Exploring the Reactivity of Multicomponent Photocatalysts: Insight into the Complex Valence Band of BiOBr

The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence‐band structures, that is, two discrete valence band...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 19; no. 9; pp. 3224 - 3229
Main Authors Fang, Yan-Fen, Ma, Wan-Hong, Huang, Ying-Ping, Cheng, Gen-Wei
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 25.02.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence‐band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin‐LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H218O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin‐trapping ESR method was used to quantify the reactive oxygen species (.OH and .OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the .OH/.OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. Which isotope won? Hydroxylation in the BiOBr photocatalytic system with H218O solvent and 16O2 oxidant gives products with different isotope profiles under visible‐light versus UV irradiation (see scheme). The isotope abundance is also affected by the oxidative resistance of the substrate. Together with the .OH/.OOH ratio, the results show that BiOBr has two valence bands that have different oxidation abilities and responses to UV and visible light.
AbstractList The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O2p and Br4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H sub(2) super(18)O as the solvent) was used to determine the source of the Oatom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species ( super(.)OH and super(.)OOH) formed in the reaction system. The different isotope abundances of the hydroxyl Oatom of the products formed, as well as the reverse trend of the super(.)OH/ super(.)OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. Which isotope won? Hydroxylation in the BiOBr photocatalytic system with H sub(2) super(18)O solvent and super(16)O sub(2) oxidant gives products with different isotope profiles under visible-light versus UV irradiation (see scheme). The isotope abundance is also affected by the oxidative resistance of the substrate. Together with the super(.)OH/ super(.)OOH ratio, the results show that BiOBr has two valence bands that have different oxidation abilities and responses to UV and visible light.
The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O2p and Br4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H218O as the solvent) was used to determine the source of the Oatom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species (.OH and .OOH) formed in the reaction system. The different isotope abundances of the hydroxyl Oatom of the products formed, as well as the reverse trend of the .OH/.OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. [PUBLICATION ABSTRACT]
The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H(2)(18)O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species ((.)OH and (.)OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the (.)OH/(.)OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method.The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H(2)(18)O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species ((.)OH and (.)OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the (.)OH/(.)OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method.
The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H(2)(18)O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species ((.)OH and (.)OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the (.)OH/(.)OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method.
The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence‐band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin‐LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H 2 18 O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin‐trapping ESR method was used to quantify the reactive oxygen species ( . OH and . OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the . OH/ . OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method.
The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence‐band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin‐LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H218O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin‐trapping ESR method was used to quantify the reactive oxygen species (.OH and .OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the .OH/.OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. Which isotope won? Hydroxylation in the BiOBr photocatalytic system with H218O solvent and 16O2 oxidant gives products with different isotope profiles under visible‐light versus UV irradiation (see scheme). The isotope abundance is also affected by the oxidative resistance of the substrate. Together with the .OH/.OOH ratio, the results show that BiOBr has two valence bands that have different oxidation abilities and responses to UV and visible light.
Author Fang, Yan-Fen
Ma, Wan-Hong
Huang, Ying-Ping
Cheng, Gen-Wei
Author_xml – sequence: 1
  givenname: Yan-Fen
  surname: Fang
  fullname: Fang, Yan-Fen
  organization: Engineering Research Centre of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei 443002 (P.R. China), Fax: (+86) 717-639-7488
– sequence: 2
  givenname: Wan-Hong
  surname: Ma
  fullname: Ma, Wan-Hong
  organization: Engineering Research Centre of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei 443002 (P.R. China), Fax: (+86) 717-639-7488
– sequence: 3
  givenname: Ying-Ping
  surname: Huang
  fullname: Huang, Ying-Ping
  email: huangyp@ctgu.edu.cn
  organization: Engineering Research Centre of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei 443002 (P.R. China), Fax: (+86) 717-639-7488
– sequence: 4
  givenname: Gen-Wei
  surname: Cheng
  fullname: Cheng, Gen-Wei
  organization: Institute of Mountain Hazards and Environment of Chinese Academy of Sciences, Chengdu 610041 (P.R. China)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23325602$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P2zAAhq0JBIVx3XGKtMsu6fwVO9ltjbrCxEeF9nG0jONQM8cutrO1_37JCmhCmjjZh-d5Lb_vEdhz3mkA3iA4RRDiD2qluymGCEPMIH4FJqjAKCecFXtgAivKc1aQ6hAcxXgHIawYIQfgEBOCi4GfADPfrK0Pxt1maaWzay1VMr9M2ma-zS56m4zy3Xp406VsufLJK5mk3cYUP2ZnLprbVcqMS_6vXQ-o1Zvsu7TaKZ3NpGvGnJm5moXXYL-VNuqTh_MYfPs8_1qf5udXi7P603muKKU4vymbAkvZNlIywluCGS-oUoxRSGCF0XgvGoZoKyVVbVNpRXhRIc7KsqwKTY7B-13uOvj7XsckOhOVtlY67fsoEOclJLii9GUUlyVBQ39sQN89Q-98H9zwkZHiDDIMR-rtA9XfdLoR62A6Gbbise8BoDtABR9j0K1QJslkvEtBGisQFOOsYpxVPM06aNNn2mPyf4VqJ_w2Vm9foEV9Or_41813rolJb55cGX4KxoeuxY_Lhai_oOU15UuxIH8ApF7CjQ
CODEN CEUJED
CitedBy_id crossref_primary_10_1016_j_cej_2015_03_077
crossref_primary_10_1016_S1872_2067_18_63156_0
crossref_primary_10_1016_j_cej_2020_124402
crossref_primary_10_1007_s11356_021_13798_6
crossref_primary_10_1016_j_colsurfa_2022_129919
crossref_primary_10_1038_srep24918
crossref_primary_10_1039_C5CP00184F
crossref_primary_10_1016_j_apcatb_2015_08_002
crossref_primary_10_1016_j_mssp_2014_06_043
crossref_primary_10_1016_j_chemosphere_2022_134176
crossref_primary_10_1016_j_envres_2024_120501
crossref_primary_10_1039_C4NR05451B
crossref_primary_10_1039_C5DT00417A
crossref_primary_10_1049_mnl_2017_0787
crossref_primary_10_1016_S1872_2067_18_63080_3
crossref_primary_10_1039_C5RA16571G
crossref_primary_10_1039_C4TA00236A
crossref_primary_10_1016_j_jmat_2020_10_009
crossref_primary_10_1016_j_catcom_2014_01_023
crossref_primary_10_1016_j_apcatb_2013_10_008
crossref_primary_10_1016_j_ceramint_2020_05_048
crossref_primary_10_1016_j_jallcom_2015_06_113
crossref_primary_10_1021_jacs_5b03105
crossref_primary_10_4028_www_scientific_net_AMM_488_489_248
crossref_primary_10_1016_j_colsurfb_2016_08_016
crossref_primary_10_1039_c3en00098b
crossref_primary_10_1016_j_optlastec_2021_107605
crossref_primary_10_1016_j_apcatb_2014_05_016
crossref_primary_10_1039_C6RA25046G
crossref_primary_10_2139_ssrn_3970687
crossref_primary_10_1016_j_colsurfa_2020_125967
crossref_primary_10_1039_C5CP06711A
crossref_primary_10_1016_j_apsusc_2021_150828
crossref_primary_10_1016_j_catcom_2016_06_024
crossref_primary_10_1016_j_apcatb_2014_10_075
crossref_primary_10_1016_j_cej_2023_145320
crossref_primary_10_1021_acsaem_9b00715
crossref_primary_10_1016_j_mssp_2019_104585
crossref_primary_10_1016_j_colsurfb_2015_11_060
crossref_primary_10_1016_j_apsusc_2014_10_055
crossref_primary_10_1039_C4TC01038H
crossref_primary_10_1016_j_seppur_2024_130037
crossref_primary_10_1016_j_catcom_2016_09_003
crossref_primary_10_1016_j_apcatb_2013_12_016
crossref_primary_10_1016_j_chemosphere_2022_134125
crossref_primary_10_1016_j_scitotenv_2019_02_145
crossref_primary_10_1039_C3CE42654H
crossref_primary_10_1021_acs_est_7b06096
crossref_primary_10_1016_j_cej_2015_05_024
crossref_primary_10_1016_j_cej_2021_129244
crossref_primary_10_1002_jctb_5117
Cites_doi 10.1021/cr00079a003
10.1021/ja1086358
10.1021/es103422j
10.1002/chem.201103446
10.1021/ja01571a068
10.1021/jp811456b
10.1021/cr00017a016
10.1021/jp077471t
10.1002/jcc.21055
10.1016/S0043-1354(97)00033-X
10.1021/cr00002a004
10.1021/ja102305e
10.1039/b921692h
10.1016/0009-2614(84)85067-8
10.1021/cm061671k
10.1021/j100077a026
10.1021/jp060082z
10.1021/j100145a027
10.1021/es9004366
10.1021/cr00033a004
10.1021/cm7031898
10.1126/science.1061051
10.1016/j.catcom.2009.11.023
10.1021/jp051222s
10.1021/jp069005u
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201202602
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Materials Research Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 3229
ExternalDocumentID 2891759091
23325602
10_1002_chem_201202602
CHEM201202602
ark_67375_WNG_CJ1PR47P_G
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21177072; 21207079
– fundername: National Basic Research Program of China
  funderid: 2008CB417206
– fundername: Youth Scientific Research Funds
  funderid: 65121003
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4442-b8d52aafdaa637f326754cc6640309214cc65d614faa4cfd9ec375917688895e3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 20:23:18 EDT 2025
Fri Jul 11 00:17:04 EDT 2025
Fri Jul 25 12:12:20 EDT 2025
Thu Apr 03 07:09:51 EDT 2025
Tue Jul 01 03:34:32 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Wed Jan 22 16:56:10 EST 2025
Wed Oct 30 09:48:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4442-b8d52aafdaa637f326754cc6640309214cc65d614faa4cfd9ec375917688895e3
Notes National Basic Research Program of China - No. 2008CB417206
Youth Scientific Research Funds - No. 65121003
ArticleID:CHEM201202602
istex:1FA80F6F7E2E1992333449BE11B260A80DB54876
National Natural Science Foundation of China - No. 21177072; No. 21207079
ark:/67375/WNG-CJ1PR47P-G
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 23325602
PQID 1287606206
PQPubID 986340
PageCount 6
ParticipantIDs proquest_miscellaneous_1778032944
proquest_miscellaneous_1288315396
proquest_journals_1287606206
pubmed_primary_23325602
crossref_citationtrail_10_1002_chem_201202602
crossref_primary_10_1002_chem_201202602
wiley_primary_10_1002_chem_201202602_CHEM201202602
istex_primary_ark_67375_WNG_CJ1PR47P_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 25, 2013
PublicationDateYYYYMMDD 2013-02-25
PublicationDate_xml – month: 02
  year: 2013
  text: February 25, 2013
  day: 25
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References Z. H. Ai, W. K. Ho, S. C. Lee, L. Z. Zhang, Environ. Sci. Technol. 2009, 43, 4143-4150
Y. Li, B. Wen, C. Yu, C. Chen, H. Ji, W. Ma, J. Zhao, Chem. Eur. J. 2012, 18, 2030-2039
T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2007, 111, 5259-5275
X. Zhang, Z. H. Zhi, F. Jia, L. Z. Zhang, J. Phys. Chem. C 2008, 112, 747-753.
H. Park, W. Y. Choi, J. Phys. Chem. B 2005, 109, 11667-11674
S. Goldstein, G. Czapski, J. Rabani, J. Phys. Chem. 1994, 98, 6586-6591
J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Chem. Mater. 2007, 19, 366-373
W. L. Huang, Q. Zhu, J. Comput. Chem. 2009, 30, 183-190.
T. D. Bui, A. Kimura, S. Ikeda, M. Matsumura, J. Am. Chem. Soc. 2010, 132, 8453-8458
X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, G. Yu, Catal. Commun. 2010, 11, 460-464
J. M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett. 1984, 108, 618-622.
C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 2010, 39, 4206-4219.
G. A. Russell, J. Am. Chem. Soc. 1957, 79, 3871-3877.
M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341-357
J. Zhang, F. J. Shi, J. Lin, D. F. Chen, J. M. Gao, Z. X. Huang, X. X. Ding, C. Tang, Chem. Mater. 2008, 20, 2937-2941
C. Gomes Silva, R. Juárez, T. Marino, R. Molinari, H. Garcia, J. Am. Chem. Soc. 2011, 133, 595-602
R. A. Marcus, J. Phys. Chem. C 2009, 113, 14598-14608
X. H. Wang, J. G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, J. Phys. Chem. B 2006, 110, 6804-6809
M. Jonsson, J. Lind, T. Reitberger, T. E. Eriksen, G. Merenyi, J. Phys. Chem. 1993, 97, 11278-11282
R. Asahi, T. Morikawa, T. Waki, K. Aoki, Y. Taga, Science 2001, 293, 269-271.
P. Kebarle, S. Chowdhury, Chem. Rev. 1987, 87, 513-534.
A. V. Humble, G. M. Gadd, G. A. Codd, Water Res. 1997, 31, 1679-1686
M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69-96
C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195.
F. Yanfen, H. Yingping, Y. Jing, W. Pan, C. Genwei, Environ. Sci. Technol. 2011, 45, 1593-1600.
2010; 11
2007; 19
1995; 95
2009; 43
2010; 39
2006; 110
1984; 108
2009; 113
2012; 18
2011; 133
1957; 79
2009; 30
2001; 293
1987; 87
1993; 93
1997; 31
2007; 111
1993; 97
2010; 132
2005; 109
1991; 91
2011; 45
2008; 20
2008; 112
1994; 98
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2007, 111, 5259-5275;
– reference: M. Jonsson, J. Lind, T. Reitberger, T. E. Eriksen, G. Merenyi, J. Phys. Chem. 1993, 97, 11278-11282;
– reference: T. D. Bui, A. Kimura, S. Ikeda, M. Matsumura, J. Am. Chem. Soc. 2010, 132, 8453-8458;
– reference: J. Zhang, F. J. Shi, J. Lin, D. F. Chen, J. M. Gao, Z. X. Huang, X. X. Ding, C. Tang, Chem. Mater. 2008, 20, 2937-2941;
– reference: X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, G. Yu, Catal. Commun. 2010, 11, 460-464;
– reference: C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195.
– reference: W. L. Huang, Q. Zhu, J. Comput. Chem. 2009, 30, 183-190.
– reference: R. Asahi, T. Morikawa, T. Waki, K. Aoki, Y. Taga, Science 2001, 293, 269-271.
– reference: R. A. Marcus, J. Phys. Chem. C 2009, 113, 14598-14608;
– reference: Z. H. Ai, W. K. Ho, S. C. Lee, L. Z. Zhang, Environ. Sci. Technol. 2009, 43, 4143-4150;
– reference: H. Park, W. Y. Choi, J. Phys. Chem. B 2005, 109, 11667-11674;
– reference: M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69-96;
– reference: C. Gomes Silva, R. Juárez, T. Marino, R. Molinari, H. Garcia, J. Am. Chem. Soc. 2011, 133, 595-602;
– reference: S. Goldstein, G. Czapski, J. Rabani, J. Phys. Chem. 1994, 98, 6586-6591;
– reference: X. H. Wang, J. G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, J. Phys. Chem. B 2006, 110, 6804-6809;
– reference: X. Zhang, Z. H. Zhi, F. Jia, L. Z. Zhang, J. Phys. Chem. C 2008, 112, 747-753.
– reference: M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341-357;
– reference: C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 2010, 39, 4206-4219.
– reference: J. M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett. 1984, 108, 618-622.
– reference: A. V. Humble, G. M. Gadd, G. A. Codd, Water Res. 1997, 31, 1679-1686;
– reference: J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Chem. Mater. 2007, 19, 366-373;
– reference: G. A. Russell, J. Am. Chem. Soc. 1957, 79, 3871-3877.
– reference: Y. Li, B. Wen, C. Yu, C. Chen, H. Ji, W. Ma, J. Zhao, Chem. Eur. J. 2012, 18, 2030-2039;
– reference: F. Yanfen, H. Yingping, Y. Jing, W. Pan, C. Genwei, Environ. Sci. Technol. 2011, 45, 1593-1600.
– reference: P. Kebarle, S. Chowdhury, Chem. Rev. 1987, 87, 513-534.
– volume: 87
  start-page: 513
  year: 1987
  end-page: 534
  publication-title: Chem. Rev.
– volume: 109
  start-page: 11667
  year: 2005
  end-page: 11674
  publication-title: J. Phys. Chem. B
– volume: 95
  start-page: 69
  year: 1995
  end-page: 96
  publication-title: Chem. Rev.
– volume: 113
  start-page: 14598
  year: 2009
  end-page: 14608
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 2030
  year: 2012
  end-page: 2039
  publication-title: Chem. Eur. J.
– volume: 43
  start-page: 4143
  year: 2009
  end-page: 4150
  publication-title: Environ. Sci. Technol.
– volume: 19
  start-page: 366
  year: 2007
  end-page: 373
  publication-title: Chem. Mater.
– volume: 39
  start-page: 4206
  year: 2010
  end-page: 4219
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 747
  year: 2008
  end-page: 753
  publication-title: J. Phys. Chem. C
– volume: 30
  start-page: 183
  year: 2009
  end-page: 190
  publication-title: J. Comput. Chem.
– volume: 97
  start-page: 11278
  year: 1993
  end-page: 11282
  publication-title: J. Phys. Chem.
– volume: 110
  start-page: 6804
  year: 2006
  end-page: 6809
  publication-title: J. Phys. Chem. B
– volume: 293
  start-page: 269
  year: 2001
  end-page: 271
  publication-title: Science
– volume: 20
  start-page: 2937
  year: 2008
  end-page: 2941
  publication-title: Chem. Mater.
– volume: 111
  start-page: 5259
  year: 2007
  end-page: 5275
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 460
  year: 2010
  end-page: 464
  publication-title: Catal. Commun.
– volume: 93
  start-page: 341
  year: 1993
  end-page: 357
  publication-title: Chem. Rev.
– volume: 133
  start-page: 595
  year: 2011
  end-page: 602
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 1679
  year: 1997
  end-page: 1686
  publication-title: Water Res.
– volume: 132
  start-page: 8453
  year: 2010
  end-page: 8458
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 618
  year: 1984
  end-page: 622
  publication-title: Chem. Phys. Lett.
– volume: 79
  start-page: 3871
  year: 1957
  end-page: 3877
  publication-title: J. Am. Chem. Soc.
– volume: 98
  start-page: 6586
  year: 1994
  end-page: 6591
  publication-title: J. Phys. Chem.
– volume: 91
  start-page: 165
  year: 1991
  end-page: 195
  publication-title: Chem. Rev.
– volume: 45
  start-page: 1593
  year: 2011
  end-page: 1600
  publication-title: Environ. Sci. Technol.
– ident: e_1_2_6_30_2
  doi: 10.1021/cr00079a003
– ident: e_1_2_6_2_2
– ident: e_1_2_6_3_2
  doi: 10.1021/ja1086358
– ident: e_1_2_6_27_2
  doi: 10.1021/es103422j
– ident: e_1_2_6_19_2
  doi: 10.1002/chem.201103446
– ident: e_1_2_6_21_2
  doi: 10.1021/ja01571a068
– ident: e_1_2_6_29_2
  doi: 10.1021/jp811456b
– ident: e_1_2_6_16_2
  doi: 10.1021/cr00017a016
– ident: e_1_2_6_12_2
  doi: 10.1021/jp077471t
– ident: e_1_2_6_13_2
  doi: 10.1002/jcc.21055
– ident: e_1_2_6_24_2
  doi: 10.1016/S0043-1354(97)00033-X
– ident: e_1_2_6_26_2
  doi: 10.1021/cr00002a004
– ident: e_1_2_6_18_2
  doi: 10.1021/ja102305e
– ident: e_1_2_6_17_2
  doi: 10.1039/b921692h
– ident: e_1_2_6_6_2
  doi: 10.1016/0009-2614(84)85067-8
– ident: e_1_2_6_9_2
  doi: 10.1021/cm061671k
– ident: e_1_2_6_20_2
  doi: 10.1021/j100077a026
– ident: e_1_2_6_5_2
  doi: 10.1021/jp060082z
– ident: e_1_2_6_25_2
  doi: 10.1021/j100145a027
– ident: e_1_2_6_11_2
  doi: 10.1021/es9004366
– ident: e_1_2_6_28_2
– ident: e_1_2_6_15_2
  doi: 10.1021/cr00033a004
– ident: e_1_2_6_10_2
  doi: 10.1021/cm7031898
– ident: e_1_2_6_1_2
  doi: 10.1126/science.1061051
– ident: e_1_2_6_22_2
– ident: e_1_2_6_14_2
– ident: e_1_2_6_8_2
  doi: 10.1016/j.catcom.2009.11.023
– ident: e_1_2_6_7_2
– ident: e_1_2_6_4_2
  doi: 10.1021/jp051222s
– ident: e_1_2_6_23_2
  doi: 10.1021/jp069005u
SSID ssj0009633
Score 2.3322537
Snippet The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3224
SubjectTerms Band structure
Chemistry
ESR spectroscopy
Hydroxylation
Irradiation
Isotopes
isotopic labeling
Microcystins
Orbitals
Organic compounds
Oxidation
Photocatalysis
Photocatalysts
Semiconductors
Solvents
Valence band
Wavelengths
Title Exploring the Reactivity of Multicomponent Photocatalysts: Insight into the Complex Valence Band of BiOBr
URI https://api.istex.fr/ark:/67375/WNG-CJ1PR47P-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201202602
https://www.ncbi.nlm.nih.gov/pubmed/23325602
https://www.proquest.com/docview/1287606206
https://www.proquest.com/docview/1288315396
https://www.proquest.com/docview/1778032944
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQeYAX7iNtQUZC8OQ28REnvLEr2lKJslpR6Jvl-BCrVgnaZKXCr8fjbFIWcUjwlijjyMfY89me-Qah5zatZNg2ZHCrawlnVJOSGU7CslDo1GvmY-qEdyf50Sk_PhNnP0Tx9_wQ44EbzIy4XsME11W7f0UaGtoEkeQZBVYsWITBYQtQ0fyKPypoV59LnksCHKwDa2NK9zeLb1il69DBl7-CnJsINpqgg9tID5XvPU_O91ZdtWe-_cTr-D-tu4NurfEpft0r1F10zdX30I3pkBbuPlqMXns4YEc8dxAZAQkocONxDOcFL_WmDsYMzz43XRMPiL62XfsKv61bOAvAi7prYmlYjS7cJf6oY-wTnujawn8mi_eT5QN0evDmw_SIrPM1EMM5p6QqrKBae6t1zqQPwFAKbkyec7jHoRk8CxvwgNeaG29LZ5gUYb-Yh214KRx7iLbqUL_HCOe61JUVlnFueEZp4VwlSyq81N5VtkoQGcZLmTWZOeTUuFA9DTNV0IFq7MAEvRzlv_Q0Hr-VfBGHfxTTy3NwfpNCfTo5VNPjbDbncqYOE7Q76Idaz_tWBWsvw5aQpnmCno2fwwjBNYyuXbOKMgULhqb8k4yURcpoyXmCHvW6N1aIMgY4NdSURg36S4MUcGuMb9v_UmgH3aQxCwglVOyirW65ck8CFuuqp3G-fQffoSlX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V9lAu5U0XChiJxyltYjvxBokDu6Xd7WNZrVrozTixI1atErSbFS3_ir_CL8LjbFIt4iEh9cAtUSaRnZnxzNgz3wA8034ibNgQ4Kmu9jijyotZyj27LLSVnymWudYJh4Ood8z3TsKTJfhW18JU-BDNhhtqhluvUcFxQ3rrEjXUTgpLyQOKsFh0nle5by6-2Kht-rq_bVn8nNKdt0fdnjdvLOClnHPqJW0dUqUyrVTERGY9GBHyNI0ijgcONMDrUFvDlSnF00zHJmUitIFNZOPFODTMfvcarGAbcYTr3x5dIlZZea6613PhIeprjRPp063F8S7YwRVk6fmvnNxFn9kZvZ0b8L3-XVWuy-nmrEw2068_IUn-V__zJqzNXXDyptKZW7Bk8tuw2q07392BcZOYSKx7TEYGiz-wxwYpMuIqljERv8itvSbDT0VZuD2wi2k5fUX6-RS3O8g4Lwv3Ni64Z-acvFeuvIt0VK7xO53xu87kLhxfyUzvwXJux7cOJFKxSnSoGecpDyhtG5OImIaZUJlJdNICrxYQmc7x2rFtyJmskKapRIbJhmEteNnQf66QSn5L-cLJW0OmJqeY3ydC-WGwK7t7wXDExVDutmCjFkg5X9qm0jo0wka91I9a8LR5bDmEJ00qN8XM0bSZtaXxn2iEaPuMxpy34H4l7M2AKGPoituRUieyf5mQRPiQ5u7Bv7z0BFZ7R4cH8qA_2H8I16lrekI9Gm7AcjmZmUfW9SyTx07ZCXy8am34AerFhjc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NTYK98A0rDDASH0_ZEtuJGyQeaEu3blCqisHejBM7otqUTG0qNv4q_hX-I3xOk6mIDwlpD7wlyiWyc3e-O_vudwBPtJ8IGzYEeKqrPc6o8mKWcs8uC23lZ4plrnXC22G0e8D3DsPDFfhW18JU-BDNhhtqhluvUcFPdLZ9Dhpq54SV5AFFVCy6SKvcN2dfbNA2eznoWQ4_pbT_-n1311v0FfBSzjn1krYOqVKZVipiIrMOjAh5mkYRx_MGGuB1qK3dypTiaaZjkzIR2rgmsuFiHBpmv3sJ1njkx9gsojc-B6yy4lw1r-fCQ9DXGibSp9vL410yg2vI0dNf-bjLLrOzef1r8L3-W1Wqy9HWvEy20q8_AUn-T7_zOlxdOODkVaUxN2DF5DfhSrfue3cLJk1aIrHOMRkbLP3ADhukyIirV8Y0_CK31pqMPhdl4XbAzmbl7AUZ5DPc7CCTvCzc27jcHptT8kG54i7SUbnG73Qm7zrT23BwITO9A6u5Hd8GkEjFKtGhZpynPKC0bUwiYhpmQmUm0UkLvFo-ZLpAa8emIceywpmmEhkmG4a14HlDf1LhlPyW8pkTt4ZMTY8wu0-E8uNwR3b3gtGYi5HcacFmLY9ysbDNpHVnhI15qR-14HHz2HIIz5lUboq5o2kza0njP9EI0fYZjTlvwd1K1psBUcbQEbcjpU5i_zIhieAhzd29f3npEVwe9fryzWC4fx_Wqet4Qj0absJqOZ2bB9bvLJOHTtUJfLpoZfgBsKSE5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Reactivity+of+Multicomponent+Photocatalysts%3A+Insight+into+the+Complex+Valence+Band+of+BiOBr&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Fang%2C+Yan-Fen&rft.au=Ma%2C+Wan-Hong&rft.au=Huang%2C+Ying-Ping&rft.au=Cheng%2C+Gen-Wei&rft.date=2013-02-25&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=19&rft.issue=9&rft.spage=3224&rft.epage=3229&rft_id=info:doi/10.1002%2Fchem.201202602&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon