Risk assessment of insect pest expansion in alpine ecosystems under climate change

BACKGROUND Growth in insect pest populations poses a significant threat to ecosystem functions and services, societal development, and food security in alpine regions under climate change. Risk assessments are important prioritization tools for pest management, which must be used to study insect pes...

Full description

Saved in:
Bibliographic Details
Published inPest management science Vol. 77; no. 7; pp. 3165 - 3178
Main Authors Wang, Chun‐Jing, Wang, Rong, Yu, Chun‐Mei, Dang, Xiao‐Peng, Sun, Wan‐Gui, Li, Qiang‐Feng, Wang, Xiao‐Ting, Wan, Ji‐Zhong
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BACKGROUND Growth in insect pest populations poses a significant threat to ecosystem functions and services, societal development, and food security in alpine regions under climate change. Risk assessments are important prioritization tools for pest management, which must be used to study insect pest expansion in alpine ecosystems under global warming. We used species distribution modeling to simulate the current and future distribution probabilities of 58 insect pest species in the Qinghai Province, China, based on a comprehensive field investigation. Subsequently, general linear modeling was used to explore the relationship between the distribution probability of these species and the damage caused by them. Finally, we assessed the ecological risk of insect pest expansion across different alpine ecosystems under climate change. RESULTS Climate change could increase the distribution probabilities of insect pest species across different alpine ecosystems. However, the presence of insect pest species may not correspond to the damage occurrence in alpine ecosystems based on percent leaf loss, amount of stunting, and seedling death of their host species. Significant positive relationships between distribution probability and damage occurrence were found for several of the examined insect pest species. Insect pest expansion is likely to increase extensively in alpine ecosystems under increasing carbon dioxide (CO2) emission scenarios. CONCLUSION The relationships between distribution probability and damage occurrence should be considered in species distribution modeling for risk assessment of insect pest expansion under climate change. Our study could improve the effectiveness of risk assessment of insect pest expansion under changing climate conditions. © 2021 Society of Chemical Industry We conducted an expansion risk assessment of insect pest species in alpine ecosystems under climate change based on the relationships between species distribution probability and damage occurrence. © 2021 Society of Chemical Industry
Bibliography:These authors contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1526-498X
1526-4998
1526-4998
DOI:10.1002/ps.6354