Optimizing dynamic predictions from joint models using super learning

Joint models for longitudinal and time‐to‐event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 43; no. 7; pp. 1315 - 1328
Main Authors Rizopoulos, Dimitris, Taylor, Jeremy M. G.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 30.03.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Joint models for longitudinal and time‐to‐event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well‐specified model that produces accurate predictions for all subjects and follow‐up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V‐fold cross‐validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross‐entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2.
AbstractList Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well-specified model that produces accurate predictions for all subjects and follow-up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V-fold cross-validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross-entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2.Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well-specified model that produces accurate predictions for all subjects and follow-up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V-fold cross-validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross-entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2.
Joint models for longitudinal and time‐to‐event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well‐specified model that produces accurate predictions for all subjects and follow‐up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V‐fold cross‐validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross‐entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2 .
Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well-specified model that produces accurate predictions for all subjects and follow-up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V-fold cross-validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross-entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2.
Author Taylor, Jeremy M. G.
Rizopoulos, Dimitris
AuthorAffiliation 3 Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
1 Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
2 Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
AuthorAffiliation_xml – name: 2 Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
– name: 1 Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
– name: 3 Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
Author_xml – sequence: 1
  givenname: Dimitris
  orcidid: 0000-0001-9397-0900
  surname: Rizopoulos
  fullname: Rizopoulos, Dimitris
  email: d.rizopoulos@erasmusmc.nl
  organization: Erasmus MC University Medical Center
– sequence: 2
  givenname: Jeremy M. G.
  surname: Taylor
  fullname: Taylor, Jeremy M. G.
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38270062$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFPwyAUxomZ0U09-A-YJl70UAcUSnsyZpm6RLODeiaUUmVpoUKrmX-9zE2jRi8PXvi9Lx_vG4GBsUYBcIjgGYIQj71uVhcEt8AQwZzFENNsAIYQMxanDNFdMPJ-EQhEMdsBu0mGGYQpHoLpvO10o9-0eYzKpRGNllHrVKllp63xUeVsEy2sNl3U2FLVPur9ivV9q1xUK-FMaPfBdiVqrw425x54uJzeT67jm_nVbHJxE0tCCIxFqJJIVBCZq6qQKaWMFCmqirJkhJRIylAypiSmVVVgRpMC5wUmUOUEZzLZA-dr3bYvGlVKZTonat463Qi35FZo_vPF6Cf-aF84QgmEWYqDwslGwdnnXvmON9pLVdfCKNt7jnOUUZSgNA_o8S90YXtnwv8CRRlKSJ6kgTr6bunLy-eKAzBeA9JZ752quNSdWG03ONQ1R5CvQuQhRP4RYpg4_TXxKfoXu1F_1bVa_g_yu9nteuIdsE2r-A
CitedBy_id crossref_primary_10_1016_j_jclinepi_2024_111553
crossref_primary_10_1177_09622802241268466
Cites_doi 10.1200/JCO.2005.12.156
10.1002/qj.709
10.1214/ss/1009212519
10.1524/stnd.2006.24.3.373
10.1093/biostatistics/3.1.33
10.1111/j.1541-0420.2012.01753.x
10.1175/2009MWR2945.1
10.1016/j.jmva.2009.04.008
10.1093/ije/dyad023
10.1080/01621459.2014.931236
10.1201/b12208
10.1111/j.1541-0420.2010.01546.x
10.1146/annurev-statistics-030718-105048
10.1201/b11311
10.1111/j.1541-0420.2012.01823.x
10.1109/TBME.2019.2909027
10.1111/biom.12232
10.1287/deca.2013.0280
10.1007/BF00117832
10.1177/0962280218811837
10.1007/s10654-018-0390-z
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd.
2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.10010
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
ProQuest Health & Medical Complete (Alumni)


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1328
ExternalDocumentID PMC11300862
38270062
10_1002_sim_10010
SIM10010
Genre researchArticle
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: CA253910
– fundername: NCI NIH HHS
  grantid: R21 CA253910
– fundername: NCI NIH HHS
  grantid: U01 CA253915
– fundername: NIH HHS
  grantid: CA253910
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
EBD
EMOBN
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4440-a444c4c1b4c9efbc65574b61fbdd744d1cc4d187ec25ffb2753b29b240e9428c3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:36:22 EDT 2025
Fri Jul 11 03:31:23 EDT 2025
Sun Jul 13 03:50:24 EDT 2025
Thu Jul 03 03:54:21 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Tue Jul 01 03:28:19 EDT 2025
Wed Jan 22 16:14:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords prognostic models
precision medicine
survival analysis
time-varying covariates
cross-entropy
Brier score
Language English
License Attribution-NonCommercial
2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4440-a444c4c1b4c9efbc65574b61fbdd744d1cc4d187ec25ffb2753b29b240e9428c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9397-0900
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10010
PMID 38270062
PQID 2957134936
PQPubID 48361
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300862
proquest_miscellaneous_2918513169
proquest_journals_2957134936
pubmed_primary_38270062
crossref_citationtrail_10_1002_sim_10010
crossref_primary_10_1002_sim_10010
wiley_primary_10_1002_sim_10010_SIM10010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 March 2024
PublicationDateYYYYMMDD 2024-03-30
PublicationDate_xml – month: 03
  year: 2024
  text: 30 March 2024
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 52
2013; 69
2019; 6
2012
2015; 71
2011
2002; 3
2007
2005; 23
2023; 24
2014; 109
2023
2006; 24
2022
2013; 10
2010; 138
2004; 14
2010; 136
1999; 14
2019; 28
2009; 100
2007; 6
2011; 67
2020; 67
1996; 24
2018; 33
2012; 68
e_1_2_9_11_1
e_1_2_9_10_1
Laan v dM (e_1_2_9_12_1) 2007; 6
e_1_2_9_13_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Rindt D (e_1_2_9_20_1) 2022
e_1_2_9_22_1
e_1_2_9_24_1
Press W (e_1_2_9_23_1) 2007
e_1_2_9_8_1
e_1_2_9_7_1
Kvamme H (e_1_2_9_21_1) 2023; 24
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Tsiatis A (e_1_2_9_15_1) 2004; 14
References_xml – volume: 24
  start-page: 373
  year: 2006
  article-title: The cross‐validated adaptive epsilon‐net estimator
  publication-title: Stat Decision
– year: 2011
– volume: 67
  start-page: 819
  year: 2011
  end-page: 829
  article-title: Dynamic predictions and prospective accuracy in joint models for longitudinal and time‐to‐event data
  publication-title: Biometrics
– volume: 24
  start-page: 49
  year: 1996
  end-page: 64
  article-title: Stacked regressions
  publication-title: Mach Learn
– volume: 52
  start-page: 1276
  year: 2023
  end-page: 1285
  article-title: Practical considerations for specifying a super learner
  publication-title: Int J Epidemiol
– year: 2007
– volume: 28
  start-page: 3649
  year: 2019
  end-page: 3666
  article-title: Individual dynamic predictions using landmarking and joint modelling: Validation of estimators and robustness assessment
  publication-title: Stat Methods Med Res
– volume: 136
  start-page: 2109
  year: 2010
  end-page: 2118
  article-title: Sampling distributions of the Brier score and Brier skill score under serial dependence
  publication-title: Q J R Meteorol Soc
– volume: 14
  start-page: 382
  year: 1999
  end-page: 417
  article-title: Bayesian model averaging: A tutorial
  publication-title: Stat Sci
– volume: 138
  start-page: 203
  year: 2010
  end-page: 211
  article-title: Scoring rules for forecast verification
  publication-title: Mon Weather Rev
– volume: 6
  year: 2007
  article-title: Super learner
  publication-title: Stat Appl Genet Mol Biol
– volume: 69
  start-page: 206
  year: 2013
  end-page: 213
  article-title: Real‐time individual predictions of prostate cancer recurrence using joint models
  publication-title: Biometrics
– volume: 100
  start-page: 1989
  year: 2009
  end-page: 2001
  article-title: Generating random correlation matrices based on vines and extended onion method
  publication-title: J Multivar Anal
– volume: 71
  start-page: 102
  year: 2015
  end-page: 113
  article-title: Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time‐to‐event in presence of censoring and competing risks
  publication-title: Biometrics
– volume: 67
  start-page: 122
  year: 2020
  end-page: 133
  article-title: Dynamic‐DeepHit: A deep learning approach for dynamic survival analysis with competing risks based on longitudinal data
  publication-title: IEEE Trans Biomed Eng
– year: 2012
– volume: 10
  start-page: 292
  year: 2013
  end-page: 304
  article-title: Choosing a strictly proper scoring rule
  publication-title: Decis Anal
– volume: 109
  start-page: 1385
  year: 2014
  end-page: 1397
  article-title: Combining dynamic predictions from joint models for longitudinal and time‐to‐event data using Bayesian model averaging
  publication-title: J Am Stat Assoc
– volume: 14
  start-page: 809
  year: 2004
  end-page: 834
  article-title: Joint modeling of longitudinal and time‐to‐event data: An overview
  publication-title: Stat Sin
– year: 2022
– volume: 68
  start-page: 380
  year: 2012
  end-page: 387
  article-title: Choice of prognostic estimators in joint models by estimating differences of expected conditional Kullback‐Leibler risks
  publication-title: Biometrics
– year: 2023
– volume: 3
  start-page: 33
  year: 2002
  end-page: 50
  article-title: Identification and efficacy of longitudinal markers for survival
  publication-title: Biostatistics
– volume: 33
  start-page: 459
  year: 2018
  end-page: 464
  article-title: Stacked generalization: An introduction to super learning
  publication-title: Eur J Epidemiol
– volume: 23
  start-page: 816
  year: 2005
  end-page: 825
  article-title: Individualized predictions of disease progression following radiation therapy for prostate cancer
  publication-title: J Clin Oncol
– volume: 6
  start-page: 223
  year: 2019
  end-page: 240
  article-title: An overview of joint modeling of time‐to‐event and longitudinal outcomes
  publication-title: Annu Rev Stat Appl
– volume: 24
  start-page: 1
  year: 2023
  end-page: 26
  article-title: The Brier score under administrative censoring: Problems and a solution
  publication-title: J Mach Learn Res
– ident: e_1_2_9_2_1
  doi: 10.1200/JCO.2005.12.156
– ident: e_1_2_9_25_1
  doi: 10.1002/qj.709
– ident: e_1_2_9_6_1
  doi: 10.1214/ss/1009212519
– ident: e_1_2_9_17_1
– ident: e_1_2_9_9_1
  doi: 10.1524/stnd.2006.24.3.373
– ident: e_1_2_9_19_1
  doi: 10.1093/biostatistics/3.1.33
– volume-title: Numerical Recipes: The Art of Scientific Computing
  year: 2007
  ident: e_1_2_9_23_1
– volume: 6
  year: 2007
  ident: e_1_2_9_12_1
  article-title: Super learner
  publication-title: Stat Appl Genet Mol Biol
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1541-0420.2012.01753.x
– ident: e_1_2_9_26_1
  doi: 10.1175/2009MWR2945.1
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jmva.2009.04.008
– ident: e_1_2_9_11_1
  doi: 10.1093/ije/dyad023
– ident: e_1_2_9_7_1
  doi: 10.1080/01621459.2014.931236
– volume: 24
  start-page: 1
  year: 2023
  ident: e_1_2_9_21_1
  article-title: The Brier score under administrative censoring: Problems and a solution
  publication-title: J Mach Learn Res
– ident: e_1_2_9_13_1
  doi: 10.1201/b12208
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1541-0420.2010.01546.x
– ident: e_1_2_9_14_1
  doi: 10.1146/annurev-statistics-030718-105048
– ident: e_1_2_9_27_1
  doi: 10.1201/b11311
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1541-0420.2012.01823.x
– ident: e_1_2_9_28_1
  doi: 10.1109/TBME.2019.2909027
– volume: 14
  start-page: 809
  year: 2004
  ident: e_1_2_9_15_1
  article-title: Joint modeling of longitudinal and time‐to‐event data: An overview
  publication-title: Stat Sin
– ident: e_1_2_9_18_1
  doi: 10.1111/biom.12232
– ident: e_1_2_9_24_1
  doi: 10.1287/deca.2013.0280
– ident: e_1_2_9_8_1
  doi: 10.1007/BF00117832
– volume-title: Proceedings of the the 25th International Conference on Artificial Intelligence and Statistics (AISTATS) 2022, Valencia, Spain
  year: 2022
  ident: e_1_2_9_20_1
– ident: e_1_2_9_5_1
  doi: 10.1177/0962280218811837
– ident: e_1_2_9_10_1
  doi: 10.1007/s10654-018-0390-z
SSID ssj0011527
Score 2.4599073
Snippet Joint models for longitudinal and time‐to‐event data are often employed to calculate dynamic individualized predictions used in numerous applications of...
Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1315
SubjectTerms Accuracy
Brier score
Computer Simulation
cross‐entropy
Humans
Medical prognosis
Precision medicine
Precision Medicine - methods
prognostic models
Survival analysis
time‐varying covariates
Title Optimizing dynamic predictions from joint models using super learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.10010
https://www.ncbi.nlm.nih.gov/pubmed/38270062
https://www.proquest.com/docview/2957134936
https://www.proquest.com/docview/2918513169
https://pubmed.ncbi.nlm.nih.gov/PMC11300862
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2VHqpKqJQF2kCpDOLQS9racbyJOFWoVYu0gKCVeqgU2Y7TLtDsarN76dczYyeBpSAhLlGkjJXEnvE8ezxvAN5omSCo0DrOXE67VdzFphRVnKN7wxVIWRlJ-c6jD-r0Qr6_TC9X4G2XCxP4IfoNN7IMP1-TgWvTHPwkDW3Gt55AiNbrdFaLANHnnjqKd-VaKUSphjztWIUOxUHfctkX3QOY989J_opfvQM6eQRX3aeHcyff9hdzs2_vfmN1_M9_24SNFpiyo6BJj2HF1QNYG7Wh9wE8DBt8LOQtDWCdYGpgeX4Cxx9x5rkd36EfZGWocc-mM2rr1ZpREgv7OhnXc-ZL7zSMzttfs2YxdTPWVq64fgoXJ8fn707jtkBDbCXFhDVerbTcSJu7yliVpkNpFK9MWQ6lLLm1eMmGzoq0qozApZERuUEQ4XJc9tjkGazWk9ptA1NK87zSVgv0l4Ir1CGTUGjZpqoslYtgrxuqwrbs5VRE43sReJdFgX1W-D6L4HUvOg2UHX8S2unGu2ittilEnnq6xkRF8Kp_jPZGQRRdu8mCZBDh8ISrPIKtoB79W5KMwvhKRJAtKU4vQFzey0_q8Y3n9OYUVsyo6Z5XjL9_efHlbORvnv-76AtYFwjGfC7l4Q6szmcL9xLB1NzswgMhP-162_kB-CgcFg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QSJSEAJ4K5UNX4wMvBXa73WsTX4yBHMphopDwYprudovHR-9yHy_89czsttUTTYwvTZPOpu12pvObnZ3fALzLZYSgIs_DxKa0WsVtqAtRhim6N4xAilJLqnfun6nehfx0GV8uwPumFsbzQ7QLbmQZ7n9NBk4L0gc_WUMngzvHIIQB-xJ19HYB1deWPIo3DVspSam6PG54hQ7FQTt03hs9gpiPd0r-imCdCzpeg-_Nw_udJzf7s6neN_e_8Tr-79utw2qNTdkHr0zPYMFWHXjSr7PvHVjxa3zMly51YJmQqid6fg5HX_Dncze4R1fICt_mno3GNNZpNqM6FnY9HFRT5rrvTBhtub9ik9nIjlndvOLqBVwcH51_7IV1j4bQSEoL53g00nAtTWpLbVQcd6VWvNRF0ZWy4MbgIelaI-Ky1AKjIy1SjTjCphj5mOglLFbDym4CUyrnaZmbXKDLFFyhGumIsssmVkWhbAB7zbfKTE1gTn00bjNPvSwynLPMzVkAb1vRkWft-JPQTvPBs9pwJ5lIY8fYGKkA3rSX0eQoj5JXdjgjGQQ5POIqDWDD60d7lyihTL4SASRzmtMKEJ33_JVq8MPRenPKLCY0dM9pxt-fPPt20ncnW_8u-hqe9s77p9npydnnbVgWiM1caeXhDixOxzO7i9hqql85E3oA6xgfWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaoqIR4LlEABgzj0knbtON5EnBDtqgW2IKBSD0hR_EhZ2mZX-7j01zNjJ4GlICEuUaSMlcSe8Xz2eL4BeFnKBEFFWcaZy2m3irtYW1HFObo3XIHYSkvKdx4dq8MT-fY0PV2DV20uTOCH6DbcyDL8fE0GPrXV3k_S0Pn40hMI4Xr9hlT9jFR6_1PHHcXbeq0Uo1QDnra0Qn2x1zVddUbXEOb1g5K_AljvgYa34Wv77eHgyfnucqF3zdVvtI7_-XN34FaDTNnroEp3Yc3VPdgYNbH3HtwMO3wsJC71YJNwaqB5vgcHH3DquRxfoSNkNhS5Z9MZtfV6zSiLhX2fjOsF87V35owO3J-x-XLqZqwpXXF2H06GB1_eHMZNhYbYSAoKl3g10nAtTe4qbVSaDqRWvNLWDqS03Bi8ZANnRFpVWuDaSItcI4pwOa57TPIA1utJ7R4CU6rkeVWaUqDDFFyhEumEYssmVdYqF8FOO1SFaejLqYrGRRGIl0WBfVb4PovgRSc6DZwdfxLabse7aMx2Xog89XyNiYrgefcYDY6iKGXtJkuSQYjDE67yCLaCenRvSTKK4ysRQbaiOJ0AkXmvPqnH3zypN6e4YkZNd7xi_P3Li89HI3_z6N9Fn8HGx_1h8f7o-N1j2BQIzHxeZX8b1hezpXuCwGqhn3oD-gGZVh4S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+dynamic+predictions+from+joint+models+using+super+learning&rft.jtitle=Statistics+in+medicine&rft.au=Rizopoulos%2C+Dimitris&rft.au=Taylor%2C+Jeremy+M.+G.&rft.date=2024-03-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=43&rft.issue=7&rft.spage=1315&rft.epage=1328&rft_id=info:doi/10.1002%2Fsim.10010&rft.externalDBID=10.1002%252Fsim.10010&rft.externalDocID=SIM10010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon