision functional mapping of individual human brains publication-title: Neuron – volume: 16 start-page: 564 issue: 7 year: 2017 end-page: 570 article-title: Gadolinium deposition in the brain: Summary of evidence and recommendations publication-title: Lancet Neurology – volume: 36 start-page: 2162 issue: 12 year: 2016 end-page: 2176 article-title: The effects of hemodynamic lag on functional connectivity and behavior after stroke publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 33 start-page: 940 issue: 4 year: 2011 end-page: 949 article-title: Test‐retest reliability of arterial spin labeling with common labeling strategies publication-title: Journal of Magnetic Resonance Imaging – volume: 263 year: 2022 article-title: Reliability and sensitivity to alterered hemodynamics measured with resting‐state fMRI metrics: Comparison with 123I‐IMP SPECT publication-title: NeuroImage – volume: 40 start-page: 23 issue: 1 year: 2020 end-page: 34 article-title: Non‐invasive monitoring of longitudinal changes in cerebral hemodynamics in acute ischemic stroke using BOLD signal delay publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 73 start-page: 136 issue: 1 year: 2013 end-page: 140 article-title: Identifying the perfusion deficit in acute stroke with resting‐state functional magnetic resonance imaging publication-title: Annals of Neurology – volume: 20 start-page: S51 issue: suppl 1 year: 2010 end-page: S62 article-title: Caffeine and the control of cerebral hemodynamics publication-title: Journal of Alzheimer's Disease – ident: e_1_2_10_57_1 doi: 10.1177/0271678X17709198 – ident: e_1_2_10_69_1 doi: 10.1002/jmri.26765 – volume: 266 start-page: 157–164 year: 2018 ident: e_1_2_10_42_1 article-title: Non‐invasive evaluation of cerebral perfusion in patients with transient ischemic attack: An fMRI study publication-title: Journal of Neurology – ident: e_1_2_10_50_1 doi: 10.1016/j.neuroimage.2019.116041 – ident: e_1_2_10_9_1 doi: 10.1371/journal.pone.0222787 – ident: e_1_2_10_17_1 doi: 10.1002/jmri.26571 – ident: e_1_2_10_22_1 doi: 10.1016/j.ijpsycho.2018.07.217 – ident: e_1_2_10_10_1 doi: 10.1002/uog.5256 – ident: e_1_2_10_36_1 doi: 10.1080/02664760500080157 – ident: e_1_2_10_8_1 doi: 10.3389/fnins.2017.00256 – ident: e_1_2_10_37_1 doi: 10.1371/journal.pone.0219854 – start-page: 1 volume-title: Variance components year: 1992 ident: e_1_2_10_54_1 doi: 10.1002/9780470316856 – ident: e_1_2_10_26_1 – volume-title: SPIE medical imaging year: 2016 ident: e_1_2_10_21_1 – ident: e_1_2_10_66_1 doi: 10.3174/ajnr.A4973 – ident: e_1_2_10_41_1 doi: 10.1002/ana.23763 – ident: e_1_2_10_24_1 doi: 10.1371/journal.pone.0069224 – ident: e_1_2_10_59_1 doi: 10.3389/fneur.2020.00381 – ident: e_1_2_10_5_1 doi: 10.1016/j.neuroimage.2022.119654 – ident: e_1_2_10_52_1 doi: 10.1371/journal.pone.0170541 – ident: e_1_2_10_62_1 doi: 10.1177/0271678X17753329 – ident: e_1_2_10_20_1 doi: 10.1177/0271678X17702156 – ident: e_1_2_10_4_1 doi: 10.1016/j.neuroimage.2016.03.033 – ident: e_1_2_10_34_1 doi: 10.1161/STROKEAHA.116.015566 – ident: e_1_2_10_45_1 doi: 10.1371/journal.pone.0133717 – ident: e_1_2_10_49_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_10_68_1 doi: 10.1002/jnr.24360 – ident: e_1_2_10_39_1 doi: 10.1016/j.neuroimage.2016.09.008 – ident: e_1_2_10_6_1 doi: 10.1016/j.jacr.2015.03.007 – volume: 27 start-page: 5539 issue: 12 year: 2017 ident: e_1_2_10_32_1 article-title: Shared genetic factors influence head motion during MRI and Body Mass Index publication-title: Cerebral Cortex – volume-title: R foundation for statistical computing year: 2016 ident: e_1_2_10_51_1 – ident: e_1_2_10_56_1 doi: 10.1007/s00381-018-3770-5 – ident: e_1_2_10_67_1 doi: 10.1002/jmri.26283 – ident: e_1_2_10_7_1 doi: 10.1016/j.neuroscience.2013.03.004 – ident: e_1_2_10_15_1 doi: 10.1002/hbm.23737 – ident: e_1_2_10_31_1 doi: 10.7717/peerj.4794 – ident: e_1_2_10_23_1 doi: 10.1088/2057-1976/aae8d1 – ident: e_1_2_10_11_1 doi: 10.1016/j.neuroimage.2016.06.034 – ident: e_1_2_10_12_1 doi: 10.1016/j.mri.2009.02.004 – ident: e_1_2_10_18_1 doi: 10.1002/jmri.22345 – ident: e_1_2_10_27_1 doi: 10.1177/0271678X20982395 – ident: e_1_2_10_13_1 doi: 10.1089/brain.2014.0284 – ident: e_1_2_10_63_1 doi: 10.3389/fninf.2013.00039 – ident: e_1_2_10_64_1 doi: 10.1016/j.neuroimage.2011.07.044 – ident: e_1_2_10_61_1 doi: 10.1177/0271678X16631755 – volume: 7 start-page: 623 year: 2013 ident: e_1_2_10_14_1 article-title: Physiological noise in brainstem fMRI publication-title: Frontiers in Human Neuroscience – ident: e_1_2_10_40_1 doi: 10.1016/j.ultrasmedbio.2014.03.025 – ident: e_1_2_10_55_1 doi: 10.1006/nimg.2001.0829 – ident: e_1_2_10_29_1 doi: 10.1038/sdata.2014.54 – ident: e_1_2_10_30_1 doi: 10.1016/S1474-4422(17)30158-8 – ident: e_1_2_10_43_1 doi: 10.7717/peerj.6918 – ident: e_1_2_10_60_1 doi: 10.3389/fnins.2019.00787 – ident: e_1_2_10_47_1 doi: 10.1093/cercor/bhx230 – ident: e_1_2_10_28_1 doi: 10.1016/j.neuron.2017.07.011 – ident: e_1_2_10_19_1 doi: 10.1002/jmri.24558 – ident: e_1_2_10_53_1 doi: 10.1161/01.STR.31.6.1318 – ident: e_1_2_10_38_1 doi: 10.1016/j.mri.2020.07.010 – ident: e_1_2_10_46_1 doi: 10.1038/srep41586 – ident: e_1_2_10_2_1 doi: 10.12688/wellcomeopenres.15191.1 – ident: e_1_2_10_44_1 doi: 10.1016/j.neuroimage.2006.09.032 – ident: e_1_2_10_16_1 doi: 10.2307/2289444 – ident: e_1_2_10_48_1 doi: 10.3233/JAD-2010-091261 – ident: e_1_2_10_25_1 – ident: e_1_2_10_33_1 doi: 10.1159/000016043 – ident: e_1_2_10_35_1 doi: 10.1177/0271678X18803951 – ident: e_1_2_10_65_1 doi: 10.1007/978-0-387-21706-2 – ident: e_1_2_10_58_1 doi: 10.1177/0271678X15614846 – ident: e_1_2_10_3_1 doi: 10.1148/radiol.13130982 |
SSID | ssj0011501 |
Score | 2.4330928 |
Snippet | BOLD delay is an emerging, noninvasive method for assessing cerebral perfusion that does not require the use of intravenous contrast agents and is thus... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2778 |
SubjectTerms | Alzheimer's disease blood flow BOLD delay Brain - blood supply Cerebrovascular Circulation Contrast agents Contrast media Correlation coefficient Correlation coefficients Datasets Delay Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Patients Perfusion Reproducibility Reproducibility of Results resting‐state functional MRI Stroke |
Title | Reproducibility of cerebral perfusion measurements using BOLD delay |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26244 https://www.ncbi.nlm.nih.gov/pubmed/36840928 https://www.proquest.com/docview/2799033206 https://www.proquest.com/docview/2780080005 https://pubmed.ncbi.nlm.nih.gov/PMC10089099 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SFEIvfSRNu226qCWEXryx5ZdET9k0YSndNIQE9hAwkiw3pVlv2Mdh--s7Iz_SbRoI9cEYPMaSNaP5ZjT-BLDr25Cjp0H7zjUGKIg5PJEY7qG4lmGQJ8Il9IcnyeAi-jKKR2vwqfkXpuKHaBNuZBluviYDV3q2f0saeqXHPZ6gd8L5l2q1CBCdtdRRBHRcsIUu1pM4AzesQj7fb59c9UV3AObdOsk_8atzQMfP4LJpelV38rO3mOue-fUXq-N_9u05PK2BKTuoNOkFrNlyE7YOSgzKx0u2x1ypqMvBb8LGsF6R34JDRPCONLaqsl2yScGMndJy9DW7sdNiQek4Nr5NRc4Y1dp_Z_1vXz8z4qhcvoSL46Pzw4FXb8zgmQgPL08UIg-lJLcx92NFS3GB1BH6emNyU-g8inJlja-sMFYmQVCIQiRKBkVkpA7CbVgvJ6V9DcwEheJ5rFMMiCl60zzlNpeB8oXUNhYd-NgMUWZq1nLaPOM6q_iWeYbfKnPfqgMfWtGbiqrjX0I7zThntbXOMp6iTw5RaZMOvG9vo53R4okq7WRBMsKhaz_uwKtKLdq3hMSYIzk2VqwoTCtAHN6rd8ofV47Lm7iVJKJ07KdTiPtbng36Q3fx5uGib-EJR1BWFWjuwPp8urDvEETNdRce8egUz-ko7cLj_tHJ6VnXJSS6zo5-AwX1HBk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BlQqXPoC2aWm7VFXVi4O9fmRX6gVoUYCEShVIXJC1u14DInGikBzSX9-Z9YOmtBKqT5Y8lvcxs_PN7PhbgI--DTl6GrTvTGOAgpjDE4nhHoprGQZZIlxCv3-SdM-io_P4fAm-1P_ClPwQTcKNLMOt12TglJDeuWMNvdLDNk_QPS3DIzrR2wVUPxryKII6LtxCJ-tJXINrXiGf7zSvLnqjexDzfqXk7wjWuaCDp3BRN76sPLlpz6a6bX7-wev4v717Bk8qbMp2S2V6Dku2WIeN3QLj8uGcfWKuWtSl4dfhcb_alN-AfQTxjje2LLSds1HOjJ3QjvSAje0kn1FGjg3vspG3jMrtL9ne995XRjSV8004O_h2ut_1qrMZPBPh5WWJQvChlOQ25n6saDcukDpCd29MZnKdRVGmrPGVFcbKJAhykYtEySCPjNRB-AJWilFhXwEzQa54FusOxsQUwGne4TaTgfKF1DYWLfhcz1FqKuJyOj9jkJaUyzzFsUrdWLXgQyM6Ltk6_ia0VU90Whnsbco76JZD1NukBdvNYzQ12j9RhR3NSEY4gO3HLXhZ6kXzlZBIcyTHxooFjWkEiMZ78UlxfeXovIleSSJQx346jfh3y9PuXt_dvH646HtY7Z72e2nv8OT4DaxxxGhlveYWrEwnM_sWMdVUv3Om8wvI2xvn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVqq4tLQFGvpgQQhxcWqv7c2uOLUNUVqaghCVekCy9mWKaJwoTQ7pr-_s-lFCQUL4ZMljeR8zO9_Mjr8FeBPamKKnQfs2CgMUxBwBZ5oGKK5EHBnGfUJ_cM76F8npZXq5BO_rf2FKfogm4eYsw6_XzsDHJj-4Jw29UsM2ZeidHsFKwkLuVLr7peGOckjHR1voYwOBS3BNKxTSg-bVRWf0AGE-LJT8FcB6D9Rbh29128vCk5_t2VS19e1vtI7_2bknsFYhU3JYqtIGLNliE7YOC4zKh3PylvhaUZ-E34TVQbUlvwXHCOE9a2xZZjsno5xoO3H70ddkbCf5zOXjyPA-F3lDXLH9d3L06axLHEnl_Clc9D58Pe4H1ckMgU7wCgyTCD2kFNSmNEyl24uLhErQ2WttdK5MkhhpdSgt11awKMp5zpkUUZ5ooaL4GSwXo8JuA9FRLqlJVQcjYhe-Kdqh1ohI4owqm_IWvKunKNMVbbk7PeM6KwmXaYZjlfmxasHrRnRccnX8SWi3nuesMtebjHbQKceotawFr5rHaGhu90QWdjRzMtzD6zBtwfNSLZqvxI4yR1BsLF9QmEbAkXgvPil-XHkyb0euJBCmYz-9Qvy95Vn_aOBvXvy76EtY_dztZWcn5x934DFFgFYWa-7C8nQys3sIqKZq3xvOHYNdGp8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+cerebral+perfusion+measurements+using+BOLD+delay&rft.jtitle=Human+brain+mapping&rft.au=Khalil%2C+Ahmed+A.&rft.au=Tanritanir%2C+Ayse+C.&rft.au=Grittner%2C+Ulrike&rft.au=Kirilina%2C+Evgeniya&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=44&rft.issue=7&rft.spage=2778&rft.epage=2789&rft_id=info:doi/10.1002%2Fhbm.26244&rft_id=info%3Apmid%2F36840928&rft.externalDocID=PMC10089099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |