More than iso/anisohydry Hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates
The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits. Using a common g...
Saved in:
Published in | Functional ecology Vol. 33; no. 6; pp. 1035 - 1049 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.06.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits.
Using a common garden experiment, we compared and contrasted four metrics commonly used to describe water use strategy during drought in 10 eucalyptus species comprising four major ecosystems in eastern Australia. We examined the degree to which these metrics were aligned with key stomatal and hydraulic traits related to plant water use and drought tolerance.
Species rankings of water use strategy were inconsistent across four metrics. A newer metric (Hydroscape) was strongly linked to various plant traits, including the leaf turgor loss (TLP), water potential at stomatal closure (Pgs90), leaf and stem hydraulic vulnerability to embolism (PL50 and Px50), safety margin of hydraulic segmentation (HSMHS), maximum stomatal conductance (gsmax) and Huber value (HV). In addition, Hydroscape was correlated with climatic variables representing the water availability at the seed source site.
Along the continuum of water regulation strategy, species with narrow Hydroscapes tended to occupy mesic regions and exhibit high TLP, PL50 and Px50 values and narrow HSMHS. High gsmax recorded in species with broad hydroscapes was also associated with high HV.
Despite a fourfold difference in Hydroscape area, all species closed their stomata prior to the onset of hydraulic dysfunction, suggesting a common stomatal response across species that minimizes embolism risk during drought. Hydroscape area is useful in bridging stomatal regulation, hydraulic architecture and species drought tolerance, thus providing insight into species water use strategies.
A plain language summary is available for this article.
Plain Language Summary |
---|---|
AbstractList | The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits.
Using a common garden experiment, we compared and contrasted four metrics commonly used to describe water use strategy during drought in 10 eucalyptus species comprising four major ecosystems in eastern Australia. We examined the degree to which these metrics were aligned with key stomatal and hydraulic traits related to plant water use and drought tolerance.
Species rankings of water use strategy were inconsistent across four metrics. A newer metric (Hydroscape) was strongly linked to various plant traits, including the leaf turgor loss (TLP), water potential at stomatal closure (
P
gs90
), leaf and stem hydraulic vulnerability to embolism (
P
L50
and
P
x50
), safety margin of hydraulic segmentation (HSM
HS
), maximum stomatal conductance (
g
smax
) and Huber value (HV). In addition, Hydroscape was correlated with climatic variables representing the water availability at the seed source site.
Along the continuum of water regulation strategy, species with narrow Hydroscapes tended to occupy mesic regions and exhibit high TLP,
P
L50
and
P
x50
values and narrow HSM
HS
. High
g
smax
recorded in species with broad hydroscapes was also associated with high HV.
Despite a fourfold difference in Hydroscape area, all species closed their stomata prior to the onset of hydraulic dysfunction, suggesting a common stomatal response across species that minimizes embolism risk during drought. Hydroscape area is useful in bridging stomatal regulation, hydraulic architecture and species drought tolerance, thus providing insight into species water use strategies.
A
plain language summary
is available for this article. The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits. Using a common garden experiment, we compared and contrasted four metrics commonly used to describe water use strategy during drought in 10 eucalyptus species comprising four major ecosystems in eastern Australia. We examined the degree to which these metrics were aligned with key stomatal and hydraulic traits related to plant water use and drought tolerance. Species rankings of water use strategy were inconsistent across four metrics. A newer metric (Hydroscape) was strongly linked to various plant traits, including the leaf turgor loss (TLP), water potential at stomatal closure (Pgs90), leaf and stem hydraulic vulnerability to embolism (PL50 and Px50), safety margin of hydraulic segmentation (HSMHS), maximum stomatal conductance (gsmax) and Huber value (HV). In addition, Hydroscape was correlated with climatic variables representing the water availability at the seed source site. Along the continuum of water regulation strategy, species with narrow Hydroscapes tended to occupy mesic regions and exhibit high TLP, PL50 and Px50 values and narrow HSMHS. High gsmax recorded in species with broad hydroscapes was also associated with high HV. Despite a fourfold difference in Hydroscape area, all species closed their stomata prior to the onset of hydraulic dysfunction, suggesting a common stomatal response across species that minimizes embolism risk during drought. Hydroscape area is useful in bridging stomatal regulation, hydraulic architecture and species drought tolerance, thus providing insight into species water use strategies. A plain language summary is available for this article. Plain Language Summary The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However, drought response strategies comprise more than just this continuum, incorporating a suite of stomatal and hydraulic traits.Using a common garden experiment, we compared and contrasted four metrics commonly used to describe water use strategy during drought in 10 eucalyptus species comprising four major ecosystems in eastern Australia. We examined the degree to which these metrics were aligned with key stomatal and hydraulic traits related to plant water use and drought tolerance.Species rankings of water use strategy were inconsistent across four metrics. A newer metric (Hydroscape) was strongly linked to various plant traits, including the leaf turgor loss (TLP), water potential at stomatal closure (Pgs90), leaf and stem hydraulic vulnerability to embolism (PL50 and Px50), safety margin of hydraulic segmentation (HSMHS), maximum stomatal conductance (gsmax) and Huber value (HV). In addition, Hydroscape was correlated with climatic variables representing the water availability at the seed source site.Along the continuum of water regulation strategy, species with narrow Hydroscapes tended to occupy mesic regions and exhibit high TLP, PL50 and Px50 values and narrow HSMHS. High gsmax recorded in species with broad hydroscapes was also associated with high HV.Despite a fourfold difference in Hydroscape area, all species closed their stomata prior to the onset of hydraulic dysfunction, suggesting a common stomatal response across species that minimizes embolism risk during drought. Hydroscape area is useful in bridging stomatal regulation, hydraulic architecture and species drought tolerance, thus providing insight into species water use strategies.A plain language summary is available for this article. |
Author | Peters, Jennifer M. R. Tissue, David T. Blackman, Chris J. Rymer, Paul D. Medlyn, Belinda E. Li, Ximeng Choat, Brendan |
Author_xml | – sequence: 1 givenname: Ximeng surname: Li fullname: Li, Ximeng – sequence: 2 givenname: Chris J. surname: Blackman fullname: Blackman, Chris J. – sequence: 3 givenname: Jennifer M. R. surname: Peters fullname: Peters, Jennifer M. R. – sequence: 4 givenname: Brendan surname: Choat fullname: Choat, Brendan – sequence: 5 givenname: Paul D. surname: Rymer fullname: Rymer, Paul D. – sequence: 6 givenname: Belinda E. surname: Medlyn fullname: Medlyn, Belinda E. – sequence: 7 givenname: David T. surname: Tissue fullname: Tissue, David T. |
BookMark | eNqFj0FLAzEQhYNUsK2e9SIUPG93Mklms0cprQoVL3oOYTelW-qmJltk_727rfbgpQMzA8P75vFGbFD72jF2y2HKu0q5IJWgFGrKhUC4YMPTZcCGgJQnWpK4YqMYNwCQK8Qhu3v1wU2ata0nVfSprbu5bsvQXrPLld1Gd_O7x-xjMX-fPSfLt6eX2eMyKaSUkDitiFzOpeIi61vm3GZcK2W5LEGgKkmKTIMoCNFCZsucqECyKluVCsSYPRz_7oL_2rvYmI3fh7qzNIiCgHKts06VHlVF8DEGtzK7UH3a0BoOpo9v-rCmD2sO8TtC_SOKqrFN5esm2Gp7nvuutq49Z2MW89kfd3_kNrHx4cRJrTRqQvEDfThzkg |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2019_10_024 crossref_primary_10_1093_jxb_erae159 crossref_primary_10_1016_j_fecs_2023_100095 crossref_primary_10_1093_treephys_tpab028 crossref_primary_10_1111_gcb_15215 crossref_primary_10_1111_1365_2435_13320 crossref_primary_10_1093_treephys_tpaa138 crossref_primary_10_1093_treephys_tpac114 crossref_primary_10_1007_s00468_025_02609_x crossref_primary_10_1111_pce_13934 crossref_primary_10_1016_j_scitotenv_2023_162697 crossref_primary_10_1080_00049158_2021_2013639 crossref_primary_10_1111_pce_15249 crossref_primary_10_1016_j_jhydrol_2025_133031 crossref_primary_10_1111_pce_15362 crossref_primary_10_1111_ppl_14562 crossref_primary_10_1007_s00468_022_02303_2 crossref_primary_10_1016_j_agwat_2023_108284 crossref_primary_10_1016_j_envexpbot_2023_105484 crossref_primary_10_1007_s11104_022_05688_8 crossref_primary_10_1016_j_agwat_2023_108642 crossref_primary_10_1016_j_envexpbot_2022_105046 crossref_primary_10_3390_plants10061249 crossref_primary_10_1111_1365_2435_13412 crossref_primary_10_1111_nph_16042 crossref_primary_10_1093_treephys_tpad137 crossref_primary_10_1007_s11104_025_07369_8 crossref_primary_10_1016_j_scienta_2023_112276 crossref_primary_10_1111_pce_14713 crossref_primary_10_1093_treephys_tpab032 crossref_primary_10_1016_j_foreco_2020_118454 crossref_primary_10_1016_j_agrformet_2022_109291 crossref_primary_10_1007_s11104_023_06346_3 crossref_primary_10_1093_treephys_tpac040 crossref_primary_10_1111_pce_14244 crossref_primary_10_1029_2022JG006971 crossref_primary_10_1111_pce_15011 crossref_primary_10_1007_s11676_021_01438_1 crossref_primary_10_1093_plphys_kiae632 crossref_primary_10_1016_j_scitotenv_2024_175805 crossref_primary_10_1016_j_agrformet_2021_108701 crossref_primary_10_1093_forsci_fxac044 crossref_primary_10_1016_j_ecolind_2024_112037 crossref_primary_10_3389_fpls_2022_974050 crossref_primary_10_1007_s00468_024_02503_y crossref_primary_10_1111_nph_16795 crossref_primary_10_1139_cjb_2020_0155 crossref_primary_10_3390_f11070779 crossref_primary_10_1093_treephys_tpae038 crossref_primary_10_1093_treephys_tpad066 crossref_primary_10_1016_j_agwat_2022_108029 crossref_primary_10_1111_1365_2435_14591 crossref_primary_10_3389_fpls_2022_835921 crossref_primary_10_1111_nph_17448 crossref_primary_10_3389_fpls_2022_926535 crossref_primary_10_1016_j_scitotenv_2023_168095 crossref_primary_10_1016_j_scitotenv_2025_178948 crossref_primary_10_1016_j_foreco_2023_121131 crossref_primary_10_1111_nph_18739 crossref_primary_10_1016_j_scitotenv_2021_151466 crossref_primary_10_1002_ajb2_1606 crossref_primary_10_1111_nph_19138 crossref_primary_10_1111_pce_13607 crossref_primary_10_1093_treephys_tpab011 crossref_primary_10_1111_pce_14700 crossref_primary_10_1093_treephys_tpab095 crossref_primary_10_1111_pce_15279 crossref_primary_10_1111_nph_16502 crossref_primary_10_3390_f14030551 crossref_primary_10_1111_pce_14380 crossref_primary_10_1016_j_envexpbot_2020_104004 crossref_primary_10_1093_aobpla_plz056 |
Cites_doi | 10.1007/s00442-004-1624-1 10.1111/j.1469-8137.2011.03772.x 10.1111/pce.13129 10.1104/pp.108.129783 10.20870/jph.2017.e002 10.1111/1365-2435.12656 10.1093/treephys/tpy087 10.1007/978-3-662-22627-8 10.1093/treephys/tpy093 10.1111/pce.12846 10.1111/nph.13846 10.1046/j.1365-3040.1999.00513.x 10.1111/1365-2435.13049 10.1111/gcb.13389 10.1111/nph.12850 10.1073/pnas.1503376112 10.1016/j.tplants.2017.11.002 10.1111/nph.12912 10.1093/jxb/erv195 10.1111/j.1469-8137.2008.02554.x 10.1111/pce.13367 10.1111/ele.12559 10.1111/ele.12851 10.1073/pnas.1604088113 10.1007/s00442-010-1734-x 10.1111/pce.12970 10.1111/ele.12670 10.1093/treephys/tpt030 10.1038/s41586-018-0240-x 10.1093/treephys/tpr131 10.1038/nature11688 10.1111/1365-2435.13320 10.1093/treephys/tpy052 10.1093/jxb/23.1.267 10.1111/pce.12588 10.1111/pce.12859 10.1038/s41559-017-0248-x 10.1111/pce.13418 10.1093/aob/mcu131 10.1111/nph.14450 10.1111/1365-2745.12211 10.1104/pp.18.00103 10.1111/j.1365-3040.2010.02231.x 10.1111/j.1399-3054.2006.00680.x 10.1111/pce.12852 10.1111/j.1365-3040.2005.01433.x 10.1111/j.1365-3040.2009.02023.x 10.1111/1365-2435.12289 10.1007/s00442-011-1922-3 10.1046/j.1365-3040.2000.00647.x 10.3389/fpls.2016.02075 10.1093/aob/mcx020 10.1111/j.1469-8137.2008.02436.x |
ContentType | Journal Article |
Copyright | 2019 The Authors. © 2019 British Ecological Society 2019 The Authors. Functional Ecology © 2019 British Ecological Society Functional Ecology © 2019 British Ecological Society |
Copyright_xml | – notice: 2019 The Authors. © 2019 British Ecological Society – notice: 2019 The Authors. Functional Ecology © 2019 British Ecological Society – notice: Functional Ecology © 2019 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 |
DOI | 10.1111/1365-2435.13320 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1049 |
ExternalDocumentID | 10_1111_1365_2435_13320 FEC13320 48582862 |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council funderid: LP140100232; FT130101115 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABTLG ACAHQ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ABXSQ ACCFJ ACCMX ACHIC ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD LW6 MVM VOH WRC ZY4 AAYXX ABSQW AGUYK CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 |
ID | FETCH-LOGICAL-c4440-e8566e91451375137491a71855a14d0325d6437803c622a07ad966c26a57fd503 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 25 07:27:53 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 01:15:49 EDT 2025 Wed Jan 22 16:40:46 EST 2025 Thu Jul 03 21:32:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4440-e8566e91451375137491a71855a14d0325d6437803c622a07ad966c26a57fd503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8497-2047 0000-0002-7816-5441 0000-0003-0988-4351 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13320 |
PQID | 2236069887 |
PQPubID | 1066355 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2236069887 crossref_primary_10_1111_1365_2435_13320 crossref_citationtrail_10_1111_1365_2435_13320 wiley_primary_10_1111_1365_2435_13320_FEC13320 jstor_primary_48582862 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 40 2017; 7 2015; 36 2017; 1 2017; 4 1936; 115 2016; 30 2018; 41 2011; 191 2014; 28 2016; 39 2012; 491 2014; 204 2018; 177 2018; 39 2016; 113 2006; 29 1983 2017; 120 2006; 127 2018; 32 2018; 38 2014; 203 2011; 166 2017; 20 2016; 19 2016; 209 2000; 23 2004; 140 2017; 23 1999; 22 2010; 164 2011; 32 2011; 34 2018; 23 1972; 23 2014; 114 2017; 214 2008; 180 2009; 32 2013; 33 2018; 558 2015; 112 2015; 66 2019 2014 2008; 178 2009; 149 2014; 102 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Li S. (e_1_2_9_26_1) 2015; 36 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Berger‐Landefeldt U. (e_1_2_9_5_1) 1936 e_1_2_9_42_1 R Core Team (e_1_2_9_44_1) 2014 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 180 start-page: 100 year: 2008 end-page: 113 article-title: Comparative community physiology: Nonconvergence in water relations among three semi‐arid shrub communities publication-title: New Phytologist – volume: 166 start-page: 45 year: 2011 end-page: 57 article-title: Water‐use strategies of six co‐existing Mediterranean woody species during a summer drought publication-title: Oecologia – volume: 214 start-page: 561 year: 2017 end-page: 569 article-title: Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation publication-title: New Phytologist – volume: 40 start-page: 816 year: 2017 end-page: 830 article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost publication-title: Plant, Cell & Environment – volume: 40 start-page: 277 year: 2017 end-page: 289 article-title: Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island publication-title: Plant, Cell & Environment – volume: 38 start-page: 1193 year: 2018 end-page: 1199 article-title: Xylem embolism measured retrospectively is linked to canopy dieback in natural populations of following drought publication-title: Tree Physiology – volume: 1 start-page: 1285 year: 2017 end-page: 1291 article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality publication-title: Nature Ecology & Evolution – volume: 112 start-page: 5744 year: 2015 end-page: 5749 article-title: Predicting plant vulnerability to drought in biodiverse regions using functional traits publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 164 start-page: 287 year: 2010 end-page: 296 article-title: The blind men and the elephant: The impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency publication-title: Oecologia – volume: 29 start-page: 571 year: 2006 end-page: 583 article-title: Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees publication-title: Plant, Cell & Environment – volume: 34 start-page: 137 year: 2011 end-page: 148 article-title: Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits publication-title: Plant, Cell & Environment – volume: 30 start-page: 1740 year: 2016 end-page: 1744 article-title: Are leaves more vulnerable to cavitation than branches? publication-title: Functional Ecology – year: 2014 – volume: 33 start-page: 672 year: 2013 end-page: 683 article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees publication-title: Tree Physiology – volume: 191 start-page: 996 year: 2011 end-page: 1005 article-title: Xylem traits mediate a trade‐off between resistance to freeze–thaw‐induced embolism and photosynthetic capacity in overwintering evergreens publication-title: New Phytologist – volume: 41 start-page: 2869 year: 2018 end-page: 2881 article-title: Coordination between leaf, stem, and root hydraulics and gas exchange in three arid‐zone angiosperms during severe drought and recovery publication-title: Plant, Cell & Environment – volume: 23 start-page: 112 year: 2018 end-page: 120 article-title: Iso/Anisohydry: A plant‐environment interaction rather than a simple hydraulic trait publication-title: Trends in Plant Science – volume: 120 start-page: 123 year: 2017 end-page: 133 article-title: Species climate range influences hydraulic and stomatal traits in species publication-title: Annals of Botany – volume: 4 start-page: e002 year: 2017 article-title: fitplc: An R package to fit hydraulic vulnerability curves publication-title: Journal of Plant Hydraulics – volume: 20 start-page: 1437 year: 2017 end-page: 1447 article-title: Plant resistance to drought depends on timely stomatal closure publication-title: Ecology Letters – volume: 19 start-page: 240 year: 2016 end-page: 248 article-title: Climate determines vascular traits in the ecologically diverse genus publication-title: Ecology Letters – volume: 23 start-page: 891 year: 2017 end-page: 905 article-title: Global variations in ecosystem‐scale isohydricity publication-title: Global Change Biology – volume: 558 start-page: 531 year: 2018 end-page: 539 article-title: Triggers of tree mortality under drought publication-title: Nature – volume: 127 start-page: 423 year: 2006 end-page: 433 article-title: Interrelations among pressure–volume curve traits across species and water availability gradients publication-title: Physiologia Plantarum – volume: 178 start-page: 719 year: 2008 end-page: 739 article-title: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? publication-title: New Phytologist – volume: 149 start-page: 575 year: 2009 end-page: 584 article-title: Hydraulic failure defines the recovery and point of death in water‐stressed conifers publication-title: Plant Physiology – volume: 22 start-page: 1515 year: 1999 end-page: 1526 article-title: Survey and synthesis of intra‐and interspecific variation in stomatal sensitivity to vapour pressure deficit publication-title: Plant, Cell & Environment – year: 2019 – volume: 23 start-page: 1381 year: 2000 end-page: 1388 article-title: Stem hydraulic supply is linked to leaf photosynthetic capacity: Evidence from New Caledonian and Tasmanian rainforests publication-title: Plant, Cell & Environment – volume: 32 start-page: 1584 year: 2009 end-page: 1595 article-title: Leaf hydraulics and drought stress: Response, recovery and survivorship in four woody temperate plant species publication-title: Plant, Cell & Environment – volume: 7 start-page: 2075 year: 2017 article-title: Divergent hydraulic safety strategies in three co‐occurring tree species in a Chinese savanna publication-title: Frontiers in Plant Science – volume: 28 start-page: 1313 year: 2014 end-page: 1320 article-title: The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours publication-title: Functional Ecology – volume: 36 start-page: 179 year: 2015 end-page: 192 article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought publication-title: Tree Physiology – year: 1983 – volume: 177 start-page: 1066 year: 2018 end-page: 1077 article-title: Low vulnerability to xylem embolism in leaves and stems of North American oaks publication-title: Plant Physiology – volume: 115 year: 1936 – volume: 140 start-page: 543 year: 2004 end-page: 550 article-title: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees publication-title: Oecologia – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast–slow’ plant economics spectrum: A traits manifesto publication-title: Journal of Ecology – volume: 39 start-page: 113 year: 2018 end-page: 121 article-title: Non‐invasive imaging shows no evidence of embolism repair after drought in tree species of two genera publication-title: Tree Physiology – volume: 19 start-page: 1343 year: 2016 end-page: 1352 article-title: Mapping ‘hydroscapes’ along the iso‐ to anisohydric continuum of stomatal regulation of plant water status publication-title: Ecology Letters – volume: 41 start-page: 646 year: 2018 end-page: 660 article-title: Tree hydraulic traits are coordinated and strongly linked to climate‐of‐origin across a rainfall gradient publication-title: Plant, Cell & Environment – volume: 40 start-page: 962 year: 2017 end-page: 976 article-title: Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept publication-title: Plant, Cell & Environment – volume: 40 start-page: 1618 year: 2017 end-page: 1628 article-title: Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status publication-title: Plant, Cell & Environment – volume: 32 start-page: 249 year: 2011 end-page: 261 article-title: Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid publication-title: Tree Physiology – volume: 23 start-page: 267 year: 1972 end-page: 282 article-title: The measurement of the turgor pressure and the water relations of plants by the pressure‐bomb technique publication-title: Journal of Experimental Botany – volume: 32 start-page: 894 year: 2018 end-page: 903 article-title: Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials publication-title: Functional Ecology – volume: 66 start-page: 4373 year: 2015 end-page: 4381 article-title: Growth and physiological responses of isohydric and anisohydric poplars to drought publication-title: Journal of Experimental Botany – volume: 39 start-page: 122 year: 2018 end-page: 134 article-title: Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry): A global data set reveals coordination and trade‐offs among water transport traits publication-title: Tree Physiology – volume: 114 start-page: 435 year: 2014 end-page: 440 article-title: Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates publication-title: Annals of Botany – volume: 204 start-page: 105 year: 2014 end-page: 115 article-title: A new look at water transport regulation in plants publication-title: New Phytologist – volume: 39 start-page: 38 year: 2016 end-page: 49 article-title: Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation publication-title: Plant, Cell & Environment – volume: 41 start-page: 2617 year: 2018 end-page: 2626 article-title: Stomatal behavior and stem xylem traits are coordinated for woody plant species under exceptional drought conditions publication-title: Plant, Cell & Environment – volume: 203 start-page: 842 year: 2014 end-page: 850 article-title: Coordination of stem and leaf hydraulic conductance in southern California shrubs: A test of the hydraulic segmentation hypothesis publication-title: New Phytologist – volume: 209 start-page: 1403 year: 2016 end-page: 1409 article-title: Visual quantification of embolism reveals leaf vulnerability to hydraulic failure publication-title: New Phytologist – volume: 113 start-page: 13098 year: 2016 end-page: 13103 article-title: The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 491 start-page: 752 year: 2012 end-page: 755 article-title: Global convergence in the vulnerability of forests to drought publication-title: Nature – ident: e_1_2_9_47_1 doi: 10.1007/s00442-004-1624-1 – ident: e_1_2_9_14_1 doi: 10.1111/j.1469-8137.2011.03772.x – volume: 36 start-page: 179 year: 2015 ident: e_1_2_9_26_1 article-title: Leaf gas exchange performance and the lethal water potential of five European species during drought publication-title: Tree Physiology – ident: e_1_2_9_27_1 doi: 10.1111/pce.13129 – ident: e_1_2_9_9_1 doi: 10.1104/pp.108.129783 – ident: e_1_2_9_17_1 doi: 10.20870/jph.2017.e002 – ident: e_1_2_9_56_1 doi: 10.1111/1365-2435.12656 – ident: e_1_2_9_18_1 doi: 10.1093/treephys/tpy087 – ident: e_1_2_9_57_1 doi: 10.1007/978-3-662-22627-8 – ident: e_1_2_9_15_1 doi: 10.1093/treephys/tpy093 – ident: e_1_2_9_32_1 doi: 10.1111/pce.12846 – ident: e_1_2_9_11_1 doi: 10.1111/nph.13846 – ident: e_1_2_9_39_1 doi: 10.1046/j.1365-3040.1999.00513.x – ident: e_1_2_9_22_1 doi: 10.1111/1365-2435.13049 – ident: e_1_2_9_24_1 doi: 10.1111/gcb.13389 – ident: e_1_2_9_42_1 doi: 10.1111/nph.12850 – ident: e_1_2_9_50_1 doi: 10.1073/pnas.1503376112 – ident: e_1_2_9_20_1 doi: 10.1016/j.tplants.2017.11.002 – ident: e_1_2_9_33_1 doi: 10.1111/nph.12912 – ident: e_1_2_9_3_1 doi: 10.1093/jxb/erv195 – ident: e_1_2_9_21_1 doi: 10.1111/j.1469-8137.2008.02554.x – volume-title: R: A language and environment for statistical computing year: 2014 ident: e_1_2_9_44_1 – ident: e_1_2_9_41_1 doi: 10.1111/pce.13367 – ident: e_1_2_9_40_1 doi: 10.1111/ele.12559 – ident: e_1_2_9_34_1 doi: 10.1111/ele.12851 – ident: e_1_2_9_4_1 doi: 10.1073/pnas.1604088113 – ident: e_1_2_9_36_1 doi: 10.1007/s00442-010-1734-x – ident: e_1_2_9_37_1 doi: 10.1111/pce.12970 – ident: e_1_2_9_38_1 doi: 10.1111/ele.12670 – ident: e_1_2_9_54_1 doi: 10.1093/treephys/tpt030 – ident: e_1_2_9_12_1 doi: 10.1038/s41586-018-0240-x – ident: e_1_2_9_46_1 doi: 10.1093/treephys/tpr131 – ident: e_1_2_9_13_1 doi: 10.1038/nature11688 – ident: e_1_2_9_28_1 doi: 10.1111/1365-2435.13320 – ident: e_1_2_9_29_1 doi: 10.1093/treephys/tpy052 – ident: e_1_2_9_53_1 doi: 10.1093/jxb/23.1.267 – ident: e_1_2_9_19_1 doi: 10.1111/pce.12588 – ident: e_1_2_9_52_1 doi: 10.1111/pce.12859 – ident: e_1_2_9_2_1 doi: 10.1038/s41559-017-0248-x – ident: e_1_2_9_16_1 doi: 10.1111/pce.13418 – ident: e_1_2_9_7_1 doi: 10.1093/aob/mcu131 – volume-title: Bibliotheca botanica year: 1936 ident: e_1_2_9_5_1 – ident: e_1_2_9_48_1 doi: 10.1111/nph.14450 – ident: e_1_2_9_45_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_9_49_1 doi: 10.1104/pp.18.00103 – ident: e_1_2_9_31_1 doi: 10.1111/j.1365-3040.2010.02231.x – ident: e_1_2_9_25_1 doi: 10.1111/j.1399-3054.2006.00680.x – ident: e_1_2_9_51_1 doi: 10.1111/pce.12852 – ident: e_1_2_9_30_1 doi: 10.1111/j.1365-3040.2005.01433.x – ident: e_1_2_9_6_1 doi: 10.1111/j.1365-3040.2009.02023.x – ident: e_1_2_9_23_1 doi: 10.1111/1365-2435.12289 – ident: e_1_2_9_43_1 doi: 10.1007/s00442-011-1922-3 – ident: e_1_2_9_10_1 doi: 10.1046/j.1365-3040.2000.00647.x – ident: e_1_2_9_55_1 doi: 10.3389/fpls.2016.02075 – ident: e_1_2_9_8_1 doi: 10.1093/aob/mcx020 – ident: e_1_2_9_35_1 doi: 10.1111/j.1469-8137.2008.02436.x |
SSID | ssj0009522 |
Score | 2.534077 |
Snippet | The iso/anisohydric continuum describes how plants regulate leaf water potential and is commonly used to classify species drought response strategies. However,... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1035 |
SubjectTerms | Climate Climate change climate‐of‐origin Conductance Drought Drought resistance drought tolerance Ecosystems Embolism embolism resistance Embolisms Environmental regulations Environmental risk Eucalyptus Herbivores Hydraulics isohydricity Leaves PLANT PHYSIOLOGICAL ECOLOGY Resistance Safety margins Segmentation Species Species classification Stomata Stomatal conductance stomatal regulation Strategy Turgor Water availability Water potential water relations Water use |
Subtitle | Hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates |
Title | More than iso/anisohydry |
URI | https://www.jstor.org/stable/48582862 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13320 https://www.proquest.com/docview/2236069887 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEF9EOPDl9E7Lqb1jHnzwJb1k8-2bSEsR9EEUfAub3Q2Wq0lJUqT-D_7PzuwmvSocIvfQdimZfDC7M7_J_maGsZNCqyBE2-hITwsniLR0EiFySnYXRRFymZss16vraHoXXN6HPZuQcmFsfYj1CzdaGcZe0wIXebOxyC0_C739CMMsTlE7_UOw6IZvlN21-wg8Sh30tH5X3Ie4PO_k3_glS018Azo3oavxPZNdlvd3bSknf0bLNh_J53cFHf_rsfbY1w6ZwrmdSt_Yli6_sy-2V-UKR2PZjQbjv8lxKNBZh2afvVxVtQZ6Fw-zpvotSvx-WKl6dQZT_KkaIls1sK5QAYs56hWecFjDstEgSgXK9A1qoa3mmpp-4AlrMWtJDDwXNFXOXS1aoBRRjPKB8mPAEO5FQxRukPPZIwHoA3Y3Gd9eTJ2u3YMjA9ph1glCS51S62A_pk-QegJdZxgKL1Cuz0NFu4yJ68uIc-HGQmGsJnkkwrhQoesP2HZZlfoHAwwC40JInco4QgvlJVKqmCvCU0LnMT9ko17ZmexqodPDzLM-JiI1ZKSGzKjhkJ2uBRa2DMi_Dx2Y2bM-LkhoazLCiw776ZR1hqLJEJ1hCJmiqcd7MvPio_Nnk_GFGRx9VuCY7SDcSy3Rbci223qpfyKkavNfZtW8AjPzE3k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqUEUv0AKr8mg7hx64ZEmcNzeEdrVtWQ4IJG6RYzvqim2ySrJCy3_of-6MnV0WpApVPSTxwXZsjT3zjT0Pxr4WWgUh8kZHelo4QaSlkwiRk7O7KIqQy9x4uY6votFt8P0uvFvzhbHxIVYHbrQzDL-mDU4H0mu73Bpoobjvo57FUW3fpLzeRq265muBd-1NAo9SB2Wt34X3IWueFx08k0zWOPEZ7FwHr0b6DHeYXI7bGp3c9-dt3pePL0I6_t_E3rPtDpzCuV1NH9gbXe6ytzZd5QJLA9mVeoMn_zhs0DGIZo_9Hle1BjqOh0lTnYoS3z8Xql6cwQg_VUP2Vg2sglTAbIqkhQcs1jBvNIhSgTKpg1poq6mmvB_YYS0mLTUDzwVNwXMXsxbISxQVfSAXGTA296IhK26Q08kvwtD77HY4uLkYOV3GB0cGdMmsE0SXOqXswX5MT5B6AqVnGAovUK7PQ0UXjYnry4hz4cZCobomeSTCuFCh6_fYRlmV-iMD1APjQkidyjhCJuUlUqqYK4JUQucxP2D9JbUz2YVDp8lMs6VaRGTIiAyZIcMBO1k1mNlIIH-v2jPLZ1UvSOh2MsKfHi_XU9bxiiZDgIZaZIrcHsdkFsZr_WfDwYUpHP5rgy9sa3Qzvswuv139OGLvEP2l1u7tmG209Vx_QoTV5p_NFvoDdMUXlA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hIhAXoC1RC4XOgUMvDvb63VvVJgqPRFXVStys9e5ajRrsyHaEwn_gPzOza4e0EkKIQ5I9eDe2ZnbmG-83M4y9L7QKQrSNjvS0cIJISycRIqdkd1EUIZe5yXKdzqLJTfDpa9izCSkXxtaH2Lxwo51h7DVt8KUqtja55Wehtx9imMUxan8cRG5Cin1xxbfq7tqDBB6lDrpav6vuQ2SeBwvcc0yWm3gPdW5jV-N8xi9Y3t-25ZzcDVdtPpQ_HlR0_K_nesmed9AUzqwu7bJHutxjT2yzyjWORrIbDUa_s-NwQmcemn32c1rVGuhlPMyb6oMo8ft2rer1KUzwp2qIbdXApkQFLBcoWPiOwxpWjQZRKlCmcVALbbXQ1PUDF6zFvKVp4LmgqXTuetkC5YhimA-UIAOGcS8a4nCDXMy_EYJ-xW7Go-vzidP1e3BkQEfMOkFsqVPqHezH9AlST6DvDEPhBcr1eajomDFxfRlxLtxYKAzWJI9EGBcqdP0B2ymrUh8wwCgwLoTUqYwjNFFeIqWKuSJAJXQe80M27IWdya4YOj3MIuuDIhJDRmLIjBgO2clmwtLWAfnzpQOjPZvrgoTOJiP806NenbLOUjQZwjOMIVO09XhPRi_-tn42Hp2bwet_nXDMnl5ejLMvH2ef37BnCP1SS3o7YjttvdJvEV61-TuzgX4BJf8WTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+than+iso%2Fanisohydry%3A+Hydroscapes+integrate+plant+water+use+and+drought+tolerance+traits+in+10+eucalypt+species+from+contrasting+climates&rft.jtitle=Functional+ecology&rft.au=Li%2C+Ximeng&rft.au=Blackman%2C+Chris+J&rft.au=Peters%2C+Jennifer+M+R&rft.au=Choat%2C+Brendan&rft.date=2019-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=33&rft.issue=6&rft.spage=1035&rft.epage=1049&rft_id=info:doi/10.1111%2F1365-2435.13320&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |