Formation of Hexagonally Packed Hollow Hoops and Morphology Transition in RAFT Ethanol Dispersion Polymerization
Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the...
Saved in:
Published in | Macromolecular rapid communications. Vol. 36; no. 15; pp. 1428 - 1436 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.08.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano‐objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials.
Highly ordered assemblies with a hexagonally packed hollow hoops (HHHs) structure are successfully fabricated through morphology transition from large compound vesicles to HHHs in RAFT dispersion polymerization for the first time. Besides the chain length ratio (R) of hydrophobic to hydrophilic blocks, the chain mobility in the nano‐objects is a determining factor for morphology transition. |
---|---|
AbstractList | Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano-objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials. Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano‐objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials. Highly ordered assemblies with a hexagonally packed hollow hoops (HHHs) structure are successfully fabricated through morphology transition from large compound vesicles to HHHs in RAFT dispersion polymerization for the first time. Besides the chain length ratio (R) of hydrophobic to hydrophilic blocks, the chain mobility in the nano‐objects is a determining factor for morphology transition. Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio ( R ) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano‐objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials. image Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano-objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials.Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano-objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials. Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano-objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials. Highly ordered assemblies with a hexagonally packed hollow hoops (HHHs) structure are successfully fabricated through morphology transition from large compound vesicles to HHHs in RAFT dispersion polymerization for the first time. Besides the chain length ratio (R) of hydrophobic to hydrophilic blocks, the chain mobility in the nano-objects is a determining factor for morphology transition. |
Author | Pan, Cai-Yuan Zhang, Wen-Jian Hong, Chun-Yan |
Author_xml | – sequence: 1 givenname: Wen-Jian surname: Zhang fullname: Zhang, Wen-Jian organization: CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Anhui, 230026, Hefei, P. R. China – sequence: 2 givenname: Chun-Yan surname: Hong fullname: Hong, Chun-Yan email: hongcy@ustc.edu.cn organization: CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Anhui, 230026, Hefei, P. R. China – sequence: 3 givenname: Cai-Yuan surname: Pan fullname: Pan, Cai-Yuan email: hongcy@ustc.edu.cn organization: CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Anhui, 230026, Hefei, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26032959$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEURi1URB-wZYkssWEzwY_xaxklTdKqhSoaxNJyZjytW2c82BO1w69nkpQIVUKwulfyOb7S952CoyY0FoD3GI0wQuTz2sRyRBBmCGFCXoETzAjOqCLiaNgRIRmmlB-D05TuEUIyR-QNOCYcUaKYOgHtLMS16VxoYKjhwj6Z29AY73t4Y8oHW8FF8D48DiO0CZqmgtchtnfBh9seFtE0ye1k18DleFbA8-7ONMHDqUutjWn7dBN8v7bR_dydeQte18Yn--55noFvs_Nissiuvs4vJuOrrMzznGRVKUUuUMU44bxeMawkL22ZWyqRtBwjxZVUUiqMVwIJIWtbG2FkRbFQhFF6Bj7t_21j-LGxqdNrl0rrvWls2CSNBaMsp4KQ_0Ax40NiVA3oxxfofdjEIbAdRRVShOcD9eGZ2qzWttJtdENPvf4d-wCM9kAZQ0rR1gcEI73tVW971YdeByF_IZSu2-XZReP83zW11x6dt_0_jujr8XLyp5vtXZc6-3RwTXzQXFDB9Pcvc13Ml9PLYoo1ob8Ae0_Ekg |
CitedBy_id | crossref_primary_10_1002_marc_201700840 crossref_primary_10_1002_anie_202315849 crossref_primary_10_1016_j_progpolymsci_2020_101211 crossref_primary_10_1039_C8PY00643A crossref_primary_10_1039_C7PY00912G crossref_primary_10_1021_acs_macromol_6b00688 crossref_primary_10_1021_acs_macromol_7b01629 crossref_primary_10_1039_C8PY00029H crossref_primary_10_1016_j_eurpolymj_2021_110639 crossref_primary_10_1002_anie_201702591 crossref_primary_10_1038_s41467_019_09324_5 crossref_primary_10_1002_macp_202100128 crossref_primary_10_1039_D1RA05555K crossref_primary_10_1021_acs_biomac_6b00819 crossref_primary_10_1021_acs_macromol_7b02039 crossref_primary_10_1021_acsami_2c18928 crossref_primary_10_1016_j_polymer_2020_122914 crossref_primary_10_1039_D0PY00380H crossref_primary_10_1002_macp_201500273 crossref_primary_10_1002_marc_202000209 crossref_primary_10_1016_j_jcis_2022_09_141 crossref_primary_10_1039_C6QM00380J crossref_primary_10_1021_acs_macromol_8b00340 crossref_primary_10_1021_acsmaterialslett_0c00043 crossref_primary_10_1016_j_progpolymsci_2015_10_002 crossref_primary_10_1016_j_polymer_2021_123589 crossref_primary_10_1002_marc_201800140 crossref_primary_10_1080_20550324_2020_1857121 crossref_primary_10_1002_pola_28002 crossref_primary_10_1021_acsnano_0c09166 crossref_primary_10_1039_D4PY00022F crossref_primary_10_1021_acs_macromol_8b02081 crossref_primary_10_1021_acs_macromol_9b00879 crossref_primary_10_1021_acs_langmuir_0c00211 crossref_primary_10_1039_C9CC08944F crossref_primary_10_1021_acs_macromol_6b01966 crossref_primary_10_1039_C8NH00300A crossref_primary_10_1039_D2PY00701K crossref_primary_10_1002_marc_202100194 crossref_primary_10_1021_acs_macromol_7b01437 crossref_primary_10_1016_j_jconrel_2022_05_036 crossref_primary_10_1002_ange_201702591 crossref_primary_10_1021_acsami_7b02966 crossref_primary_10_1039_D2SC00762B crossref_primary_10_1039_C8PY01799A crossref_primary_10_1039_D2PY00858K crossref_primary_10_1021_acs_biomac_6b01887 crossref_primary_10_1021_acs_macromol_8b00690 crossref_primary_10_1021_jacs_4c02651 crossref_primary_10_1021_acsnano_1c05089 crossref_primary_10_1021_jacs_0c02009 crossref_primary_10_1039_D3PY01377D crossref_primary_10_1039_C8PY01584H crossref_primary_10_1021_acs_macromol_6b00233 crossref_primary_10_1039_D0PY00455C crossref_primary_10_1002_marc_201800279 crossref_primary_10_1021_acs_macromol_6b02499 crossref_primary_10_1021_acs_macromol_7b00281 crossref_primary_10_1021_acs_macromol_6b01756 crossref_primary_10_1002_anie_201709129 crossref_primary_10_1039_C7PY00214A crossref_primary_10_1039_D1SC00270H crossref_primary_10_1021_acs_macromol_3c00759 crossref_primary_10_1021_acsapm_2c00981 crossref_primary_10_1039_C9SC00303G crossref_primary_10_1021_acs_langmuir_2c01568 crossref_primary_10_1002_cjoc_202100134 crossref_primary_10_1002_pol_20230579 crossref_primary_10_1021_acsmacrolett_1c00156 crossref_primary_10_1002_marc_202100566 crossref_primary_10_1002_ange_202315849 crossref_primary_10_1039_C7PY01618B crossref_primary_10_1016_j_polymer_2016_08_082 crossref_primary_10_1039_C5PY01202C crossref_primary_10_1002_marc_201800325 crossref_primary_10_1007_s10118_019_2303_3 crossref_primary_10_1039_C6PY00164E crossref_primary_10_1016_j_cclet_2019_10_026 crossref_primary_10_1002_ange_201709129 crossref_primary_10_1021_acs_macromol_0c02882 crossref_primary_10_1002_marc_202400891 |
Cites_doi | 10.1103/PhysRevLett.79.5034 10.1021/bm301425j 10.1002/marc.200900640 10.1021/ma401797a 10.1002/marc.200900571 10.1021/ma901014m 10.1021/la981688k 10.1016/j.polymer.2010.08.056 10.1146/annurev.pc.41.100190.002521 10.1021/ma9809785 10.1021/ma300596f 10.1021/ja205887v 10.1039/C2PY20612A 10.1039/c0py00124d 10.1002/marc.201100839 10.1002/marc.200500679 10.1007/s10118-013-1332-6 10.1039/c2cs35115c 10.1021/ma0018087 10.1039/a909725b 10.1002/anie.200602897 10.1021/ma2000674 10.1039/c0sm00284d 10.1021/ja404175x 10.1039/c4ta00465e 10.1021/ma0510744 10.1021/la0361565 10.1002/mabi.200800112 10.1021/jp807513k 10.1002/marc.200700886 10.1021/ma402370j 10.1039/b912804b 10.1002/(SICI)1099-1581(1998100)9:10/11<677::AID-PAT845>3.0.CO;2-# 10.1021/jp9913665 10.1039/c2sm25537e 10.1021/ma051548z 10.1021/ma2005926 10.1002/anie.201001461 10.1021/ja206301a 10.1021/ja409686x 10.1021/ja9709740 10.1038/nnano.2007.70 10.1039/b922289h |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 7TB FR3 |
DOI | 10.1002/marc.201500122 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | MEDLINE CrossRef Materials Research Database MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | 1436 |
ExternalDocumentID | 3812615011 26032959 10_1002_marc_201500122 MARC201500122 ark_67375_WNG_TGRDJTD1_2 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21074121; 21090354; 21374107 – fundername: China Postdoctoral Science Foundation funderid: BH2060000011 – fundername: Fundamental Research Funds for the Central Universities funderid: WK2060200012; WK2060200015 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 7TB FR3 |
ID | FETCH-LOGICAL-c4442-dc87470d56266fb51986cec4e3808e6109698988911b70778fefa7a8d31792533 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 06:23:08 EDT 2025 Fri Jul 11 00:29:32 EDT 2025 Fri Jul 25 10:40:08 EDT 2025 Thu Apr 03 07:07:53 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Tue Jul 01 01:50:14 EDT 2025 Wed Jan 22 16:32:43 EST 2025 Wed Oct 30 09:53:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | morphology transition RAFT dispersion polymerization hexagonally packed hollow hoops |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4442-dc87470d56266fb51986cec4e3808e6109698988911b70778fefa7a8d31792533 |
Notes | China Postdoctoral Science Foundation - No. BH2060000011 National Natural Science Foundation of China - No. 21074121; No. 21090354; No. 21374107 Fundamental Research Funds for the Central Universities - No. WK2060200012; No. WK2060200015 ArticleID:MARC201500122 ark:/67375/WNG-TGRDJTD1-2 istex:FE565436298EB169C0C598AD8974790A95C80C82 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26032959 |
PQID | 1713909264 |
PQPubID | 1016394 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1753543722 proquest_miscellaneous_1715660339 proquest_journals_1713909264 pubmed_primary_26032959 crossref_primary_10_1002_marc_201500122 crossref_citationtrail_10_1002_marc_201500122 wiley_primary_10_1002_marc_201500122_MARC201500122 istex_primary_ark_67375_WNG_TGRDJTD1_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08 August 2015 2015-08-00 2015-Aug 20150801 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol. Rapid Commun |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | a) Y. Z. Liang, Z. C. Li, F. M. Li, New J. Chem. 2000, 24, 323 b) W. M. Wan, C. Y. Pan, Polym. Chem. 2010, 1, 1475 W. M. Cai, W. M. Wan, C. Y. Hong, C. Q. Huang, C. Y. Pan, Soft Matter 2010, 6, 5554. c) D. H. Zhou, J. Zhang, G. Zhang, Z. H. Gan, Chin. J. Polym. Sci. 2013, 31, 1299 c) A. G. Denkova, E. Mendes, M. O. Coppens, J. Phys. Chem. B 2009, 113, 989 J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed., Wiley-Interscience, New York 1999, vol. 3, p. VII699-VII701, VII711. a) Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969 b) J. Zhu, Y. Liao, W. Jiang, Langmuir 2004, 20, 3809. d) L. Liu, X. Gao, Y. Cong, B. Li, Y. Han, Macromol. Rapid Commun. 2006, 27, 260 a) W. J. Zhang, F. D'Agosto, O. Boyron, J. Rieger, B. Charleux, Macromolecules 2012, 45, 4075 a) L. F. Zhang, C. Bartels, Y. S. Yu, H. W. Shen, A. Eisenberg, Phys. Rev. Lett. 1997, 79, 5034 b) C. Q. Huang, C. Y. Pan, Polymer 2010, 51, 5115 a) W. M. Wan, C. Y. Hong, C. Y. Pan, Chem. Commun. 2009, 5883 h) J. Zhu, H. Yu, W. Jiang, Macromolecules 2005, 38, 7492 W. M. Wan, X. L. Sun, C. Y. Pan, Macromolecules 2009, 42, 4950. c) W. D. He, X. L. Sun, W. M. Wan, C. Y. Pan, Macromolecules 2011, 44, 3358. a) S. Sugihara, A. Blanazs, S. P. Armes, A. J. Ryan, A. L. Lewis, J. Am. Chem. Soc. 2011, 133, 15707 e) I. LaRue, M. Adam, M. Pitsikalis, N. Hadjichristidis, M. Rubins-tein, S. S. Sheiko, Macromolecules 2006, 39, 309 a) Y. M. Li, Y. F. Qian, T. Liu, G. Y. Zhang, S. Y. Liu, Biomacromolecules 2012, 13, 3877 g) A. O. Moughtona, R. K. O'Reilly, Chem. Commun. 2010, 46, 1091 a) W. M. Wan, X. L. Sun, C. Y. Pan, Macromol. Rapid Commun. 2010, 31, 399 b) Y. Li, S. P. Armes, Angew. Chem. Int. Ed. 2010, 49, 4042 Y. Geng, P. Dalhaimer, S. S. Cai, R. Tsai, M. Tewari, T. Minko, D. E. Discher, Nat. Nanotechnol. 2007, 2, 249. b) X. W. Zhang, S. Boisse, W. J. Zhang, P. Beaunier, F. D'Agosto, J. Rieger, B. Charleux, Macromolecules 2011, 44, 4149. c) J. T. Sun, C. Y. Hong, C. Y. Pan, Soft Matter 2012, 8, 7753. K. Yu, C. Bartels, A. Eisenberg, Langmuir 1999, 15, 7157. b) L. Chen, H. Shen, A. Eisenberg, J. Phys. Chem. B 1999, 103, 9488 b) P. C. Yang, L. P. D. Ratcliffe, S. P. Armes, Macromolecules 2013, 46, 8545. d) W. J. Zhang, C. Y. Hong, C. Y. Pan, J. Mater. Chem. A 2014, 2, 7819. c) M. Dan, X. Xiao, Y. Su, W. Zhang, Macromolecules 2014, 47, 1360. A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2011, 133, 16581. X. L. Hu, J. M. Hu, J. Tian, Z. S. Ge, G. Y. Zhang, K. F. Luo, S. Y. Liu, J. Am. Chem. Soc. 2013, 135, 17617. a) Y. Yu, A. Eisenberg, J. Am. Chem. Soc. 1997, 119, 8383 b) P. Zou, C. Y. Pan, Macromol. Rapid Commun. 2008, 29, 763. a) T. Azzam, A. Eisenberg, Angew. Chem. Int. Ed. 2006, 45, 7443 b) M. Spulber, A. Najer, K. Winkelbach, O. Glaied, M. Waser, U. Pieles, W. Meier, N. Bruns, J. Am. Chem. Soc. 2013, 135, 9204 c) L. Zhang, A. Eisenberg, Polym. Adv. Technol. 1998, 9, 677. a) J. T. Sun, C. Y. Hong, C. Y. Pan, Polym. Chem. 2013, 4, 873 b) K. Yu, C. Bartels, A. Eisenberg, Macromolecules 1998, 31, 9399. F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525. i) N. V. Salim, T. L. Hanley, L. Waddington, P. G. Hartley, Q. Guo, Macromol. Rapid Commun. 2012, 33, 401. f) A. M. Mihut, M. Drechsler, M. Möller, M. Ballauff, Macromol. Rapid Commun. 2010, 31, 449 b) D. Lensen, D. M. Vriezema, J. C. M. van. Hest, Macromol. Biosci. 2008, 8, 991 Y. Mitsukami, M. S. Donovan, A. B. Lowe, C. L. McCormick, Macromolecules 2001, 34, 2248. 1990; 41 2013 2010 2012; 4 49 8 2009; 42 2010 2010 2014; 31 1 47 2006 2004; 45 20 2012 2013 2013 2014; 13 135 31 2 1999; 15 2012 2008 1998; 41 8 9 2013; 135 1999; 3 2007; 2 2000 1999 2009 2006 2006 2010 2010 2005 2012; 24 103 113 27 39 31 46 38 33 2011 2013; 133 46 1997 1998; 79 31 2012 2011; 45 44 2001; 34 1997 2008; 119 29 2009 2010 2011; 51 44 2011; 133 2010; 6 e_1_2_6_10_1 e_1_2_6_19_1 e_1_2_6_12_2 e_1_2_6_13_1 e_1_2_6_13_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_11_1 e_1_2_6_10_3 e_1_2_6_11_2 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_14_2 e_1_2_6_15_1 e_1_2_6_14_3 e_1_2_6_16_1 e_1_2_6_20_1 e_1_2_6_7_7 e_1_2_6_7_6 e_1_2_6_7_9 e_1_2_6_7_8 Brandrup J. (e_1_2_6_18_1) 1999 e_1_2_6_7_3 e_1_2_6_8_2 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_8_1 e_1_2_6_7_5 e_1_2_6_7_4 e_1_2_6_4_2 e_1_2_6_5_1 e_1_2_6_1_4 e_1_2_6_4_1 e_1_2_6_5_3 e_1_2_6_6_2 e_1_2_6_7_1 e_1_2_6_4_3 e_1_2_6_5_2 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_1_3 e_1_2_6_3_1 e_1_2_6_1_2 e_1_2_6_2_1 |
References_xml | – reference: c) L. Zhang, A. Eisenberg, Polym. Adv. Technol. 1998, 9, 677. – reference: Y. Geng, P. Dalhaimer, S. S. Cai, R. Tsai, M. Tewari, T. Minko, D. E. Discher, Nat. Nanotechnol. 2007, 2, 249. – reference: b) P. C. Yang, L. P. D. Ratcliffe, S. P. Armes, Macromolecules 2013, 46, 8545. – reference: c) D. H. Zhou, J. Zhang, G. Zhang, Z. H. Gan, Chin. J. Polym. Sci. 2013, 31, 1299; – reference: W. M. Wan, X. L. Sun, C. Y. Pan, Macromolecules 2009, 42, 4950. – reference: b) X. W. Zhang, S. Boisse, W. J. Zhang, P. Beaunier, F. D'Agosto, J. Rieger, B. Charleux, Macromolecules 2011, 44, 4149. – reference: a) L. F. Zhang, C. Bartels, Y. S. Yu, H. W. Shen, A. Eisenberg, Phys. Rev. Lett. 1997, 79, 5034; – reference: a) W. M. Wan, X. L. Sun, C. Y. Pan, Macromol. Rapid Commun. 2010, 31, 399; – reference: Y. Mitsukami, M. S. Donovan, A. B. Lowe, C. L. McCormick, Macromolecules 2001, 34, 2248. – reference: d) L. Liu, X. Gao, Y. Cong, B. Li, Y. Han, Macromol. Rapid Commun. 2006, 27, 260; – reference: b) J. Zhu, Y. Liao, W. Jiang, Langmuir 2004, 20, 3809. – reference: b) K. Yu, C. Bartels, A. Eisenberg, Macromolecules 1998, 31, 9399. – reference: a) W. M. Wan, C. Y. Hong, C. Y. Pan, Chem. Commun. 2009, 5883; – reference: c) A. G. Denkova, E. Mendes, M. O. Coppens, J. Phys. Chem. B 2009, 113, 989; – reference: b) C. Q. Huang, C. Y. Pan, Polymer 2010, 51, 5115; – reference: i) N. V. Salim, T. L. Hanley, L. Waddington, P. G. Hartley, Q. Guo, Macromol. Rapid Commun. 2012, 33, 401. – reference: a) W. J. Zhang, F. D'Agosto, O. Boyron, J. Rieger, B. Charleux, Macromolecules 2012, 45, 4075; – reference: X. L. Hu, J. M. Hu, J. Tian, Z. S. Ge, G. Y. Zhang, K. F. Luo, S. Y. Liu, J. Am. Chem. Soc. 2013, 135, 17617. – reference: a) Y. M. Li, Y. F. Qian, T. Liu, G. Y. Zhang, S. Y. Liu, Biomacromolecules 2012, 13, 3877; – reference: c) M. Dan, X. Xiao, Y. Su, W. Zhang, Macromolecules 2014, 47, 1360. – reference: J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, 4th ed., Wiley-Interscience, New York 1999, vol. 3, p. VII699-VII701, VII711. – reference: a) Y. Z. Liang, Z. C. Li, F. M. Li, New J. Chem. 2000, 24, 323; – reference: a) T. Azzam, A. Eisenberg, Angew. Chem. Int. Ed. 2006, 45, 7443; – reference: a) Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969; – reference: b) Y. Li, S. P. Armes, Angew. Chem. Int. Ed. 2010, 49, 4042; – reference: c) J. T. Sun, C. Y. Hong, C. Y. Pan, Soft Matter 2012, 8, 7753. – reference: K. Yu, C. Bartels, A. Eisenberg, Langmuir 1999, 15, 7157. – reference: W. M. Cai, W. M. Wan, C. Y. Hong, C. Q. Huang, C. Y. Pan, Soft Matter 2010, 6, 5554. – reference: b) W. M. Wan, C. Y. Pan, Polym. Chem. 2010, 1, 1475; – reference: a) J. T. Sun, C. Y. Hong, C. Y. Pan, Polym. Chem. 2013, 4, 873; – reference: g) A. O. Moughtona, R. K. O'Reilly, Chem. Commun. 2010, 46, 1091; – reference: A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2011, 133, 16581. – reference: c) W. D. He, X. L. Sun, W. M. Wan, C. Y. Pan, Macromolecules 2011, 44, 3358. – reference: b) P. Zou, C. Y. Pan, Macromol. Rapid Commun. 2008, 29, 763. – reference: f) A. M. Mihut, M. Drechsler, M. Möller, M. Ballauff, Macromol. Rapid Commun. 2010, 31, 449; – reference: h) J. Zhu, H. Yu, W. Jiang, Macromolecules 2005, 38, 7492; – reference: d) W. J. Zhang, C. Y. Hong, C. Y. Pan, J. Mater. Chem. A 2014, 2, 7819. – reference: a) Y. Yu, A. Eisenberg, J. Am. Chem. Soc. 1997, 119, 8383; – reference: b) M. Spulber, A. Najer, K. Winkelbach, O. Glaied, M. Waser, U. Pieles, W. Meier, N. Bruns, J. Am. Chem. Soc. 2013, 135, 9204; – reference: b) D. Lensen, D. M. Vriezema, J. C. M. van. Hest, Macromol. Biosci. 2008, 8, 991; – reference: e) I. LaRue, M. Adam, M. Pitsikalis, N. Hadjichristidis, M. Rubins-tein, S. S. Sheiko, Macromolecules 2006, 39, 309; – reference: b) L. Chen, H. Shen, A. Eisenberg, J. Phys. Chem. B 1999, 103, 9488; – reference: F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525. – reference: a) S. Sugihara, A. Blanazs, S. P. Armes, A. J. Ryan, A. L. Lewis, J. Am. Chem. Soc. 2011, 133, 15707; – volume: 41 8 9 start-page: 5969 991 677 year: 2012 2008 1998 publication-title: Chem. Soc. Rev. Macromol. Biosci. Polym. Adv. Technol. – volume: 6 start-page: 5554 year: 2010 publication-title: Soft Matter – volume: 3 start-page: VII699 year: 1999 end-page: VII701, VII711 – volume: 15 start-page: 7157 year: 1999 publication-title: Langmuir – volume: 135 start-page: 17617 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 4 49 8 start-page: 873 4042 7753 year: 2013 2010 2012 publication-title: Polym. Chem. Angew. Chem. Int. Ed. Soft Matter – volume: 79 31 start-page: 5034 9399 year: 1997 1998 publication-title: Phys. Rev. Lett. Macromolecules – volume: 24 103 113 27 39 31 46 38 33 start-page: 323 9488 989 260 309 449 1091 7492 401 year: 2000 1999 2009 2006 2006 2010 2010 2005 2012 publication-title: New J. Chem. J. Phys. Chem. B J. Phys. Chem. B Macromol. Rapid Commun. Macromolecules Macromol. Rapid Commun. Chem. Commun. Macromolecules Macromol. Rapid Commun. – volume: 2 start-page: 249 year: 2007 publication-title: Nat. Nanotechnol. – volume: 133 46 start-page: 15707 8545 year: 2011 2013 publication-title: J. Am. Chem. Soc. Macromolecules – volume: 45 20 start-page: 7443 3809 year: 2006 2004 publication-title: Angew. Chem. Int. Ed. Langmuir – volume: 41 start-page: 525 year: 1990 publication-title: Annu. Rev. Phys. Chem. – volume: 13 135 31 2 start-page: 3877 9204 1299 7819 year: 2012 2013 2013 2014 publication-title: Biomacromolecules J. Am. Chem. Soc. Chin. J. Polym. Sci. J. Mater. Chem. A – volume: 45 44 start-page: 4075 4149 year: 2012 2011 publication-title: Macromolecules Macromolecules – volume: 51 44 start-page: 5883 5115 3358 year: 2009 2010 2011 publication-title: Chem. Commun. Polymer Macromolecules – volume: 31 1 47 start-page: 399 1475 1360 year: 2010 2010 2014 publication-title: Macromol. Rapid Commun. Polym. Chem. Macromolecules – volume: 133 start-page: 16581 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 2248 year: 2001 publication-title: Macromolecules – volume: 42 start-page: 4950 year: 2009 publication-title: Macromolecules – volume: 119 29 start-page: 8383 763 year: 1997 2008 publication-title: J. Am. Chem. Soc. Macromol. Rapid Commun. – ident: e_1_2_6_8_1 doi: 10.1103/PhysRevLett.79.5034 – ident: e_1_2_6_1_1 doi: 10.1021/bm301425j – ident: e_1_2_6_10_1 doi: 10.1002/marc.200900640 – ident: e_1_2_6_11_2 doi: 10.1021/ma401797a – ident: e_1_2_6_7_6 doi: 10.1002/marc.200900571 – ident: e_1_2_6_9_1 doi: 10.1021/ma901014m – ident: e_1_2_6_19_1 doi: 10.1021/la981688k – ident: e_1_2_6_14_2 doi: 10.1016/j.polymer.2010.08.056 – ident: e_1_2_6_20_1 doi: 10.1146/annurev.pc.41.100190.002521 – ident: e_1_2_6_8_2 doi: 10.1021/ma9809785 – start-page: VII699 volume-title: Polymer Handbook year: 1999 ident: e_1_2_6_18_1 – ident: e_1_2_6_12_1 doi: 10.1021/ma300596f – ident: e_1_2_6_11_1 doi: 10.1021/ja205887v – ident: e_1_2_6_5_1 doi: 10.1039/C2PY20612A – ident: e_1_2_6_10_2 doi: 10.1039/c0py00124d – ident: e_1_2_6_7_9 doi: 10.1002/marc.201100839 – ident: e_1_2_6_7_4 doi: 10.1002/marc.200500679 – ident: e_1_2_6_1_3 doi: 10.1007/s10118-013-1332-6 – ident: e_1_2_6_4_1 doi: 10.1039/c2cs35115c – ident: e_1_2_6_17_1 doi: 10.1021/ma0018087 – ident: e_1_2_6_7_1 doi: 10.1039/a909725b – ident: e_1_2_6_13_1 doi: 10.1002/anie.200602897 – ident: e_1_2_6_14_3 doi: 10.1021/ma2000674 – ident: e_1_2_6_16_1 doi: 10.1039/c0sm00284d – ident: e_1_2_6_1_2 doi: 10.1021/ja404175x – ident: e_1_2_6_1_4 doi: 10.1039/c4ta00465e – ident: e_1_2_6_7_8 doi: 10.1021/ma0510744 – ident: e_1_2_6_13_2 doi: 10.1021/la0361565 – ident: e_1_2_6_4_2 doi: 10.1002/mabi.200800112 – ident: e_1_2_6_7_3 doi: 10.1021/jp807513k – ident: e_1_2_6_6_2 doi: 10.1002/marc.200700886 – ident: e_1_2_6_10_3 doi: 10.1021/ma402370j – ident: e_1_2_6_14_1 doi: 10.1039/b912804b – ident: e_1_2_6_4_3 doi: 10.1002/(SICI)1099-1581(1998100)9:10/11<677::AID-PAT845>3.0.CO;2-# – ident: e_1_2_6_7_2 doi: 10.1021/jp9913665 – ident: e_1_2_6_5_3 doi: 10.1039/c2sm25537e – ident: e_1_2_6_7_5 doi: 10.1021/ma051548z – ident: e_1_2_6_12_2 doi: 10.1021/ma2005926 – ident: e_1_2_6_5_2 doi: 10.1002/anie.201001461 – ident: e_1_2_6_15_1 doi: 10.1021/ja206301a – ident: e_1_2_6_3_1 doi: 10.1021/ja409686x – ident: e_1_2_6_6_1 doi: 10.1021/ja9709740 – ident: e_1_2_6_2_1 doi: 10.1038/nnano.2007.70 – ident: e_1_2_6_7_7 doi: 10.1039/b922289h |
SSID | ssj0008402 |
Score | 2.436617 |
Snippet | Similar to the traditional self‐assembly strategy, polymerization induced self‐assembly and reorganization (PISR) can produce a myriad of polymeric... Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1428 |
SubjectTerms | Chain mobility Dispersions Ethanol Ethanol - chemistry Ethyl alcohol Fabrication hexagonally packed hollow hoops Hoops Hydrophobic and Hydrophilic Interactions Morphology morphology transition Nanotechnology Polymerization Polymers - chemistry RAFT dispersion polymerization Rafts Self assembly Vesicles |
Title | Formation of Hexagonally Packed Hollow Hoops and Morphology Transition in RAFT Ethanol Dispersion Polymerization |
URI | https://api.istex.fr/ark:/67375/WNG-TGRDJTD1-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201500122 https://www.ncbi.nlm.nih.gov/pubmed/26032959 https://www.proquest.com/docview/1713909264 https://www.proquest.com/docview/1715660339 https://www.proquest.com/docview/1753543722 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBejfdhetnWf2dqhwdie3DqSbMuPIWkaCiklpKxvQrLkUhrs0CSs7V_fOyl2m7EP2J5s4xOWpZP0O93dT4R84aXNu5rrKDNaRCLVNpIFF1FW8pgZxrmTmI08PklHZ-L4PDl_lMUf-CHaDTccGX6-xgGuzeLggTQUqR4wNCvx3iGYhDFgC1HR5IE_CqyX4O4EiwuMsbRhbYzZwWbxjVVpGxv45leQcxPB-iVo-ILopvIh8uRqf7U0-8XdT7yO__N3L8nzNT6lvaBQO-SJq16Rp_3mWLjXZD5s0h1pXdKRu9EXCOZnt_RUw4xg6Qg0q_4Bl3q-oLqydFxDX_rde-pXRh8kRi8rOukNp_QQ9-7rGR1cImc57t3R03p2i46kkCH6hpwND6f9UbQ-tiEqhBAssoUEGyW2gKzStDQAEWVauEI4LmPpkN7dH1opYZo1WZxlsnSlzrS0AGVyBvDzLdmq6sq9JzTNrRSGG2aLVGghdM6MyKRDq4elmnVI1HSbKtac5ni0xkwFNmamsB1V244d8q2Vnwc2j99KfvVa0Irp6yuMgcsS9f3kSE2PJoPj6aCrQHC3URO1Hv4L1QXTP49zAJsd8rl9DR2F3hhduXrlZQBKx5znf5JJeIKeVfjMu6CCbYXAEOUsT6A084r0lx9S496k3z59-JdCH8kzvA_hj7tka3m9cnsAyZbmkx9292WEKqY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtswECWC5JBeui9O0pYFupyUyCQlUYceDCuOs9gIDAfNjaUkqghiSEZsI3H_qr_SL-oMtQQuugAFcujJkDWCltk5wzeEvOVZGrY1104Qa-EIX6eOTLhwgoy7LGacG4m7kQdDv38mjs698zXyrd4LU-JDNAtuqBnWXqOC44L03i1qKGI9YG-WZ8tDVV_lsVleQ9Y2-3gYAYvfMdbbH3f7TjVYwEmEEMxJEwlRtJuC7_f9LIYgRvqJSYTh0pUGAcjtWEUJhiAO3CCQmcl0oGUKzjZkHq6BgtXfwDHiCNcfjW4RqyBfKguskONB-ufXOJEu21t93hU_uIEsvflVkLsaM1un13tAvtefq-x1udxdzOPd5OtPSJL_1fd8SO5XITjtlDrziKyZ_DHZ7NaT756Qaa_e0UmLjPbNjf6C-cpkSU81GL2U9kF5imv4KaYzqvOUDgoQV1ugoNb52z44epHTUac3pvtYnigmNLpAWHZcnqSnxWSJtbJyE-xTcnYnL_yMrOdFbl4Q6oepFDGPWZr4QguhQxaLQBpM7JivWYs4tZyopIJtx-khE1UCTjOFfFMN31rkQ0M_LQFLfkv53opdQ6avLrHNL_DUp-GBGh-MoqNx1FZAuFPLpaos3Ey1A8gd3BDi6RZ505wGRmHBSeemWFgayBZczsM_0Xjcw-Ix3OZ5KfPNA0GuzVnowdXMSu5fXkgNOqNuc7T1Lxe9Jpv98eBEnRwOj7fJPfy_7PbcIevzq4V5CRHoPH5ldZ6Sz3etFD8AQJKElQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Ja9tAFB5CAm0v3Re3aTuFLicl8sxIGh16MFYcJ6mNMQ7NbTKSRiXESCa2Sdxf1b_Sf9T3Rktw6QKFHHoysp7Q8vZ5b75HyFuepWFbc-0EsRaO8HXqyIQLJ8i4y2LGuZG4G3kw9PvH4vDEO9kg3-q9MCU-RLPghpph7TUq-CzNdq9BQxHqAVuzPFsdqtoqj8zqEpK2-ceDCDj8jrHe3qTbd6q5Ak4ihGBOmkgIot0UXL_vZzHEMNJPTCIMl640iD9upypKsANx4AaBzEymAy1T8LUh83AJFIz-lvDdEIdFRONrwCpIl8r6KqR4kP35NUyky3bXn3fNDW4hR69-FeOuh8zW5_Xuke_11ypbXc53lot4J_n6E5Dk__Q575O7VQBOO6XGPCAbJn9IbnfruXePyKxX7-ekRUb75kp_wWxluqIjDSYvpX1QneISforZnOo8pYMChNWWJ6h1_bYLjp7ldNzpTegeFieKKY3OEJQdFyfpqJiusFJWboF9TI5v5IWfkM28yM0zQv0wlSLmMUsTX2ghdMhiEUiDaR3zNWsRpxYTlVSg7Tg7ZKpKuGmmkG-q4VuLfGjoZyVcyW8p31upa8j0xTk2-QWe-jzcV5P9cXQ4idoKCLdrsVSVfZurdgCZgxtCNN0ib5rTwCgsN-ncFEtLA7mCy3n4JxqPe1g6hts8LUW-eSDItDkLPbiaWcH9ywupQWfcbY6e_8tFr8mtUdRTnw6GRy_IHfy7bPXcJpuLi6V5CeHnIn5lNZ6S05vWiR8AroNE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+Hexagonally+Packed+Hollow+Hoops+and+Morphology+Transition+in+RAFT+Ethanol+Dispersion+Polymerization&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Zhang%2C+Wen%E2%80%90Jian&rft.au=Hong%2C+Chun%E2%80%90Yan&rft.au=Pan%2C+Cai%E2%80%90Yuan&rft.date=2015-08-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=36&rft.issue=15&rft.spage=1428&rft.epage=1436&rft_id=info:doi/10.1002%2Fmarc.201500122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_201500122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |