Exploring the Reactivity of Multicomponent Photocatalysts: Insight into the Complex Valence Band of BiOBr
The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence‐band structures, that is, two discrete valence band...
Saved in:
Published in | Chemistry : a European journal Vol. 19; no. 9; pp. 3224 - 3229 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
25.02.2013
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence‐band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin‐LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H218O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin‐trapping ESR method was used to quantify the reactive oxygen species (.OH and .OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the .OH/.OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method.
Which isotope won? Hydroxylation in the BiOBr photocatalytic system with H218O solvent and 16O2 oxidant gives products with different isotope profiles under visible‐light versus UV irradiation (see scheme). The isotope abundance is also affected by the oxidative resistance of the substrate. Together with the .OH/.OOH ratio, the results show that BiOBr has two valence bands that have different oxidation abilities and responses to UV and visible light. |
---|---|
AbstractList | The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O2p and Br4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H sub(2) super(18)O as the solvent) was used to determine the source of the Oatom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species ( super(.)OH and super(.)OOH) formed in the reaction system. The different isotope abundances of the hydroxyl Oatom of the products formed, as well as the reverse trend of the super(.)OH/ super(.)OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. Which isotope won? Hydroxylation in the BiOBr photocatalytic system with H sub(2) super(18)O solvent and super(16)O sub(2) oxidant gives products with different isotope profiles under visible-light versus UV irradiation (see scheme). The isotope abundance is also affected by the oxidative resistance of the substrate. Together with the super(.)OH/ super(.)OOH ratio, the results show that BiOBr has two valence bands that have different oxidation abilities and responses to UV and visible light. The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O2p and Br4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H218O as the solvent) was used to determine the source of the Oatom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species (.OH and .OOH) formed in the reaction system. The different isotope abundances of the hydroxyl Oatom of the products formed, as well as the reverse trend of the .OH/.OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. [PUBLICATION ABSTRACT] The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H(2)(18)O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species ((.)OH and (.)OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the (.)OH/(.)OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method.The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H(2)(18)O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species ((.)OH and (.)OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the (.)OH/(.)OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence-band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin-LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H(2)(18)O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin-trapping ESR method was used to quantify the reactive oxygen species ((.)OH and (.)OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the (.)OH/(.)OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence‐band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin‐LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H 2 18 O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin‐trapping ESR method was used to quantify the reactive oxygen species ( . OH and . OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the . OH/ . OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still unclear. BiOBr, which is a typical multicomponent semiconductor, may have two possible valence‐band structures, that is, two discrete valence bands constructed respectively from O 2p and Br 4p orbitals, or one valence band derived from the hybridization of these orbitals. In this work, aqueous photocatalytic hydroxylation is applied as the probe reaction to investigate the nature and reactions of photogenerated holes in BiOBr. Three organic compounds (microcystin‐LR, aniline, and benzoic acid) with different oxidation potentials were selected as substrates. Isotope labeling (H218O as the solvent) was used to determine the source of the O atom in the hydroxyl group of the products, which distinguishes the contribution of different hydroxylation pathways. Furthermore, a spin‐trapping ESR method was used to quantify the reactive oxygen species (.OH and .OOH) formed in the reaction system. The different isotope abundances of the hydroxyl O atom of the products formed, as well as the reverse trend of the .OH/.OOH ratio with the oxidative resistance of the substrate under UV and visible irradiation, reveal that BiOBr has two separate valence bands, which have different oxidation ability and respond to UV and visible light, respectively. This study shows that the band structure of semiconductor photocatalysts can be reliably analyzed with an isotope labeling method. Which isotope won? Hydroxylation in the BiOBr photocatalytic system with H218O solvent and 16O2 oxidant gives products with different isotope profiles under visible‐light versus UV irradiation (see scheme). The isotope abundance is also affected by the oxidative resistance of the substrate. Together with the .OH/.OOH ratio, the results show that BiOBr has two valence bands that have different oxidation abilities and responses to UV and visible light. |
Author | Fang, Yan-Fen Ma, Wan-Hong Huang, Ying-Ping Cheng, Gen-Wei |
Author_xml | – sequence: 1 givenname: Yan-Fen surname: Fang fullname: Fang, Yan-Fen organization: Engineering Research Centre of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei 443002 (P.R. China), Fax: (+86) 717-639-7488 – sequence: 2 givenname: Wan-Hong surname: Ma fullname: Ma, Wan-Hong organization: Engineering Research Centre of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei 443002 (P.R. China), Fax: (+86) 717-639-7488 – sequence: 3 givenname: Ying-Ping surname: Huang fullname: Huang, Ying-Ping email: huangyp@ctgu.edu.cn organization: Engineering Research Centre of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Hubei 443002 (P.R. China), Fax: (+86) 717-639-7488 – sequence: 4 givenname: Gen-Wei surname: Cheng fullname: Cheng, Gen-Wei organization: Institute of Mountain Hazards and Environment of Chinese Academy of Sciences, Chengdu 610041 (P.R. China) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23325602$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P2zAAhq0JBIVx3XGKtMsu6fwVO9ltjbrCxEeF9nG0jONQM8cutrO1_37JCmhCmjjZh-d5Lb_vEdhz3mkA3iA4RRDiD2qluymGCEPMIH4FJqjAKCecFXtgAivKc1aQ6hAcxXgHIawYIQfgEBOCi4GfADPfrK0Pxt1maaWzay1VMr9M2ma-zS56m4zy3Xp406VsufLJK5mk3cYUP2ZnLprbVcqMS_6vXQ-o1Zvsu7TaKZ3NpGvGnJm5moXXYL-VNuqTh_MYfPs8_1qf5udXi7P603muKKU4vymbAkvZNlIywluCGS-oUoxRSGCF0XgvGoZoKyVVbVNpRXhRIc7KsqwKTY7B-13uOvj7XsckOhOVtlY67fsoEOclJLii9GUUlyVBQ39sQN89Q-98H9zwkZHiDDIMR-rtA9XfdLoR62A6Gbbise8BoDtABR9j0K1QJslkvEtBGisQFOOsYpxVPM06aNNn2mPyf4VqJ_w2Vm9foEV9Or_41813rolJb55cGX4KxoeuxY_Lhai_oOU15UuxIH8ApF7CjQ |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1016_j_cej_2015_03_077 crossref_primary_10_1016_S1872_2067_18_63156_0 crossref_primary_10_1016_j_cej_2020_124402 crossref_primary_10_1007_s11356_021_13798_6 crossref_primary_10_1016_j_colsurfa_2022_129919 crossref_primary_10_1038_srep24918 crossref_primary_10_1039_C5CP00184F crossref_primary_10_1016_j_apcatb_2015_08_002 crossref_primary_10_1016_j_mssp_2014_06_043 crossref_primary_10_1016_j_chemosphere_2022_134176 crossref_primary_10_1016_j_envres_2024_120501 crossref_primary_10_1039_C4NR05451B crossref_primary_10_1039_C5DT00417A crossref_primary_10_1049_mnl_2017_0787 crossref_primary_10_1016_S1872_2067_18_63080_3 crossref_primary_10_1039_C5RA16571G crossref_primary_10_1039_C4TA00236A crossref_primary_10_1016_j_jmat_2020_10_009 crossref_primary_10_1016_j_catcom_2014_01_023 crossref_primary_10_1016_j_apcatb_2013_10_008 crossref_primary_10_1016_j_ceramint_2020_05_048 crossref_primary_10_1016_j_jallcom_2015_06_113 crossref_primary_10_1021_jacs_5b03105 crossref_primary_10_4028_www_scientific_net_AMM_488_489_248 crossref_primary_10_1016_j_colsurfb_2016_08_016 crossref_primary_10_1039_c3en00098b crossref_primary_10_1016_j_optlastec_2021_107605 crossref_primary_10_1016_j_apcatb_2014_05_016 crossref_primary_10_1039_C6RA25046G crossref_primary_10_2139_ssrn_3970687 crossref_primary_10_1016_j_colsurfa_2020_125967 crossref_primary_10_1039_C5CP06711A crossref_primary_10_1016_j_apsusc_2021_150828 crossref_primary_10_1016_j_catcom_2016_06_024 crossref_primary_10_1016_j_apcatb_2014_10_075 crossref_primary_10_1016_j_cej_2023_145320 crossref_primary_10_1021_acsaem_9b00715 crossref_primary_10_1016_j_mssp_2019_104585 crossref_primary_10_1016_j_colsurfb_2015_11_060 crossref_primary_10_1016_j_apsusc_2014_10_055 crossref_primary_10_1039_C4TC01038H crossref_primary_10_1016_j_seppur_2024_130037 crossref_primary_10_1016_j_catcom_2016_09_003 crossref_primary_10_1016_j_apcatb_2013_12_016 crossref_primary_10_1016_j_chemosphere_2022_134125 crossref_primary_10_1016_j_scitotenv_2019_02_145 crossref_primary_10_1039_C3CE42654H crossref_primary_10_1021_acs_est_7b06096 crossref_primary_10_1016_j_cej_2015_05_024 crossref_primary_10_1016_j_cej_2021_129244 crossref_primary_10_1002_jctb_5117 |
Cites_doi | 10.1021/cr00079a003 10.1021/ja1086358 10.1021/es103422j 10.1002/chem.201103446 10.1021/ja01571a068 10.1021/jp811456b 10.1021/cr00017a016 10.1021/jp077471t 10.1002/jcc.21055 10.1016/S0043-1354(97)00033-X 10.1021/cr00002a004 10.1021/ja102305e 10.1039/b921692h 10.1016/0009-2614(84)85067-8 10.1021/cm061671k 10.1021/j100077a026 10.1021/jp060082z 10.1021/j100145a027 10.1021/es9004366 10.1021/cr00033a004 10.1021/cm7031898 10.1126/science.1061051 10.1016/j.catcom.2009.11.023 10.1021/jp051222s 10.1021/jp069005u |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201202602 |
DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 3229 |
ExternalDocumentID | 2891759091 23325602 10_1002_chem_201202602 CHEM201202602 ark_67375_WNG_CJ1PR47P_G |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21177072; 21207079 – fundername: National Basic Research Program of China funderid: 2008CB417206 – fundername: Youth Scientific Research Funds funderid: 65121003 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4442-b8d52aafdaa637f326754cc6640309214cc65d614faa4cfd9ec375917688895e3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 20:23:18 EDT 2025 Fri Jul 11 00:17:04 EDT 2025 Fri Jul 25 12:12:20 EDT 2025 Thu Apr 03 07:09:51 EDT 2025 Tue Jul 01 03:34:32 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Wed Jan 22 16:56:10 EST 2025 Wed Oct 30 09:48:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4442-b8d52aafdaa637f326754cc6640309214cc65d614faa4cfd9ec375917688895e3 |
Notes | National Basic Research Program of China - No. 2008CB417206 Youth Scientific Research Funds - No. 65121003 ArticleID:CHEM201202602 istex:1FA80F6F7E2E1992333449BE11B260A80DB54876 National Natural Science Foundation of China - No. 21177072; No. 21207079 ark:/67375/WNG-CJ1PR47P-G ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 23325602 |
PQID | 1287606206 |
PQPubID | 986340 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1778032944 proquest_miscellaneous_1288315396 proquest_journals_1287606206 pubmed_primary_23325602 crossref_citationtrail_10_1002_chem_201202602 crossref_primary_10_1002_chem_201202602 wiley_primary_10_1002_chem_201202602_CHEM201202602 istex_primary_ark_67375_WNG_CJ1PR47P_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 25, 2013 |
PublicationDateYYYYMMDD | 2013-02-25 |
PublicationDate_xml | – month: 02 year: 2013 text: February 25, 2013 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | Z. H. Ai, W. K. Ho, S. C. Lee, L. Z. Zhang, Environ. Sci. Technol. 2009, 43, 4143-4150 Y. Li, B. Wen, C. Yu, C. Chen, H. Ji, W. Ma, J. Zhao, Chem. Eur. J. 2012, 18, 2030-2039 T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2007, 111, 5259-5275 X. Zhang, Z. H. Zhi, F. Jia, L. Z. Zhang, J. Phys. Chem. C 2008, 112, 747-753. H. Park, W. Y. Choi, J. Phys. Chem. B 2005, 109, 11667-11674 S. Goldstein, G. Czapski, J. Rabani, J. Phys. Chem. 1994, 98, 6586-6591 J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Chem. Mater. 2007, 19, 366-373 W. L. Huang, Q. Zhu, J. Comput. Chem. 2009, 30, 183-190. T. D. Bui, A. Kimura, S. Ikeda, M. Matsumura, J. Am. Chem. Soc. 2010, 132, 8453-8458 X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, G. Yu, Catal. Commun. 2010, 11, 460-464 J. M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett. 1984, 108, 618-622. C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 2010, 39, 4206-4219. G. A. Russell, J. Am. Chem. Soc. 1957, 79, 3871-3877. M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341-357 J. Zhang, F. J. Shi, J. Lin, D. F. Chen, J. M. Gao, Z. X. Huang, X. X. Ding, C. Tang, Chem. Mater. 2008, 20, 2937-2941 C. Gomes Silva, R. Juárez, T. Marino, R. Molinari, H. Garcia, J. Am. Chem. Soc. 2011, 133, 595-602 R. A. Marcus, J. Phys. Chem. C 2009, 113, 14598-14608 X. H. Wang, J. G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, J. Phys. Chem. B 2006, 110, 6804-6809 M. Jonsson, J. Lind, T. Reitberger, T. E. Eriksen, G. Merenyi, J. Phys. Chem. 1993, 97, 11278-11282 R. Asahi, T. Morikawa, T. Waki, K. Aoki, Y. Taga, Science 2001, 293, 269-271. P. Kebarle, S. Chowdhury, Chem. Rev. 1987, 87, 513-534. A. V. Humble, G. M. Gadd, G. A. Codd, Water Res. 1997, 31, 1679-1686 M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69-96 C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195. F. Yanfen, H. Yingping, Y. Jing, W. Pan, C. Genwei, Environ. Sci. Technol. 2011, 45, 1593-1600. 2010; 11 2007; 19 1995; 95 2009; 43 2010; 39 2006; 110 1984; 108 2009; 113 2012; 18 2011; 133 1957; 79 2009; 30 2001; 293 1987; 87 1993; 93 1997; 31 2007; 111 1993; 97 2010; 132 2005; 109 1991; 91 2011; 45 2008; 20 2008; 112 1994; 98 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2007, 111, 5259-5275; – reference: M. Jonsson, J. Lind, T. Reitberger, T. E. Eriksen, G. Merenyi, J. Phys. Chem. 1993, 97, 11278-11282; – reference: T. D. Bui, A. Kimura, S. Ikeda, M. Matsumura, J. Am. Chem. Soc. 2010, 132, 8453-8458; – reference: J. Zhang, F. J. Shi, J. Lin, D. F. Chen, J. M. Gao, Z. X. Huang, X. X. Ding, C. Tang, Chem. Mater. 2008, 20, 2937-2941; – reference: X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, G. Yu, Catal. Commun. 2010, 11, 460-464; – reference: C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195. – reference: W. L. Huang, Q. Zhu, J. Comput. Chem. 2009, 30, 183-190. – reference: R. Asahi, T. Morikawa, T. Waki, K. Aoki, Y. Taga, Science 2001, 293, 269-271. – reference: R. A. Marcus, J. Phys. Chem. C 2009, 113, 14598-14608; – reference: Z. H. Ai, W. K. Ho, S. C. Lee, L. Z. Zhang, Environ. Sci. Technol. 2009, 43, 4143-4150; – reference: H. Park, W. Y. Choi, J. Phys. Chem. B 2005, 109, 11667-11674; – reference: M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69-96; – reference: C. Gomes Silva, R. Juárez, T. Marino, R. Molinari, H. Garcia, J. Am. Chem. Soc. 2011, 133, 595-602; – reference: S. Goldstein, G. Czapski, J. Rabani, J. Phys. Chem. 1994, 98, 6586-6591; – reference: X. H. Wang, J. G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, J. Phys. Chem. B 2006, 110, 6804-6809; – reference: X. Zhang, Z. H. Zhi, F. Jia, L. Z. Zhang, J. Phys. Chem. C 2008, 112, 747-753. – reference: M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341-357; – reference: C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 2010, 39, 4206-4219. – reference: J. M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett. 1984, 108, 618-622. – reference: A. V. Humble, G. M. Gadd, G. A. Codd, Water Res. 1997, 31, 1679-1686; – reference: J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Chem. Mater. 2007, 19, 366-373; – reference: G. A. Russell, J. Am. Chem. Soc. 1957, 79, 3871-3877. – reference: Y. Li, B. Wen, C. Yu, C. Chen, H. Ji, W. Ma, J. Zhao, Chem. Eur. J. 2012, 18, 2030-2039; – reference: F. Yanfen, H. Yingping, Y. Jing, W. Pan, C. Genwei, Environ. Sci. Technol. 2011, 45, 1593-1600. – reference: P. Kebarle, S. Chowdhury, Chem. Rev. 1987, 87, 513-534. – volume: 87 start-page: 513 year: 1987 end-page: 534 publication-title: Chem. Rev. – volume: 109 start-page: 11667 year: 2005 end-page: 11674 publication-title: J. Phys. Chem. B – volume: 95 start-page: 69 year: 1995 end-page: 96 publication-title: Chem. Rev. – volume: 113 start-page: 14598 year: 2009 end-page: 14608 publication-title: J. Phys. Chem. C – volume: 18 start-page: 2030 year: 2012 end-page: 2039 publication-title: Chem. Eur. J. – volume: 43 start-page: 4143 year: 2009 end-page: 4150 publication-title: Environ. Sci. Technol. – volume: 19 start-page: 366 year: 2007 end-page: 373 publication-title: Chem. Mater. – volume: 39 start-page: 4206 year: 2010 end-page: 4219 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 747 year: 2008 end-page: 753 publication-title: J. Phys. Chem. C – volume: 30 start-page: 183 year: 2009 end-page: 190 publication-title: J. Comput. Chem. – volume: 97 start-page: 11278 year: 1993 end-page: 11282 publication-title: J. Phys. Chem. – volume: 110 start-page: 6804 year: 2006 end-page: 6809 publication-title: J. Phys. Chem. B – volume: 293 start-page: 269 year: 2001 end-page: 271 publication-title: Science – volume: 20 start-page: 2937 year: 2008 end-page: 2941 publication-title: Chem. Mater. – volume: 111 start-page: 5259 year: 2007 end-page: 5275 publication-title: J. Phys. Chem. C – volume: 11 start-page: 460 year: 2010 end-page: 464 publication-title: Catal. Commun. – volume: 93 start-page: 341 year: 1993 end-page: 357 publication-title: Chem. Rev. – volume: 133 start-page: 595 year: 2011 end-page: 602 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1679 year: 1997 end-page: 1686 publication-title: Water Res. – volume: 132 start-page: 8453 year: 2010 end-page: 8458 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 618 year: 1984 end-page: 622 publication-title: Chem. Phys. Lett. – volume: 79 start-page: 3871 year: 1957 end-page: 3877 publication-title: J. Am. Chem. Soc. – volume: 98 start-page: 6586 year: 1994 end-page: 6591 publication-title: J. Phys. Chem. – volume: 91 start-page: 165 year: 1991 end-page: 195 publication-title: Chem. Rev. – volume: 45 start-page: 1593 year: 2011 end-page: 1600 publication-title: Environ. Sci. Technol. – ident: e_1_2_6_30_2 doi: 10.1021/cr00079a003 – ident: e_1_2_6_2_2 – ident: e_1_2_6_3_2 doi: 10.1021/ja1086358 – ident: e_1_2_6_27_2 doi: 10.1021/es103422j – ident: e_1_2_6_19_2 doi: 10.1002/chem.201103446 – ident: e_1_2_6_21_2 doi: 10.1021/ja01571a068 – ident: e_1_2_6_29_2 doi: 10.1021/jp811456b – ident: e_1_2_6_16_2 doi: 10.1021/cr00017a016 – ident: e_1_2_6_12_2 doi: 10.1021/jp077471t – ident: e_1_2_6_13_2 doi: 10.1002/jcc.21055 – ident: e_1_2_6_24_2 doi: 10.1016/S0043-1354(97)00033-X – ident: e_1_2_6_26_2 doi: 10.1021/cr00002a004 – ident: e_1_2_6_18_2 doi: 10.1021/ja102305e – ident: e_1_2_6_17_2 doi: 10.1039/b921692h – ident: e_1_2_6_6_2 doi: 10.1016/0009-2614(84)85067-8 – ident: e_1_2_6_9_2 doi: 10.1021/cm061671k – ident: e_1_2_6_20_2 doi: 10.1021/j100077a026 – ident: e_1_2_6_5_2 doi: 10.1021/jp060082z – ident: e_1_2_6_25_2 doi: 10.1021/j100145a027 – ident: e_1_2_6_11_2 doi: 10.1021/es9004366 – ident: e_1_2_6_28_2 – ident: e_1_2_6_15_2 doi: 10.1021/cr00033a004 – ident: e_1_2_6_10_2 doi: 10.1021/cm7031898 – ident: e_1_2_6_1_2 doi: 10.1126/science.1061051 – ident: e_1_2_6_22_2 – ident: e_1_2_6_14_2 – ident: e_1_2_6_8_2 doi: 10.1016/j.catcom.2009.11.023 – ident: e_1_2_6_7_2 – ident: e_1_2_6_4_2 doi: 10.1021/jp051222s – ident: e_1_2_6_23_2 doi: 10.1021/jp069005u |
SSID | ssj0009633 |
Score | 2.3322537 |
Snippet | The band structure of multicomponent semiconductor photocatalysts, as well as their reactivity distinction under different wavelengths of light, is still... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3224 |
SubjectTerms | Band structure Chemistry ESR spectroscopy Hydroxylation Irradiation Isotopes isotopic labeling Microcystins Orbitals Organic compounds Oxidation Photocatalysis Photocatalysts Semiconductors Solvents Valence band Wavelengths |
Title | Exploring the Reactivity of Multicomponent Photocatalysts: Insight into the Complex Valence Band of BiOBr |
URI | https://api.istex.fr/ark:/67375/WNG-CJ1PR47P-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201202602 https://www.ncbi.nlm.nih.gov/pubmed/23325602 https://www.proquest.com/docview/1287606206 https://www.proquest.com/docview/1288315396 https://www.proquest.com/docview/1778032944 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQeYAX7iNtQUZC8OQ28REnvLEr2lKJslpR6Jvl-BCrVgnaZKXCr8fjbFIWcUjwlijjyMfY89me-Qah5zatZNg2ZHCrawlnVJOSGU7CslDo1GvmY-qEdyf50Sk_PhNnP0Tx9_wQ44EbzIy4XsME11W7f0UaGtoEkeQZBVYsWITBYQtQ0fyKPypoV59LnksCHKwDa2NK9zeLb1il69DBl7-CnJsINpqgg9tID5XvPU_O91ZdtWe-_cTr-D-tu4NurfEpft0r1F10zdX30I3pkBbuPlqMXns4YEc8dxAZAQkocONxDOcFL_WmDsYMzz43XRMPiL62XfsKv61bOAvAi7prYmlYjS7cJf6oY-wTnujawn8mi_eT5QN0evDmw_SIrPM1EMM5p6QqrKBae6t1zqQPwFAKbkyec7jHoRk8CxvwgNeaG29LZ5gUYb-Yh214KRx7iLbqUL_HCOe61JUVlnFueEZp4VwlSyq81N5VtkoQGcZLmTWZOeTUuFA9DTNV0IFq7MAEvRzlv_Q0Hr-VfBGHfxTTy3NwfpNCfTo5VNPjbDbncqYOE7Q76Idaz_tWBWsvw5aQpnmCno2fwwjBNYyuXbOKMgULhqb8k4yURcpoyXmCHvW6N1aIMgY4NdSURg36S4MUcGuMb9v_UmgH3aQxCwglVOyirW65ck8CFuuqp3G-fQffoSlX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V9lAu5U0XChiJxyltYjvxBokDu6Xd7WNZrVrozTixI1atErSbFS3_ir_CL8LjbFIt4iEh9cAtUSaRnZnxzNgz3wA8034ibNgQ4Kmu9jijyotZyj27LLSVnymWudYJh4Ood8z3TsKTJfhW18JU-BDNhhtqhluvUcFxQ3rrEjXUTgpLyQOKsFh0nle5by6-2Kht-rq_bVn8nNKdt0fdnjdvLOClnHPqJW0dUqUyrVTERGY9GBHyNI0ijgcONMDrUFvDlSnF00zHJmUitIFNZOPFODTMfvcarGAbcYTr3x5dIlZZea6613PhIeprjRPp063F8S7YwRVk6fmvnNxFn9kZvZ0b8L3-XVWuy-nmrEw2068_IUn-V__zJqzNXXDyptKZW7Bk8tuw2q07392BcZOYSKx7TEYGiz-wxwYpMuIqljERv8itvSbDT0VZuD2wi2k5fUX6-RS3O8g4Lwv3Ni64Z-acvFeuvIt0VK7xO53xu87kLhxfyUzvwXJux7cOJFKxSnSoGecpDyhtG5OImIaZUJlJdNICrxYQmc7x2rFtyJmskKapRIbJhmEteNnQf66QSn5L-cLJW0OmJqeY3ydC-WGwK7t7wXDExVDutmCjFkg5X9qm0jo0wka91I9a8LR5bDmEJ00qN8XM0bSZtaXxn2iEaPuMxpy34H4l7M2AKGPoituRUieyf5mQRPiQ5u7Bv7z0BFZ7R4cH8qA_2H8I16lrekI9Gm7AcjmZmUfW9SyTx07ZCXy8am34AerFhjc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NTYK98A0rDDASH0_ZEtuJGyQeaEu3blCqisHejBM7otqUTG0qNv4q_hX-I3xOk6mIDwlpD7wlyiWyc3e-O_vudwBPtJ8IGzYEeKqrPc6o8mKWcs8uC23lZ4plrnXC22G0e8D3DsPDFfhW18JU-BDNhhtqhluvUcFPdLZ9Dhpq54SV5AFFVCy6SKvcN2dfbNA2eznoWQ4_pbT_-n1311v0FfBSzjn1krYOqVKZVipiIrMOjAh5mkYRx_MGGuB1qK3dypTiaaZjkzIR2rgmsuFiHBpmv3sJ1njkx9gsojc-B6yy4lw1r-fCQ9DXGibSp9vL410yg2vI0dNf-bjLLrOzef1r8L3-W1Wqy9HWvEy20q8_AUn-T7_zOlxdOODkVaUxN2DF5DfhSrfue3cLJk1aIrHOMRkbLP3ADhukyIirV8Y0_CK31pqMPhdl4XbAzmbl7AUZ5DPc7CCTvCzc27jcHptT8kG54i7SUbnG73Qm7zrT23BwITO9A6u5Hd8GkEjFKtGhZpynPKC0bUwiYhpmQmUm0UkLvFo-ZLpAa8emIceywpmmEhkmG4a14HlDf1LhlPyW8pkTt4ZMTY8wu0-E8uNwR3b3gtGYi5HcacFmLY9ysbDNpHVnhI15qR-14HHz2HIIz5lUboq5o2kza0njP9EI0fYZjTlvwd1K1psBUcbQEbcjpU5i_zIhieAhzd29f3npEVwe9fryzWC4fx_Wqet4Qj0absJqOZ2bB9bvLJOHTtUJfLpoZfgBsKSE5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Reactivity+of+Multicomponent+Photocatalysts%3A+Insight+into+the+Complex+Valence+Band+of+BiOBr&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Fang%2C+Yan-Fen&rft.au=Ma%2C+Wan-Hong&rft.au=Huang%2C+Ying-Ping&rft.au=Cheng%2C+Gen-Wei&rft.date=2013-02-25&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=19&rft.issue=9&rft.spage=3224&rft.epage=3229&rft_id=info:doi/10.1002%2Fchem.201202602&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |