Formation of Hexagonally Packed Hollow Hoops and Morphology Transition in RAFT Ethanol Dispersion Polymerization

Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 36; no. 15; pp. 1428 - 1436
Main Authors Zhang, Wen-Jian, Hong, Chun-Yan, Pan, Cai-Yuan
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.08.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano‐objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials. Highly ordered assemblies with a hexagonally packed hollow hoops (HHHs) structure are successfully fabricated through morphology transition from large compound vesicles to HHHs in RAFT dispersion polymerization for the first time. Besides the chain length ratio (R) of hydrophobic to hydrophilic blocks, the chain mobility in the nano‐objects is a determining factor for morphology transition.
AbstractList Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano-objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials.
Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano‐objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials. Highly ordered assemblies with a hexagonally packed hollow hoops (HHHs) structure are successfully fabricated through morphology transition from large compound vesicles to HHHs in RAFT dispersion polymerization for the first time. Besides the chain length ratio (R) of hydrophobic to hydrophilic blocks, the chain mobility in the nano‐objects is a determining factor for morphology transition.
Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio ( R ) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano‐objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials. image
Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano-objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials.Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano-objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials.
Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano-objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials. Highly ordered assemblies with a hexagonally packed hollow hoops (HHHs) structure are successfully fabricated through morphology transition from large compound vesicles to HHHs in RAFT dispersion polymerization for the first time. Besides the chain length ratio (R) of hydrophobic to hydrophilic blocks, the chain mobility in the nano-objects is a determining factor for morphology transition.
Author Pan, Cai-Yuan
Zhang, Wen-Jian
Hong, Chun-Yan
Author_xml – sequence: 1
  givenname: Wen-Jian
  surname: Zhang
  fullname: Zhang, Wen-Jian
  organization: CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Anhui, 230026, Hefei, P. R. China
– sequence: 2
  givenname: Chun-Yan
  surname: Hong
  fullname: Hong, Chun-Yan
  email: hongcy@ustc.edu.cn
  organization: CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Anhui, 230026, Hefei, P. R. China
– sequence: 3
  givenname: Cai-Yuan
  surname: Pan
  fullname: Pan, Cai-Yuan
  email: hongcy@ustc.edu.cn
  organization: CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Anhui, 230026, Hefei, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26032959$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEURi1URB-wZYkssWEzwY_xaxklTdKqhSoaxNJyZjytW2c82BO1w69nkpQIVUKwulfyOb7S952CoyY0FoD3GI0wQuTz2sRyRBBmCGFCXoETzAjOqCLiaNgRIRmmlB-D05TuEUIyR-QNOCYcUaKYOgHtLMS16VxoYKjhwj6Z29AY73t4Y8oHW8FF8D48DiO0CZqmgtchtnfBh9seFtE0ye1k18DleFbA8-7ONMHDqUutjWn7dBN8v7bR_dydeQte18Yn--55noFvs_Nissiuvs4vJuOrrMzznGRVKUUuUMU44bxeMawkL22ZWyqRtBwjxZVUUiqMVwIJIWtbG2FkRbFQhFF6Bj7t_21j-LGxqdNrl0rrvWls2CSNBaMsp4KQ_0Ax40NiVA3oxxfofdjEIbAdRRVShOcD9eGZ2qzWttJtdENPvf4d-wCM9kAZQ0rR1gcEI73tVW971YdeByF_IZSu2-XZReP83zW11x6dt_0_jujr8XLyp5vtXZc6-3RwTXzQXFDB9Pcvc13Ml9PLYoo1ob8Ae0_Ekg
CitedBy_id crossref_primary_10_1002_marc_201700840
crossref_primary_10_1002_anie_202315849
crossref_primary_10_1016_j_progpolymsci_2020_101211
crossref_primary_10_1039_C8PY00643A
crossref_primary_10_1039_C7PY00912G
crossref_primary_10_1021_acs_macromol_6b00688
crossref_primary_10_1021_acs_macromol_7b01629
crossref_primary_10_1039_C8PY00029H
crossref_primary_10_1016_j_eurpolymj_2021_110639
crossref_primary_10_1002_anie_201702591
crossref_primary_10_1038_s41467_019_09324_5
crossref_primary_10_1002_macp_202100128
crossref_primary_10_1039_D1RA05555K
crossref_primary_10_1021_acs_biomac_6b00819
crossref_primary_10_1021_acs_macromol_7b02039
crossref_primary_10_1021_acsami_2c18928
crossref_primary_10_1016_j_polymer_2020_122914
crossref_primary_10_1039_D0PY00380H
crossref_primary_10_1002_macp_201500273
crossref_primary_10_1002_marc_202000209
crossref_primary_10_1016_j_jcis_2022_09_141
crossref_primary_10_1039_C6QM00380J
crossref_primary_10_1021_acs_macromol_8b00340
crossref_primary_10_1021_acsmaterialslett_0c00043
crossref_primary_10_1016_j_progpolymsci_2015_10_002
crossref_primary_10_1016_j_polymer_2021_123589
crossref_primary_10_1002_marc_201800140
crossref_primary_10_1080_20550324_2020_1857121
crossref_primary_10_1002_pola_28002
crossref_primary_10_1021_acsnano_0c09166
crossref_primary_10_1039_D4PY00022F
crossref_primary_10_1021_acs_macromol_8b02081
crossref_primary_10_1021_acs_macromol_9b00879
crossref_primary_10_1021_acs_langmuir_0c00211
crossref_primary_10_1039_C9CC08944F
crossref_primary_10_1021_acs_macromol_6b01966
crossref_primary_10_1039_C8NH00300A
crossref_primary_10_1039_D2PY00701K
crossref_primary_10_1002_marc_202100194
crossref_primary_10_1021_acs_macromol_7b01437
crossref_primary_10_1016_j_jconrel_2022_05_036
crossref_primary_10_1002_ange_201702591
crossref_primary_10_1021_acsami_7b02966
crossref_primary_10_1039_D2SC00762B
crossref_primary_10_1039_C8PY01799A
crossref_primary_10_1039_D2PY00858K
crossref_primary_10_1021_acs_biomac_6b01887
crossref_primary_10_1021_acs_macromol_8b00690
crossref_primary_10_1021_jacs_4c02651
crossref_primary_10_1021_acsnano_1c05089
crossref_primary_10_1021_jacs_0c02009
crossref_primary_10_1039_D3PY01377D
crossref_primary_10_1039_C8PY01584H
crossref_primary_10_1021_acs_macromol_6b00233
crossref_primary_10_1039_D0PY00455C
crossref_primary_10_1002_marc_201800279
crossref_primary_10_1021_acs_macromol_6b02499
crossref_primary_10_1021_acs_macromol_7b00281
crossref_primary_10_1021_acs_macromol_6b01756
crossref_primary_10_1002_anie_201709129
crossref_primary_10_1039_C7PY00214A
crossref_primary_10_1039_D1SC00270H
crossref_primary_10_1021_acs_macromol_3c00759
crossref_primary_10_1021_acsapm_2c00981
crossref_primary_10_1039_C9SC00303G
crossref_primary_10_1021_acs_langmuir_2c01568
crossref_primary_10_1002_cjoc_202100134
crossref_primary_10_1002_pol_20230579
crossref_primary_10_1021_acsmacrolett_1c00156
crossref_primary_10_1002_marc_202100566
crossref_primary_10_1002_ange_202315849
crossref_primary_10_1039_C7PY01618B
crossref_primary_10_1016_j_polymer_2016_08_082
crossref_primary_10_1039_C5PY01202C
crossref_primary_10_1002_marc_201800325
crossref_primary_10_1007_s10118_019_2303_3
crossref_primary_10_1039_C6PY00164E
crossref_primary_10_1016_j_cclet_2019_10_026
crossref_primary_10_1002_ange_201709129
crossref_primary_10_1021_acs_macromol_0c02882
crossref_primary_10_1002_marc_202400891
Cites_doi 10.1103/PhysRevLett.79.5034
10.1021/bm301425j
10.1002/marc.200900640
10.1021/ma401797a
10.1002/marc.200900571
10.1021/ma901014m
10.1021/la981688k
10.1016/j.polymer.2010.08.056
10.1146/annurev.pc.41.100190.002521
10.1021/ma9809785
10.1021/ma300596f
10.1021/ja205887v
10.1039/C2PY20612A
10.1039/c0py00124d
10.1002/marc.201100839
10.1002/marc.200500679
10.1007/s10118-013-1332-6
10.1039/c2cs35115c
10.1021/ma0018087
10.1039/a909725b
10.1002/anie.200602897
10.1021/ma2000674
10.1039/c0sm00284d
10.1021/ja404175x
10.1039/c4ta00465e
10.1021/ma0510744
10.1021/la0361565
10.1002/mabi.200800112
10.1021/jp807513k
10.1002/marc.200700886
10.1021/ma402370j
10.1039/b912804b
10.1002/(SICI)1099-1581(1998100)9:10/11<677::AID-PAT845>3.0.CO;2-#
10.1021/jp9913665
10.1039/c2sm25537e
10.1021/ma051548z
10.1021/ma2005926
10.1002/anie.201001461
10.1021/ja206301a
10.1021/ja409686x
10.1021/ja9709740
10.1038/nnano.2007.70
10.1039/b922289h
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
7TB
FR3
DOI 10.1002/marc.201500122
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList MEDLINE

CrossRef
Materials Research Database
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage 1436
ExternalDocumentID 3812615011
26032959
10_1002_marc_201500122
MARC201500122
ark_67375_WNG_TGRDJTD1_2
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21074121; 21090354; 21374107
– fundername: China Postdoctoral Science Foundation
  funderid: BH2060000011
– fundername: Fundamental Research Funds for the Central Universities
  funderid: WK2060200012; WK2060200015
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
7TB
FR3
ID FETCH-LOGICAL-c4442-dc87470d56266fb51986cec4e3808e6109698988911b70778fefa7a8d31792533
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 06:23:08 EDT 2025
Fri Jul 11 00:29:32 EDT 2025
Fri Jul 25 10:40:08 EDT 2025
Thu Apr 03 07:07:53 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Tue Jul 01 01:50:14 EDT 2025
Wed Jan 22 16:32:43 EST 2025
Wed Oct 30 09:53:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords morphology transition
RAFT dispersion polymerization
hexagonally packed hollow hoops
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4442-dc87470d56266fb51986cec4e3808e6109698988911b70778fefa7a8d31792533
Notes China Postdoctoral Science Foundation - No. BH2060000011
National Natural Science Foundation of China - No. 21074121; No. 21090354; No. 21374107
Fundamental Research Funds for the Central Universities - No. WK2060200012; No. WK2060200015
ArticleID:MARC201500122
ark:/67375/WNG-TGRDJTD1-2
istex:FE565436298EB169C0C598AD8974790A95C80C82
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26032959
PQID 1713909264
PQPubID 1016394
PageCount 9
ParticipantIDs proquest_miscellaneous_1753543722
proquest_miscellaneous_1715660339
proquest_journals_1713909264
pubmed_primary_26032959
crossref_primary_10_1002_marc_201500122
crossref_citationtrail_10_1002_marc_201500122
wiley_primary_10_1002_marc_201500122_MARC201500122
istex_primary_ark_67375_WNG_TGRDJTD1_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08
August 2015
2015-08-00
2015-Aug
20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol. Rapid Commun
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References a) Y. Z. Liang, Z. C. Li, F. M. Li, New J. Chem. 2000, 24, 323
b) W. M. Wan, C. Y. Pan, Polym. Chem. 2010, 1, 1475
W. M. Cai, W. M. Wan, C. Y. Hong, C. Q. Huang, C. Y. Pan, Soft Matter 2010, 6, 5554.
c) D. H. Zhou, J. Zhang, G. Zhang, Z. H. Gan, Chin. J. Polym. Sci. 2013, 31, 1299
c) A. G. Denkova, E. Mendes, M. O. Coppens, J. Phys. Chem. B 2009, 113, 989
J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed., Wiley-Interscience, New York 1999, vol. 3, p. VII699-VII701, VII711.
a) Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969
b) J. Zhu, Y. Liao, W. Jiang, Langmuir 2004, 20, 3809.
d) L. Liu, X. Gao, Y. Cong, B. Li, Y. Han, Macromol. Rapid Commun. 2006, 27, 260
a) W. J. Zhang, F. D'Agosto, O. Boyron, J. Rieger, B. Charleux, Macromolecules 2012, 45, 4075
a) L. F. Zhang, C. Bartels, Y. S. Yu, H. W. Shen, A. Eisenberg, Phys. Rev. Lett. 1997, 79, 5034
b) C. Q. Huang, C. Y. Pan, Polymer 2010, 51, 5115
a) W. M. Wan, C. Y. Hong, C. Y. Pan, Chem. Commun. 2009, 5883
h) J. Zhu, H. Yu, W. Jiang, Macromolecules 2005, 38, 7492
W. M. Wan, X. L. Sun, C. Y. Pan, Macromolecules 2009, 42, 4950.
c) W. D. He, X. L. Sun, W. M. Wan, C. Y. Pan, Macromolecules 2011, 44, 3358.
a) S. Sugihara, A. Blanazs, S. P. Armes, A. J. Ryan, A. L. Lewis, J. Am. Chem. Soc. 2011, 133, 15707
e) I. LaRue, M. Adam, M. Pitsikalis, N. Hadjichristidis, M. Rubins-tein, S. S. Sheiko, Macromolecules 2006, 39, 309
a) Y. M. Li, Y. F. Qian, T. Liu, G. Y. Zhang, S. Y. Liu, Biomacromolecules 2012, 13, 3877
g) A. O. Moughtona, R. K. O'Reilly, Chem. Commun. 2010, 46, 1091
a) W. M. Wan, X. L. Sun, C. Y. Pan, Macromol. Rapid Commun. 2010, 31, 399
b) Y. Li, S. P. Armes, Angew. Chem. Int. Ed. 2010, 49, 4042
Y. Geng, P. Dalhaimer, S. S. Cai, R. Tsai, M. Tewari, T. Minko, D. E. Discher, Nat. Nanotechnol. 2007, 2, 249.
b) X. W. Zhang, S. Boisse, W. J. Zhang, P. Beaunier, F. D'Agosto, J. Rieger, B. Charleux, Macromolecules 2011, 44, 4149.
c) J. T. Sun, C. Y. Hong, C. Y. Pan, Soft Matter 2012, 8, 7753.
K. Yu, C. Bartels, A. Eisenberg, Langmuir 1999, 15, 7157.
b) L. Chen, H. Shen, A. Eisenberg, J. Phys. Chem. B 1999, 103, 9488
b) P. C. Yang, L. P. D. Ratcliffe, S. P. Armes, Macromolecules 2013, 46, 8545.
d) W. J. Zhang, C. Y. Hong, C. Y. Pan, J. Mater. Chem. A 2014, 2, 7819.
c) M. Dan, X. Xiao, Y. Su, W. Zhang, Macromolecules 2014, 47, 1360.
A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2011, 133, 16581.
X. L. Hu, J. M. Hu, J. Tian, Z. S. Ge, G. Y. Zhang, K. F. Luo, S. Y. Liu, J. Am. Chem. Soc. 2013, 135, 17617.
a) Y. Yu, A. Eisenberg, J. Am. Chem. Soc. 1997, 119, 8383
b) P. Zou, C. Y. Pan, Macromol. Rapid Commun. 2008, 29, 763.
a) T. Azzam, A. Eisenberg, Angew. Chem. Int. Ed. 2006, 45, 7443
b) M. Spulber, A. Najer, K. Winkelbach, O. Glaied, M. Waser, U. Pieles, W. Meier, N. Bruns, J. Am. Chem. Soc. 2013, 135, 9204
c) L. Zhang, A. Eisenberg, Polym. Adv. Technol. 1998, 9, 677.
a) J. T. Sun, C. Y. Hong, C. Y. Pan, Polym. Chem. 2013, 4, 873
b) K. Yu, C. Bartels, A. Eisenberg, Macromolecules 1998, 31, 9399.
F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525.
i) N. V. Salim, T. L. Hanley, L. Waddington, P. G. Hartley, Q. Guo, Macromol. Rapid Commun. 2012, 33, 401.
f) A. M. Mihut, M. Drechsler, M. Möller, M. Ballauff, Macromol. Rapid Commun. 2010, 31, 449
b) D. Lensen, D. M. Vriezema, J. C. M. van. Hest, Macromol. Biosci. 2008, 8, 991
Y. Mitsukami, M. S. Donovan, A. B. Lowe, C. L. McCormick, Macromolecules 2001, 34, 2248.
1990; 41
2013 2010 2012; 4 49 8
2009; 42
2010 2010 2014; 31 1 47
2006 2004; 45 20
2012 2013 2013 2014; 13 135 31 2
1999; 15
2012 2008 1998; 41 8 9
2013; 135
1999; 3
2007; 2
2000 1999 2009 2006 2006 2010 2010 2005 2012; 24 103 113 27 39 31 46 38 33
2011 2013; 133 46
1997 1998; 79 31
2012 2011; 45 44
2001; 34
1997 2008; 119 29
2009 2010 2011; 51 44
2011; 133
2010; 6
e_1_2_6_10_1
e_1_2_6_19_1
e_1_2_6_12_2
e_1_2_6_13_1
e_1_2_6_13_2
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_11_1
e_1_2_6_10_3
e_1_2_6_11_2
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_14_2
e_1_2_6_15_1
e_1_2_6_14_3
e_1_2_6_16_1
e_1_2_6_20_1
e_1_2_6_7_7
e_1_2_6_7_6
e_1_2_6_7_9
e_1_2_6_7_8
Brandrup J. (e_1_2_6_18_1) 1999
e_1_2_6_7_3
e_1_2_6_8_2
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_8_1
e_1_2_6_7_5
e_1_2_6_7_4
e_1_2_6_4_2
e_1_2_6_5_1
e_1_2_6_1_4
e_1_2_6_4_1
e_1_2_6_5_3
e_1_2_6_6_2
e_1_2_6_7_1
e_1_2_6_4_3
e_1_2_6_5_2
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_1_3
e_1_2_6_3_1
e_1_2_6_1_2
e_1_2_6_2_1
References_xml – reference: c) L. Zhang, A. Eisenberg, Polym. Adv. Technol. 1998, 9, 677.
– reference: Y. Geng, P. Dalhaimer, S. S. Cai, R. Tsai, M. Tewari, T. Minko, D. E. Discher, Nat. Nanotechnol. 2007, 2, 249.
– reference: b) P. C. Yang, L. P. D. Ratcliffe, S. P. Armes, Macromolecules 2013, 46, 8545.
– reference: c) D. H. Zhou, J. Zhang, G. Zhang, Z. H. Gan, Chin. J. Polym. Sci. 2013, 31, 1299;
– reference: W. M. Wan, X. L. Sun, C. Y. Pan, Macromolecules 2009, 42, 4950.
– reference: b) X. W. Zhang, S. Boisse, W. J. Zhang, P. Beaunier, F. D'Agosto, J. Rieger, B. Charleux, Macromolecules 2011, 44, 4149.
– reference: a) L. F. Zhang, C. Bartels, Y. S. Yu, H. W. Shen, A. Eisenberg, Phys. Rev. Lett. 1997, 79, 5034;
– reference: a) W. M. Wan, X. L. Sun, C. Y. Pan, Macromol. Rapid Commun. 2010, 31, 399;
– reference: Y. Mitsukami, M. S. Donovan, A. B. Lowe, C. L. McCormick, Macromolecules 2001, 34, 2248.
– reference: d) L. Liu, X. Gao, Y. Cong, B. Li, Y. Han, Macromol. Rapid Commun. 2006, 27, 260;
– reference: b) J. Zhu, Y. Liao, W. Jiang, Langmuir 2004, 20, 3809.
– reference: b) K. Yu, C. Bartels, A. Eisenberg, Macromolecules 1998, 31, 9399.
– reference: a) W. M. Wan, C. Y. Hong, C. Y. Pan, Chem. Commun. 2009, 5883;
– reference: c) A. G. Denkova, E. Mendes, M. O. Coppens, J. Phys. Chem. B 2009, 113, 989;
– reference: b) C. Q. Huang, C. Y. Pan, Polymer 2010, 51, 5115;
– reference: i) N. V. Salim, T. L. Hanley, L. Waddington, P. G. Hartley, Q. Guo, Macromol. Rapid Commun. 2012, 33, 401.
– reference: a) W. J. Zhang, F. D'Agosto, O. Boyron, J. Rieger, B. Charleux, Macromolecules 2012, 45, 4075;
– reference: X. L. Hu, J. M. Hu, J. Tian, Z. S. Ge, G. Y. Zhang, K. F. Luo, S. Y. Liu, J. Am. Chem. Soc. 2013, 135, 17617.
– reference: a) Y. M. Li, Y. F. Qian, T. Liu, G. Y. Zhang, S. Y. Liu, Biomacromolecules 2012, 13, 3877;
– reference: c) M. Dan, X. Xiao, Y. Su, W. Zhang, Macromolecules 2014, 47, 1360.
– reference: J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed., Wiley-Interscience, New York 1999, vol. 3, p. VII699-VII701, VII711.
– reference: a) Y. Z. Liang, Z. C. Li, F. M. Li, New J. Chem. 2000, 24, 323;
– reference: a) T. Azzam, A. Eisenberg, Angew. Chem. Int. Ed. 2006, 45, 7443;
– reference: a) Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969;
– reference: b) Y. Li, S. P. Armes, Angew. Chem. Int. Ed. 2010, 49, 4042;
– reference: c) J. T. Sun, C. Y. Hong, C. Y. Pan, Soft Matter 2012, 8, 7753.
– reference: K. Yu, C. Bartels, A. Eisenberg, Langmuir 1999, 15, 7157.
– reference: W. M. Cai, W. M. Wan, C. Y. Hong, C. Q. Huang, C. Y. Pan, Soft Matter 2010, 6, 5554.
– reference: b) W. M. Wan, C. Y. Pan, Polym. Chem. 2010, 1, 1475;
– reference: a) J. T. Sun, C. Y. Hong, C. Y. Pan, Polym. Chem. 2013, 4, 873;
– reference: g) A. O. Moughtona, R. K. O'Reilly, Chem. Commun. 2010, 46, 1091;
– reference: A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2011, 133, 16581.
– reference: c) W. D. He, X. L. Sun, W. M. Wan, C. Y. Pan, Macromolecules 2011, 44, 3358.
– reference: b) P. Zou, C. Y. Pan, Macromol. Rapid Commun. 2008, 29, 763.
– reference: f) A. M. Mihut, M. Drechsler, M. Möller, M. Ballauff, Macromol. Rapid Commun. 2010, 31, 449;
– reference: h) J. Zhu, H. Yu, W. Jiang, Macromolecules 2005, 38, 7492;
– reference: d) W. J. Zhang, C. Y. Hong, C. Y. Pan, J. Mater. Chem. A 2014, 2, 7819.
– reference: a) Y. Yu, A. Eisenberg, J. Am. Chem. Soc. 1997, 119, 8383;
– reference: b) M. Spulber, A. Najer, K. Winkelbach, O. Glaied, M. Waser, U. Pieles, W. Meier, N. Bruns, J. Am. Chem. Soc. 2013, 135, 9204;
– reference: b) D. Lensen, D. M. Vriezema, J. C. M. van. Hest, Macromol. Biosci. 2008, 8, 991;
– reference: e) I. LaRue, M. Adam, M. Pitsikalis, N. Hadjichristidis, M. Rubins-tein, S. S. Sheiko, Macromolecules 2006, 39, 309;
– reference: b) L. Chen, H. Shen, A. Eisenberg, J. Phys. Chem. B 1999, 103, 9488;
– reference: F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525.
– reference: a) S. Sugihara, A. Blanazs, S. P. Armes, A. J. Ryan, A. L. Lewis, J. Am. Chem. Soc. 2011, 133, 15707;
– volume: 41 8 9
  start-page: 5969 991 677
  year: 2012 2008 1998
  publication-title: Chem. Soc. Rev. Macromol. Biosci. Polym. Adv. Technol.
– volume: 6
  start-page: 5554
  year: 2010
  publication-title: Soft Matter
– volume: 3
  start-page: VII699
  year: 1999
  end-page: VII701, VII711
– volume: 15
  start-page: 7157
  year: 1999
  publication-title: Langmuir
– volume: 135
  start-page: 17617
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 4 49 8
  start-page: 873 4042 7753
  year: 2013 2010 2012
  publication-title: Polym. Chem. Angew. Chem. Int. Ed. Soft Matter
– volume: 79 31
  start-page: 5034 9399
  year: 1997 1998
  publication-title: Phys. Rev. Lett. Macromolecules
– volume: 24 103 113 27 39 31 46 38 33
  start-page: 323 9488 989 260 309 449 1091 7492 401
  year: 2000 1999 2009 2006 2006 2010 2010 2005 2012
  publication-title: New J. Chem. J. Phys. Chem. B J. Phys. Chem. B Macromol. Rapid Commun. Macromolecules Macromol. Rapid Commun. Chem. Commun. Macromolecules Macromol. Rapid Commun.
– volume: 2
  start-page: 249
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 133 46
  start-page: 15707 8545
  year: 2011 2013
  publication-title: J. Am. Chem. Soc. Macromolecules
– volume: 45 20
  start-page: 7443 3809
  year: 2006 2004
  publication-title: Angew. Chem. Int. Ed. Langmuir
– volume: 41
  start-page: 525
  year: 1990
  publication-title: Annu. Rev. Phys. Chem.
– volume: 13 135 31 2
  start-page: 3877 9204 1299 7819
  year: 2012 2013 2013 2014
  publication-title: Biomacromolecules J. Am. Chem. Soc. Chin. J. Polym. Sci. J. Mater. Chem. A
– volume: 45 44
  start-page: 4075 4149
  year: 2012 2011
  publication-title: Macromolecules Macromolecules
– volume: 51 44
  start-page: 5883 5115 3358
  year: 2009 2010 2011
  publication-title: Chem. Commun. Polymer Macromolecules
– volume: 31 1 47
  start-page: 399 1475 1360
  year: 2010 2010 2014
  publication-title: Macromol. Rapid Commun. Polym. Chem. Macromolecules
– volume: 133
  start-page: 16581
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 2248
  year: 2001
  publication-title: Macromolecules
– volume: 42
  start-page: 4950
  year: 2009
  publication-title: Macromolecules
– volume: 119 29
  start-page: 8383 763
  year: 1997 2008
  publication-title: J. Am. Chem. Soc. Macromol. Rapid Commun.
– ident: e_1_2_6_8_1
  doi: 10.1103/PhysRevLett.79.5034
– ident: e_1_2_6_1_1
  doi: 10.1021/bm301425j
– ident: e_1_2_6_10_1
  doi: 10.1002/marc.200900640
– ident: e_1_2_6_11_2
  doi: 10.1021/ma401797a
– ident: e_1_2_6_7_6
  doi: 10.1002/marc.200900571
– ident: e_1_2_6_9_1
  doi: 10.1021/ma901014m
– ident: e_1_2_6_19_1
  doi: 10.1021/la981688k
– ident: e_1_2_6_14_2
  doi: 10.1016/j.polymer.2010.08.056
– ident: e_1_2_6_20_1
  doi: 10.1146/annurev.pc.41.100190.002521
– ident: e_1_2_6_8_2
  doi: 10.1021/ma9809785
– start-page: VII699
  volume-title: Polymer Handbook
  year: 1999
  ident: e_1_2_6_18_1
– ident: e_1_2_6_12_1
  doi: 10.1021/ma300596f
– ident: e_1_2_6_11_1
  doi: 10.1021/ja205887v
– ident: e_1_2_6_5_1
  doi: 10.1039/C2PY20612A
– ident: e_1_2_6_10_2
  doi: 10.1039/c0py00124d
– ident: e_1_2_6_7_9
  doi: 10.1002/marc.201100839
– ident: e_1_2_6_7_4
  doi: 10.1002/marc.200500679
– ident: e_1_2_6_1_3
  doi: 10.1007/s10118-013-1332-6
– ident: e_1_2_6_4_1
  doi: 10.1039/c2cs35115c
– ident: e_1_2_6_17_1
  doi: 10.1021/ma0018087
– ident: e_1_2_6_7_1
  doi: 10.1039/a909725b
– ident: e_1_2_6_13_1
  doi: 10.1002/anie.200602897
– ident: e_1_2_6_14_3
  doi: 10.1021/ma2000674
– ident: e_1_2_6_16_1
  doi: 10.1039/c0sm00284d
– ident: e_1_2_6_1_2
  doi: 10.1021/ja404175x
– ident: e_1_2_6_1_4
  doi: 10.1039/c4ta00465e
– ident: e_1_2_6_7_8
  doi: 10.1021/ma0510744
– ident: e_1_2_6_13_2
  doi: 10.1021/la0361565
– ident: e_1_2_6_4_2
  doi: 10.1002/mabi.200800112
– ident: e_1_2_6_7_3
  doi: 10.1021/jp807513k
– ident: e_1_2_6_6_2
  doi: 10.1002/marc.200700886
– ident: e_1_2_6_10_3
  doi: 10.1021/ma402370j
– ident: e_1_2_6_14_1
  doi: 10.1039/b912804b
– ident: e_1_2_6_4_3
  doi: 10.1002/(SICI)1099-1581(1998100)9:10/11<677::AID-PAT845>3.0.CO;2-#
– ident: e_1_2_6_7_2
  doi: 10.1021/jp9913665
– ident: e_1_2_6_5_3
  doi: 10.1039/c2sm25537e
– ident: e_1_2_6_7_5
  doi: 10.1021/ma051548z
– ident: e_1_2_6_12_2
  doi: 10.1021/ma2005926
– ident: e_1_2_6_5_2
  doi: 10.1002/anie.201001461
– ident: e_1_2_6_15_1
  doi: 10.1021/ja206301a
– ident: e_1_2_6_3_1
  doi: 10.1021/ja409686x
– ident: e_1_2_6_6_1
  doi: 10.1021/ja9709740
– ident: e_1_2_6_2_1
  doi: 10.1038/nnano.2007.70
– ident: e_1_2_6_7_7
  doi: 10.1039/b922289h
SSID ssj0008402
Score 2.436617
Snippet Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric...
Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1428
SubjectTerms Chain mobility
Dispersions
Ethanol
Ethanol - chemistry
Ethyl alcohol
Fabrication
hexagonally packed hollow hoops
Hoops
Hydrophobic and Hydrophilic Interactions
Morphology
morphology transition
Nanotechnology
Polymerization
Polymers - chemistry
RAFT dispersion polymerization
Rafts
Self assembly
Vesicles
Title Formation of Hexagonally Packed Hollow Hoops and Morphology Transition in RAFT Ethanol Dispersion Polymerization
URI https://api.istex.fr/ark:/67375/WNG-TGRDJTD1-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201500122
https://www.ncbi.nlm.nih.gov/pubmed/26032959
https://www.proquest.com/docview/1713909264
https://www.proquest.com/docview/1715660339
https://www.proquest.com/docview/1753543722
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBejfdhetnWf2dqhwdie3DqSbMuPIWkaCiklpKxvQrLkUhrs0CSs7V_fOyl2m7EP2J5s4xOWpZP0O93dT4R84aXNu5rrKDNaRCLVNpIFF1FW8pgZxrmTmI08PklHZ-L4PDl_lMUf-CHaDTccGX6-xgGuzeLggTQUqR4wNCvx3iGYhDFgC1HR5IE_CqyX4O4EiwuMsbRhbYzZwWbxjVVpGxv45leQcxPB-iVo-ILopvIh8uRqf7U0-8XdT7yO__N3L8nzNT6lvaBQO-SJq16Rp_3mWLjXZD5s0h1pXdKRu9EXCOZnt_RUw4xg6Qg0q_4Bl3q-oLqydFxDX_rde-pXRh8kRi8rOukNp_QQ9-7rGR1cImc57t3R03p2i46kkCH6hpwND6f9UbQ-tiEqhBAssoUEGyW2gKzStDQAEWVauEI4LmPpkN7dH1opYZo1WZxlsnSlzrS0AGVyBvDzLdmq6sq9JzTNrRSGG2aLVGghdM6MyKRDq4elmnVI1HSbKtac5ni0xkwFNmamsB1V244d8q2Vnwc2j99KfvVa0Irp6yuMgcsS9f3kSE2PJoPj6aCrQHC3URO1Hv4L1QXTP49zAJsd8rl9DR2F3hhduXrlZQBKx5znf5JJeIKeVfjMu6CCbYXAEOUsT6A084r0lx9S496k3z59-JdCH8kzvA_hj7tka3m9cnsAyZbmkx9292WEKqY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtswECWC5JBeui9O0pYFupyUyCQlUYceDCuOs9gIDAfNjaUkqghiSEZsI3H_qr_SL-oMtQQuugAFcujJkDWCltk5wzeEvOVZGrY1104Qa-EIX6eOTLhwgoy7LGacG4m7kQdDv38mjs698zXyrd4LU-JDNAtuqBnWXqOC44L03i1qKGI9YG-WZ8tDVV_lsVleQ9Y2-3gYAYvfMdbbH3f7TjVYwEmEEMxJEwlRtJuC7_f9LIYgRvqJSYTh0pUGAcjtWEUJhiAO3CCQmcl0oGUKzjZkHq6BgtXfwDHiCNcfjW4RqyBfKguskONB-ufXOJEu21t93hU_uIEsvflVkLsaM1un13tAvtefq-x1udxdzOPd5OtPSJL_1fd8SO5XITjtlDrziKyZ_DHZ7NaT756Qaa_e0UmLjPbNjf6C-cpkSU81GL2U9kF5imv4KaYzqvOUDgoQV1ugoNb52z44epHTUac3pvtYnigmNLpAWHZcnqSnxWSJtbJyE-xTcnYnL_yMrOdFbl4Q6oepFDGPWZr4QguhQxaLQBpM7JivWYs4tZyopIJtx-khE1UCTjOFfFMN31rkQ0M_LQFLfkv53opdQ6avLrHNL_DUp-GBGh-MoqNx1FZAuFPLpaos3Ey1A8gd3BDi6RZ505wGRmHBSeemWFgayBZczsM_0Xjcw-Ix3OZ5KfPNA0GuzVnowdXMSu5fXkgNOqNuc7T1Lxe9Jpv98eBEnRwOj7fJPfy_7PbcIevzq4V5CRHoPH5ldZ6Sz3etFD8AQJKElQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Ja9tAFB5CAm0v3Re3aTuFLicl8sxIGh16MFYcJ6mNMQ7NbTKSRiXESCa2Sdxf1b_Sf9T3Rktw6QKFHHoysp7Q8vZ5b75HyFuepWFbc-0EsRaO8HXqyIQLJ8i4y2LGuZG4G3kw9PvH4vDEO9kg3-q9MCU-RLPghpph7TUq-CzNdq9BQxHqAVuzPFsdqtoqj8zqEpK2-ceDCDj8jrHe3qTbd6q5Ak4ihGBOmkgIot0UXL_vZzHEMNJPTCIMl640iD9upypKsANx4AaBzEymAy1T8LUh83AJFIz-lvDdEIdFRONrwCpIl8r6KqR4kP35NUyky3bXn3fNDW4hR69-FeOuh8zW5_Xuke_11ypbXc53lot4J_n6E5Dk__Q575O7VQBOO6XGPCAbJn9IbnfruXePyKxX7-ekRUb75kp_wWxluqIjDSYvpX1QneISforZnOo8pYMChNWWJ6h1_bYLjp7ldNzpTegeFieKKY3OEJQdFyfpqJiusFJWboF9TI5v5IWfkM28yM0zQv0wlSLmMUsTX2ghdMhiEUiDaR3zNWsRpxYTlVSg7Tg7ZKpKuGmmkG-q4VuLfGjoZyVcyW8p31upa8j0xTk2-QWe-jzcV5P9cXQ4idoKCLdrsVSVfZurdgCZgxtCNN0ib5rTwCgsN-ncFEtLA7mCy3n4JxqPe1g6hts8LUW-eSDItDkLPbiaWcH9ywupQWfcbY6e_8tFr8mtUdRTnw6GRy_IHfy7bPXcJpuLi6V5CeHnIn5lNZ6S05vWiR8AroNE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+Hexagonally+Packed+Hollow+Hoops+and+Morphology+Transition+in+RAFT+Ethanol+Dispersion+Polymerization&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Zhang%2C+Wen%E2%80%90Jian&rft.au=Hong%2C+Chun%E2%80%90Yan&rft.au=Pan%2C+Cai%E2%80%90Yuan&rft.date=2015-08-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=36&rft.issue=15&rft.spage=1428&rft.epage=1436&rft_id=info:doi/10.1002%2Fmarc.201500122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_201500122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon