Addressing subject heterogeneity in time‐dependent discrimination for biomarker evaluation

Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time‐to‐event outcome often changes over time, local measures such as the time‐dependent receive...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 43; no. 7; pp. 1341 - 1353
Main Authors Jiang, Xinyang, Li, Wen, Li, Ruosha, Ning, Jing
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 30.03.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time‐to‐event outcome often changes over time, local measures such as the time‐dependent receiver operating characteristic curve and its area under the curve (AUC) are used to assess time‐dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease‐related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate‐specific time‐dependent AUC, a measure for covariate‐adjusted discrimination. We develop a regression model on the covariate‐specific time‐dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial‐likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate‐specific and time‐dependent predictive discrimination.
AbstractList Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time‐to‐event outcome often changes over time, local measures such as the time‐dependent receiver operating characteristic curve and its area under the curve (AUC) are used to assess time‐dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease‐related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate‐specific time‐dependent AUC, a measure for covariate‐adjusted discrimination. We develop a regression model on the covariate‐specific time‐dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial‐likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate‐specific and time‐dependent predictive discrimination.
Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time-to-event outcome often changes over time, local measures such as the time-dependent receiver operating characteristic (ROC) curve and its area under the curve (AUC) are used to assess time-dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease-related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate-specific time-dependent AUC, a measure for covariate-adjusted discrimination. We develop a regression model on the covariate-specific time-dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial-likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate-specific and time-dependent predictive discrimination.
Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time-to-event outcome often changes over time, local measures such as the time-dependent receiver operating characteristic curve and its area under the curve (AUC) are used to assess time-dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease-related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate-specific time-dependent AUC, a measure for covariate-adjusted discrimination. We develop a regression model on the covariate-specific time-dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial-likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate-specific and time-dependent predictive discrimination.Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time-to-event outcome often changes over time, local measures such as the time-dependent receiver operating characteristic curve and its area under the curve (AUC) are used to assess time-dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease-related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate-specific time-dependent AUC, a measure for covariate-adjusted discrimination. We develop a regression model on the covariate-specific time-dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial-likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate-specific and time-dependent predictive discrimination.
Author Ning, Jing
Jiang, Xinyang
Li, Wen
Li, Ruosha
AuthorAffiliation 2 Department of Internal Medicine, The University of Texas McGovern Medical School, TX, USA
3 Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, USA
1 Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, TX, USA
AuthorAffiliation_xml – name: 2 Department of Internal Medicine, The University of Texas McGovern Medical School, TX, USA
– name: 1 Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, TX, USA
– name: 3 Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, USA
Author_xml – sequence: 1
  givenname: Xinyang
  surname: Jiang
  fullname: Jiang, Xinyang
  organization: The University of Texas Health Science Center at Houston
– sequence: 2
  givenname: Wen
  orcidid: 0000-0002-7538-5422
  surname: Li
  fullname: Li, Wen
  organization: The University of Texas McGovern Medical School
– sequence: 3
  givenname: Ruosha
  orcidid: 0000-0003-3595-4392
  surname: Li
  fullname: Li, Ruosha
  organization: The University of Texas Health Science Center at Houston
– sequence: 4
  givenname: Jing
  orcidid: 0000-0002-5289-331X
  surname: Ning
  fullname: Ning, Jing
  email: jning@mdanderson.org
  organization: The University of Texas MD Anderson Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38287471$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1uFDEQhS2UiEwCCy6AWmITFk1c7h-7VyiK-ImUiAWwQ7Lcdnniodse7O6g2XEEzshJMDMTBBF445Lqe0-vqo7JgQ8eCXkC9AVQys6SG7dF_YAsgHa8pKwRB2RBGedly6E5IscprSgFaBh_SI4qwQSvOSzIp3NjIqbk_LJIc79CPRU3OGEMS_Topk3hfDG5EX98-25wjd6gnwrjko5udF5NLvjChlj0LowqfsZY4K0a5m3jETm0akj4eP-fkI-vX324eFtevXtzeXF-Veo6v5KB6Q1vmbEKaqwEt4KBsEK3tql6WqPAhmquOmxb1tHWGtC1ZQa7GnveddUJebnzXc_9iEbniFENcp0jqriRQTn5d8e7G7kMtxIAKAfBs8Pp3iGGLzOmSY55RBwG5THMSbKOURANMJHRZ_fQVZijz_NlquFQNaytMvX0z0i_s9xtPgNnO0DHkFJEK7WbtlvLCd0ggcpfJ5X5ttuizorn9xR3pv9i9-5f3YCb_4Py_eX1TvETqrW2AQ
CitedBy_id crossref_primary_10_3389_fmed_2025_1497651
Cites_doi 10.1093/oso/9780198509844.001.0001
10.1093/biostatistics/kxl036
10.1007/978-1-4614-8981-8_11
10.1111/biom.12761
10.1111/j.0006-341X.2000.00337.x
10.2307/2986270
10.1111/biom.12293
10.1093/biostatistics/kxi047
10.1002/sim.9848
10.1186/s12874-020-01100-0
10.1186/s12874-017-0332-6
10.1002/cjs.10046
10.1093/biostatistics/kxs021
10.32614/CRAN.package.fastglm
10.1093/biostatistics/3.3.421
10.1111/j.1541-0420.2011.01671.x
10.1198/016214503000198
10.1056/NEJM199610103351501
10.1093/jnci/93.14.1054
10.1177/0272989X9901900303
10.1111/j.0006-341X.2005.030814.x
10.6339/JDS.201704_15(2).0009
10.1177/1535370217750088
10.1001/jama.294.1.66
10.6339/JDS.201110_09(4).0009
ContentType Journal Article
Copyright 2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.10024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1353
ExternalDocumentID PMC11107187
38287471
10_1002_sim_10024
SIM10024
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Cancer Prevention and Research Institute of Texas
  funderid: RP200633
– fundername: National Institutes of Health
  funderid: P50CA217685; P50CA281701; R01CA269696; R01DK117209; U24CA230144
– fundername: NCI NIH HHS
  grantid: U24 CA230144
– fundername: NCI NIH HHS
  grantid: P50 CA217685
– fundername: NIH HHS
  grantid: R01CA269696
– fundername: NCI NIH HHS
  grantid: R01 CA269696
– fundername: NIH HHS
  grantid: P50CA281701
– fundername: NCI NIH HHS
  grantid: P50 CA281701
– fundername: NIH HHS
  grantid: U24CA230144
– fundername: NIH HHS
  grantid: P50CA217685
– fundername: NIH HHS
  grantid: R01DK117209
– fundername: NIDDK NIH HHS
  grantid: R01 DK117209
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
EBD
EMOBN
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4444-21dbd762dfa14e387f8218f8c6f53b04e8e50c7a9e662906fd1c4f2de94eb7993
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:35:45 EDT 2025
Fri Jul 11 15:53:29 EDT 2025
Fri Jul 25 23:30:58 EDT 2025
Thu Jul 03 03:54:23 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Tue Jul 01 03:28:19 EDT 2025
Wed Jan 22 16:14:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords predictive discrimination
prognostic biomarker
pseudo partial-likelihood
covariate-specific time-dependent AUC
Language English
License 2024 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4444-21dbd762dfa14e387f8218f8c6f53b04e8e50c7a9e662906fd1c4f2de94eb7993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3595-4392
0000-0002-5289-331X
0000-0002-7538-5422
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11107187
PMID 38287471
PQID 2957135263
PQPubID 48361
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11107187
proquest_miscellaneous_2920185128
proquest_journals_2957135263
pubmed_primary_38287471
crossref_citationtrail_10_1002_sim_10024
crossref_primary_10_1002_sim_10024
wiley_primary_10_1002_sim_10024_SIM10024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 March 2024
PublicationDateYYYYMMDD 2024-03-30
PublicationDate_xml – month: 03
  year: 2024
  text: 30 March 2024
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 243
2001; 93
2010; 38
2015; 6
2005; 294
2015; 71
2020; 20
2006; 7
2002; 3
2003
2005; 61
2003; 98
1994; 43
2011; 9
2023; 42
2013; 14
2017; 15
1999; 19
2000; 56
2017; 17
2007; 8
2018; 74
2013
1996; 335
2012; 68
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
Kagan JM (e_1_2_10_25_1) 2015; 6
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_26_1
References_xml – volume: 14
  start-page: 42
  issue: 1
  year: 2013
  end-page: 59
  article-title: Non‐parametric estimation of a time‐dependent predictive accuracy curve
  publication-title: Biostatistics
– volume: 3
  start-page: 421
  issue: 3
  year: 2002
  end-page: 432
  article-title: Distribution‐free ROC analysis using binary regression techniques
  publication-title: Biostatistics
– volume: 15
  start-page: 329
  issue: 2
  year: 2017
  end-page: 350
  article-title: General semiparametric area under the curve regression model with discrete covariates
  publication-title: J Data Sci
– year: 2003
– volume: 56
  start-page: 337
  issue: 2
  year: 2000
  end-page: 344
  article-title: Time‐dependent ROC curves for censored survival data and a diagnostic marker
  publication-title: Biometrics
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Inference about time‐dependent prognostic accuracy measures in the presence of competing risks
  publication-title: BMC Med Res Methodol
– volume: 6
  start-page: 55
  issue: 1‐2
  year: 2015
  end-page: 64
  article-title: A brief chronicle of CD4 as a biomarker for HIV/AIDS: a tribute to the memory of John L. Fahey
  publication-title: For Immunopathol Dis Therap
– volume: 294
  start-page: 66
  issue: 1
  year: 2005
  end-page: 70
  article-title: Operating characteristics of prostate‐specific antigen in men with an initial PSA level of 3.0 ng/ml or lower
  publication-title: JAMA
– volume: 335
  start-page: 1081
  issue: 15
  year: 1996
  end-page: 1090
  article-title: A trial comparing nucleoside monotherapy with combination therapy in HIV‐infected adults with CD4 cell counts from 200 to 500 per cubic millimeter
  publication-title: N Engl J Med
– volume: 17
  start-page: 1
  issue: 1
  year: 2017
  end-page: 19
  article-title: Time‐dependent ROC curve analysis in medical research: current methods and applications
  publication-title: BMC Med Res Methodol
– volume: 8
  start-page: 654
  issue: 3
  year: 2007
  end-page: 673
  article-title: Generalized monotonic regression based on B‐splines with an application to air pollution data
  publication-title: Biostatistics
– volume: 9
  start-page: 625
  issue: 4
  year: 2011
  end-page: 637
  article-title: Inference for semiparametric AUC regression models with discrete covariates
  publication-title: J Data Sci
– volume: 68
  start-page: 388
  issue: 2
  year: 2012
  end-page: 396
  article-title: Evaluating prognostic accuracy of biomarkers under competing risk
  publication-title: Biometrics
– start-page: 239
  year: 2013
  end-page: 251
– volume: 42
  start-page: 4082
  issue: 23
  year: 2023
  end-page: 4110
  article-title: Inference for covariate‐adjusted time‐dependent prognostic accuracy measures
  publication-title: Stat Med
– volume: 71
  start-page: 439
  issue: 2
  year: 2015
  end-page: 449
  article-title: A direct method to evaluate the time‐dependent predictive accuracy for biomarkers
  publication-title: Biometrics
– volume: 19
  start-page: 242
  issue: 3
  year: 1999
  end-page: 251
  article-title: Incorporating the time dimension in receiver operating characteristic curves: a case study of prostate cancer
  publication-title: Med Decis Making
– volume: 98
  start-page: 409
  issue: 462
  year: 2003
  end-page: 417
  article-title: Semiparametric regression for the area under the receiver operating characteristic curve
  publication-title: J Am Stat Assoc
– volume: 74
  start-page: 734
  issue: 2
  year: 2018
  end-page: 743
  article-title: AC‐index for recurrent event data: application to hospitalizations among dialysis patients
  publication-title: Biometrics
– volume: 61
  start-page: 92
  issue: 1
  year: 2005
  end-page: 105
  article-title: Survival model predictive accuracy and ROC curves
  publication-title: Biometrics
– volume: 243
  start-page: 213
  issue: 3
  year: 2018
  end-page: 221
  article-title: Biomarker definitions and their applications
  publication-title: Exp Biol Med
– volume: 93
  start-page: 1054
  issue: 14
  year: 2001
  end-page: 1061
  article-title: Phases of biomarker development for early detection of cancer
  publication-title: J Natl Cancer Inst
– volume: 7
  start-page: 182
  issue: 2
  year: 2006
  end-page: 197
  article-title: The sensitivity and specificity of markers for event times
  publication-title: Biostatistics
– volume: 38
  start-page: 8
  issue: 1
  year: 2010
  end-page: 26
  article-title: Estimation methods for time‐dependent AUC models with survival data
  publication-title: Can J Stat
– volume: 43
  start-page: 429
  issue: 3
  year: 1994
  end-page: 453
  article-title: Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling
  publication-title: J R Stat Soc Ser C Appl Stat
– ident: e_1_2_10_3_1
  doi: 10.1093/oso/9780198509844.001.0001
– ident: e_1_2_10_28_1
  doi: 10.1093/biostatistics/kxl036
– ident: e_1_2_10_19_1
  doi: 10.1007/978-1-4614-8981-8_11
– ident: e_1_2_10_24_1
  doi: 10.1111/biom.12761
– ident: e_1_2_10_6_1
  doi: 10.1111/j.0006-341X.2000.00337.x
– ident: e_1_2_10_22_1
  doi: 10.2307/2986270
– ident: e_1_2_10_9_1
  doi: 10.1111/biom.12293
– ident: e_1_2_10_17_1
  doi: 10.1093/biostatistics/kxi047
– ident: e_1_2_10_21_1
  doi: 10.1002/sim.9848
– ident: e_1_2_10_10_1
  doi: 10.1186/s12874-020-01100-0
– ident: e_1_2_10_7_1
  doi: 10.1186/s12874-017-0332-6
– ident: e_1_2_10_18_1
  doi: 10.1002/cjs.10046
– ident: e_1_2_10_8_1
  doi: 10.1093/biostatistics/kxs021
– ident: e_1_2_10_20_1
– ident: e_1_2_10_23_1
  doi: 10.32614/CRAN.package.fastglm
– ident: e_1_2_10_13_1
  doi: 10.1093/biostatistics/3.3.421
– ident: e_1_2_10_27_1
  doi: 10.1111/j.1541-0420.2011.01671.x
– volume: 6
  start-page: 55
  issue: 1
  year: 2015
  ident: e_1_2_10_25_1
  article-title: A brief chronicle of CD4 as a biomarker for HIV/AIDS: a tribute to the memory of John L. Fahey
  publication-title: For Immunopathol Dis Therap
– ident: e_1_2_10_14_1
  doi: 10.1198/016214503000198
– ident: e_1_2_10_26_1
  doi: 10.1056/NEJM199610103351501
– ident: e_1_2_10_11_1
  doi: 10.1093/jnci/93.14.1054
– ident: e_1_2_10_5_1
  doi: 10.1177/0272989X9901900303
– ident: e_1_2_10_4_1
  doi: 10.1111/j.0006-341X.2005.030814.x
– ident: e_1_2_10_16_1
  doi: 10.6339/JDS.201704_15(2).0009
– ident: e_1_2_10_2_1
  doi: 10.1177/1535370217750088
– ident: e_1_2_10_12_1
  doi: 10.1001/jama.294.1.66
– ident: e_1_2_10_15_1
  doi: 10.6339/JDS.201110_09(4).0009
SSID ssj0011527
Score 2.4437106
Snippet Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1341
SubjectTerms Area Under Curve
Biomarkers
Computer Simulation
covariate‐specific time‐dependent AUC
Demographics
Humans
Medical prognosis
Predictive analytics
predictive discrimination
Probability
prognostic biomarker
pseudo partial‐likelihood
ROC Curve
Time Factors
Title Addressing subject heterogeneity in time‐dependent discrimination for biomarker evaluation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10024
https://www.ncbi.nlm.nih.gov/pubmed/38287471
https://www.proquest.com/docview/2957135263
https://www.proquest.com/docview/2920185128
https://pubmed.ncbi.nlm.nih.gov/PMC11107187
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPaBKiMeWR6AggzhwSRt7ncRRT1VF1VZaDpRKPVSK4hddAVnU3b1w4ifwG_klzNhJytJWQuQSS54oTjJjf_HMfAPwBidFzZ0pUlyey5TiLlIlKodArnGuNMpKQx7dyfvi8FQen-Vna7Db58JEfohhw40sI8zXZOCNnu9ckYbOp19Dk7hAKVaLANGHgTqK9-VayUVZlDzvWYUysTNcuboWXQOY1-Mk_8SvYQE6uA_n_dBj3Mnn7eVCb5vvf7E6_uezPYB7HTBle1GTHsKaa0dwZ9K53kdwN27wsZi3NIINgqmR5XkTzvesDQG17Sc2X2ra22EXFGgzQ_10CPTZtGVUxv7Xj5992d0Fo4zgWFWMtIMhfGbEBkABQ5fsiob8EZwevPu4f5h2dRtSI_FIBbfa4iRrfcOlG6vSKwQSXpnC52OdSadcnpmyqVxRENu8t9xIL6yrpNMlAqbHsN7OWvcUmM2N8Jw4-4yW3thGVyL3RWUqzzOjqwTe9l-wNh2pOdXW-FJHOmZR46sMDZnA60H0W2TyuEloq1eDujPmeS2qnAoZimKcwKuhG82QfCtN62ZLkkEkhehVqASeRK0Z7jIORQVKnoBa0adBgCi-V3va6UWg-ub0e85Vic8Z9OX2kdcnR5PQePbvos9hQ-AppFhmW7C-uFy6F4ixFvplMKbf_jQlvw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VVoJKqIUFSmgBgzhwSRt7ncSRuFT90Ba6PUAr9UAVxV90Rcmi7u6FEz-B39hfgsdOUpaChMjJiieKk8zYL_b4PYBXrlOU1KgsdsNzHmPeRSxYYRyQq4zJldBc4Yru8CgbnPC3p-npArxp98IEfohuwg0jw_fXGOA4Ib11zRo6GX3xRX4LllDRG5nzd9935FG0FWzFRcosp2nLK5Swre7S-dHoBsS8mSn5K4L1Q9D-Kpy1jQ-ZJ583Z1O5qb79xuv4v093D1YabEq2gzPdhwVT9-D2sFl978HdMMdHwtalHiwjUg1Ezw_g47bWPqe2_kQmM4nTO-Qcc23GzkWNw_pkVBNUsr_6_qNV3p0S3BQchMXQQYhD0AQJATBn6JJcM5E_hJP9veOdQdxIN8SKuyNmVEvt-lltK8pNX-RWOCxhhcps2pcJN8KkicqrwmQZEs5bTRW3TJuCG5k7zPQIFutxbR4D0aliliJtn5LcKl3JgqU2K1RhaaJkEcHr9hOWquE1R3mNizIwMrPSvUpf4BG87Ey_BjKPPxlttH5QNvE8KVmRopYhy_oRvOiqXSTi8kpVm_EMbRyYcgCWiQjWgtt0d-l7XYGcRiDmHKozQJbv-Zp6dO7Zvin-oVORu-f0DvP3lpcfDoa-8OTfTZ_DncHx8LA8PDh6tw7LzJ3yOy6TDVicXs7MUwe5pvKZj6yfMiop2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRaoqIR7DK1DAIBZs0sYex4nFqqKMWmAqBFTqolIUv-ioJVN1Zjas-AS-kS_B105ShoKEyMqKbxQnudc-sa_PAXjuO0VFrRapH56LFPMu0pJJ64FcbW2hS8M1ruiO98XuAX9zmB-uwMtuL0zkh-gn3DAyQn-NAX5m3NYFaehs8iUU-RW4ykUmUbdh50PPHUU7vVZcoxQFzTtaoYxt9ZcuD0aXEOblRMlfAWwYgUY34Khre0w8OdlczNWm_vobreN_PtxNuN4iU7IdXekWrNhmAGvjdu19ANfiDB-JG5cGsI44NdI834ajbWNCRm3zmcwWCid3yDFm2ky9g1qP9MmkIahj_-Pb9053d05wS3CUFUP3IB4_E6QDwIyhc3LBQ34HDkavP73aTVvhhlRzf6SMGmV8L2tcTbkdloUrPZJwpRYuH6qM29LmmS5qaYVAunlnqOaOGSu5VYVHTHdhtZk29j4Qk2vmKJL2acWdNrWSLHdCauloppVM4EX3BSvdspqjuMZpFfmYWeVfZSjwBJ71pmeRyuNPRhudG1RtNM8qJnNUMmRimMDTvtrHIS6u1I2dLtDGQykPX1mZwL3oNf1dhkFVoKAJlEv-1Bsgx_dyTTM5DlzfFP_PaVn45wz-8veWVx_3xqHw4N9Nn8Da-51R9W5v_-1DWGf-TNhumW3A6vx8YR95vDVXj0Nc_QSi9SiK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addressing+subject+heterogeneity+in+time-dependent+discrimination+for+biomarker+evaluation&rft.jtitle=Statistics+in+medicine&rft.au=Jiang%2C+Xinyang&rft.au=Li%2C+Wen&rft.au=Li%2C+Ruosha&rft.au=Ning%2C+Jing&rft.date=2024-03-30&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=43&rft.issue=7&rft.spage=1341&rft_id=info:doi/10.1002%2Fsim.10024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon