State of the art of bacterial chemotaxis
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E....
Saved in:
Published in | Journal of basic microbiology Vol. 61; no. 5; pp. 366 - 379 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Germany
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4–6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve “run” and “tumble.” The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis. |
---|---|
AbstractList | Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis. Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis. Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4–6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve “run” and “tumble.” The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis. Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4–6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve “run” and “tumble.” The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis. |
Author | Karmakar, Richa |
Author_xml | – sequence: 1 givenname: Richa orcidid: 0000-0002-9741-6816 surname: Karmakar fullname: Karmakar, Richa email: rkarmakar@physics.ucsd.edu organization: University of California San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33687766$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOwzAUQC0Eog9YGVHGLinXjzjJCBVPFXUAJDbLcW5UV0lc4lTQvydVW5CQUCd7OOfa9wzIce1qJOSCwpgCsKuFy6oxAwYAUtIj0qcRo6EAlhyTPjDOQ0rpe48MvF90TJqy9JT0OJdJHEvZJ6OXVrcYuCJo5xjopt1cM21abKwuAzPHyrX6y_ozclLo0uP57hySt7vb18lDOJ3dP06up6ERQnQvIzWySJiJQOucZYXWJtfMgMlFFgGILM5zneSsSDA2HHOQcferDKRJMOMFH5LRdu6ycR8r9K2qrDdYlrpGt_KKRREDDrRb7SAq0pQnkjHRoZc7dJVVmKtlYyvdrNU-RAeILWAa532DhTK2K2Nd3TbaloqC2vRWm97qp3enjf9o-8n_CulW-LQlrg_Q6ml28_zrfgPoh5GV |
CitedBy_id | crossref_primary_10_1016_j_foodcont_2023_110255 crossref_primary_10_1016_j_jece_2024_112494 crossref_primary_10_1016_j_jbc_2023_105161 crossref_primary_10_3390_microorganisms9091923 crossref_primary_10_1111_are_15694 crossref_primary_10_3390_microorganisms12112330 crossref_primary_10_1016_j_fsi_2022_06_045 crossref_primary_10_1021_acsfoodscitech_3c00678 crossref_primary_10_1111_php_13908 crossref_primary_10_3390_microorganisms11020494 crossref_primary_10_1016_j_genrep_2025_102159 crossref_primary_10_1016_j_tifs_2024_104854 crossref_primary_10_1016_j_resconrec_2025_108221 crossref_primary_10_1063_5_0166650 crossref_primary_10_1016_j_biotechadv_2024_108483 crossref_primary_10_1063_5_0211140 crossref_primary_10_1128_mbio_00440_24 crossref_primary_10_1016_j_scitotenv_2024_172967 crossref_primary_10_1002_adma_202405075 crossref_primary_10_3389_fvets_2021_823332 crossref_primary_10_3390_ijms22136960 crossref_primary_10_1016_j_ijbiomac_2023_125404 crossref_primary_10_1016_j_jenvman_2023_118435 crossref_primary_10_1007_s00253_023_12460_0 crossref_primary_10_1016_j_chemosphere_2022_133609 crossref_primary_10_1039_D2NP00053A crossref_primary_10_1016_j_ifset_2024_103746 crossref_primary_10_1038_s41598_024_72322_1 crossref_primary_10_3389_fbioe_2021_755777 crossref_primary_10_3233_BME_230002 crossref_primary_10_1371_journal_pone_0265425 crossref_primary_10_1016_j_scitotenv_2023_168254 crossref_primary_10_1016_j_micpath_2023_105981 crossref_primary_10_1016_j_scitotenv_2022_154720 crossref_primary_10_1016_j_tim_2022_10_007 crossref_primary_10_1039_D4SM01094A crossref_primary_10_1111_1751_7915_70046 crossref_primary_10_1098_rsos_201839 crossref_primary_10_1002_adtp_202200042 crossref_primary_10_1016_j_micres_2024_127971 crossref_primary_10_3389_fmicb_2023_1258452 crossref_primary_10_3390_foods11223639 crossref_primary_10_3390_foods13020336 crossref_primary_10_1016_j_actbio_2022_05_016 crossref_primary_10_1016_j_micres_2024_127935 crossref_primary_10_1016_j_aquaculture_2025_742259 crossref_primary_10_1016_j_scitotenv_2023_163520 crossref_primary_10_1016_j_jbc_2024_107803 crossref_primary_10_1016_j_celrep_2025_115436 crossref_primary_10_1016_j_matcom_2023_10_015 crossref_primary_10_3390_su13137353 crossref_primary_10_3389_fimmu_2022_828758 crossref_primary_10_3390_microorganisms12091930 crossref_primary_10_1016_j_bpj_2021_04_033 crossref_primary_10_1016_j_ecoenv_2023_115277 crossref_primary_10_3390_biology10121345 crossref_primary_10_1016_j_aqrep_2024_102291 crossref_primary_10_3390_biom15030434 crossref_primary_10_1103_PhysRevLett_133_158301 crossref_primary_10_3389_fmicb_2023_1128166 crossref_primary_10_1016_j_aquaculture_2024_740863 crossref_primary_10_1016_j_jhazmat_2023_133123 crossref_primary_10_1002_smll_202407832 crossref_primary_10_1016_j_scitotenv_2023_165695 crossref_primary_10_3390_microorganisms11051116 crossref_primary_10_1016_j_actbio_2023_07_051 crossref_primary_10_1016_j_jclepro_2023_139413 crossref_primary_10_1016_j_camwa_2023_09_012 crossref_primary_10_3390_molecules28247981 |
Cites_doi | 10.3390/biom10030460 10.1038/nmicrobiol.2017.65 10.1128/JB.00398-07 10.1111/j.1749-6632.1987.tb43459.x 10.1007/s10482-008-9298-z 10.1038/nrc1566 10.1016/S0966-842X(01)02012-1 10.1016/j.tim.2004.09.002 10.1038/s41576-019-0106-6 10.1098/rspb.2015.2154 10.1146/annurev-genet-102108-134304 10.1046/j.1365-2958.2001.02669.x 10.1128/AEM.01870-15 10.1016/j.chom.2015.07.002 10.1158/0008-5472.CAN-06-2618 10.1128/jb.169.1.371-379.1987 10.1021/ac501946m 10.1128/AEM.65.7.2847-2852.1999 10.3389/fcell.2020.00229 10.1016/j.ydbio.2014.04.001 10.1002/wnan.40 10.1128/AEM.03397-15 10.1002/bies.20343 10.1258/ebm.2010.010243 10.1371/journal.pcbi.1001004 10.1073/pnas.0700266104 10.1371/journal.pone.0179111 10.1006/bbrc.2000.3216 10.1016/S0168-1656(02)00285-7 10.1128/AEM.35.2.306-316.1978 10.1073/pnas.0609359104 10.1038/ncomms9924 10.1016/j.ijmm.2007.01.008 10.1073/pnas.94.20.10541 10.1128/AEM.66.9.4098-4104.2000 10.1038/s41396-018-0227-5 10.1073/pnas.1115719109 10.1046/j.1365-2958.1998.01062.x 10.1038/nrm1524 10.1016/j.cell.2006.06.054 10.1016/B978-0-12-374984-0.00225-4 10.1128/JB.01391-09 10.1128/JB.00172-15 10.1146/annurev.mi.49.100195.002421 10.1111/j.1462-5822.2007.00890.x 10.1046/j.1365-2958.2003.03674.x 10.1038/nrc3078 10.1073/pnas.0308052101 10.1073/pnas.1007333107 10.3389/fmars.2020.00527 10.1016/j.ceb.2011.11.008 10.1142/p303 10.1038/srep19616 10.1074/jbc.271.2.1232 10.1038/s41586-020-2033-2 10.1111/j.1365-2958.1996.tb02531.x 10.1186/1471-2148-7-106 10.1128/IAI.73.3.1820-1827.2005 10.1073/pnas.0506040102 10.1128/AEM.00287-09 10.1016/j.jcma.2017.07.012 10.1073/pnas.1501734112 10.1007/s10620-006-9285-z 10.1128/AEM.56.5.1501-1503.1990 10.1016/j.biomaterials.2012.04.027 10.1029/96JC01850 10.1073/pnas.111581598 10.1038/nrg3962 10.4324/9780203833582 10.1128/AAC.45.4.999-1007.2001 10.1016/j.biotechadv.2018.12.008 10.1128/jb.173.21.7033-7037.1991 10.1038/163280b0 10.1371/journal.pone.0102170 10.1016/S1369-5274(02)00320-X 10.1128/JB.00421-13 10.1186/s13059-015-0607-3 10.1046/j.1365-2958.1999.01624.x 10.1038/sj.cr.7290265 10.1186/1752-0509-5-151 10.3390/jcm8010087 10.1016/0092-8674(92)90247-A 10.1016/B978-012373944-5.00094-8 10.1186/s13100-017-0106-z 10.1038/s41576-019-0165-8 10.1128/JB.105.1.384-395.1971 10.1128/MMBR.00007-12 10.3748/wjg.v20.i19.5610 10.1128/JB.01501-06 10.1007/s11095-008-9697-x 10.1007/s11693-015-9174-x 10.1128/IAI.00039-12 10.1128/AEM.68.12.5789-5795.2002 10.1016/S1369-5274(00)00070-9 10.1016/j.cell.2006.07.032 10.1128/IAI.00407-12 10.1128/jb.176.8.2137-2142.1994 10.1128/JB.188.7.2656-2665.2006 10.1073/pnas.0905181106 10.1128/jb.168.3.1172-1179.1986 10.1371/journal.ppat.1003267 10.1128/JB.181.10.3310-3316.1999 10.1099/jmm.0.068023-0 10.1046/j.1365-2958.1998.01061.x 10.1128/IAI.00082-07 10.1073/pnas.1104824108 10.1007/s00109-010-0636-z 10.1128/AEM.65.1.163-168.1999 10.1371/journal.ppat.1006118 10.1002/bies.201300095 10.1111/j.1462-5822.2008.01118.x 10.1126/science.8456299 10.1007/82_2016_493 10.1007/s00203-014-1044-5 10.1128/IAI.02633-14 10.1128/JB.01196-10 10.1038/23512 10.1371/journal.ppat.1000540 10.1111/j.1574-6968.1993.tb06488.x 10.1016/j.mib.2005.02.008 10.1038/35041030 10.1146/annurev-marine-010213-135126 10.1073/pnas.0507959103 10.1371/journal.ppat.1004275 10.1126/science.282.5397.2254 10.1002/bies.201300072 10.1093/femsre/fux052 10.1128/JB.186.15.5052-5061.2004 10.1128/IAI.70.10.5877-5881.2002 10.1016/S1470-2045(03)01194-X 10.1007/s10544-014-9876-y 10.1074/jbc.M110908200 10.1016/S0968-0004(00)01770-9 10.1146/annurev-marine-010816-060656 10.1371/journal.pone.0150109 10.1038/nnano.2007.149 10.1146/annurev.cellbio.13.1.457 10.1128/AEM.63.10.4111-4115.1997 10.5670/oceanog.2009.109 10.1016/j.devcel.2010.06.012 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1002/jobm.202000661 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1521-4028 |
EndPage | 379 |
ExternalDocumentID | 33687766 10_1002_jobm_202000661 JOBM202000661 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 UB1 V2E VH1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WWD WXSBR WYISQ XG1 XPP XV2 ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM PKN 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 |
ID | FETCH-LOGICAL-c4441-4e1c6f82c50aad2bfaacda2c0cd4b5004b7dda8d2f8e7c3ed067099b06c8eb3f3 |
IEDL.DBID | DR2 |
ISSN | 0233-111X 1521-4028 |
IngestDate | Fri Jul 11 18:31:03 EDT 2025 Fri Jul 11 11:59:41 EDT 2025 Wed Feb 19 02:28:45 EST 2025 Thu Apr 24 23:01:36 EDT 2025 Tue Jul 01 00:43:52 EDT 2025 Wed Jan 22 16:29:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | flagella chemotactic pathways physiological importance and applications of bacterial chemotaxis bacterial chemotaxis Escherichia coli |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4441-4e1c6f82c50aad2bfaacda2c0cd4b5004b7dda8d2f8e7c3ed067099b06c8eb3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9741-6816 |
PMID | 33687766 |
PQID | 2499386224 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2552030123 proquest_miscellaneous_2499386224 pubmed_primary_33687766 crossref_citationtrail_10_1002_jobm_202000661 crossref_primary_10_1002_jobm_202000661 wiley_primary_10_1002_jobm_202000661_JOBM202000661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Journal of basic microbiology |
PublicationTitleAlternate | J Basic Microbiol |
PublicationYear | 2021 |
References | 2007; 104 2011; 236 2007; 189 1990; 56 2010; 107 2010; 19 2002; 277 2004; 5 2020; 10 2007; 75 2001; 45 2018; 42 2011; 193 2001; 42 2013; 9 2014; 20 2018; 9 2009; 95 2019; 20 2015; 81 1987; 510 2005; 102 2015; 83 2007; 297 2006; 28 1949; 163 1999; 181 2005; 73 2020; 578 2014; 16 2007; 9 2007; 7 2013; 195 2010; 192 2007; 2 2012; 24 1993; 259 2007; 67 2010; 6 1998; 282 2014; 10 2019; 8 1991; 173 1987; 169 2002; 5 2000; 66 2019; 37 1971; 105 2001; 26 2014; 391 2004; 428 2011; 5 2012; 33 2012; 109 2016; 283 2016; 11 2016; 6 2009; 75 1995; 49 2002; 68 2005; 8 2015; 112 2015; 197 2005; 5 1999; 34 2014; 36 2002; 70 2005; 15 2018; 12 1993; 113 2003; 101 2006; 188 2006; 103 2009; 106 1994; 176 2017; 2 2009; 43 2000; 3 2018; 81 2011; 11 2000; 2 1999; 400 1978; 35 2014; 63 1996; 101 2017; 9 2020; 8 2020; 7 1997; 94 2000 1997; 13 2003; 4 2016; 82 2014; 9 2006; 126 1996; 20 2001; 98 2004; 101 2009; 22 2004; 186 2012; 80 2015; 6 2015; 16 2015; 18 1997; 63 2009 1999; 65 2008; 10 2004 2000; 275 2007; 52 1992; 76 2015; 9 2015; 7 2012; 76 2009; 26 2014; 86 2010; 88 1992; 70 2011; 108 1986; 168 2013; 35 2004; 12 2001; 9 2017; 13 2017; 12 1996; 271 2016 2009; 5 2013 1998; 30 2009; 1 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_135_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_136_1 e_1_2_7_5_1 Armitage JP (e_1_2_7_20_1) 1992; 76 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_138_1 |
References_xml | – volume: 282 start-page: 2254 year: 1998 end-page: 6 article-title: Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria publication-title: Science – volume: 81 start-page: 7 year: 2018 end-page: 11 article-title: Bacterial biofilm and associated infections publication-title: J Chin Med Assoc – volume: 101 start-page: 11 year: 2003 end-page: 8 article-title: Evaluation of bacterial aerotaxis for its potential use in detecting the toxicity of chemicals to microorganisms publication-title: J Biotechnol – volume: 26 start-page: 235 year: 2009 end-page: 43 article-title: Intravascular delivery of particulate systems: does geometry really matter? publication-title: Pharm Res – volume: 11 year: 2016 article-title: Chemotaxis and binding of to scratch‐wounded human cystic fibrosis airway epithelial cells publication-title: PLOS One – volume: 67 start-page: 3201 year: 2007 end-page: 9 article-title: lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis publication-title: Cancer Res – volume: 9 start-page: 257 year: 2017 end-page: 81 article-title: Quorum sensing in marine microbial environments publication-title: Annu Rev Mar Sci – volume: 30 start-page: 295 year: 1998 end-page: 304 article-title: Flagellar and twitching motility are necessary for biofilm development publication-title: Mol Microbiol – volume: 34 start-page: 586 year: 1999 end-page: 95 article-title: Steps in the development of a El Tor biofilm publication-title: Mol Microbiol – volume: 68 start-page: 5789 year: 2002 end-page: 95 article-title: Bacterial chemotaxis toward environmental pollutants: role in bioremediation publication-title: Appl Environ Microbiol – volume: 83 start-page: 197 year: 2015 end-page: 204 article-title: Plasmid‐encoded MCP is involved in virulence, motility, and biofilm formation of ATCC 29544 publication-title: Infect Immun – volume: 20 start-page: 903 year: 1996 end-page: 10 article-title: Control of bacterial chemotaxis publication-title: Mol Microbiol – volume: 45 start-page: 999 year: 2001 end-page: 1007 article-title: Riddle of biofilm resistance publication-title: Antimicrob Agents Chemother – volume: 181 start-page: 3310 year: 1999 end-page: 6 article-title: NahY, a catabolic plasmid‐encoded receptor required for chemotaxis of to the aromatic hydrocarbon naphthalene publication-title: J Bacteriol – volume: 12 year: 2017 article-title: Optimal chemotactic responses in stochastic environments publication-title: PLOS One – volume: 9 year: 2013 article-title: uses energy taxis to benefit from intestinal inflammation publication-title: PLOS Pathog – volume: 192 start-page: 1193 year: 2010 end-page: 200 article-title: The chemoreceptor dimer is the unit of conformational coupling and transmembrane signaling publication-title: J Bacteriol – volume: 169 start-page: 371 year: 1987 end-page: 9 article-title: Phenol: a complex chemoeffector in bacterial chemotaxis publication-title: J Bacteriol – volume: 16 start-page: 50 year: 2015 article-title: Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes publication-title: Genome Biol – volume: 15 start-page: 52 year: 2005 end-page: 6 article-title: Signaling mechanisms for regulation of chemotaxis publication-title: Cell Res – volume: 10 start-page: 460 year: 2020 article-title: Flagella and swimming behavior of marine magnetotactic bacteria publication-title: Biomolecules – volume: 189 start-page: 6415 year: 2007 end-page: 24 article-title: The plant pathogen needs aerotaxis for normal biofilm formation and interactions with its tomato host publication-title: J Bacteriol – volume: 113 start-page: 63 year: 1993 end-page: 6 article-title: Chemotaxis away from thiocyanic and isothiocyanic esters in publication-title: FEMS Microbiol Lett – volume: 24 start-page: 262 year: 2012 end-page: 8 article-title: Responding to chemical gradients: bacterial chemotaxis publication-title: Curr Opin Cell Biol – volume: 8 start-page: 229 year: 2020 article-title: Horizontal gene transfer: from evolutionary flexibility to disease progression publication-title: Front Cell Dev Biol – volume: 80 start-page: 3713 year: 2012 end-page: 20 article-title: requires TlpD‐driven chemotaxis to proliferate in the antrum publication-title: Infect Immun – volume: 428 start-page: 437 year: 2004 end-page: 41 article-title: Functional interactions between receptors in bacterial chemotaxis publication-title: Nature – volume: 42 start-page: 777 year: 2001 end-page: 93 article-title: The LuxS‐dependent autoinducer AI‐2 controls the expression of an ABC transporter that functions in AI‐2 uptake in publication-title: Mol Microbiol – volume: 275 start-page: 129 year: 2000 end-page: 33 article-title: Chemotaxis and biodegradation of 3‐methyl‐ 4‐nitrophenol by sp. SJ98 publication-title: Biochem Biophys Res Commun – volume: 9 start-page: 1529 year: 2007 end-page: 37 article-title: Remote control of tumour‐targeted serovar Typhimurium by the use of ‐arabinose as inducer of bacterial gene expression in vivo publication-title: Cell Microbiol – volume: 173 start-page: 7033 year: 1991 end-page: 7 article-title: Evidence for interactions between MotA and MotB, torque‐generating elements of the flagellar motor of publication-title: J Bacteriol – volume: 7 start-page: 527 year: 2020 article-title: Cutting through the noise: bacterial chemotaxis in marine microenvironments publication-title: Front Mar Sci – volume: 104 start-page: 2885 year: 2007 end-page: 90 article-title: Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors publication-title: Proc Natl Acad Sci U S A – volume: 52 start-page: 2069 year: 2007 end-page: 77 article-title: Colonization and impact of disease and other factors on intestinal microbiota publication-title: Dig Dis Sci – volume: 108 start-page: 9390 year: 2011 end-page: 5 article-title: Core unit of chemotaxis signaling complexes publication-title: Proc Natl Acad Sci U S A – volume: 42 start-page: 42 year: 2018 article-title: The effect of bacterial chemotaxis on host infection and pathogenicity publication-title: FEMS Microbiol Rev – volume: 193 start-page: 768 year: 2011 end-page: 73 article-title: Chemotaxis to the quorum‐sensing signal AI‐2 requires the Tsr chemoreceptor and the periplasmic LsrB AI‐2‐binding protein publication-title: J Bacteriol – volume: 5 start-page: 151 year: 2011 article-title: Noise characteristics of the rotary motor publication-title: BMC Syst Biol – volume: 109 start-page: 3766 year: 2012 end-page: 71 article-title: Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins publication-title: Proc Natl Acad Sci U S A – volume: 168 start-page: 1172 year: 1986 end-page: 9 article-title: Genetic evidence for a switching and energy‐transducing complex in the flagellar motor of publication-title: J Bacteriol – volume: 105 start-page: 384 year: 1971 end-page: 95 article-title: Fine structure and isolation of the hook‐basal body complex of flagella from and publication-title: J Bacteriol – volume: 76 start-page: 667 year: 2012 end-page: 84 article-title: Interactions between diatoms and bacteria publication-title: Microbiol Mol Biol Rev – volume: 578 start-page: 588 year: 2020 end-page: 92 article-title: Bacterial coexistence driven by motility and spatial competition publication-title: Nature – volume: 35 start-page: 306 year: 1978 end-page: 16 article-title: Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum‐contaminated sediments publication-title: Appl Environ Microbiol – volume: 197 start-page: 211 year: 2015 end-page: 22 article-title: Variation in swimming speed of in response to attractant publication-title: Arch Microbiol – volume: 6 start-page: 8924 year: 2015 article-title: Migration and horizontal gene transfer divide microbial genomes into multiple niches publication-title: Nat Commun – volume: 49 start-page: 489 year: 1995 end-page: 520 article-title: How bacteria sense and swim publication-title: Annu Rev Microbiol – volume: 5 start-page: 266 year: 2002 end-page: 73 article-title: Bacterial chemotaxis to pollutants and plant‐derived aromatic molecules publication-title: Curr Opin Microbiol – start-page: 258 year: 2013 end-page: 61 – volume: 35 start-page: 1071 year: 2013 end-page: 82 article-title: Jumping the fine LINE between species: horizontal transfer of transposable elements in animals catalyses genome evolution publication-title: BioEssays – volume: 88 start-page: 763 year: 2010 end-page: 73 article-title: Salmonella‐allies in the fight against cancer publication-title: J Mol Med Berl Ger – volume: 9 start-page: 85 year: 2015 end-page: 95 article-title: Variation of swimming speed enhances the chemotactic migration of publication-title: Syst Synth Biol – volume: 8 start-page: 116 year: 2005 end-page: 21 article-title: Collaborative signaling by bacterial chemoreceptors publication-title: Curr Opin Microbiol – volume: 81 start-page: 7420 year: 2015 end-page: 30 article-title: Identification of the mcpA and mcpM genes, encoding methyl‐accepting proteins involved in amino acid and ‐malate chemotaxis, and involvement of McpM‐mediated chemotaxis in plant infection by (formerly phylotypes I and III) publication-title: Appl Environ Microbiol – volume: 86 start-page: 8376 year: 2014 end-page: 82 article-title: A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry publication-title: Anal Chem – volume: 5 start-page: 1024 year: 2004 end-page: 37 article-title: Making sense of it all: bacterial chemotaxis publication-title: Nat Rev Mol Cell Biol – volume: 80 start-page: 3170 year: 2012 end-page: 8 article-title: Mlp24 (McpX) of implicated in pathogenicity functions as a chemoreceptor for multiple amino acids publication-title: Infect Immun – volume: 12 start-page: 509 year: 2004 end-page: 17 article-title: Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa publication-title: Trends Microbiol – volume: 4 start-page: 548 year: 2003 end-page: 56 article-title: Bacteria as tumour‐targeting vectors publication-title: Lancet Oncol – volume: 112 start-page: E4381 year: 2015 end-page: 9 article-title: Mechanics of torque generation in the bacterial flagellar motor publication-title: Proc Natl Acad Sci U S A – volume: 22 start-page: 202 year: 2009 end-page: 11 article-title: Dissolved organic matter in the ocean: a controversy stimulates new insights publication-title: Oceanography – volume: 66 start-page: 4098 year: 2000 end-page: 104 article-title: Toluene‐degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene publication-title: Appl Environ Microbiol – volume: 12 start-page: 2736 year: 2018 end-page: 47 article-title: Chemotaxis of to major hormones and polyamines present in human gut publication-title: ISME J – volume: 400 start-page: 787 year: 1999 end-page: 92 article-title: Four‐helical‐bundle structure of the cytoplasmic domain of a serine chemotaxis receptor publication-title: Nature – volume: 36 start-page: 9 year: 2014 end-page: 20 article-title: Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution publication-title: BioEssays – volume: 7 start-page: 106 year: 2007 article-title: Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure publication-title: BMC Evol Biol – volume: 73 start-page: 1820 year: 2005 end-page: 7 article-title: Colonization and inflammation deficiencies in Mongolian gerbils infected by chemotaxis mutants publication-title: Infect Immun – volume: 19 start-page: 39 year: 2010 end-page: 53 article-title: Collective chemotaxis requires contact‐dependent cell polarity publication-title: Dev Cell – volume: 197 start-page: 3275 year: 2015 end-page: 82 article-title: Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a magnetotactic publication-title: J Bacteriol – volume: 26 start-page: 257 year: 2001 end-page: 65 article-title: Transmembrane signaling in bacterial chemoreceptors publication-title: Trends Biochem Sci – volume: 297 start-page: 151 year: 2007 end-page: 62 article-title: Tumor‐specific colonization, tissue distribution, and gene induction by probiotic Nissle 1917 in live mice publication-title: Int J Med Microbiol – volume: 277 year: 2002 end-page: 9 article-title: CheW binding interactions with CheA and Tar importance for chemotaxis signaling in publication-title: J Biol Chem – volume: 5 start-page: 161 year: 2005 end-page: 71 article-title: Cancer nanotechnology: opportunities and challenges publication-title: Nat Rev Cancer – volume: 63 start-page: 4111 year: 1997 end-page: 5 article-title: Chemotaxis of spp. to the polyaromatic hydrocarbon naphthalene publication-title: Appl Environ Microbiol – volume: 94 year: 1997 end-page: 6 article-title: The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for behavior publication-title: Proc Natl Acad Sci U S A – volume: 1 start-page: 391 year: 2009 end-page: 404 article-title: Top‐down particle fabrication: control of size and shape for diagnostic imaging and drug delivery publication-title: Wiley Interdiscip Rev Nanomed Nanobiotechnol – volume: 2 start-page: 441 year: 2007 end-page: 9 article-title: Bacteria‐mediated delivery of nanoparticles and cargo into cells publication-title: Nat Nanotechnol – volume: 188 start-page: 2656 year: 2006 end-page: 65 article-title: The chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa publication-title: J Bacteriol – volume: 9 year: 2014 article-title: Multiple phenotypic changes associated with large‐scale horizontal gene transfer publication-title: PLOS One – volume: 63 start-page: 343 year: 2014 end-page: 54 article-title: Methyl‐accepting chemotaxis proteins 3 and 4 are responsible for chemotaxis and jejuna colonization in mice in response to sodium deoxycholate publication-title: J Med Microbiol – volume: 43 start-page: 197 year: 2009 end-page: 222 article-title: Bacterial quorum‐sensing network architectures publication-title: Annu Rev Genet – volume: 189 start-page: 1756 year: 2007 end-page: 64 article-title: On torque and tumbling in swimming publication-title: J Bacteriol – volume: 65 start-page: 163 year: 1999 end-page: 8 article-title: Bacterial adhesion to soil contaminants in the presence of surfactants publication-title: Appl Environ Microbiol – year: 2004 – start-page: 185 year: 2016 end-page: 205 – volume: 5 year: 2009 article-title: semi‐automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in virulence publication-title: PLOS Pathog – volume: 101 start-page: 5018 year: 2004 end-page: 23 article-title: Both chemotaxis and net motility greatly influence the infectivity of publication-title: Proc Natl Acad Sci U S A – volume: 126 start-page: 969 year: 2006 end-page: 80 article-title: Plant stomata function in innate immunity against bacterial invasion publication-title: Cell – volume: 82 start-page: 1205 year: 2016 end-page: 14 article-title: Enhancement of swimming speed leads to a more‐efficient chemotactic response to repellent publication-title: Appl Environ Microbiol – volume: 107 year: 2010 end-page: 9 article-title: Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor publication-title: Proc Natl Acad Sci U S A – volume: 20 start-page: 5610 year: 2014 end-page: 24 article-title: Factors that mediate colonization of the human stomach by publication-title: World J Gastroenterol – volume: 163 start-page: 280 year: 1949 end-page: 2 article-title: X‐ray diffraction study of the structure of bacterial flagella publication-title: Nature – volume: 18 start-page: 147 year: 2015 end-page: 56 article-title: Chemodetection and destruction of host urea allows to locate the epithelium publication-title: Cell Host Microbe – volume: 37 start-page: 259 year: 2019 end-page: 70 article-title: ‐mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy publication-title: Biotechnol Adv – volume: 13 year: 2017 article-title: Multiple acid sensors control colonization of the stomach publication-title: PLOS Pathog – volume: 6 year: 2016 article-title: The role of motility and chemotaxis in the bacterial colonization of protected surfaces publication-title: Sci Rep – volume: 95 start-page: 149 year: 2009 end-page: 58 article-title: An aer mutant exhibits a reduced ability to colonize the streptomycin‐treated mouse large intestine publication-title: Antonie Van Leeuwenhoek – volume: 8 start-page: 87 year: 2019 article-title: Altered adipose tissue DNA methylation status in metabolic syndrome: relationships between global DNA methylation and specific methylation at adipogenic, lipid metabolism and inflammatory candidate genes and metabolic variables publication-title: J Clin Med – volume: 33 start-page: 5504 year: 2012 end-page: 13 article-title: The preferential targeting of the diseased microvasculature by disk‐like particles publication-title: Biomaterials – volume: 9 start-page: 1 year: 2018 article-title: Long interspersed nuclear element‐1 expression and retrotransposition in prostate cancer cells publication-title: Mob DNA – volume: 195 start-page: 3596 year: 2013 end-page: 602 article-title: Chemoreceptor gene loss and acquisition via horizontal gene transfer in publication-title: J Bacteriol – volume: 186 start-page: 5052 year: 2004 end-page: 61 article-title: Three‐dimensional electron microscopic imaging of membrane invaginations in overproducing the chemotaxis receptor Tsr publication-title: J Bacteriol – volume: 28 start-page: 9 year: 2006 end-page: 22 article-title: Signal transduction in bacterial chemotaxis publication-title: BioEssays – volume: 2 start-page: 792 year: 2000 end-page: 6 article-title: Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis publication-title: Nat Cell Biol – volume: 76 start-page: 451 year: 1992 end-page: 77 article-title: Bacterial motility and chemotaxis publication-title: Sci Prog – volume: 75 start-page: 5308 year: 2009 end-page: 14 article-title: Energy taxis drives toward the most favorable conditions for growth publication-title: Appl Environ Microbiol – volume: 101 start-page: 20543 year: 1996 end-page: 52 article-title: Seasonal variability of particulate organic radiocarbon in the northeast Pacific Ocean publication-title: J Geophys Res Oceans – volume: 7 start-page: 185 year: 2015 end-page: 205 article-title: The size‐reactivity continuum of major bioelements in the ocean publication-title: Annu Rev Mar Sci – volume: 16 start-page: 717 year: 2014 end-page: 25 article-title: Directed transport of bacteria‐based drug delivery vehicles: bacterial chemotaxis dominates particle shape publication-title: Biomed Microdevices – volume: 391 start-page: 1 year: 2014 end-page: 16 article-title: Cell signaling during development of publication-title: Dev Biol – volume: 11 start-page: 573 year: 2011 end-page: 87 article-title: Chemotaxis in cancer publication-title: Nat Rev Cancer – year: 2000 – volume: 259 start-page: 1717 year: 1993 end-page: 23 article-title: Polar location of the chemoreceptor complex in the cell publication-title: Science – volume: 271 start-page: 1232 year: 1996 end-page: 6 article-title: Mutants with defective phosphatase activity show no phosphorylation‐dependent oligomerization of CheZ. The phosphatase of bacterial chemotaxis publication-title: J Biol Chem – volume: 6 year: 2010 article-title: A minimal model of metabolism‐based chemotaxis publication-title: PLOS Comput Biol – volume: 65 start-page: 2847 year: 1999 end-page: 52 article-title: Quantification of chemotaxis to naphthalene by G7 publication-title: Appl Environ Microbiol – volume: 13 start-page: 457 year: 1997 end-page: 512 article-title: The two‐component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes publication-title: Annu Rev Cell Dev Biol – volume: 3 start-page: 165 year: 2000 end-page: 70 article-title: Two‐component and phosphorelay signal transduction publication-title: Curr Opin Microbiol – volume: 2 start-page: 1 year: 2017 end-page: 12 article-title: Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships publication-title: Nat Microbiol – volume: 70 start-page: 975 year: 1992 end-page: 82 article-title: Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway publication-title: Cell – volume: 30 start-page: 285 year: 1998 end-page: 93 article-title: Genetic analysis of biofilm formation: roles of flagella, motility, chemotaxis and type I pili publication-title: Mol Microbiol – volume: 126 start-page: 1095 year: 2006 end-page: 108 article-title: Ligand‐induced asymmetry in histidine sensor kinase complex regulates quorum sensing publication-title: Cell – volume: 176 start-page: 2137 year: 1994 end-page: 42 article-title: Biofilms, the customized microniche publication-title: J Bacteriol – volume: 283 year: 2016 article-title: Bacterial predator–prey dynamics in microscale patchy landscapes publication-title: Proc R Soc B Biol Sci – volume: 20 start-page: 417 year: 2019 end-page: 31 article-title: Regulation of transposable elements by DNA modifications publication-title: Nat Rev Genet – volume: 75 start-page: 3747 year: 2007 end-page: 57 article-title: chemotaxis modulates inflammation and bacterium‐gastric epithelium interactions in infected mice publication-title: Infect Immun – volume: 102 year: 2005 end-page: 8 article-title: Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies publication-title: Proc Natl Acad Sci USA – volume: 103 start-page: 1260 year: 2006 end-page: 5 article-title: Torque–speed relationship of the bacterial flagellar motor publication-title: Proc Natl Acad Sci U S A – volume: 20 start-page: 760 year: 2019 end-page: 72 article-title: Transposable elements in human genetic disease publication-title: Nat Rev Genet – start-page: 447 year: 2009 end-page: 63 – volume: 9 start-page: 222 year: 2001 end-page: 7 article-title: The biofilm matrix—an immobilized but dynamic microbial environment publication-title: Trends Microbiol – volume: 56 start-page: 1501 year: 1990 end-page: 3 article-title: Chemotaxis of toward chlorinated benzoates publication-title: Appl Environ Microbiol – volume: 236 start-page: 20 year: 2011 end-page: 9 article-title: Shape‐specific polymeric nanomedicine: emerging opportunities and challenges publication-title: Exp Biol Med (Maywood) – volume: 104 start-page: 7116 year: 2007 end-page: 21 article-title: Stepwise formation of the bacterial flagellar system publication-title: Proc Natl Acad Sci U S A – volume: 10 year: 2014 article-title: Motility and chemotaxis mediate the preferential colonization of gastric injury sites by publication-title: PLOS Pathog – volume: 70 start-page: 5877 year: 2002 end-page: 81 article-title: Two predicted chemoreceptors of promote stomach infection publication-title: Infect Immun – volume: 10 start-page: 1166 year: 2008 end-page: 80 article-title: Motility allows . Typhimurium to benefit from the mucosal defence publication-title: Cell Microbiol – volume: 106 year: 2009 end-page: 6 article-title: Universal architecture of bacterial chemoreceptor arrays publication-title: Proc Natl Acad Sci U S A – volume: 510 start-page: 9 year: 1987 end-page: 15 article-title: Sensory transduction in flagellate bacteria publication-title: Ann NY Acad Sci – volume: 98 start-page: 6889 year: 2001 end-page: 94 article-title: Selection for in vivo regulators of bacterial virulence publication-title: Proc Natl Acad Sci U S A – volume: 16 start-page: 472 year: 2015 end-page: 82 article-title: Horizontal gene transfer: building the web of life publication-title: Nat Rev Genet – ident: e_1_2_7_102_1 doi: 10.3390/biom10030460 – ident: e_1_2_7_100_1 doi: 10.1038/nmicrobiol.2017.65 – ident: e_1_2_7_93_1 doi: 10.1128/JB.00398-07 – ident: e_1_2_7_55_1 doi: 10.1111/j.1749-6632.1987.tb43459.x – ident: e_1_2_7_78_1 doi: 10.1007/s10482-008-9298-z – ident: e_1_2_7_130_1 doi: 10.1038/nrc1566 – ident: e_1_2_7_59_1 doi: 10.1016/S0966-842X(01)02012-1 – ident: e_1_2_7_8_1 doi: 10.1016/j.tim.2004.09.002 – ident: e_1_2_7_122_1 doi: 10.1038/s41576-019-0106-6 – ident: e_1_2_7_104_1 doi: 10.1098/rspb.2015.2154 – ident: e_1_2_7_65_1 doi: 10.1146/annurev-genet-102108-134304 – ident: e_1_2_7_71_1 doi: 10.1046/j.1365-2958.2001.02669.x – ident: e_1_2_7_92_1 doi: 10.1128/AEM.01870-15 – ident: e_1_2_7_86_1 doi: 10.1016/j.chom.2015.07.002 – ident: e_1_2_7_138_1 doi: 10.1158/0008-5472.CAN-06-2618 – ident: e_1_2_7_16_1 doi: 10.1128/jb.169.1.371-379.1987 – ident: e_1_2_7_97_1 doi: 10.1021/ac501946m – ident: e_1_2_7_27_1 doi: 10.1128/AEM.65.7.2847-2852.1999 – ident: e_1_2_7_117_1 doi: 10.3389/fcell.2020.00229 – ident: e_1_2_7_6_1 doi: 10.1016/j.ydbio.2014.04.001 – ident: e_1_2_7_134_1 doi: 10.1002/wnan.40 – ident: e_1_2_7_25_1 doi: 10.1128/AEM.03397-15 – ident: e_1_2_7_39_1 doi: 10.1002/bies.20343 – ident: e_1_2_7_132_1 doi: 10.1258/ebm.2010.010243 – ident: e_1_2_7_26_1 doi: 10.1371/journal.pcbi.1001004 – ident: e_1_2_7_54_1 doi: 10.1073/pnas.0700266104 – ident: e_1_2_7_23_1 doi: 10.1371/journal.pone.0179111 – ident: e_1_2_7_110_1 doi: 10.1006/bbrc.2000.3216 – ident: e_1_2_7_116_1 doi: 10.1016/S0168-1656(02)00285-7 – ident: e_1_2_7_112_1 doi: 10.1128/AEM.35.2.306-316.1978 – ident: e_1_2_7_75_1 doi: 10.1073/pnas.0609359104 – ident: e_1_2_7_126_1 doi: 10.1038/ncomms9924 – ident: e_1_2_7_137_1 doi: 10.1016/j.ijmm.2007.01.008 – ident: e_1_2_7_33_1 doi: 10.1073/pnas.94.20.10541 – ident: e_1_2_7_111_1 doi: 10.1128/AEM.66.9.4098-4104.2000 – ident: e_1_2_7_142_1 doi: 10.1038/s41396-018-0227-5 – ident: e_1_2_7_46_1 doi: 10.1073/pnas.1115719109 – ident: e_1_2_7_61_1 doi: 10.1046/j.1365-2958.1998.01062.x – ident: e_1_2_7_14_1 doi: 10.1038/nrm1524 – ident: e_1_2_7_94_1 doi: 10.1016/j.cell.2006.06.054 – ident: e_1_2_7_35_1 doi: 10.1016/B978-0-12-374984-0.00225-4 – ident: e_1_2_7_43_1 doi: 10.1128/JB.01391-09 – ident: e_1_2_7_21_1 doi: 10.1128/JB.00172-15 – ident: e_1_2_7_40_1 doi: 10.1146/annurev.mi.49.100195.002421 – ident: e_1_2_7_136_1 doi: 10.1111/j.1462-5822.2007.00890.x – ident: e_1_2_7_67_1 doi: 10.1046/j.1365-2958.2003.03674.x – ident: e_1_2_7_4_1 doi: 10.1038/nrc3078 – ident: e_1_2_7_9_1 doi: 10.1073/pnas.0308052101 – ident: e_1_2_7_22_1 doi: 10.1073/pnas.1007333107 – ident: e_1_2_7_99_1 doi: 10.3389/fmars.2020.00527 – ident: e_1_2_7_24_1 doi: 10.1016/j.ceb.2011.11.008 – ident: e_1_2_7_18_1 doi: 10.1142/p303 – ident: e_1_2_7_77_1 doi: 10.1038/srep19616 – ident: e_1_2_7_41_1 doi: 10.1074/jbc.271.2.1232 – ident: e_1_2_7_106_1 doi: 10.1038/s41586-020-2033-2 – ident: e_1_2_7_17_1 doi: 10.1111/j.1365-2958.1996.tb02531.x – ident: e_1_2_7_128_1 doi: 10.1186/1471-2148-7-106 – ident: e_1_2_7_83_1 doi: 10.1128/IAI.73.3.1820-1827.2005 – ident: e_1_2_7_68_1 doi: 10.1073/pnas.0506040102 – ident: e_1_2_7_87_1 doi: 10.1128/AEM.00287-09 – ident: e_1_2_7_58_1 doi: 10.1016/j.jcma.2017.07.012 – ident: e_1_2_7_53_1 doi: 10.1073/pnas.1501734112 – ident: e_1_2_7_76_1 doi: 10.1007/s10620-006-9285-z – ident: e_1_2_7_108_1 doi: 10.1128/AEM.56.5.1501-1503.1990 – ident: e_1_2_7_133_1 doi: 10.1016/j.biomaterials.2012.04.027 – ident: e_1_2_7_96_1 doi: 10.1029/96JC01850 – ident: e_1_2_7_89_1 doi: 10.1073/pnas.111581598 – ident: e_1_2_7_119_1 doi: 10.1038/nrg3962 – ident: e_1_2_7_5_1 doi: 10.4324/9780203833582 – ident: e_1_2_7_60_1 doi: 10.1128/AAC.45.4.999-1007.2001 – ident: e_1_2_7_107_1 doi: 10.1016/j.biotechadv.2018.12.008 – ident: e_1_2_7_51_1 doi: 10.1128/jb.173.21.7033-7037.1991 – ident: e_1_2_7_49_1 doi: 10.1038/163280b0 – ident: e_1_2_7_127_1 doi: 10.1371/journal.pone.0102170 – ident: e_1_2_7_114_1 doi: 10.1016/S1369-5274(02)00320-X – ident: e_1_2_7_129_1 doi: 10.1128/JB.00421-13 – ident: e_1_2_7_118_1 doi: 10.1186/s13059-015-0607-3 – ident: e_1_2_7_63_1 doi: 10.1046/j.1365-2958.1999.01624.x – ident: e_1_2_7_2_1 doi: 10.1038/sj.cr.7290265 – ident: e_1_2_7_34_1 doi: 10.1186/1752-0509-5-151 – ident: e_1_2_7_125_1 doi: 10.3390/jcm8010087 – ident: e_1_2_7_36_1 doi: 10.1016/0092-8674(92)90247-A – ident: e_1_2_7_31_1 doi: 10.1016/B978-012373944-5.00094-8 – ident: e_1_2_7_123_1 doi: 10.1186/s13100-017-0106-z – ident: e_1_2_7_124_1 doi: 10.1038/s41576-019-0165-8 – ident: e_1_2_7_48_1 doi: 10.1128/JB.105.1.384-395.1971 – ident: e_1_2_7_103_1 doi: 10.1128/MMBR.00007-12 – ident: e_1_2_7_56_1 doi: 10.3748/wjg.v20.i19.5610 – ident: e_1_2_7_19_1 doi: 10.1128/JB.01501-06 – ident: e_1_2_7_131_1 doi: 10.1007/s11095-008-9697-x – ident: e_1_2_7_30_1 doi: 10.1007/s11693-015-9174-x – ident: e_1_2_7_90_1 doi: 10.1128/IAI.00039-12 – ident: e_1_2_7_7_1 doi: 10.1128/AEM.68.12.5789-5795.2002 – ident: e_1_2_7_13_1 doi: 10.1016/S1369-5274(00)00070-9 – ident: e_1_2_7_69_1 doi: 10.1016/j.cell.2006.07.032 – ident: e_1_2_7_85_1 doi: 10.1128/IAI.00407-12 – ident: e_1_2_7_57_1 doi: 10.1128/jb.176.8.2137-2142.1994 – ident: e_1_2_7_84_1 doi: 10.1128/JB.188.7.2656-2665.2006 – ident: e_1_2_7_42_1 doi: 10.1073/pnas.0905181106 – ident: e_1_2_7_50_1 doi: 10.1128/jb.168.3.1172-1179.1986 – ident: e_1_2_7_79_1 doi: 10.1371/journal.ppat.1003267 – ident: e_1_2_7_113_1 doi: 10.1128/JB.181.10.3310-3316.1999 – ident: e_1_2_7_88_1 doi: 10.1099/jmm.0.068023-0 – ident: e_1_2_7_62_1 doi: 10.1046/j.1365-2958.1998.01061.x – ident: e_1_2_7_73_1 doi: 10.1128/IAI.00082-07 – ident: e_1_2_7_45_1 doi: 10.1073/pnas.1104824108 – ident: e_1_2_7_140_1 doi: 10.1007/s00109-010-0636-z – ident: e_1_2_7_64_1 doi: 10.1128/AEM.65.1.163-168.1999 – ident: e_1_2_7_82_1 doi: 10.1371/journal.ppat.1006118 – ident: e_1_2_7_121_1 doi: 10.1002/bies.201300095 – ident: e_1_2_7_12_1 doi: 10.1111/j.1462-5822.2008.01118.x – ident: e_1_2_7_66_1 doi: 10.1126/science.8456299 – ident: e_1_2_7_72_1 doi: 10.1007/82_2016_493 – ident: e_1_2_7_29_1 doi: 10.1007/s00203-014-1044-5 – ident: e_1_2_7_91_1 doi: 10.1128/IAI.02633-14 – ident: e_1_2_7_70_1 doi: 10.1128/JB.01196-10 – volume: 76 start-page: 451 year: 1992 ident: e_1_2_7_20_1 article-title: Bacterial motility and chemotaxis publication-title: Sci Prog – ident: e_1_2_7_32_1 doi: 10.1038/23512 – ident: e_1_2_7_74_1 doi: 10.1371/journal.ppat.1000540 – ident: e_1_2_7_115_1 doi: 10.1111/j.1574-6968.1993.tb06488.x – ident: e_1_2_7_28_1 doi: 10.1016/j.mib.2005.02.008 – ident: e_1_2_7_44_1 doi: 10.1038/35041030 – ident: e_1_2_7_98_1 doi: 10.1146/annurev-marine-010213-135126 – ident: e_1_2_7_52_1 doi: 10.1073/pnas.0507959103 – ident: e_1_2_7_11_1 doi: 10.1371/journal.ppat.1004275 – ident: e_1_2_7_101_1 doi: 10.1126/science.282.5397.2254 – ident: e_1_2_7_120_1 doi: 10.1002/bies.201300072 – ident: e_1_2_7_10_1 doi: 10.1093/femsre/fux052 – ident: e_1_2_7_47_1 doi: 10.1128/JB.186.15.5052-5061.2004 – ident: e_1_2_7_81_1 doi: 10.1128/IAI.70.10.5877-5881.2002 – ident: e_1_2_7_135_1 doi: 10.1016/S1470-2045(03)01194-X – ident: e_1_2_7_141_1 doi: 10.1007/s10544-014-9876-y – ident: e_1_2_7_38_1 doi: 10.1074/jbc.M110908200 – ident: e_1_2_7_37_1 doi: 10.1016/S0968-0004(00)01770-9 – ident: e_1_2_7_105_1 doi: 10.1146/annurev-marine-010816-060656 – ident: e_1_2_7_80_1 doi: 10.1371/journal.pone.0150109 – ident: e_1_2_7_139_1 doi: 10.1038/nnano.2007.149 – ident: e_1_2_7_15_1 doi: 10.1146/annurev.cellbio.13.1.457 – ident: e_1_2_7_109_1 doi: 10.1128/AEM.63.10.4111-4115.1997 – ident: e_1_2_7_95_1 doi: 10.5670/oceanog.2009.109 – ident: e_1_2_7_3_1 doi: 10.1016/j.devcel.2010.06.012 |
SSID | ssj0009929 |
Score | 2.521923 |
SecondaryResourceType | review_article |
Snippet | Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 366 |
SubjectTerms | bacterial chemotaxis biofilm bioremediation chemoreceptors chemotactic pathways chemotaxis drugs Escherichia coli flagella flagellum horizontal gene transfer industry pathogenesis physiological importance and applications of bacterial chemotaxis toxic substances |
Title | State of the art of bacterial chemotaxis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjobm.202000661 https://www.ncbi.nlm.nih.gov/pubmed/33687766 https://www.proquest.com/docview/2499386224 https://www.proquest.com/docview/2552030123 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB6kIPriUa94EUHQl7TpbpJNHrVYSqEKYqFvYa-AB43YFtRf7-ymiVZRQd8S2E02c2S_SWa-ATjOtK9iplteJNGCAx5JD02ZeEQEimWm9tGSVfcvo-4g6A3D4Ycq_oIfovrgZjzDvq-Ng3Mxbr6Tht7lwlSS21ITG_-YhC2Diq7f-aOSxLYpw32JeujUw5K10SfN-enzu9IXqDmPXO3W01kFXi66yDi5b0wnoiFfP_E5_uep1mBlhkvds8KQ1mFBj-qwWHSqfKnDUrtsDLcBpxagunnmInh00fTMoShYn_ESaAWofv58O96EQefipt31Zg0XPBkgLPIC3ZJRFhMZ-pwrIjLOpeJE-lIFIkR3EkwpHiuSxZpJqpUp8kkS4aOiMSjP6BbURvlI74ArpSKmgQQPGQ2EZAnJqGnzQ1uSG4IdB7xS4KmcsZGbphgPacGjTFIjibSShAMn1fjHgofj25FHpf5SFIz5_8FHOp-OU4w0E4oRHAl-GBOGxESJhDqwXSi_uh-lUcxYFDlArAp_WUjauzrvV2e7f5m0B8vE5NDYBMt9qE2epvoAQdBEHFpDfwNSSPtR |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5EkfrifdQzgqAvqeluzkctSq22gij0LewV8KAVbUH99c5smkgVFfQtgd0cc2RnNjPfB7CXGU_Hkam7oUIL9kWoXDRl5jLp6yij3kcLVt3uhM0bv9UNimpC6oXJ8SHKDTfyDPu9JgenDenDD9TQu76kVnLba0IJ0BTRetus6uoDQSpJLFEZrkzcRbfuFriNHjscnz--Ln0JNsdjV7v4nM6BLB47rzm5rw0HsqbePiE6_uu95mF2FJo6R7ktLcCE6S3CdE5W-boIlUbBDbcEBzZGdfqZg_Gjg9ZHhzIHfsZLoCGgBYiX2-dluDk9uW403RHngqt8jIxc39RVmMVMBZ4QmslMCKUFU57SvgzQo2SktYg1y2ITKW409fkkifRQ15iXZ3wFJnv9nlkDRynNiENCBBH3pYoSlnFi-uF1JQhjpwpuIfFUjQDJiRfjIc2hlFlKkkhLSVRhvxz_mENxfDtyt1BgioKhXyCiZ_rD5xSTzYRjEsf8H8YEAaNEkfEqrObaL-_HeRhHURhWgVkd_vIgaevyuF2erf9l0g5Umtfti_TirHO-ATOMSmpsveUmTA6ehmYLY6KB3LZW_w4Vf_9s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5E8XjxPuoZQdCXaLq7uR61WrwVUehb2BM8aEVbUH-9s5smtYoK-pbAbrKZ-SY7k8x8A7BhdKCSWFf9SCKCGY-kj1AmPhFMxcbWPjqy6rPz6PCGHTfCxocq_pwfovzgZi3Dva-tgT8qs9MjDb1rCVtJ7kpNbPwzxKIgsbjev-oRSKWp61OGGxP10aobBW1jQHb65_dvS198zX7X1e099QngxarzlJP77U5bbMu3T4SO_3msSRjvOqbebo6kKRjQzWkYzltVvk7DaK3oDDcDW85D9VrGQ-_RQ-zZQ5HTPuMlEAaof_5y-zwLN_WD69qh3-244EuGfpHPdFVGJiEyDDhXRBjOpeJEBlIxEaI9iVgpnihiEh1LqpWt8klTEaCmMSo3dA4Gm62mXgBPSkVsBwkexpQJGafEUNvnh1Yltww7FfALgWeyS0duu2I8ZDmRMsmsJLJSEhXYLMc_5kQc345cL_SXoWDsDxDe1K3Oc4ahZkoxhCPshzFhSGyYSGgF5nPll_ejNEriOIoqQJwKf1lIdnyxd1aeLf5l0hqMXO7Xs9Oj85MlGCM2n8YlWy7DYPupo1fQIWqLVYf5dyZ4_iQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+the+art+of+bacterial+chemotaxis&rft.jtitle=Journal+of+basic+microbiology&rft.au=Karmakar%2C+Richa&rft.date=2021-05-01&rft.eissn=1521-4028&rft.volume=61&rft.issue=5&rft.spage=366&rft_id=info:doi/10.1002%2Fjobm.202000661&rft_id=info%3Apmid%2F33687766&rft.externalDocID=33687766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-111X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-111X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-111X&client=summon |