More than iso/anisohydry Hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates

The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits. Using a common g...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 33; no. 6; pp. 1035 - 1049
Main Authors Li, Ximeng, Blackman, Chris J., Peters, Jennifer M. R., Choat, Brendan, Rymer, Paul D., Medlyn, Belinda E., Tissue, David T.
Format Journal Article
LanguageEnglish
Published London Wiley 01.06.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits. Using a common garden experiment, we compared and contrasted four metrics commonly used to describe water use strategy during drought in 10 eucalyptus species comprising four major ecosystems in eastern Australia. We examined the degree to which these metrics were aligned with key stomatal and hydraulic traits related to plant water use and drought tolerance. Species rankings of water use strategy were inconsistent across four metrics. A newer metric (Hydroscape) was strongly linked to various plant traits, including the leaf turgor loss (TLP), water potential at stomatal closure (Pgs90), leaf and stem hydraulic vulnerability to embolism (PL50 and Px50), safety margin of hydraulic segmentation (HSMHS), maximum stomatal conductance (gsmax) and Huber value (HV). In addition, Hydroscape was correlated with climatic variables representing the water availability at the seed source site. Along the continuum of water regulation strategy, species with narrow Hydroscapes tended to occupy mesic regions and exhibit high TLP, PL50 and Px50 values and narrow HSMHS. High gsmax recorded in species with broad hydroscapes was also associated with high HV. Despite a fourfold difference in Hydroscape area, all species closed their stomata prior to the onset of hydraulic dysfunction, suggesting a common stomatal response across species that minimizes embolism risk during drought. Hydroscape area is useful in bridging stomatal regulation, hydraulic architecture and species drought tolerance, thus providing insight into species water use strategies. A plain language summary is available for this article. Plain Language Summary
AbstractList The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits. Using a common garden experiment, we compared and contrasted four metrics commonly used to describe water use strategy during drought in 10 eucalyptus species comprising four major ecosystems in eastern Australia. We examined the degree to which these metrics were aligned with key stomatal and hydraulic traits related to plant water use and drought tolerance. Species rankings of water use strategy were inconsistent across four metrics. A newer metric (Hydroscape) was strongly linked to various plant traits, including the leaf turgor loss (TLP), water potential at stomatal closure ( P gs90 ), leaf and stem hydraulic vulnerability to embolism ( P L50 and P x50 ), safety margin of hydraulic segmentation (HSM HS ), maximum stomatal conductance ( g smax ) and Huber value (HV). In addition, Hydroscape was correlated with climatic variables representing the water availability at the seed source site. Along the continuum of water regulation strategy, species with narrow Hydroscapes tended to occupy mesic regions and exhibit high TLP, P L50 and P x50 values and narrow HSM HS . High g smax recorded in species with broad hydroscapes was also associated with high HV. Despite a fourfold difference in Hydroscape area, all species closed their stomata prior to the onset of hydraulic dysfunction, suggesting a common stomatal response across species that minimizes embolism risk during drought. Hydroscape area is useful in bridging stomatal regulation, hydraulic architecture and species drought tolerance, thus providing insight into species water use strategies. A plain language summary is available for this article.
The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits. Using a common garden experiment, we compared and contrasted four metrics commonly used to describe water use strategy during drought in 10 eucalyptus species comprising four major ecosystems in eastern Australia. We examined the degree to which these metrics were aligned with key stomatal and hydraulic traits related to plant water use and drought tolerance. Species rankings of water use strategy were inconsistent across four metrics. A newer metric (Hydroscape) was strongly linked to various plant traits, including the leaf turgor loss (TLP), water potential at stomatal closure (Pgs90), leaf and stem hydraulic vulnerability to embolism (PL50 and Px50), safety margin of hydraulic segmentation (HSMHS), maximum stomatal conductance (gsmax) and Huber value (HV). In addition, Hydroscape was correlated with climatic variables representing the water availability at the seed source site. Along the continuum of water regulation strategy, species with narrow Hydroscapes tended to occupy mesic regions and exhibit high TLP, PL50 and Px50 values and narrow HSMHS. High gsmax recorded in species with broad hydroscapes was also associated with high HV. Despite a fourfold difference in Hydroscape area, all species closed their stomata prior to the onset of hydraulic dysfunction, suggesting a common stomatal response across species that minimizes embolism risk during drought. Hydroscape area is useful in bridging stomatal regulation, hydraulic architecture and species drought tolerance, thus providing insight into species water use strategies. A plain language summary is available for this article. Plain Language Summary
The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits.Using a common garden experiment, we compared and contrasted four metrics commonly used to describe water use strategy during drought in 10 eucalyptus species comprising four major ecosystems in eastern Australia. We examined the degree to which these metrics were aligned with key stomatal and hydraulic traits related to plant water use and drought tolerance.Species rankings of water use strategy were inconsistent across four metrics. A newer metric (Hydroscape) was strongly linked to various plant traits, including the leaf turgor loss (TLP), water potential at stomatal closure (Pgs90), leaf and stem hydraulic vulnerability to embolism (PL50 and Px50), safety margin of hydraulic segmentation (HSMHS), maximum stomatal conductance (gsmax) and Huber value (HV). In addition, Hydroscape was correlated with climatic variables representing the water availability at the seed source site.Along the continuum of water regulation strategy, species with narrow Hydroscapes tended to occupy mesic regions and exhibit high TLP, PL50 and Px50 values and narrow HSMHS. High gsmax recorded in species with broad hydroscapes was also associated with high HV.Despite a fourfold difference in Hydroscape area, all species closed their stomata prior to the onset of hydraulic dysfunction, suggesting a common stomatal response across species that minimizes embolism risk during drought. Hydroscape area is useful in bridging stomatal regulation, hydraulic architecture and species drought tolerance, thus providing insight into species water use strategies.A plain language summary is available for this article.
Author Peters, Jennifer M. R.
Tissue, David T.
Blackman, Chris J.
Rymer, Paul D.
Medlyn, Belinda E.
Li, Ximeng
Choat, Brendan
Author_xml – sequence: 1
  givenname: Ximeng
  surname: Li
  fullname: Li, Ximeng
– sequence: 2
  givenname: Chris J.
  surname: Blackman
  fullname: Blackman, Chris J.
– sequence: 3
  givenname: Jennifer M. R.
  surname: Peters
  fullname: Peters, Jennifer M. R.
– sequence: 4
  givenname: Brendan
  surname: Choat
  fullname: Choat, Brendan
– sequence: 5
  givenname: Paul D.
  surname: Rymer
  fullname: Rymer, Paul D.
– sequence: 6
  givenname: Belinda E.
  surname: Medlyn
  fullname: Medlyn, Belinda E.
– sequence: 7
  givenname: David T.
  surname: Tissue
  fullname: Tissue, David T.
BookMark eNqFj0FLAzEQhYNUsK2e9SIUPG93Mklms0cprQoVL3oOYTelW-qmJltk_727rfbgpQMzA8P75vFGbFD72jF2y2HKu0q5IJWgFGrKhUC4YMPTZcCGgJQnWpK4YqMYNwCQK8Qhu3v1wU2ata0nVfSprbu5bsvQXrPLld1Gd_O7x-xjMX-fPSfLt6eX2eMyKaSUkDitiFzOpeIi61vm3GZcK2W5LEGgKkmKTIMoCNFCZsucqECyKluVCsSYPRz_7oL_2rvYmI3fh7qzNIiCgHKts06VHlVF8DEGtzK7UH3a0BoOpo9v-rCmD2sO8TtC_SOKqrFN5esm2Gp7nvuutq49Z2MW89kfd3_kNrHx4cRJrTRqQvEDfThzkg
CitedBy_id crossref_primary_10_1016_j_plaphy_2019_10_024
crossref_primary_10_1093_jxb_erae159
crossref_primary_10_1016_j_fecs_2023_100095
crossref_primary_10_1093_treephys_tpab028
crossref_primary_10_1111_gcb_15215
crossref_primary_10_1111_1365_2435_13320
crossref_primary_10_1093_treephys_tpaa138
crossref_primary_10_1093_treephys_tpac114
crossref_primary_10_1007_s00468_025_02609_x
crossref_primary_10_1111_pce_13934
crossref_primary_10_1016_j_scitotenv_2023_162697
crossref_primary_10_1080_00049158_2021_2013639
crossref_primary_10_1111_pce_15249
crossref_primary_10_1016_j_jhydrol_2025_133031
crossref_primary_10_1111_pce_15362
crossref_primary_10_1111_ppl_14562
crossref_primary_10_1007_s00468_022_02303_2
crossref_primary_10_1016_j_agwat_2023_108284
crossref_primary_10_1016_j_envexpbot_2023_105484
crossref_primary_10_1007_s11104_022_05688_8
crossref_primary_10_1016_j_agwat_2023_108642
crossref_primary_10_1016_j_envexpbot_2022_105046
crossref_primary_10_3390_plants10061249
crossref_primary_10_1111_1365_2435_13412
crossref_primary_10_1111_nph_16042
crossref_primary_10_1093_treephys_tpad137
crossref_primary_10_1007_s11104_025_07369_8
crossref_primary_10_1016_j_scienta_2023_112276
crossref_primary_10_1111_pce_14713
crossref_primary_10_1093_treephys_tpab032
crossref_primary_10_1016_j_foreco_2020_118454
crossref_primary_10_1016_j_agrformet_2022_109291
crossref_primary_10_1007_s11104_023_06346_3
crossref_primary_10_1093_treephys_tpac040
crossref_primary_10_1111_pce_14244
crossref_primary_10_1029_2022JG006971
crossref_primary_10_1111_pce_15011
crossref_primary_10_1007_s11676_021_01438_1
crossref_primary_10_1093_plphys_kiae632
crossref_primary_10_1016_j_scitotenv_2024_175805
crossref_primary_10_1016_j_agrformet_2021_108701
crossref_primary_10_1093_forsci_fxac044
crossref_primary_10_1016_j_ecolind_2024_112037
crossref_primary_10_3389_fpls_2022_974050
crossref_primary_10_1007_s00468_024_02503_y
crossref_primary_10_1111_nph_16795
crossref_primary_10_1139_cjb_2020_0155
crossref_primary_10_3390_f11070779
crossref_primary_10_1093_treephys_tpae038
crossref_primary_10_1093_treephys_tpad066
crossref_primary_10_1016_j_agwat_2022_108029
crossref_primary_10_1111_1365_2435_14591
crossref_primary_10_3389_fpls_2022_835921
crossref_primary_10_1111_nph_17448
crossref_primary_10_3389_fpls_2022_926535
crossref_primary_10_1016_j_scitotenv_2023_168095
crossref_primary_10_1016_j_scitotenv_2025_178948
crossref_primary_10_1016_j_foreco_2023_121131
crossref_primary_10_1111_nph_18739
crossref_primary_10_1016_j_scitotenv_2021_151466
crossref_primary_10_1002_ajb2_1606
crossref_primary_10_1111_nph_19138
crossref_primary_10_1111_pce_13607
crossref_primary_10_1093_treephys_tpab011
crossref_primary_10_1111_pce_14700
crossref_primary_10_1093_treephys_tpab095
crossref_primary_10_1111_pce_15279
crossref_primary_10_1111_nph_16502
crossref_primary_10_3390_f14030551
crossref_primary_10_1111_pce_14380
crossref_primary_10_1016_j_envexpbot_2020_104004
crossref_primary_10_1093_aobpla_plz056
Cites_doi 10.1007/s00442-004-1624-1
10.1111/j.1469-8137.2011.03772.x
10.1111/pce.13129
10.1104/pp.108.129783
10.20870/jph.2017.e002
10.1111/1365-2435.12656
10.1093/treephys/tpy087
10.1007/978-3-662-22627-8
10.1093/treephys/tpy093
10.1111/pce.12846
10.1111/nph.13846
10.1046/j.1365-3040.1999.00513.x
10.1111/1365-2435.13049
10.1111/gcb.13389
10.1111/nph.12850
10.1073/pnas.1503376112
10.1016/j.tplants.2017.11.002
10.1111/nph.12912
10.1093/jxb/erv195
10.1111/j.1469-8137.2008.02554.x
10.1111/pce.13367
10.1111/ele.12559
10.1111/ele.12851
10.1073/pnas.1604088113
10.1007/s00442-010-1734-x
10.1111/pce.12970
10.1111/ele.12670
10.1093/treephys/tpt030
10.1038/s41586-018-0240-x
10.1093/treephys/tpr131
10.1038/nature11688
10.1111/1365-2435.13320
10.1093/treephys/tpy052
10.1093/jxb/23.1.267
10.1111/pce.12588
10.1111/pce.12859
10.1038/s41559-017-0248-x
10.1111/pce.13418
10.1093/aob/mcu131
10.1111/nph.14450
10.1111/1365-2745.12211
10.1104/pp.18.00103
10.1111/j.1365-3040.2010.02231.x
10.1111/j.1399-3054.2006.00680.x
10.1111/pce.12852
10.1111/j.1365-3040.2005.01433.x
10.1111/j.1365-3040.2009.02023.x
10.1111/1365-2435.12289
10.1007/s00442-011-1922-3
10.1046/j.1365-3040.2000.00647.x
10.3389/fpls.2016.02075
10.1093/aob/mcx020
10.1111/j.1469-8137.2008.02436.x
ContentType Journal Article
Copyright 2019 The Authors. © 2019 British Ecological Society
2019 The Authors. Functional Ecology © 2019 British Ecological Society
Functional Ecology © 2019 British Ecological Society
Copyright_xml – notice: 2019 The Authors. © 2019 British Ecological Society
– notice: 2019 The Authors. Functional Ecology © 2019 British Ecological Society
– notice: Functional Ecology © 2019 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
DOI 10.1111/1365-2435.13320
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1049
ExternalDocumentID 10_1111_1365_2435_13320
FEC13320
48582862
Genre article
GrantInformation_xml – fundername: Australian Research Council
  funderid: LP140100232; FT130101115
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTLG
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ABXSQ
ACCFJ
ACCMX
ACHIC
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
LW6
MVM
VOH
WRC
ZY4
AAYXX
ABSQW
AGUYK
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c4440-e8566e91451375137491a71855a14d0325d6437803c622a07ad966c26a57fd503
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 25 07:27:53 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 01:15:49 EDT 2025
Wed Jan 22 16:40:46 EST 2025
Thu Jul 03 21:32:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4440-e8566e91451375137491a71855a14d0325d6437803c622a07ad966c26a57fd503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8497-2047
0000-0002-7816-5441
0000-0003-0988-4351
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13320
PQID 2236069887
PQPubID 1066355
PageCount 15
ParticipantIDs proquest_journals_2236069887
crossref_primary_10_1111_1365_2435_13320
crossref_citationtrail_10_1111_1365_2435_13320
wiley_primary_10_1111_1365_2435_13320_FEC13320
jstor_primary_48582862
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 40
2017; 7
2015; 36
2017; 1
2017; 4
1936; 115
2016; 30
2018; 41
2011; 191
2014; 28
2016; 39
2012; 491
2014; 204
2018; 177
2018; 39
2016; 113
2006; 29
1983
2017; 120
2006; 127
2018; 32
2018; 38
2014; 203
2011; 166
2017; 20
2016; 19
2016; 209
2000; 23
2004; 140
2017; 23
1999; 22
2010; 164
2011; 32
2011; 34
2018; 23
1972; 23
2014; 114
2017; 214
2008; 180
2009; 32
2013; 33
2018; 558
2015; 112
2015; 66
2019
2014
2008; 178
2009; 149
2014; 102
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Li S. (e_1_2_9_26_1) 2015; 36
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Berger‐Landefeldt U. (e_1_2_9_5_1) 1936
e_1_2_9_42_1
R Core Team (e_1_2_9_44_1) 2014
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 180
  start-page: 100
  year: 2008
  end-page: 113
  article-title: Comparative community physiology: Nonconvergence in water relations among three semi‐arid shrub communities
  publication-title: New Phytologist
– volume: 166
  start-page: 45
  year: 2011
  end-page: 57
  article-title: Water‐use strategies of six co‐existing Mediterranean woody species during a summer drought
  publication-title: Oecologia
– volume: 214
  start-page: 561
  year: 2017
  end-page: 569
  article-title: Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation
  publication-title: New Phytologist
– volume: 40
  start-page: 816
  year: 2017
  end-page: 830
  article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost
  publication-title: Plant, Cell & Environment
– volume: 40
  start-page: 277
  year: 2017
  end-page: 289
  article-title: Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island
  publication-title: Plant, Cell & Environment
– volume: 38
  start-page: 1193
  year: 2018
  end-page: 1199
  article-title: Xylem embolism measured retrospectively is linked to canopy dieback in natural populations of following drought
  publication-title: Tree Physiology
– volume: 1
  start-page: 1285
  year: 2017
  end-page: 1291
  article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality
  publication-title: Nature Ecology & Evolution
– volume: 112
  start-page: 5744
  year: 2015
  end-page: 5749
  article-title: Predicting plant vulnerability to drought in biodiverse regions using functional traits
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 164
  start-page: 287
  year: 2010
  end-page: 296
  article-title: The blind men and the elephant: The impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency
  publication-title: Oecologia
– volume: 29
  start-page: 571
  year: 2006
  end-page: 583
  article-title: Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees
  publication-title: Plant, Cell & Environment
– volume: 34
  start-page: 137
  year: 2011
  end-page: 148
  article-title: Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits
  publication-title: Plant, Cell & Environment
– volume: 30
  start-page: 1740
  year: 2016
  end-page: 1744
  article-title: Are leaves more vulnerable to cavitation than branches?
  publication-title: Functional Ecology
– year: 2014
– volume: 33
  start-page: 672
  year: 2013
  end-page: 683
  article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees
  publication-title: Tree Physiology
– volume: 191
  start-page: 996
  year: 2011
  end-page: 1005
  article-title: Xylem traits mediate a trade‐off between resistance to freeze–thaw‐induced embolism and photosynthetic capacity in overwintering evergreens
  publication-title: New Phytologist
– volume: 41
  start-page: 2869
  year: 2018
  end-page: 2881
  article-title: Coordination between leaf, stem, and root hydraulics and gas exchange in three arid‐zone angiosperms during severe drought and recovery
  publication-title: Plant, Cell & Environment
– volume: 23
  start-page: 112
  year: 2018
  end-page: 120
  article-title: Iso/Anisohydry: A plant‐environment interaction rather than a simple hydraulic trait
  publication-title: Trends in Plant Science
– volume: 120
  start-page: 123
  year: 2017
  end-page: 133
  article-title: Species climate range influences hydraulic and stomatal traits in species
  publication-title: Annals of Botany
– volume: 4
  start-page: e002
  year: 2017
  article-title: fitplc: An R package to fit hydraulic vulnerability curves
  publication-title: Journal of Plant Hydraulics
– volume: 20
  start-page: 1437
  year: 2017
  end-page: 1447
  article-title: Plant resistance to drought depends on timely stomatal closure
  publication-title: Ecology Letters
– volume: 19
  start-page: 240
  year: 2016
  end-page: 248
  article-title: Climate determines vascular traits in the ecologically diverse genus
  publication-title: Ecology Letters
– volume: 23
  start-page: 891
  year: 2017
  end-page: 905
  article-title: Global variations in ecosystem‐scale isohydricity
  publication-title: Global Change Biology
– volume: 558
  start-page: 531
  year: 2018
  end-page: 539
  article-title: Triggers of tree mortality under drought
  publication-title: Nature
– volume: 127
  start-page: 423
  year: 2006
  end-page: 433
  article-title: Interrelations among pressure–volume curve traits across species and water availability gradients
  publication-title: Physiologia Plantarum
– volume: 178
  start-page: 719
  year: 2008
  end-page: 739
  article-title: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
– volume: 149
  start-page: 575
  year: 2009
  end-page: 584
  article-title: Hydraulic failure defines the recovery and point of death in water‐stressed conifers
  publication-title: Plant Physiology
– volume: 22
  start-page: 1515
  year: 1999
  end-page: 1526
  article-title: Survey and synthesis of intra‐and interspecific variation in stomatal sensitivity to vapour pressure deficit
  publication-title: Plant, Cell & Environment
– year: 2019
– volume: 23
  start-page: 1381
  year: 2000
  end-page: 1388
  article-title: Stem hydraulic supply is linked to leaf photosynthetic capacity: Evidence from New Caledonian and Tasmanian rainforests
  publication-title: Plant, Cell & Environment
– volume: 32
  start-page: 1584
  year: 2009
  end-page: 1595
  article-title: Leaf hydraulics and drought stress: Response, recovery and survivorship in four woody temperate plant species
  publication-title: Plant, Cell & Environment
– volume: 7
  start-page: 2075
  year: 2017
  article-title: Divergent hydraulic safety strategies in three co‐occurring tree species in a Chinese savanna
  publication-title: Frontiers in Plant Science
– volume: 28
  start-page: 1313
  year: 2014
  end-page: 1320
  article-title: The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours
  publication-title: Functional Ecology
– volume: 36
  start-page: 179
  year: 2015
  end-page: 192
  article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought
  publication-title: Tree Physiology
– year: 1983
– volume: 177
  start-page: 1066
  year: 2018
  end-page: 1077
  article-title: Low vulnerability to xylem embolism in leaves and stems of North American oaks
  publication-title: Plant Physiology
– volume: 115
  year: 1936
– volume: 140
  start-page: 543
  year: 2004
  end-page: 550
  article-title: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees
  publication-title: Oecologia
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast–slow’ plant economics spectrum: A traits manifesto
  publication-title: Journal of Ecology
– volume: 39
  start-page: 113
  year: 2018
  end-page: 121
  article-title: Non‐invasive imaging shows no evidence of embolism repair after drought in tree species of two genera
  publication-title: Tree Physiology
– volume: 19
  start-page: 1343
  year: 2016
  end-page: 1352
  article-title: Mapping ‘hydroscapes’ along the iso‐ to anisohydric continuum of stomatal regulation of plant water status
  publication-title: Ecology Letters
– volume: 41
  start-page: 646
  year: 2018
  end-page: 660
  article-title: Tree hydraulic traits are coordinated and strongly linked to climate‐of‐origin across a rainfall gradient
  publication-title: Plant, Cell & Environment
– volume: 40
  start-page: 962
  year: 2017
  end-page: 976
  article-title: Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept
  publication-title: Plant, Cell & Environment
– volume: 40
  start-page: 1618
  year: 2017
  end-page: 1628
  article-title: Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status
  publication-title: Plant, Cell & Environment
– volume: 32
  start-page: 249
  year: 2011
  end-page: 261
  article-title: Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid
  publication-title: Tree Physiology
– volume: 23
  start-page: 267
  year: 1972
  end-page: 282
  article-title: The measurement of the turgor pressure and the water relations of plants by the pressure‐bomb technique
  publication-title: Journal of Experimental Botany
– volume: 32
  start-page: 894
  year: 2018
  end-page: 903
  article-title: Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials
  publication-title: Functional Ecology
– volume: 66
  start-page: 4373
  year: 2015
  end-page: 4381
  article-title: Growth and physiological responses of isohydric and anisohydric poplars to drought
  publication-title: Journal of Experimental Botany
– volume: 39
  start-page: 122
  year: 2018
  end-page: 134
  article-title: Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): A global data set reveals coordination and trade‐offs among water transport traits
  publication-title: Tree Physiology
– volume: 114
  start-page: 435
  year: 2014
  end-page: 440
  article-title: Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates
  publication-title: Annals of Botany
– volume: 204
  start-page: 105
  year: 2014
  end-page: 115
  article-title: A new look at water transport regulation in plants
  publication-title: New Phytologist
– volume: 39
  start-page: 38
  year: 2016
  end-page: 49
  article-title: Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation
  publication-title: Plant, Cell & Environment
– volume: 41
  start-page: 2617
  year: 2018
  end-page: 2626
  article-title: Stomatal behavior and stem xylem traits are coordinated for woody plant species under exceptional drought conditions
  publication-title: Plant, Cell & Environment
– volume: 203
  start-page: 842
  year: 2014
  end-page: 850
  article-title: Coordination of stem and leaf hydraulic conductance in southern California shrubs: A test of the hydraulic segmentation hypothesis
  publication-title: New Phytologist
– volume: 209
  start-page: 1403
  year: 2016
  end-page: 1409
  article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure
  publication-title: New Phytologist
– volume: 113
  start-page: 13098
  year: 2016
  end-page: 13103
  article-title: The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 491
  start-page: 752
  year: 2012
  end-page: 755
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– ident: e_1_2_9_47_1
  doi: 10.1007/s00442-004-1624-1
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1469-8137.2011.03772.x
– volume: 36
  start-page: 179
  year: 2015
  ident: e_1_2_9_26_1
  article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought
  publication-title: Tree Physiology
– ident: e_1_2_9_27_1
  doi: 10.1111/pce.13129
– ident: e_1_2_9_9_1
  doi: 10.1104/pp.108.129783
– ident: e_1_2_9_17_1
  doi: 10.20870/jph.2017.e002
– ident: e_1_2_9_56_1
  doi: 10.1111/1365-2435.12656
– ident: e_1_2_9_18_1
  doi: 10.1093/treephys/tpy087
– ident: e_1_2_9_57_1
  doi: 10.1007/978-3-662-22627-8
– ident: e_1_2_9_15_1
  doi: 10.1093/treephys/tpy093
– ident: e_1_2_9_32_1
  doi: 10.1111/pce.12846
– ident: e_1_2_9_11_1
  doi: 10.1111/nph.13846
– ident: e_1_2_9_39_1
  doi: 10.1046/j.1365-3040.1999.00513.x
– ident: e_1_2_9_22_1
  doi: 10.1111/1365-2435.13049
– ident: e_1_2_9_24_1
  doi: 10.1111/gcb.13389
– ident: e_1_2_9_42_1
  doi: 10.1111/nph.12850
– ident: e_1_2_9_50_1
  doi: 10.1073/pnas.1503376112
– ident: e_1_2_9_20_1
  doi: 10.1016/j.tplants.2017.11.002
– ident: e_1_2_9_33_1
  doi: 10.1111/nph.12912
– ident: e_1_2_9_3_1
  doi: 10.1093/jxb/erv195
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1469-8137.2008.02554.x
– volume-title: R: A language and environment for statistical computing
  year: 2014
  ident: e_1_2_9_44_1
– ident: e_1_2_9_41_1
  doi: 10.1111/pce.13367
– ident: e_1_2_9_40_1
  doi: 10.1111/ele.12559
– ident: e_1_2_9_34_1
  doi: 10.1111/ele.12851
– ident: e_1_2_9_4_1
  doi: 10.1073/pnas.1604088113
– ident: e_1_2_9_36_1
  doi: 10.1007/s00442-010-1734-x
– ident: e_1_2_9_37_1
  doi: 10.1111/pce.12970
– ident: e_1_2_9_38_1
  doi: 10.1111/ele.12670
– ident: e_1_2_9_54_1
  doi: 10.1093/treephys/tpt030
– ident: e_1_2_9_12_1
  doi: 10.1038/s41586-018-0240-x
– ident: e_1_2_9_46_1
  doi: 10.1093/treephys/tpr131
– ident: e_1_2_9_13_1
  doi: 10.1038/nature11688
– ident: e_1_2_9_28_1
  doi: 10.1111/1365-2435.13320
– ident: e_1_2_9_29_1
  doi: 10.1093/treephys/tpy052
– ident: e_1_2_9_53_1
  doi: 10.1093/jxb/23.1.267
– ident: e_1_2_9_19_1
  doi: 10.1111/pce.12588
– ident: e_1_2_9_52_1
  doi: 10.1111/pce.12859
– ident: e_1_2_9_2_1
  doi: 10.1038/s41559-017-0248-x
– ident: e_1_2_9_16_1
  doi: 10.1111/pce.13418
– ident: e_1_2_9_7_1
  doi: 10.1093/aob/mcu131
– volume-title: Bibliotheca botanica
  year: 1936
  ident: e_1_2_9_5_1
– ident: e_1_2_9_48_1
  doi: 10.1111/nph.14450
– ident: e_1_2_9_45_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_9_49_1
  doi: 10.1104/pp.18.00103
– ident: e_1_2_9_31_1
  doi: 10.1111/j.1365-3040.2010.02231.x
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1399-3054.2006.00680.x
– ident: e_1_2_9_51_1
  doi: 10.1111/pce.12852
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1365-3040.2005.01433.x
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1365-3040.2009.02023.x
– ident: e_1_2_9_23_1
  doi: 10.1111/1365-2435.12289
– ident: e_1_2_9_43_1
  doi: 10.1007/s00442-011-1922-3
– ident: e_1_2_9_10_1
  doi: 10.1046/j.1365-3040.2000.00647.x
– ident: e_1_2_9_55_1
  doi: 10.3389/fpls.2016.02075
– ident: e_1_2_9_8_1
  doi: 10.1093/aob/mcx020
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1469-8137.2008.02436.x
SSID ssj0009522
Score 2.534077
Snippet The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However,...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1035
SubjectTerms Climate
Climate change
climate‐of‐origin
Conductance
Drought
Drought resistance
drought tolerance
Ecosystems
Embolism
embolism resistance
Embolisms
Environmental regulations
Environmental risk
Eucalyptus
Herbivores
Hydraulics
isohydricity
Leaves
PLANT PHYSIOLOGICAL ECOLOGY
Resistance
Safety margins
Segmentation
Species
Species classification
Stomata
Stomatal conductance
stomatal regulation
Strategy
Turgor
Water availability
Water potential
water relations
Water use
Subtitle Hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates
Title More than iso/anisohydry
URI https://www.jstor.org/stable/48582862
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13320
https://www.proquest.com/docview/2236069887
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEF9EOPDl9E7Lqb1jHnzwJb1k8-2bSEsR9EEUfAub3Q2Wq0lJUqT-D_7PzuwmvSocIvfQdimZfDC7M7_J_maGsZNCqyBE2-hITwsniLR0EiFySnYXRRFymZss16vraHoXXN6HPZuQcmFsfYj1CzdaGcZe0wIXebOxyC0_C739CMMsTlE7_UOw6IZvlN21-wg8Sh30tH5X3Ie4PO_k3_glS018Azo3oavxPZNdlvd3bSknf0bLNh_J53cFHf_rsfbY1w6ZwrmdSt_Yli6_sy-2V-UKR2PZjQbjv8lxKNBZh2afvVxVtQZ6Fw-zpvotSvx-WKl6dQZT_KkaIls1sK5QAYs56hWecFjDstEgSgXK9A1qoa3mmpp-4AlrMWtJDDwXNFXOXS1aoBRRjPKB8mPAEO5FQxRukPPZIwHoA3Y3Gd9eTJ2u3YMjA9ph1glCS51S62A_pk-QegJdZxgKL1Cuz0NFu4yJ68uIc-HGQmGsJnkkwrhQoesP2HZZlfoHAwwC40JInco4QgvlJVKqmCvCU0LnMT9ko17ZmexqodPDzLM-JiI1ZKSGzKjhkJ2uBRa2DMi_Dx2Y2bM-LkhoazLCiw776ZR1hqLJEJ1hCJmiqcd7MvPio_Nnk_GFGRx9VuCY7SDcSy3Rbci223qpfyKkavNfZtW8AjPzE3k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqUEUv0AKr8mg7hx64ZEmcNzeEdrVtWQ4IJG6RYzvqim2ySrJCy3_of-6MnV0WpApVPSTxwXZsjT3zjT0Pxr4WWgUh8kZHelo4QaSlkwiRk7O7KIqQy9x4uY6votFt8P0uvFvzhbHxIVYHbrQzDL-mDU4H0mu73Bpoobjvo57FUW3fpLzeRq265muBd-1NAo9SB2Wt34X3IWueFx08k0zWOPEZ7FwHr0b6DHeYXI7bGp3c9-dt3pePL0I6_t_E3rPtDpzCuV1NH9gbXe6ytzZd5QJLA9mVeoMn_zhs0DGIZo_9Hle1BjqOh0lTnYoS3z8Xql6cwQg_VUP2Vg2sglTAbIqkhQcs1jBvNIhSgTKpg1poq6mmvB_YYS0mLTUDzwVNwXMXsxbISxQVfSAXGTA296IhK26Q08kvwtD77HY4uLkYOV3GB0cGdMmsE0SXOqXswX5MT5B6AqVnGAovUK7PQ0UXjYnry4hz4cZCobomeSTCuFCh6_fYRlmV-iMD1APjQkidyjhCJuUlUqqYK4JUQucxP2D9JbUz2YVDp8lMs6VaRGTIiAyZIcMBO1k1mNlIIH-v2jPLZ1UvSOh2MsKfHi_XU9bxiiZDgIZaZIrcHsdkFsZr_WfDwYUpHP5rgy9sa3Qzvswuv139OGLvEP2l1u7tmG209Vx_QoTV5p_NFvoDdMUXlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hIhAXoC1RC4XOgUMvDvb63VvVJgqPRFXVStys9e5ajRrsyHaEwn_gPzOza4e0EkKIQ5I9eDe2ZnbmG-83M4y9L7QKQrSNjvS0cIJISycRIqdkd1EUIZe5yXKdzqLJTfDpa9izCSkXxtaH2Lxwo51h7DVt8KUqtja55Wehtx9imMUxan8cRG5Cin1xxbfq7tqDBB6lDrpav6vuQ2SeBwvcc0yWm3gPdW5jV-N8xi9Y3t-25ZzcDVdtPpQ_HlR0_K_nesmed9AUzqwu7bJHutxjT2yzyjWORrIbDUa_s-NwQmcemn32c1rVGuhlPMyb6oMo8ft2rer1KUzwp2qIbdXApkQFLBcoWPiOwxpWjQZRKlCmcVALbbXQ1PUDF6zFvKVp4LmgqXTuetkC5YhimA-UIAOGcS8a4nCDXMy_EYJ-xW7Go-vzidP1e3BkQEfMOkFsqVPqHezH9AlST6DvDEPhBcr1eajomDFxfRlxLtxYKAzWJI9EGBcqdP0B2ymrUh8wwCgwLoTUqYwjNFFeIqWKuSJAJXQe80M27IWdya4YOj3MIuuDIhJDRmLIjBgO2clmwtLWAfnzpQOjPZvrgoTOJiP806NenbLOUjQZwjOMIVO09XhPRi_-tn42Hp2bwet_nXDMnl5ejLMvH2ef37BnCP1SS3o7YjttvdJvEV61-TuzgX4BJf8WTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+than+iso%2Fanisohydry%3A+Hydroscapes+integrate+plant+water+use+and+drought+tolerance+traits+in+10+eucalypt+species+from+contrasting+climates&rft.jtitle=Functional+ecology&rft.au=Li%2C+Ximeng&rft.au=Blackman%2C+Chris+J&rft.au=Peters%2C+Jennifer+M+R&rft.au=Choat%2C+Brendan&rft.date=2019-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=33&rft.issue=6&rft.spage=1035&rft.epage=1049&rft_id=info:doi/10.1111%2F1365-2435.13320&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon