Addressing subject heterogeneity in time‐dependent discrimination for biomarker evaluation
Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time‐to‐event outcome often changes over time, local measures such as the time‐dependent receive...
Saved in:
Published in | Statistics in medicine Vol. 43; no. 7; pp. 1341 - 1353 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
30.03.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time‐to‐event outcome often changes over time, local measures such as the time‐dependent receiver operating characteristic curve and its area under the curve (AUC) are used to assess time‐dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease‐related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate‐specific time‐dependent AUC, a measure for covariate‐adjusted discrimination. We develop a regression model on the covariate‐specific time‐dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial‐likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate‐specific and time‐dependent predictive discrimination. |
---|---|
AbstractList | Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time‐to‐event outcome often changes over time, local measures such as the time‐dependent receiver operating characteristic curve and its area under the curve (AUC) are used to assess time‐dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease‐related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate‐specific time‐dependent AUC, a measure for covariate‐adjusted discrimination. We develop a regression model on the covariate‐specific time‐dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial‐likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate‐specific and time‐dependent predictive discrimination. Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time-to-event outcome often changes over time, local measures such as the time-dependent receiver operating characteristic (ROC) curve and its area under the curve (AUC) are used to assess time-dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease-related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate-specific time-dependent AUC, a measure for covariate-adjusted discrimination. We develop a regression model on the covariate-specific time-dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial-likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate-specific and time-dependent predictive discrimination. Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time-to-event outcome often changes over time, local measures such as the time-dependent receiver operating characteristic curve and its area under the curve (AUC) are used to assess time-dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease-related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate-specific time-dependent AUC, a measure for covariate-adjusted discrimination. We develop a regression model on the covariate-specific time-dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial-likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate-specific and time-dependent predictive discrimination.Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that discrimination accuracy of biomarkers for a time-to-event outcome often changes over time, local measures such as the time-dependent receiver operating characteristic curve and its area under the curve (AUC) are used to assess time-dependent predictive discrimination. However, such measures do not address subject heterogeneity, although the impact of covariates including demographics, disease-related characteristics, and other clinical information on the discriminatory performance of biomarkers needs to be investigated before their clinical use. We propose the covariate-specific time-dependent AUC, a measure for covariate-adjusted discrimination. We develop a regression model on the covariate-specific time-dependent AUC to understand how and in what magnitude the covariates influence biomarker performance. Then we construct a pseudo partial-likelihood for estimation and inference. This is followed by our establishing the asymptotic properties of the proposed estimators and provide variance estimation. The simulation studies and application to the AIDS Clinical Trials Group 175 data demonstrate that the proposed method offers an informative tool for inferring covariate-specific and time-dependent predictive discrimination. |
Author | Ning, Jing Jiang, Xinyang Li, Wen Li, Ruosha |
AuthorAffiliation | 2 Department of Internal Medicine, The University of Texas McGovern Medical School, TX, USA 3 Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, USA 1 Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, TX, USA |
AuthorAffiliation_xml | – name: 2 Department of Internal Medicine, The University of Texas McGovern Medical School, TX, USA – name: 1 Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, TX, USA – name: 3 Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, USA |
Author_xml | – sequence: 1 givenname: Xinyang surname: Jiang fullname: Jiang, Xinyang organization: The University of Texas Health Science Center at Houston – sequence: 2 givenname: Wen orcidid: 0000-0002-7538-5422 surname: Li fullname: Li, Wen organization: The University of Texas McGovern Medical School – sequence: 3 givenname: Ruosha orcidid: 0000-0003-3595-4392 surname: Li fullname: Li, Ruosha organization: The University of Texas Health Science Center at Houston – sequence: 4 givenname: Jing orcidid: 0000-0002-5289-331X surname: Ning fullname: Ning, Jing email: jning@mdanderson.org organization: The University of Texas MD Anderson Cancer Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38287471$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1uFDEQhS2UiEwCCy6AWmITFk1c7h-7VyiK-ImUiAWwQ7Lcdnniodse7O6g2XEEzshJMDMTBBF445Lqe0-vqo7JgQ8eCXkC9AVQys6SG7dF_YAsgHa8pKwRB2RBGedly6E5IscprSgFaBh_SI4qwQSvOSzIp3NjIqbk_LJIc79CPRU3OGEMS_Topk3hfDG5EX98-25wjd6gnwrjko5udF5NLvjChlj0LowqfsZY4K0a5m3jETm0akj4eP-fkI-vX324eFtevXtzeXF-Veo6v5KB6Q1vmbEKaqwEt4KBsEK3tql6WqPAhmquOmxb1tHWGtC1ZQa7GnveddUJebnzXc_9iEbniFENcp0jqriRQTn5d8e7G7kMtxIAKAfBs8Pp3iGGLzOmSY55RBwG5THMSbKOURANMJHRZ_fQVZijz_NlquFQNaytMvX0z0i_s9xtPgNnO0DHkFJEK7WbtlvLCd0ggcpfJ5X5ttuizorn9xR3pv9i9-5f3YCb_4Py_eX1TvETqrW2AQ |
CitedBy_id | crossref_primary_10_3389_fmed_2025_1497651 |
Cites_doi | 10.1093/oso/9780198509844.001.0001 10.1093/biostatistics/kxl036 10.1007/978-1-4614-8981-8_11 10.1111/biom.12761 10.1111/j.0006-341X.2000.00337.x 10.2307/2986270 10.1111/biom.12293 10.1093/biostatistics/kxi047 10.1002/sim.9848 10.1186/s12874-020-01100-0 10.1186/s12874-017-0332-6 10.1002/cjs.10046 10.1093/biostatistics/kxs021 10.32614/CRAN.package.fastglm 10.1093/biostatistics/3.3.421 10.1111/j.1541-0420.2011.01671.x 10.1198/016214503000198 10.1056/NEJM199610103351501 10.1093/jnci/93.14.1054 10.1177/0272989X9901900303 10.1111/j.0006-341X.2005.030814.x 10.6339/JDS.201704_15(2).0009 10.1177/1535370217750088 10.1001/jama.294.1.66 10.6339/JDS.201110_09(4).0009 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.10024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 1353 |
ExternalDocumentID | PMC11107187 38287471 10_1002_sim_10024 SIM10024 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Cancer Prevention and Research Institute of Texas funderid: RP200633 – fundername: National Institutes of Health funderid: P50CA217685; P50CA281701; R01CA269696; R01DK117209; U24CA230144 – fundername: NCI NIH HHS grantid: U24 CA230144 – fundername: NCI NIH HHS grantid: P50 CA217685 – fundername: NIH HHS grantid: R01CA269696 – fundername: NCI NIH HHS grantid: R01 CA269696 – fundername: NIH HHS grantid: P50CA281701 – fundername: NCI NIH HHS grantid: P50 CA281701 – fundername: NIH HHS grantid: U24CA230144 – fundername: NIH HHS grantid: P50CA217685 – fundername: NIH HHS grantid: R01DK117209 – fundername: NIDDK NIH HHS grantid: R01 DK117209 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION EBD EMOBN SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4444-21dbd762dfa14e387f8218f8c6f53b04e8e50c7a9e662906fd1c4f2de94eb7993 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:35:45 EDT 2025 Fri Jul 11 15:53:29 EDT 2025 Fri Jul 25 23:30:58 EDT 2025 Thu Jul 03 03:54:23 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Tue Jul 01 03:28:19 EDT 2025 Wed Jan 22 16:14:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | predictive discrimination prognostic biomarker pseudo partial-likelihood covariate-specific time-dependent AUC |
Language | English |
License | 2024 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4444-21dbd762dfa14e387f8218f8c6f53b04e8e50c7a9e662906fd1c4f2de94eb7993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3595-4392 0000-0002-5289-331X 0000-0002-7538-5422 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11107187 |
PMID | 38287471 |
PQID | 2957135263 |
PQPubID | 48361 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11107187 proquest_miscellaneous_2920185128 proquest_journals_2957135263 pubmed_primary_38287471 crossref_citationtrail_10_1002_sim_10024 crossref_primary_10_1002_sim_10024 wiley_primary_10_1002_sim_10024_SIM10024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 March 2024 |
PublicationDateYYYYMMDD | 2024-03-30 |
PublicationDate_xml | – month: 03 year: 2024 text: 30 March 2024 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2018; 243 2001; 93 2010; 38 2015; 6 2005; 294 2015; 71 2020; 20 2006; 7 2002; 3 2003 2005; 61 2003; 98 1994; 43 2011; 9 2023; 42 2013; 14 2017; 15 1999; 19 2000; 56 2017; 17 2007; 8 2018; 74 2013 1996; 335 2012; 68 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 Kagan JM (e_1_2_10_25_1) 2015; 6 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_26_1 |
References_xml | – volume: 14 start-page: 42 issue: 1 year: 2013 end-page: 59 article-title: Non‐parametric estimation of a time‐dependent predictive accuracy curve publication-title: Biostatistics – volume: 3 start-page: 421 issue: 3 year: 2002 end-page: 432 article-title: Distribution‐free ROC analysis using binary regression techniques publication-title: Biostatistics – volume: 15 start-page: 329 issue: 2 year: 2017 end-page: 350 article-title: General semiparametric area under the curve regression model with discrete covariates publication-title: J Data Sci – year: 2003 – volume: 56 start-page: 337 issue: 2 year: 2000 end-page: 344 article-title: Time‐dependent ROC curves for censored survival data and a diagnostic marker publication-title: Biometrics – volume: 20 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Inference about time‐dependent prognostic accuracy measures in the presence of competing risks publication-title: BMC Med Res Methodol – volume: 6 start-page: 55 issue: 1‐2 year: 2015 end-page: 64 article-title: A brief chronicle of CD4 as a biomarker for HIV/AIDS: a tribute to the memory of John L. Fahey publication-title: For Immunopathol Dis Therap – volume: 294 start-page: 66 issue: 1 year: 2005 end-page: 70 article-title: Operating characteristics of prostate‐specific antigen in men with an initial PSA level of 3.0 ng/ml or lower publication-title: JAMA – volume: 335 start-page: 1081 issue: 15 year: 1996 end-page: 1090 article-title: A trial comparing nucleoside monotherapy with combination therapy in HIV‐infected adults with CD4 cell counts from 200 to 500 per cubic millimeter publication-title: N Engl J Med – volume: 17 start-page: 1 issue: 1 year: 2017 end-page: 19 article-title: Time‐dependent ROC curve analysis in medical research: current methods and applications publication-title: BMC Med Res Methodol – volume: 8 start-page: 654 issue: 3 year: 2007 end-page: 673 article-title: Generalized monotonic regression based on B‐splines with an application to air pollution data publication-title: Biostatistics – volume: 9 start-page: 625 issue: 4 year: 2011 end-page: 637 article-title: Inference for semiparametric AUC regression models with discrete covariates publication-title: J Data Sci – volume: 68 start-page: 388 issue: 2 year: 2012 end-page: 396 article-title: Evaluating prognostic accuracy of biomarkers under competing risk publication-title: Biometrics – start-page: 239 year: 2013 end-page: 251 – volume: 42 start-page: 4082 issue: 23 year: 2023 end-page: 4110 article-title: Inference for covariate‐adjusted time‐dependent prognostic accuracy measures publication-title: Stat Med – volume: 71 start-page: 439 issue: 2 year: 2015 end-page: 449 article-title: A direct method to evaluate the time‐dependent predictive accuracy for biomarkers publication-title: Biometrics – volume: 19 start-page: 242 issue: 3 year: 1999 end-page: 251 article-title: Incorporating the time dimension in receiver operating characteristic curves: a case study of prostate cancer publication-title: Med Decis Making – volume: 98 start-page: 409 issue: 462 year: 2003 end-page: 417 article-title: Semiparametric regression for the area under the receiver operating characteristic curve publication-title: J Am Stat Assoc – volume: 74 start-page: 734 issue: 2 year: 2018 end-page: 743 article-title: AC‐index for recurrent event data: application to hospitalizations among dialysis patients publication-title: Biometrics – volume: 61 start-page: 92 issue: 1 year: 2005 end-page: 105 article-title: Survival model predictive accuracy and ROC curves publication-title: Biometrics – volume: 243 start-page: 213 issue: 3 year: 2018 end-page: 221 article-title: Biomarker definitions and their applications publication-title: Exp Biol Med – volume: 93 start-page: 1054 issue: 14 year: 2001 end-page: 1061 article-title: Phases of biomarker development for early detection of cancer publication-title: J Natl Cancer Inst – volume: 7 start-page: 182 issue: 2 year: 2006 end-page: 197 article-title: The sensitivity and specificity of markers for event times publication-title: Biostatistics – volume: 38 start-page: 8 issue: 1 year: 2010 end-page: 26 article-title: Estimation methods for time‐dependent AUC models with survival data publication-title: Can J Stat – volume: 43 start-page: 429 issue: 3 year: 1994 end-page: 453 article-title: Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling publication-title: J R Stat Soc Ser C Appl Stat – ident: e_1_2_10_3_1 doi: 10.1093/oso/9780198509844.001.0001 – ident: e_1_2_10_28_1 doi: 10.1093/biostatistics/kxl036 – ident: e_1_2_10_19_1 doi: 10.1007/978-1-4614-8981-8_11 – ident: e_1_2_10_24_1 doi: 10.1111/biom.12761 – ident: e_1_2_10_6_1 doi: 10.1111/j.0006-341X.2000.00337.x – ident: e_1_2_10_22_1 doi: 10.2307/2986270 – ident: e_1_2_10_9_1 doi: 10.1111/biom.12293 – ident: e_1_2_10_17_1 doi: 10.1093/biostatistics/kxi047 – ident: e_1_2_10_21_1 doi: 10.1002/sim.9848 – ident: e_1_2_10_10_1 doi: 10.1186/s12874-020-01100-0 – ident: e_1_2_10_7_1 doi: 10.1186/s12874-017-0332-6 – ident: e_1_2_10_18_1 doi: 10.1002/cjs.10046 – ident: e_1_2_10_8_1 doi: 10.1093/biostatistics/kxs021 – ident: e_1_2_10_20_1 – ident: e_1_2_10_23_1 doi: 10.32614/CRAN.package.fastglm – ident: e_1_2_10_13_1 doi: 10.1093/biostatistics/3.3.421 – ident: e_1_2_10_27_1 doi: 10.1111/j.1541-0420.2011.01671.x – volume: 6 start-page: 55 issue: 1 year: 2015 ident: e_1_2_10_25_1 article-title: A brief chronicle of CD4 as a biomarker for HIV/AIDS: a tribute to the memory of John L. Fahey publication-title: For Immunopathol Dis Therap – ident: e_1_2_10_14_1 doi: 10.1198/016214503000198 – ident: e_1_2_10_26_1 doi: 10.1056/NEJM199610103351501 – ident: e_1_2_10_11_1 doi: 10.1093/jnci/93.14.1054 – ident: e_1_2_10_5_1 doi: 10.1177/0272989X9901900303 – ident: e_1_2_10_4_1 doi: 10.1111/j.0006-341X.2005.030814.x – ident: e_1_2_10_16_1 doi: 10.6339/JDS.201704_15(2).0009 – ident: e_1_2_10_2_1 doi: 10.1177/1535370217750088 – ident: e_1_2_10_12_1 doi: 10.1001/jama.294.1.66 – ident: e_1_2_10_15_1 doi: 10.6339/JDS.201110_09(4).0009 |
SSID | ssj0011527 |
Score | 2.4437106 |
Snippet | Accurate discrimination has been the central goal in identifying biomarkers for monitoring disease progression and early detection. Acknowledging the fact that... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1341 |
SubjectTerms | Area Under Curve Biomarkers Computer Simulation covariate‐specific time‐dependent AUC Demographics Humans Medical prognosis Predictive analytics predictive discrimination Probability prognostic biomarker pseudo partial‐likelihood ROC Curve Time Factors |
Title | Addressing subject heterogeneity in time‐dependent discrimination for biomarker evaluation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10024 https://www.ncbi.nlm.nih.gov/pubmed/38287471 https://www.proquest.com/docview/2957135263 https://www.proquest.com/docview/2920185128 https://pubmed.ncbi.nlm.nih.gov/PMC11107187 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPaBKiMeWR6AggzhwSRt7ncRRT1VF1VZaDpRKPVSK4hddAVnU3b1w4ifwG_klzNhJytJWQuQSS54oTjJjf_HMfAPwBidFzZ0pUlyey5TiLlIlKodArnGuNMpKQx7dyfvi8FQen-Vna7Db58JEfohhw40sI8zXZOCNnu9ckYbOp19Dk7hAKVaLANGHgTqK9-VayUVZlDzvWYUysTNcuboWXQOY1-Mk_8SvYQE6uA_n_dBj3Mnn7eVCb5vvf7E6_uezPYB7HTBle1GTHsKaa0dwZ9K53kdwN27wsZi3NIINgqmR5XkTzvesDQG17Sc2X2ra22EXFGgzQ_10CPTZtGVUxv7Xj5992d0Fo4zgWFWMtIMhfGbEBkABQ5fsiob8EZwevPu4f5h2dRtSI_FIBbfa4iRrfcOlG6vSKwQSXpnC52OdSadcnpmyqVxRENu8t9xIL6yrpNMlAqbHsN7OWvcUmM2N8Jw4-4yW3thGVyL3RWUqzzOjqwTe9l-wNh2pOdXW-FJHOmZR46sMDZnA60H0W2TyuEloq1eDujPmeS2qnAoZimKcwKuhG82QfCtN62ZLkkEkhehVqASeRK0Z7jIORQVKnoBa0adBgCi-V3va6UWg-ub0e85Vic8Z9OX2kdcnR5PQePbvos9hQ-AppFhmW7C-uFy6F4ixFvplMKbf_jQlvw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VVoJKqIUFSmgBgzhwSRt7ncSRuFT90Ba6PUAr9UAVxV90Rcmi7u6FEz-B39hfgsdOUpaChMjJiieKk8zYL_b4PYBXrlOU1KgsdsNzHmPeRSxYYRyQq4zJldBc4Yru8CgbnPC3p-npArxp98IEfohuwg0jw_fXGOA4Ib11zRo6GX3xRX4LllDRG5nzd9935FG0FWzFRcosp2nLK5Swre7S-dHoBsS8mSn5K4L1Q9D-Kpy1jQ-ZJ583Z1O5qb79xuv4v093D1YabEq2gzPdhwVT9-D2sFl978HdMMdHwtalHiwjUg1Ezw_g47bWPqe2_kQmM4nTO-Qcc23GzkWNw_pkVBNUsr_6_qNV3p0S3BQchMXQQYhD0AQJATBn6JJcM5E_hJP9veOdQdxIN8SKuyNmVEvt-lltK8pNX-RWOCxhhcps2pcJN8KkicqrwmQZEs5bTRW3TJuCG5k7zPQIFutxbR4D0aliliJtn5LcKl3JgqU2K1RhaaJkEcHr9hOWquE1R3mNizIwMrPSvUpf4BG87Ey_BjKPPxlttH5QNvE8KVmRopYhy_oRvOiqXSTi8kpVm_EMbRyYcgCWiQjWgtt0d-l7XYGcRiDmHKozQJbv-Zp6dO7Zvin-oVORu-f0DvP3lpcfDoa-8OTfTZ_DncHx8LA8PDh6tw7LzJ3yOy6TDVicXs7MUwe5pvKZj6yfMiop2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRaoqIR7DK1DAIBZs0sYex4nFqqKMWmAqBFTqolIUv-ioJVN1Zjas-AS-kS_B105ShoKEyMqKbxQnudc-sa_PAXjuO0VFrRapH56LFPMu0pJJ64FcbW2hS8M1ruiO98XuAX9zmB-uwMtuL0zkh-gn3DAyQn-NAX5m3NYFaehs8iUU-RW4ykUmUbdh50PPHUU7vVZcoxQFzTtaoYxt9ZcuD0aXEOblRMlfAWwYgUY34Khre0w8OdlczNWm_vobreN_PtxNuN4iU7IdXekWrNhmAGvjdu19ANfiDB-JG5cGsI44NdI834ajbWNCRm3zmcwWCid3yDFm2ky9g1qP9MmkIahj_-Pb9053d05wS3CUFUP3IB4_E6QDwIyhc3LBQ34HDkavP73aTVvhhlRzf6SMGmV8L2tcTbkdloUrPZJwpRYuH6qM29LmmS5qaYVAunlnqOaOGSu5VYVHTHdhtZk29j4Qk2vmKJL2acWdNrWSLHdCauloppVM4EX3BSvdspqjuMZpFfmYWeVfZSjwBJ71pmeRyuNPRhudG1RtNM8qJnNUMmRimMDTvtrHIS6u1I2dLtDGQykPX1mZwL3oNf1dhkFVoKAJlEv-1Bsgx_dyTTM5DlzfFP_PaVn45wz-8veWVx_3xqHw4N9Nn8Da-51R9W5v_-1DWGf-TNhumW3A6vx8YR95vDVXj0Nc_QSi9SiK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Addressing+subject+heterogeneity+in+time-dependent+discrimination+for+biomarker+evaluation&rft.jtitle=Statistics+in+medicine&rft.au=Jiang%2C+Xinyang&rft.au=Li%2C+Wen&rft.au=Li%2C+Ruosha&rft.au=Ning%2C+Jing&rft.date=2024-03-30&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=43&rft.issue=7&rft.spage=1341&rft_id=info:doi/10.1002%2Fsim.10024&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |