Optimizing dynamic predictions from joint models using super learning
Joint models for longitudinal and time‐to‐event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories...
Saved in:
Published in | Statistics in medicine Vol. 43; no. 7; pp. 1315 - 1328 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
30.03.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Joint models for longitudinal and time‐to‐event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well‐specified model that produces accurate predictions for all subjects and follow‐up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V‐fold cross‐validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross‐entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2. |
---|---|
AbstractList | Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well-specified model that produces accurate predictions for all subjects and follow-up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V-fold cross-validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross-entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2.Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well-specified model that produces accurate predictions for all subjects and follow-up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V-fold cross-validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross-entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2. Joint models for longitudinal and time‐to‐event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well‐specified model that produces accurate predictions for all subjects and follow‐up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V‐fold cross‐validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross‐entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2 . Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well-specified model that produces accurate predictions for all subjects and follow-up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V-fold cross-validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross-entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2. |
Author | Taylor, Jeremy M. G. Rizopoulos, Dimitris |
AuthorAffiliation | 3 Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA 1 Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, The Netherlands 2 Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands |
AuthorAffiliation_xml | – name: 2 Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands – name: 1 Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, The Netherlands – name: 3 Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA |
Author_xml | – sequence: 1 givenname: Dimitris orcidid: 0000-0001-9397-0900 surname: Rizopoulos fullname: Rizopoulos, Dimitris email: d.rizopoulos@erasmusmc.nl organization: Erasmus MC University Medical Center – sequence: 2 givenname: Jeremy M. G. surname: Taylor fullname: Taylor, Jeremy M. G. organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38270062$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFPwyAUxomZ0U09-A-YJl70UAcUSnsyZpm6RLODeiaUUmVpoUKrmX-9zE2jRi8PXvi9Lx_vG4GBsUYBcIjgGYIQj71uVhcEt8AQwZzFENNsAIYQMxanDNFdMPJ-EQhEMdsBu0mGGYQpHoLpvO10o9-0eYzKpRGNllHrVKllp63xUeVsEy2sNl3U2FLVPur9ivV9q1xUK-FMaPfBdiVqrw425x54uJzeT67jm_nVbHJxE0tCCIxFqJJIVBCZq6qQKaWMFCmqirJkhJRIylAypiSmVVVgRpMC5wUmUOUEZzLZA-dr3bYvGlVKZTonat463Qi35FZo_vPF6Cf-aF84QgmEWYqDwslGwdnnXvmON9pLVdfCKNt7jnOUUZSgNA_o8S90YXtnwv8CRRlKSJ6kgTr6bunLy-eKAzBeA9JZ752quNSdWG03ONQ1R5CvQuQhRP4RYpg4_TXxKfoXu1F_1bVa_g_yu9nteuIdsE2r-A |
CitedBy_id | crossref_primary_10_1016_j_jclinepi_2024_111553 crossref_primary_10_1177_09622802241268466 |
Cites_doi | 10.1200/JCO.2005.12.156 10.1002/qj.709 10.1214/ss/1009212519 10.1524/stnd.2006.24.3.373 10.1093/biostatistics/3.1.33 10.1111/j.1541-0420.2012.01753.x 10.1175/2009MWR2945.1 10.1016/j.jmva.2009.04.008 10.1093/ije/dyad023 10.1080/01621459.2014.931236 10.1201/b12208 10.1111/j.1541-0420.2010.01546.x 10.1146/annurev-statistics-030718-105048 10.1201/b11311 10.1111/j.1541-0420.2012.01823.x 10.1109/TBME.2019.2909027 10.1111/biom.12232 10.1287/deca.2013.0280 10.1007/BF00117832 10.1177/0962280218811837 10.1007/s10654-018-0390-z |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by John Wiley & Sons Ltd. 2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd. – notice: 2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.10010 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 1328 |
ExternalDocumentID | PMC11300862 38270062 10_1002_sim_10010 SIM10010 |
Genre | researchArticle Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: CA253910 – fundername: NCI NIH HHS grantid: R21 CA253910 – fundername: NCI NIH HHS grantid: U01 CA253915 – fundername: NIH HHS grantid: CA253910 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION EBD EMOBN SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4440-a444c4c1b4c9efbc65574b61fbdd744d1cc4d187ec25ffb2753b29b240e9428c3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:36:22 EDT 2025 Fri Jul 11 03:31:23 EDT 2025 Sun Jul 13 03:50:24 EDT 2025 Thu Jul 03 03:54:21 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Tue Jul 01 03:28:19 EDT 2025 Wed Jan 22 16:14:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | prognostic models precision medicine survival analysis time-varying covariates cross-entropy Brier score |
Language | English |
License | Attribution-NonCommercial 2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4440-a444c4c1b4c9efbc65574b61fbdd744d1cc4d187ec25ffb2753b29b240e9428c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9397-0900 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10010 |
PMID | 38270062 |
PQID | 2957134936 |
PQPubID | 48361 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300862 proquest_miscellaneous_2918513169 proquest_journals_2957134936 pubmed_primary_38270062 crossref_citationtrail_10_1002_sim_10010 crossref_primary_10_1002_sim_10010 wiley_primary_10_1002_sim_10010_SIM10010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 March 2024 |
PublicationDateYYYYMMDD | 2024-03-30 |
PublicationDate_xml | – month: 03 year: 2024 text: 30 March 2024 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2023; 52 2013; 69 2019; 6 2012 2015; 71 2011 2002; 3 2007 2005; 23 2023; 24 2014; 109 2023 2006; 24 2022 2013; 10 2010; 138 2004; 14 2010; 136 1999; 14 2019; 28 2009; 100 2007; 6 2011; 67 2020; 67 1996; 24 2018; 33 2012; 68 e_1_2_9_11_1 e_1_2_9_10_1 Laan v dM (e_1_2_9_12_1) 2007; 6 e_1_2_9_13_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 Rindt D (e_1_2_9_20_1) 2022 e_1_2_9_22_1 e_1_2_9_24_1 Press W (e_1_2_9_23_1) 2007 e_1_2_9_8_1 e_1_2_9_7_1 Kvamme H (e_1_2_9_21_1) 2023; 24 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Tsiatis A (e_1_2_9_15_1) 2004; 14 |
References_xml | – volume: 24 start-page: 373 year: 2006 article-title: The cross‐validated adaptive epsilon‐net estimator publication-title: Stat Decision – year: 2011 – volume: 67 start-page: 819 year: 2011 end-page: 829 article-title: Dynamic predictions and prospective accuracy in joint models for longitudinal and time‐to‐event data publication-title: Biometrics – volume: 24 start-page: 49 year: 1996 end-page: 64 article-title: Stacked regressions publication-title: Mach Learn – volume: 52 start-page: 1276 year: 2023 end-page: 1285 article-title: Practical considerations for specifying a super learner publication-title: Int J Epidemiol – year: 2007 – volume: 28 start-page: 3649 year: 2019 end-page: 3666 article-title: Individual dynamic predictions using landmarking and joint modelling: Validation of estimators and robustness assessment publication-title: Stat Methods Med Res – volume: 136 start-page: 2109 year: 2010 end-page: 2118 article-title: Sampling distributions of the Brier score and Brier skill score under serial dependence publication-title: Q J R Meteorol Soc – volume: 14 start-page: 382 year: 1999 end-page: 417 article-title: Bayesian model averaging: A tutorial publication-title: Stat Sci – volume: 138 start-page: 203 year: 2010 end-page: 211 article-title: Scoring rules for forecast verification publication-title: Mon Weather Rev – volume: 6 year: 2007 article-title: Super learner publication-title: Stat Appl Genet Mol Biol – volume: 69 start-page: 206 year: 2013 end-page: 213 article-title: Real‐time individual predictions of prostate cancer recurrence using joint models publication-title: Biometrics – volume: 100 start-page: 1989 year: 2009 end-page: 2001 article-title: Generating random correlation matrices based on vines and extended onion method publication-title: J Multivar Anal – volume: 71 start-page: 102 year: 2015 end-page: 113 article-title: Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time‐to‐event in presence of censoring and competing risks publication-title: Biometrics – volume: 67 start-page: 122 year: 2020 end-page: 133 article-title: Dynamic‐DeepHit: A deep learning approach for dynamic survival analysis with competing risks based on longitudinal data publication-title: IEEE Trans Biomed Eng – year: 2012 – volume: 10 start-page: 292 year: 2013 end-page: 304 article-title: Choosing a strictly proper scoring rule publication-title: Decis Anal – volume: 109 start-page: 1385 year: 2014 end-page: 1397 article-title: Combining dynamic predictions from joint models for longitudinal and time‐to‐event data using Bayesian model averaging publication-title: J Am Stat Assoc – volume: 14 start-page: 809 year: 2004 end-page: 834 article-title: Joint modeling of longitudinal and time‐to‐event data: An overview publication-title: Stat Sin – year: 2022 – volume: 68 start-page: 380 year: 2012 end-page: 387 article-title: Choice of prognostic estimators in joint models by estimating differences of expected conditional Kullback‐Leibler risks publication-title: Biometrics – year: 2023 – volume: 3 start-page: 33 year: 2002 end-page: 50 article-title: Identification and efficacy of longitudinal markers for survival publication-title: Biostatistics – volume: 33 start-page: 459 year: 2018 end-page: 464 article-title: Stacked generalization: An introduction to super learning publication-title: Eur J Epidemiol – volume: 23 start-page: 816 year: 2005 end-page: 825 article-title: Individualized predictions of disease progression following radiation therapy for prostate cancer publication-title: J Clin Oncol – volume: 6 start-page: 223 year: 2019 end-page: 240 article-title: An overview of joint modeling of time‐to‐event and longitudinal outcomes publication-title: Annu Rev Stat Appl – volume: 24 start-page: 1 year: 2023 end-page: 26 article-title: The Brier score under administrative censoring: Problems and a solution publication-title: J Mach Learn Res – ident: e_1_2_9_2_1 doi: 10.1200/JCO.2005.12.156 – ident: e_1_2_9_25_1 doi: 10.1002/qj.709 – ident: e_1_2_9_6_1 doi: 10.1214/ss/1009212519 – ident: e_1_2_9_17_1 – ident: e_1_2_9_9_1 doi: 10.1524/stnd.2006.24.3.373 – ident: e_1_2_9_19_1 doi: 10.1093/biostatistics/3.1.33 – volume-title: Numerical Recipes: The Art of Scientific Computing year: 2007 ident: e_1_2_9_23_1 – volume: 6 year: 2007 ident: e_1_2_9_12_1 article-title: Super learner publication-title: Stat Appl Genet Mol Biol – ident: e_1_2_9_22_1 doi: 10.1111/j.1541-0420.2012.01753.x – ident: e_1_2_9_26_1 doi: 10.1175/2009MWR2945.1 – ident: e_1_2_9_16_1 doi: 10.1016/j.jmva.2009.04.008 – ident: e_1_2_9_11_1 doi: 10.1093/ije/dyad023 – ident: e_1_2_9_7_1 doi: 10.1080/01621459.2014.931236 – volume: 24 start-page: 1 year: 2023 ident: e_1_2_9_21_1 article-title: The Brier score under administrative censoring: Problems and a solution publication-title: J Mach Learn Res – ident: e_1_2_9_13_1 doi: 10.1201/b12208 – ident: e_1_2_9_3_1 doi: 10.1111/j.1541-0420.2010.01546.x – ident: e_1_2_9_14_1 doi: 10.1146/annurev-statistics-030718-105048 – ident: e_1_2_9_27_1 doi: 10.1201/b11311 – ident: e_1_2_9_4_1 doi: 10.1111/j.1541-0420.2012.01823.x – ident: e_1_2_9_28_1 doi: 10.1109/TBME.2019.2909027 – volume: 14 start-page: 809 year: 2004 ident: e_1_2_9_15_1 article-title: Joint modeling of longitudinal and time‐to‐event data: An overview publication-title: Stat Sin – ident: e_1_2_9_18_1 doi: 10.1111/biom.12232 – ident: e_1_2_9_24_1 doi: 10.1287/deca.2013.0280 – ident: e_1_2_9_8_1 doi: 10.1007/BF00117832 – volume-title: Proceedings of the the 25th International Conference on Artificial Intelligence and Statistics (AISTATS) 2022, Valencia, Spain year: 2022 ident: e_1_2_9_20_1 – ident: e_1_2_9_5_1 doi: 10.1177/0962280218811837 – ident: e_1_2_9_10_1 doi: 10.1007/s10654-018-0390-z |
SSID | ssj0011527 |
Score | 2.4599073 |
Snippet | Joint models for longitudinal and time‐to‐event data are often employed to calculate dynamic individualized predictions used in numerous applications of... Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1315 |
SubjectTerms | Accuracy Brier score Computer Simulation cross‐entropy Humans Medical prognosis Precision medicine Precision Medicine - methods prognostic models Survival analysis time‐varying covariates |
Title | Optimizing dynamic predictions from joint models using super learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10010 https://www.ncbi.nlm.nih.gov/pubmed/38270062 https://www.proquest.com/docview/2957134936 https://www.proquest.com/docview/2918513169 https://pubmed.ncbi.nlm.nih.gov/PMC11300862 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2VHqpKqJQF2kCpDOLQS9racbyJOFWoVYu0gKCVeqgU2Y7TLtDsarN76dczYyeBpSAhLlGkjJXEnvE8ezxvAN5omSCo0DrOXE67VdzFphRVnKN7wxVIWRlJ-c6jD-r0Qr6_TC9X4G2XCxP4IfoNN7IMP1-TgWvTHPwkDW3Gt55AiNbrdFaLANHnnjqKd-VaKUSphjztWIUOxUHfctkX3QOY989J_opfvQM6eQRX3aeHcyff9hdzs2_vfmN1_M9_24SNFpiyo6BJj2HF1QNYG7Wh9wE8DBt8LOQtDWCdYGpgeX4Cxx9x5rkd36EfZGWocc-mM2rr1ZpREgv7OhnXc-ZL7zSMzttfs2YxdTPWVq64fgoXJ8fn707jtkBDbCXFhDVerbTcSJu7yliVpkNpFK9MWQ6lLLm1eMmGzoq0qozApZERuUEQ4XJc9tjkGazWk9ptA1NK87zSVgv0l4Ir1CGTUGjZpqoslYtgrxuqwrbs5VRE43sReJdFgX1W-D6L4HUvOg2UHX8S2unGu2ittilEnnq6xkRF8Kp_jPZGQRRdu8mCZBDh8ISrPIKtoB79W5KMwvhKRJAtKU4vQFzey0_q8Y3n9OYUVsyo6Z5XjL9_efHlbORvnv-76AtYFwjGfC7l4Q6szmcL9xLB1NzswgMhP-162_kB-CgcFg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QSJSEAJ4K5UNX4wMvBXa73WsTX4yBHMphopDwYprudovHR-9yHy_89czsttUTTYwvTZPOpu12pvObnZ3fALzLZYSgIs_DxKa0WsVtqAtRhim6N4xAilJLqnfun6nehfx0GV8uwPumFsbzQ7QLbmQZ7n9NBk4L0gc_WUMngzvHIIQB-xJ19HYB1deWPIo3DVspSam6PG54hQ7FQTt03hs9gpiPd0r-imCdCzpeg-_Nw_udJzf7s6neN_e_8Tr-79utw2qNTdkHr0zPYMFWHXjSr7PvHVjxa3zMly51YJmQqid6fg5HX_Dncze4R1fICt_mno3GNNZpNqM6FnY9HFRT5rrvTBhtub9ik9nIjlndvOLqBVwcH51_7IV1j4bQSEoL53g00nAtTWpLbVQcd6VWvNRF0ZWy4MbgIelaI-Ky1AKjIy1SjTjCphj5mOglLFbDym4CUyrnaZmbXKDLFFyhGumIsssmVkWhbAB7zbfKTE1gTn00bjNPvSwynLPMzVkAb1vRkWft-JPQTvPBs9pwJ5lIY8fYGKkA3rSX0eQoj5JXdjgjGQQ5POIqDWDD60d7lyihTL4SASRzmtMKEJ33_JVq8MPRenPKLCY0dM9pxt-fPPt20ncnW_8u-hqe9s77p9npydnnbVgWiM1caeXhDixOxzO7i9hqql85E3oA6xgfWg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaoqIR4LlEABgzj0knbtON5EnBDtqgW2IKBSD0hR_EhZ2mZX-7j01zNjJ4GlICEuUaSMlcSe8Xz2eL4BeFnKBEFFWcaZy2m3irtYW1HFObo3XIHYSkvKdx4dq8MT-fY0PV2DV20uTOCH6DbcyDL8fE0GPrXV3k_S0Pn40hMI4Xr9hlT9jFR6_1PHHcXbeq0Uo1QDnra0Qn2x1zVddUbXEOb1g5K_AljvgYa34Wv77eHgyfnucqF3zdVvtI7_-XN34FaDTNnroEp3Yc3VPdgYNbH3HtwMO3wsJC71YJNwaqB5vgcHH3DquRxfoSNkNhS5Z9MZtfV6zSiLhX2fjOsF87V35owO3J-x-XLqZqwpXXF2H06GB1_eHMZNhYbYSAoKl3g10nAtTe4qbVSaDqRWvNLWDqS03Bi8ZANnRFpVWuDaSItcI4pwOa57TPIA1utJ7R4CU6rkeVWaUqDDFFyhEumEYssmVdYqF8FOO1SFaejLqYrGRRGIl0WBfVb4PovgRSc6DZwdfxLabse7aMx2Xog89XyNiYrgefcYDY6iKGXtJkuSQYjDE67yCLaCenRvSTKK4ysRQbaiOJ0AkXmvPqnH3zypN6e4YkZNd7xi_P3Li89HI3_z6N9Fn8HGx_1h8f7o-N1j2BQIzHxeZX8b1hezpXuCwGqhn3oD-gGZVh4S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+dynamic+predictions+from+joint+models+using+super+learning&rft.jtitle=Statistics+in+medicine&rft.au=Rizopoulos%2C+Dimitris&rft.au=Taylor%2C+Jeremy+M.+G.&rft.date=2024-03-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=43&rft.issue=7&rft.spage=1315&rft.epage=1328&rft_id=info:doi/10.1002%2Fsim.10010&rft.externalDBID=10.1002%252Fsim.10010&rft.externalDocID=SIM10010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |