Nanoparticles as delivery vehicles for antiviral therapeutic drugs
•Nearly any antiviral drug delivery system can be nanoscaled to the effect of improved properties.•Efficacy of drug delivery can be improved using nanoparticles as delivery vehicles.•Nanoparticulate antiviral drug delivery systems show promise in regards to treating the current COVID-19 pandemic.•Th...
Saved in:
Published in | Engineered regeneration Vol. 2; pp. 31 - 46 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
2021
The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2666-1381 2666-1381 |
DOI | 10.1016/j.engreg.2021.03.001 |
Cover
Loading…
Abstract | •Nearly any antiviral drug delivery system can be nanoscaled to the effect of improved properties.•Efficacy of drug delivery can be improved using nanoparticles as delivery vehicles.•Nanoparticulate antiviral drug delivery systems show promise in regards to treating the current COVID-19 pandemic.•There are numerous public health and financial incentives for further advancement of the nanoparticulate antiviral field.
With the ongoing COVID-19 pandemic still escalating, many researchers are turning to nanotechnology as a method of treatment not only for this pandemic, but in preparation for the pandemics of the future. Given both a wide variety of biomaterials at their disposal and the recent rise of nanotechnology, scientists now have the means to release and distribute therapeutic drugs in a variety of ways. Such a variety permits medical professionals the ability to choose biomaterials and methods that would provide the best release and treatment methodologies for the viral ailment they are attempting to remedy. This integrative review discusses context of previous pandemics, viral pathogenesis, issues associated with the current state of antiviral delivery systems, numerous biomaterials used for this purpose, and further information regarding the ongoing global COVID-19 pandemic.
[Display omitted] |
---|---|
AbstractList | With the ongoing COVID-19 pandemic still escalating, many researchers are turning to nanotechnology as a method of treatment not only for this pandemic, but in preparation for the pandemics of the future. Given both a wide variety of biomaterials at their disposal and the recent rise of nanotechnology, scientists now have the means to release and distribute therapeutic drugs in a variety of ways. Such a variety permits medical professionals the ability to choose biomaterials and methods that would provide the best release and treatment methodologies for the viral ailment they are attempting to remedy. This integrative review discusses context of previous pandemics, viral pathogenesis, issues associated with the current state of antiviral delivery systems, numerous biomaterials used for this purpose, and further information regarding the ongoing global COVID-19 pandemic. With the ongoing COVID-19 pandemic still escalating, many researchers are turning to nanotechnology as a method of treatment not only for this pandemic, but in preparation for the pandemics of the future. Given both a wide variety of biomaterials at their disposal and the recent rise of nanotechnology, scientists now have the means to release and distribute therapeutic drugs in a variety of ways. Such a variety permits medical professionals the ability to choose biomaterials and methods that would provide the best release and treatment methodologies for the viral ailment they are attempting to remedy. This integrative review discusses context of previous pandemics, viral pathogenesis, issues associated with the current state of antiviral delivery systems, numerous biomaterials used for this purpose, and further information regarding the ongoing global COVID-19 pandemic.With the ongoing COVID-19 pandemic still escalating, many researchers are turning to nanotechnology as a method of treatment not only for this pandemic, but in preparation for the pandemics of the future. Given both a wide variety of biomaterials at their disposal and the recent rise of nanotechnology, scientists now have the means to release and distribute therapeutic drugs in a variety of ways. Such a variety permits medical professionals the ability to choose biomaterials and methods that would provide the best release and treatment methodologies for the viral ailment they are attempting to remedy. This integrative review discusses context of previous pandemics, viral pathogenesis, issues associated with the current state of antiviral delivery systems, numerous biomaterials used for this purpose, and further information regarding the ongoing global COVID-19 pandemic. With the ongoing COVID-19 pandemic still escalating, many researchers are turning to nanotechnology as a method of treatment not only for this pandemic, but in preparation for the pandemics of the future. Given both a wide variety of biomaterials at their disposal and the recent rise of nanotechnology, scientists now have the means to release and distribute therapeutic drugs in a variety of ways. Such a variety permits medical professionals the ability to choose biomaterials and methods that would provide the best release and treatment methodologies for the viral ailment they are attempting to remedy. This integrative review discusses context of previous pandemics, viral pathogenesis, issues associated with the current state of antiviral delivery systems, numerous biomaterials used for this purpose, and further information regarding the ongoing global COVID-19 pandemic. Image, graphical abstract •Nearly any antiviral drug delivery system can be nanoscaled to the effect of improved properties.•Efficacy of drug delivery can be improved using nanoparticles as delivery vehicles.•Nanoparticulate antiviral drug delivery systems show promise in regards to treating the current COVID-19 pandemic.•There are numerous public health and financial incentives for further advancement of the nanoparticulate antiviral field. With the ongoing COVID-19 pandemic still escalating, many researchers are turning to nanotechnology as a method of treatment not only for this pandemic, but in preparation for the pandemics of the future. Given both a wide variety of biomaterials at their disposal and the recent rise of nanotechnology, scientists now have the means to release and distribute therapeutic drugs in a variety of ways. Such a variety permits medical professionals the ability to choose biomaterials and methods that would provide the best release and treatment methodologies for the viral ailment they are attempting to remedy. This integrative review discusses context of previous pandemics, viral pathogenesis, issues associated with the current state of antiviral delivery systems, numerous biomaterials used for this purpose, and further information regarding the ongoing global COVID-19 pandemic. [Display omitted] |
Author | Maus, Alexander Strait, Lia Zhu, Donghui |
Author_xml | – sequence: 1 givenname: Alexander surname: Maus fullname: Maus, Alexander – sequence: 2 givenname: Lia surname: Strait fullname: Strait, Lia – sequence: 3 givenname: Donghui surname: Zhu fullname: Zhu, Donghui email: donghui.zhu@stonybrook.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38620592$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhiNUREvpP0AoRy4bxh9JbA5IUPFRqYILnC3HHme9ysaLnUTqv8dLlqrlACdbnvd9xjPv8-JsDCMWxUsCFQHSvNlVOPYR-4oCJRWwCoA8KS5o0zQbwgQ5e3A_L65S2gEAFQQEhWfFORMNhVrSi-LDVz2Gg46TNwOmUqfS4uAXjHflgtv10YVY6nHyi496KKctRn3AOTtKG-c-vSieOj0kvDqdl8WPTx-_X3_Z3H77fHP9_nZjOOdkoyUD16LDVgKl3MjO1oRJ7qTWxnYda7mWjnBXNxootm3dAWCuctJYi5RdFjcr1wa9U4fo9zreqaC9-v0QYq9OcygB2mnHUIrWcNe2UoqOEgGi48ZmfGa9W1mHudujNThOebZH0MeV0W9VHxbVSiEYNBnw-gSI4eeMaVJ7nwwOgx4xzEkxYFJA29QyS1897HXf5E8IWcBXgYkhpYjuXkJAHeNWO7XGrY5xK2Aqx51tb_-yGT_pyYfjj_3wP_NpAZgTWzxGlYzH0aD1Ec2UV-r_DfgF3CvJCg |
CitedBy_id | crossref_primary_10_1007_s11095_023_03486_0 crossref_primary_10_1039_D2NJ03279A crossref_primary_10_1002_agt2_715 crossref_primary_10_1002_med_21997 crossref_primary_10_1039_D1RA04835J crossref_primary_10_2174_0115680266296095240529114058 crossref_primary_10_1002_adhm_202402117 crossref_primary_10_1002_SMMD_20230046 crossref_primary_10_1016_j_cej_2021_133362 crossref_primary_10_47162_RJME_65_2_01 crossref_primary_10_69547_TSFJB_020101 crossref_primary_10_1016_j_engreg_2024_05_004 crossref_primary_10_1016_j_jddst_2023_104632 crossref_primary_10_1021_acsanm_4c02701 crossref_primary_10_1002_adom_202201826 crossref_primary_10_1002_SMMD_20220015 crossref_primary_10_1515_revic_2024_0003 crossref_primary_10_2147_IJN_S332279 crossref_primary_10_1002_adhm_202402103 crossref_primary_10_1016_j_addr_2021_114019 crossref_primary_10_1016_j_cej_2022_135256 crossref_primary_10_1208_s12249_024_02754_5 crossref_primary_10_2174_1389557522666220428115152 crossref_primary_10_1007_s13204_023_02981_5 crossref_primary_10_1088_2043_6262_ad8cb5 crossref_primary_10_1016_j_jcis_2022_01_174 crossref_primary_10_34133_2021_9829068 crossref_primary_10_1088_1361_6528_acb558 crossref_primary_10_1016_j_jddst_2021_102589 |
Cites_doi | 10.1038/s41598-019-42150-9 10.1016/j.cmi.2016.07.016 10.1021/la800227x 10.1016/S0169-409X(98)00058-1 10.1039/D0SC02658A 10.1016/j.phrs.2020.104859 10.1021/acsami.6b06613 10.1007/s12195-018-0536-9 10.2174/13816128113199990375 10.1021/ja803383k 10.1099/vir.0.066084-0 10.1016/S1473-3099(20)30120-1 10.1557/adv.2018.320 10.1515/ejnm-2013-0001 10.3390/ijms20040865 10.1007/s11051-008-9357-4 10.1101/cshperspect.a038695 10.3390/v7062770 10.3390/molecules16108894 10.1016/j.jconrel.2014.06.028 10.1080/03639045.2019.1583758 10.1007/s00706-016-1675-0 10.7150/thno.46691 10.1093/protein/gzh006 10.1021/jm200903z 10.3390/pharmaceutics11100534 10.1016/j.jsps.2017.10.012 10.1038/nmat2608 10.1300/J105v26n01_04 10.1016/j.jconrel.2017.01.012 10.1038/s41467-018-02885-x 10.1016/j.jconrel.2015.11.009 10.1021/acsnano.0c04006 10.1155/2016/7614753 10.1016/j.ijpharm.2015.09.014 10.1021/acs.langmuir.6b02489 10.1016/j.micromeso.2009.04.031 10.3851/IMP1684 10.1016/j.jddst.2018.01.015 10.1002/advs.201801526 10.1007/s11095-015-1769-0 10.3390/pharmaceutics10040191 10.1038/s41467-020-17153-0 10.1021/acs.accounts.7b00218 10.1038/nmat5053 10.3390/pharmaceutics12020171 10.3109/21691401.2014.953633 10.1016/j.progpolymsci.2013.02.003 10.1080/10611860802475688 |
ContentType | Journal Article |
Copyright | 2021 2021 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2021 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2021 |
Copyright_xml | – notice: 2021 – notice: 2021 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. – notice: 2021 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.engreg.2021.03.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2666-1381 |
EndPage | 46 |
ExternalDocumentID | oai_doaj_org_article_80afaf3e987c4f77998b21808b4cd6a0 PMC7988306 38620592 10_1016_j_engreg_2021_03_001 S2666138121000013 |
Genre | Journal Article Review |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL 0R~ AALRI AAYWO AAYXX ABDBF ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4441-a930f7efe790224c9bd51394f9aacdbb374a9f14f56a02e775b00ef9a416dde23 |
IEDL.DBID | DOA |
ISSN | 2666-1381 |
IngestDate | Wed Aug 27 01:32:20 EDT 2025 Thu Aug 21 18:07:30 EDT 2025 Fri Jul 11 08:23:01 EDT 2025 Mon Jul 21 06:02:53 EDT 2025 Thu Apr 24 23:11:46 EDT 2025 Tue Jul 01 03:20:35 EDT 2025 Fri Feb 23 02:40:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Antiviral Drug selivery Nanotechnology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. https://www.elsevier.com/tdm/userlicense/1.0 http://creativecommons.org/licenses/by-nc-nd/4.0 2021 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4441-a930f7efe790224c9bd51394f9aacdbb374a9f14f56a02e775b00ef9a416dde23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Contributed equally to the production of this manuscript. |
OpenAccessLink | https://doaj.org/article/80afaf3e987c4f77998b21808b4cd6a0 |
PMID | 38620592 |
PQID | 3039807659 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80afaf3e987c4f77998b21808b4cd6a0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7988306 proquest_miscellaneous_3039807659 pubmed_primary_38620592 crossref_primary_10_1016_j_engreg_2021_03_001 crossref_citationtrail_10_1016_j_engreg_2021_03_001 elsevier_sciencedirect_doi_10_1016_j_engreg_2021_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Engineered regeneration |
PublicationTitleAlternate | Eng Regen |
PublicationYear | 2021 |
Publisher | Elsevier B.V The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd – name: KeAi Communications Co., Ltd |
References | Macchione (bib0033) 2019; 9 Friedman, Claypool, Liu (bib0012) 2013; 19 Manyarara (bib0030) 2018; 3 Chahar, Bao, Casola (bib0019) 2015; 7 Paul (bib0043) 2014; 95 Laan (bib0054) 2018; 14 Cai (bib0038) 2019; 6 Global Nanotechnology Drug Delivery Systems Market $152 Billion by 2027. 2020 [cited 2020 11/08/2020]; Available from: https://www.ihealthcareanalyst.com/global-nanotechnology-drug-delivery-systems-market/#:~:text=The%20global%20market%20for%20nanotechnology,diagnostics%2C%20therapeutics%20and%20imaging%20agents. Hinks (bib0039) 2010; 129 Marasini, Kaminskas (bib0060) 2019; 45 Dong, Du, Gardner (bib0007) 2020; 20 Daraee (bib0021) 2016; 44 Trabbic-Carlson (bib0025) 2004; 17 Sutradhar, Amin (bib0029) 2013; 5 Vijayan (bib0002) 2019; 11 Lembo, Cavalli (bib0013) 2010; 21 Cucinotta, Vanelli (bib0056) 2020; 91 Soni, Desale, Bronich (bib0032) 2016; 240 Mandal (bib0017) 2017; 248 Galdiero (bib0046) 2011; 16 Sillman (bib0024) 2018; 9 Rabiee (bib0027) 2020; 59 Zachar (bib0061) 2020 Severe outcomes among patients with coronavirus disease 2019 (COVID-19) — United States, February 12–March 16, 2020. 2020. 68(12). (bib0004) 2019 Xue (bib0052) 2017; 50 Itani, Tobaiqy, Al Faraj (bib0058) 2020; 10 Ondrusek (bib0006) 2002; 26 Mishra, B.K., Yadav, Thakur, Sudhakar, Rosenholm (bib0022) 2018; 10 Cagno (bib0044) 2018; 17 Yadav (bib0048) 2018; 44 Taubenberger, Morens (bib0005) 2020; 10 Llewellyn (bib0037) 2008; 24 MacEwan, Chilkoti (bib0026) 2014; 190 Zhao (bib0020) 2018; 11 Hirayama, Uekama (bib0016) 1999; 36 Selvam, Kulkarni (bib0031) 2014; 4 Horcajada (bib0036) 2010; 9 Kandeel (bib0028) 2020; 92 Innocenzi, Stagi (bib0015) 2020; 11 Chakravarty, Vora (bib0001) 2020 McKee (bib0059) 2020; 157 Li (bib0047) 2016; 8 Gentile, Micozzi (bib0008) 2016; 22 Shi (bib0055) 2020; 11 Bedford (bib0018) 2020; 11 Ma. Eugenia Manjarrez-Zavala, Gutiérrez-González, Ocadiz-Delgado, Cabello-Gutiérrez (bib0010) 2013 Carson, Jiang, Woodrow (bib0053) 2016; 33 Kango (bib0050) 2013; 38 Rizvi, Saleh (bib0011) 2018; 26 Makwana (bib0023) 2015; 495 Dostalova (bib0035) 2016; 147 Kaur, Nahar, Jain (bib0049) 2008; 16 Alheshibri (bib0051) 2016; 32 Cojocaru (bib0003) 2020; 12 Liu (bib0042) 2011; 54 Chauhan (bib0062) 2020; 14 Payne (bib0009) 2017 Konop (bib0041) 2016; 2016 Lee (bib0045) 2019; 20 Gao, Zhang, Chen (bib0034) 2008; 10 Rieter (bib0040) 2008; 130 Makwana (10.1016/j.engreg.2021.03.001_bib0023) 2015; 495 Mandal (10.1016/j.engreg.2021.03.001_bib0017) 2017; 248 Lembo (10.1016/j.engreg.2021.03.001_bib0013) 2010; 21 Mishra (10.1016/j.engreg.2021.03.001_bib0022) 2018; 10 Kandeel (10.1016/j.engreg.2021.03.001_bib0028) 2020; 92 Cojocaru (10.1016/j.engreg.2021.03.001_bib0003) 2020; 12 Alheshibri (10.1016/j.engreg.2021.03.001_bib0051) 2016; 32 Innocenzi (10.1016/j.engreg.2021.03.001_bib0015) 2020; 11 Li (10.1016/j.engreg.2021.03.001_bib0047) 2016; 8 Rieter (10.1016/j.engreg.2021.03.001_bib0040) 2008; 130 Yadav (10.1016/j.engreg.2021.03.001_bib0048) 2018; 44 Xue (10.1016/j.engreg.2021.03.001_bib0052) 2017; 50 Rabiee (10.1016/j.engreg.2021.03.001_bib0027) 2020; 59 Hinks (10.1016/j.engreg.2021.03.001_bib0039) 2010; 129 Marasini (10.1016/j.engreg.2021.03.001_bib0060) 2019; 45 Soni (10.1016/j.engreg.2021.03.001_bib0032) 2016; 240 Daraee (10.1016/j.engreg.2021.03.001_bib0021) 2016; 44 Zhao (10.1016/j.engreg.2021.03.001_bib0020) 2018; 11 (10.1016/j.engreg.2021.03.001_bib0004) 2019 Ondrusek (10.1016/j.engreg.2021.03.001_bib0006) 2002; 26 Cucinotta (10.1016/j.engreg.2021.03.001_bib0056) 2020; 91 Macchione (10.1016/j.engreg.2021.03.001_bib0033) 2019; 9 Gao (10.1016/j.engreg.2021.03.001_bib0034) 2008; 10 Friedman (10.1016/j.engreg.2021.03.001_bib0012) 2013; 19 MacEwan (10.1016/j.engreg.2021.03.001_bib0026) 2014; 190 Galdiero (10.1016/j.engreg.2021.03.001_bib0046) 2011; 16 Rizvi (10.1016/j.engreg.2021.03.001_bib0011) 2018; 26 Bedford (10.1016/j.engreg.2021.03.001_bib0018) 2020; 11 Sutradhar (10.1016/j.engreg.2021.03.001_bib0029) 2013; 5 Kango (10.1016/j.engreg.2021.03.001_bib0050) 2013; 38 Dong (10.1016/j.engreg.2021.03.001_bib0007) 2020; 20 Liu (10.1016/j.engreg.2021.03.001_bib0042) 2011; 54 Chakravarty (10.1016/j.engreg.2021.03.001_bib0001) 2020 Lee (10.1016/j.engreg.2021.03.001_bib0045) 2019; 20 Selvam (10.1016/j.engreg.2021.03.001_bib0031) 2014; 4 Gentile (10.1016/j.engreg.2021.03.001_bib0008) 2016; 22 Carson (10.1016/j.engreg.2021.03.001_bib0053) 2016; 33 10.1016/j.engreg.2021.03.001_bib0014 Cai (10.1016/j.engreg.2021.03.001_bib0038) 2019; 6 10.1016/j.engreg.2021.03.001_bib0057 Kaur (10.1016/j.engreg.2021.03.001_bib0049) 2008; 16 Sillman (10.1016/j.engreg.2021.03.001_bib0024) 2018; 9 Trabbic-Carlson (10.1016/j.engreg.2021.03.001_bib0025) 2004; 17 Ma. Eugenia Manjarrez-Zavala (10.1016/j.engreg.2021.03.001_bib0010) 2013 Chahar (10.1016/j.engreg.2021.03.001_bib0019) 2015; 7 Dostalova (10.1016/j.engreg.2021.03.001_bib0035) 2016; 147 Paul (10.1016/j.engreg.2021.03.001_bib0043) 2014; 95 McKee (10.1016/j.engreg.2021.03.001_bib0059) 2020; 157 Cagno (10.1016/j.engreg.2021.03.001_bib0044) 2018; 17 Vijayan (10.1016/j.engreg.2021.03.001_bib0002) 2019; 11 Taubenberger (10.1016/j.engreg.2021.03.001_bib0005) 2020; 10 Payne (10.1016/j.engreg.2021.03.001_bib0009) 2017 Laan (10.1016/j.engreg.2021.03.001_bib0054) 2018; 14 Hirayama (10.1016/j.engreg.2021.03.001_bib0016) 1999; 36 Manyarara (10.1016/j.engreg.2021.03.001_bib0030) 2018; 3 Konop (10.1016/j.engreg.2021.03.001_bib0041) 2016; 2016 Llewellyn (10.1016/j.engreg.2021.03.001_bib0037) 2008; 24 Itani (10.1016/j.engreg.2021.03.001_bib0058) 2020; 10 Zachar (10.1016/j.engreg.2021.03.001_bib0061) 2020 Horcajada (10.1016/j.engreg.2021.03.001_bib0036) 2010; 9 Shi (10.1016/j.engreg.2021.03.001_bib0055) 2020; 11 Chauhan (10.1016/j.engreg.2021.03.001_bib0062) 2020; 14 |
References_xml | – volume: 19 start-page: 6315 year: 2013 end-page: 6329 ident: bib0012 article-title: The smart targeting of nanoparticles publication-title: Curr. Pharm. Des. – volume: 95 start-page: 1712 year: 2014 end-page: 1722 ident: bib0043 article-title: Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro publication-title: J Gen Virol – volume: 16 start-page: 8894 year: 2011 end-page: 8918 ident: bib0046 article-title: Silver nanoparticles as potential antiviral agents publication-title: Molecules – volume: 7 start-page: 3204 year: 2015 end-page: 3225 ident: bib0019 article-title: Exosomes and their role in the life cycle and pathogenesis of RNA viruses publication-title: Viruses – volume: 36 start-page: 125 year: 1999 end-page: 141 ident: bib0016 article-title: Cyclodextrin-based controlled drug release system publication-title: Adv. Drug Deliv. Rev. – reference: Severe outcomes among patients with coronavirus disease 2019 (COVID-19) — United States, February 12–March 16, 2020. 2020. 68(12). – volume: 12 start-page: 171 year: 2020 ident: bib0003 article-title: Nanomaterials designed for antiviral drug delivery transport across biological barriers publication-title: Pharmaceutics – volume: 54 start-page: 6139 year: 2011 end-page: 6150 ident: bib0042 article-title: Optimization of Cellular Activity of G9a Inhibitors 7-Aminoalkoxy-quinazolines publication-title: J. Med. Chem. – volume: 4 start-page: 23 year: 2014 end-page: 28 ident: bib0031 article-title: Design and evaluation of self nanoemulsifying systems for poorly water soluble HIV drug publication-title: J. PharmaSciTech – volume: 16 start-page: 798 year: 2008 end-page: 805 ident: bib0049 article-title: Lymphatic targeting of zidovudine using surface-engineered liposomes publication-title: J. Drug Target – volume: 11 start-page: 534 year: 2019 ident: bib0002 article-title: Recent advances in nanovaccines using biomimetic immunomodulatory materials publication-title: Pharmaceutics, – volume: 92 year: 2020 ident: bib0028 article-title: A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus publication-title: Med. Virol. – volume: 32 start-page: 11086 year: 2016 end-page: 11100 ident: bib0051 article-title: A history of nanobubbles publication-title: Langmuir – volume: 20 start-page: 865 year: 2019 ident: bib0045 article-title: Silver nanoparticles: synthesis and application for nanomedicine publication-title: Int. J. Mol. Sci., – volume: 190 start-page: 314 year: 2014 end-page: 330 ident: bib0026 article-title: Applications of elastin-like polypeptides in drug delivery publication-title: J. Controlled Release – volume: 24 start-page: 7245 year: 2008 end-page: 7250 ident: bib0037 article-title: High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101 publication-title: Langmuir – volume: 14 start-page: 7760 year: 2020 end-page: 7782 ident: bib0062 article-title: Nanotechnology for COVID-19: therapeutics and vaccine research publication-title: ACS Nano – volume: 3 start-page: 2203 year: 2018 end-page: 2219 ident: bib0030 article-title: Formulation and characterization of a paediatric nanoemulsion dosage form with modified oral drug delivery system for improved dissolution rate of nevirapine publication-title: MRS Adv. – volume: 44 start-page: 380 year: 2018 end-page: 387 ident: bib0048 article-title: Nanovaccines formulation and applications-a review publication-title: J. Drug Deliv. Sci. Technol. – volume: 9 start-page: 172 year: 2010 end-page: 178 ident: bib0036 article-title: Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging publication-title: Nat. Mater. – volume: 44 start-page: 381 year: 2016 end-page: 391 ident: bib0021 article-title: Application of liposomes in medicine and drug delivery publication-title: Artif. Cells Nanomed. Biotechnol. – volume: 240 start-page: 109 year: 2016 end-page: 126 ident: bib0032 article-title: Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation publication-title: J. Controlled Release – volume: 11 start-page: 3384 year: 2020 ident: bib0055 article-title: A nanotrap improves survival in severe sepsis by attenuating hyperinflammation publication-title: Nat. Commun. – volume: 21 start-page: 53 year: 2010 end-page: 70 ident: bib0013 article-title: Nanoparticulate delivery systems for antiviral drugs publication-title: Antiviral Chem. Chemother. – volume: 38 start-page: 1232 year: 2013 end-page: 1261 ident: bib0050 article-title: Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review publication-title: Prog. Polym. Sci. – volume: 17 start-page: 57 year: 2004 end-page: 66 ident: bib0025 article-title: Effect of protein fusion on the transition temperature of an environmentally responsive elastin-like polypeptide: a role for surface hydrophobicity? publication-title: Protein Eng. Des. Select. – volume: 9 start-page: 443 year: 2018 ident: bib0024 article-title: Creation of a long-acting nanoformulated dolutegravir publication-title: Nat. Commun. – volume: 10 year: 2020 ident: bib0005 article-title: The 1918 influenza pandemic and its legacy publication-title: Cold Spring Harb. Perspect. Med. – volume: 147 start-page: 905 year: 2016 end-page: 918 ident: bib0035 article-title: Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5 publication-title: Monatshefte Chem. – Chem. Mon. – volume: 45 start-page: 882 year: 2019 end-page: 894 ident: bib0060 article-title: Subunit-based mucosal vaccine delivery systems for pulmonary delivery – are they feasible? publication-title: Drug Dev. Ind. Pharm. – volume: 10 start-page: 191 year: 2018 ident: bib0022 article-title: Solid lipid nanoparticles: emerging colloidal nano drug delivery systems publication-title: Pharmaceutics – reference: Global Nanotechnology Drug Delivery Systems Market $152 Billion by 2027. 2020 [cited 2020 11/08/2020]; Available from: https://www.ihealthcareanalyst.com/global-nanotechnology-drug-delivery-systems-market/#:~:text=The%20global%20market%20for%20nanotechnology,diagnostics%2C%20therapeutics%20and%20imaging%20agents. – volume: 130 start-page: 11584 year: 2008 end-page: 11585 ident: bib0040 article-title: Nanoscale coordination polymers for platinum-based anticancer drug delivery publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 845 year: 2008 end-page: 862 ident: bib0034 article-title: Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system publication-title: J. Nanopart. Res. – volume: 22 start-page: 585 year: 2016 end-page: 588 ident: bib0008 article-title: Speculations on the clinical significance of asymptomatic viral infections publication-title: Clin. Microbiol. Infect. – volume: 59 year: 2020 ident: bib0027 article-title: Carbosilane dendrimers: drug and gene delivery applications publication-title: J. Drug Deliv. Sci. Technol. – volume: 2016 year: 2016 ident: bib0041 article-title: Certain aspects of silver and silver nanoparticles in wound care: a minireview publication-title: J. Nanomater. – start-page: 1 year: 2020 end-page: 40 ident: bib0001 article-title: Nanotechnology-based antiviral therapeutics publication-title: Drug Deliv. Transl. Res. – volume: 129 start-page: 330 year: 2010 end-page: 334 ident: bib0039 article-title: Metal organic frameworks as NO delivery materials for biological applications publication-title: Microporous Mesoporous Mater. – year: 2013 ident: bib0010 article-title: Pathogenesis of viral respiratory infection publication-title: Respritory Disease and Infection- A New Insight – year: 2019 ident: bib0004 article-title: Influenza Historic Timeline – volume: 157 year: 2020 ident: bib0059 article-title: Candidate drugs against SARS-CoV-2 and COVID-19 publication-title: Pharmacol. Res. – volume: 91 start-page: 157 year: 2020 end-page: 160 ident: bib0056 article-title: WHO declares COVID-19 a pandemic publication-title: Acta Bio-med. – volume: 10 start-page: 5932 year: 2020 end-page: 5942 ident: bib0058 article-title: Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients publication-title: Theranostics – volume: 11 start-page: 397 year: 2018 end-page: 406 ident: bib0020 article-title: Lipid polymer hybrid nanomaterials for mRNA delivery publication-title: Cell Mol. Bioeng. – volume: 6 year: 2019 ident: bib0038 article-title: Metal-organic framework-based stimuli-responsive systems for drug delivery publication-title: Adv. Sci. – volume: 33 start-page: 125 year: 2016 end-page: 136 ident: bib0053 article-title: Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers publication-title: Pharm. Res. – year: 2017 ident: bib0009 article-title: Viruses: From Understanding to Investigation – volume: 11 year: 2020 ident: bib0018 article-title: Airway exosomes released during influenza virus infection serve as a key component of the antiviral innate immune response publication-title: Front. Immunol. – volume: 14 year: 2018 ident: bib0054 article-title: Nanodiamonds for in vivo applications publication-title: Small – volume: 9 start-page: 5732 year: 2019 ident: bib0033 article-title: Poly(N-vinylcaprolactam) nanogels with antiviral behavior against HIV-1 infection publication-title: Sci. Rep. – volume: 50 start-page: 1976 year: 2017 end-page: 1987 ident: bib0052 article-title: Electrospun nanofibers: new concepts, materials, and applications publication-title: Acc. Chem. Res. – volume: 17 start-page: 195 year: 2018 end-page: 203 ident: bib0044 article-title: Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism publication-title: Nat. Mater. – volume: 8 start-page: 24385 year: 2016 end-page: 24393 ident: bib0047 article-title: Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways publication-title: ACS Appl. Mater. Interfaces – volume: 495 start-page: 439 year: 2015 end-page: 446 ident: bib0023 article-title: Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach publication-title: Int. J. Pharm. – volume: 5 start-page: 97 year: 2013 ident: bib0029 article-title: Nanoemulsions: increasing possibilities in drug delivery publication-title: Eur. J. Nanomed. – volume: 248 start-page: 96 year: 2017 end-page: 116 ident: bib0017 article-title: Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies publication-title: J. Controlled Release – volume: 26 start-page: 47 year: 2002 end-page: 75 ident: bib0006 article-title: Evaluating an HIV/AIDS book collection using a timeline approach publication-title: Collect. Manag. – volume: 11 start-page: 6606 year: 2020 end-page: 6622 ident: bib0015 article-title: Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective publication-title: Chem. Sci. – year: 2020 ident: bib0061 article-title: Formulations for COVID-19 early stage treatment via silver nanoparticles inhalation delivery at homeand hospital publication-title: ScienceOpen – volume: 26 start-page: 64 year: 2018 end-page: 70 ident: bib0011 article-title: Applications of nanoparticle systems in drug delivery technology publication-title: Saudi Pharm. J. – volume: 20 start-page: 533 year: 2020 end-page: 534 ident: bib0007 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect. Dis. – volume: 9 start-page: 5732 issue: 1 year: 2019 ident: 10.1016/j.engreg.2021.03.001_bib0033 article-title: Poly(N-vinylcaprolactam) nanogels with antiviral behavior against HIV-1 infection publication-title: Sci. Rep. doi: 10.1038/s41598-019-42150-9 – volume: 22 start-page: 585 issue: 7 year: 2016 ident: 10.1016/j.engreg.2021.03.001_bib0008 article-title: Speculations on the clinical significance of asymptomatic viral infections publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2016.07.016 – volume: 24 start-page: 7245 issue: 14 year: 2008 ident: 10.1016/j.engreg.2021.03.001_bib0037 article-title: High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101 publication-title: Langmuir doi: 10.1021/la800227x – year: 2013 ident: 10.1016/j.engreg.2021.03.001_bib0010 article-title: Pathogenesis of viral respiratory infection – volume: 36 start-page: 125 issue: 1 year: 1999 ident: 10.1016/j.engreg.2021.03.001_bib0016 article-title: Cyclodextrin-based controlled drug release system publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(98)00058-1 – volume: 11 start-page: 6606 issue: 26 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0015 article-title: Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective publication-title: Chem. Sci. doi: 10.1039/D0SC02658A – volume: 157 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0059 article-title: Candidate drugs against SARS-CoV-2 and COVID-19 publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.104859 – volume: 8 start-page: 24385 issue: 37 year: 2016 ident: 10.1016/j.engreg.2021.03.001_bib0047 article-title: Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06613 – volume: 11 start-page: 397 issue: 5 year: 2018 ident: 10.1016/j.engreg.2021.03.001_bib0020 article-title: Lipid polymer hybrid nanomaterials for mRNA delivery publication-title: Cell Mol. Bioeng. doi: 10.1007/s12195-018-0536-9 – volume: 19 start-page: 6315 issue: 35 year: 2013 ident: 10.1016/j.engreg.2021.03.001_bib0012 article-title: The smart targeting of nanoparticles publication-title: Curr. Pharm. Des. doi: 10.2174/13816128113199990375 – volume: 14 issue: 13 year: 2018 ident: 10.1016/j.engreg.2021.03.001_bib0054 article-title: Nanodiamonds for in vivo applications publication-title: Small – volume: 130 start-page: 11584 issue: 35 year: 2008 ident: 10.1016/j.engreg.2021.03.001_bib0040 article-title: Nanoscale coordination polymers for platinum-based anticancer drug delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/ja803383k – volume: 95 start-page: 1712 issue: Pt 8 year: 2014 ident: 10.1016/j.engreg.2021.03.001_bib0043 article-title: Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro publication-title: J Gen Virol doi: 10.1099/vir.0.066084-0 – volume: 20 start-page: 533 issue: 5 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0007 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30120-1 – volume: 3 start-page: 2203 issue: 37 year: 2018 ident: 10.1016/j.engreg.2021.03.001_bib0030 article-title: Formulation and characterization of a paediatric nanoemulsion dosage form with modified oral drug delivery system for improved dissolution rate of nevirapine publication-title: MRS Adv. doi: 10.1557/adv.2018.320 – volume: 5 start-page: 97 issue: 2 year: 2013 ident: 10.1016/j.engreg.2021.03.001_bib0029 article-title: Nanoemulsions: increasing possibilities in drug delivery publication-title: Eur. J. Nanomed. doi: 10.1515/ejnm-2013-0001 – volume: 20 start-page: 865 year: 2019 ident: 10.1016/j.engreg.2021.03.001_bib0045 article-title: Silver nanoparticles: synthesis and application for nanomedicine publication-title: Int. J. Mol. Sci., doi: 10.3390/ijms20040865 – year: 2017 ident: 10.1016/j.engreg.2021.03.001_bib0009 – volume: 10 start-page: 845 issue: 5 year: 2008 ident: 10.1016/j.engreg.2021.03.001_bib0034 article-title: Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system publication-title: J. Nanopart. Res. doi: 10.1007/s11051-008-9357-4 – volume: 10 issue: 10 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0005 article-title: The 1918 influenza pandemic and its legacy publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a038695 – volume: 91 start-page: 157 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0056 article-title: WHO declares COVID-19 a pandemic publication-title: Acta Bio-med. – year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0061 article-title: Formulations for COVID-19 early stage treatment via silver nanoparticles inhalation delivery at homeand hospital publication-title: ScienceOpen – volume: 7 start-page: 3204 issue: 6 year: 2015 ident: 10.1016/j.engreg.2021.03.001_bib0019 article-title: Exosomes and their role in the life cycle and pathogenesis of RNA viruses publication-title: Viruses doi: 10.3390/v7062770 – year: 2019 ident: 10.1016/j.engreg.2021.03.001_bib0004 – volume: 16 start-page: 8894 issue: 10 year: 2011 ident: 10.1016/j.engreg.2021.03.001_bib0046 article-title: Silver nanoparticles as potential antiviral agents publication-title: Molecules doi: 10.3390/molecules16108894 – volume: 190 start-page: 314 year: 2014 ident: 10.1016/j.engreg.2021.03.001_bib0026 article-title: Applications of elastin-like polypeptides in drug delivery publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2014.06.028 – volume: 45 start-page: 882 issue: 6 year: 2019 ident: 10.1016/j.engreg.2021.03.001_bib0060 article-title: Subunit-based mucosal vaccine delivery systems for pulmonary delivery – are they feasible? publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2019.1583758 – volume: 147 start-page: 905 issue: 5 year: 2016 ident: 10.1016/j.engreg.2021.03.001_bib0035 article-title: Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5 publication-title: Monatshefte Chem. – Chem. Mon. doi: 10.1007/s00706-016-1675-0 – volume: 10 start-page: 5932 issue: 13 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0058 article-title: Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients publication-title: Theranostics doi: 10.7150/thno.46691 – volume: 92 issue: 9 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0028 article-title: A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus publication-title: Med. Virol. – volume: 17 start-page: 57 issue: 1 year: 2004 ident: 10.1016/j.engreg.2021.03.001_bib0025 article-title: Effect of protein fusion on the transition temperature of an environmentally responsive elastin-like polypeptide: a role for surface hydrophobicity? publication-title: Protein Eng. Des. Select. doi: 10.1093/protein/gzh006 – volume: 54 start-page: 6139 issue: 17 year: 2011 ident: 10.1016/j.engreg.2021.03.001_bib0042 article-title: Optimization of Cellular Activity of G9a Inhibitors 7-Aminoalkoxy-quinazolines publication-title: J. Med. Chem. doi: 10.1021/jm200903z – volume: 11 start-page: 534 issue: 10 year: 2019 ident: 10.1016/j.engreg.2021.03.001_bib0002 article-title: Recent advances in nanovaccines using biomimetic immunomodulatory materials publication-title: Pharmaceutics, doi: 10.3390/pharmaceutics11100534 – volume: 26 start-page: 64 issue: 1 year: 2018 ident: 10.1016/j.engreg.2021.03.001_bib0011 article-title: Applications of nanoparticle systems in drug delivery technology publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2017.10.012 – volume: 9 start-page: 172 issue: 2 year: 2010 ident: 10.1016/j.engreg.2021.03.001_bib0036 article-title: Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging publication-title: Nat. Mater. doi: 10.1038/nmat2608 – volume: 26 start-page: 47 issue: 1 year: 2002 ident: 10.1016/j.engreg.2021.03.001_bib0006 article-title: Evaluating an HIV/AIDS book collection using a timeline approach publication-title: Collect. Manag. doi: 10.1300/J105v26n01_04 – volume: 248 start-page: 96 year: 2017 ident: 10.1016/j.engreg.2021.03.001_bib0017 article-title: Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2017.01.012 – volume: 11 issue: 887 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0018 article-title: Airway exosomes released during influenza virus infection serve as a key component of the antiviral innate immune response publication-title: Front. Immunol. – volume: 9 start-page: 443 issue: 1 year: 2018 ident: 10.1016/j.engreg.2021.03.001_bib0024 article-title: Creation of a long-acting nanoformulated dolutegravir publication-title: Nat. Commun. doi: 10.1038/s41467-018-02885-x – volume: 4 start-page: 23 year: 2014 ident: 10.1016/j.engreg.2021.03.001_bib0031 article-title: Design and evaluation of self nanoemulsifying systems for poorly water soluble HIV drug publication-title: J. PharmaSciTech – volume: 240 start-page: 109 year: 2016 ident: 10.1016/j.engreg.2021.03.001_bib0032 article-title: Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2015.11.009 – volume: 14 start-page: 7760 issue: 7 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0062 article-title: Nanotechnology for COVID-19: therapeutics and vaccine research publication-title: ACS Nano doi: 10.1021/acsnano.0c04006 – volume: 2016 year: 2016 ident: 10.1016/j.engreg.2021.03.001_bib0041 article-title: Certain aspects of silver and silver nanoparticles in wound care: a minireview publication-title: J. Nanomater. doi: 10.1155/2016/7614753 – volume: 495 start-page: 439 issue: 1 year: 2015 ident: 10.1016/j.engreg.2021.03.001_bib0023 article-title: Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.09.014 – volume: 32 start-page: 11086 issue: 43 year: 2016 ident: 10.1016/j.engreg.2021.03.001_bib0051 article-title: A history of nanobubbles publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02489 – ident: 10.1016/j.engreg.2021.03.001_bib0057 – volume: 129 start-page: 330 issue: 3 year: 2010 ident: 10.1016/j.engreg.2021.03.001_bib0039 article-title: Metal organic frameworks as NO delivery materials for biological applications publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2009.04.031 – ident: 10.1016/j.engreg.2021.03.001_bib0014 – volume: 21 start-page: 53 issue: 2 year: 2010 ident: 10.1016/j.engreg.2021.03.001_bib0013 article-title: Nanoparticulate delivery systems for antiviral drugs publication-title: Antiviral Chem. Chemother. doi: 10.3851/IMP1684 – start-page: 1 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0001 article-title: Nanotechnology-based antiviral therapeutics publication-title: Drug Deliv. Transl. Res. – volume: 44 start-page: 380 year: 2018 ident: 10.1016/j.engreg.2021.03.001_bib0048 article-title: Nanovaccines formulation and applications-a review publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2018.01.015 – volume: 6 issue: 1 year: 2019 ident: 10.1016/j.engreg.2021.03.001_bib0038 article-title: Metal-organic framework-based stimuli-responsive systems for drug delivery publication-title: Adv. Sci. doi: 10.1002/advs.201801526 – volume: 33 start-page: 125 issue: 1 year: 2016 ident: 10.1016/j.engreg.2021.03.001_bib0053 article-title: Tunable release of multiclass anti-HIV drugs that are water-soluble and loaded at high drug content in polyester blended electrospun fibers publication-title: Pharm. Res. doi: 10.1007/s11095-015-1769-0 – volume: 10 start-page: 191 year: 2018 ident: 10.1016/j.engreg.2021.03.001_bib0022 article-title: Solid lipid nanoparticles: emerging colloidal nano drug delivery systems publication-title: Pharmaceutics doi: 10.3390/pharmaceutics10040191 – volume: 59 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0027 article-title: Carbosilane dendrimers: drug and gene delivery applications publication-title: J. Drug Deliv. Sci. Technol. – volume: 11 start-page: 3384 issue: 1 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0055 article-title: A nanotrap improves survival in severe sepsis by attenuating hyperinflammation publication-title: Nat. Commun. doi: 10.1038/s41467-020-17153-0 – volume: 50 start-page: 1976 issue: 8 year: 2017 ident: 10.1016/j.engreg.2021.03.001_bib0052 article-title: Electrospun nanofibers: new concepts, materials, and applications publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00218 – volume: 17 start-page: 195 issue: 2 year: 2018 ident: 10.1016/j.engreg.2021.03.001_bib0044 article-title: Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism publication-title: Nat. Mater. doi: 10.1038/nmat5053 – volume: 12 start-page: 171 issue: 2 year: 2020 ident: 10.1016/j.engreg.2021.03.001_bib0003 article-title: Nanomaterials designed for antiviral drug delivery transport across biological barriers publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12020171 – volume: 44 start-page: 381 issue: 1 year: 2016 ident: 10.1016/j.engreg.2021.03.001_bib0021 article-title: Application of liposomes in medicine and drug delivery publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.3109/21691401.2014.953633 – volume: 38 start-page: 1232 issue: 8 year: 2013 ident: 10.1016/j.engreg.2021.03.001_bib0050 article-title: Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.02.003 – volume: 16 start-page: 798 issue: 10 year: 2008 ident: 10.1016/j.engreg.2021.03.001_bib0049 article-title: Lymphatic targeting of zidovudine using surface-engineered liposomes publication-title: J. Drug Target doi: 10.1080/10611860802475688 |
SSID | ssj0002810820 |
Score | 2.384944 |
SecondaryResourceType | review_article |
Snippet | •Nearly any antiviral drug delivery system can be nanoscaled to the effect of improved properties.•Efficacy of drug delivery can be improved using... With the ongoing COVID-19 pandemic still escalating, many researchers are turning to nanotechnology as a method of treatment not only for this pandemic, but in... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 31 |
SubjectTerms | Antiviral COVID-19 Drug selivery Nanotechnology |
Title | Nanoparticles as delivery vehicles for antiviral therapeutic drugs |
URI | https://dx.doi.org/10.1016/j.engreg.2021.03.001 https://www.ncbi.nlm.nih.gov/pubmed/38620592 https://www.proquest.com/docview/3039807659 https://pubmed.ncbi.nlm.nih.gov/PMC7988306 https://doaj.org/article/80afaf3e987c4f77998b21808b4cd6a0 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmTrtMQDcov-RJ027R4tip7SNFIDSJnYbEzbIdG4pKQJRO4rK_nffspGq2Qy9cckjSJH5-zvs-98tnQr5p7jzzghdKaFWI2rLCiSp5EQZVTqxXHqcGrn5NLq_Fz5v6Zm2pL9SEZXvgHLgfqrTRRh6AG3sRpQR64KAslcoJ30xsYutQ89bI1H2aMmJY23BlOcDnaLTH-u_mkrgrtMBmb4EeVix7nLJBXUr2_YPy9D_8_FdFuVaWLrbJpw5P0tPcjh3yIbS7ZHTaApd-eKXfaVJ4pqnzEZnCqxQ4cieFo3ZBmzBHXcYr_RPu8k7AsBSCPUPt75yufZ1Fm-fl7eIzub44_312WXRrKBReANIprOZllCEGqbFae-2aGkCfiNpa3zjHpbA6MhFriGUVpKxhHAY4CkAN3nwV_0K22sc27BPaqMoB-RAeWZgDWtcoL2N0FfQNs5KNCe8jaHxnMI7rXMxNryS7NznuBuNuSo6CujEpVr96ygYbG86fYueszkV77LQDksZ0ETSbkmZMZN-1pkMaGUHApWYbbv-1zwQDAxH_XbFteFwuDGABrUo5qfWY7OXMWD0kB94IOLaC-w5yZtCK4ZF2dpfMvtFPDmjdwXs0-5B8xKbkGaQjsvXyvAzHgKle3EkaPrC9-nv-BgJhH7g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticles+as+delivery+vehicles+for+antiviral+therapeutic+drugs&rft.jtitle=Engineered+regeneration&rft.au=Maus%2C+Alexander&rft.au=Strait%2C+Lia&rft.au=Zhu%2C+Donghui&rft.date=2021&rft.issn=2666-1381&rft.eissn=2666-1381&rft.volume=2&rft.spage=31&rft.epage=46&rft_id=info:doi/10.1016%2Fj.engreg.2021.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engreg_2021_03_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1381&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1381&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1381&client=summon |