Developmental and aging resting functional magnetic resonance imaging brain state adaptations in adolescents and adults: A large N (>47K) study

The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time‐resolved functional connectivity are still unclear and under...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 44; no. 6; pp. 2158 - 2175
Main Authors Abrol, Anees, Fu, Zening, Du, Yuhui, Wilson, Tony W., Wang, Yu‐Ping, Stephen, Julia M., Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time‐resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time‐resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U‐shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State‐based statistical summary measures presented robust and significant group differences that also showed significant age‐related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time‐resolved brain state trajectories. We highlight the replicable time‐resolved developmental and aging functional brain patterns in a systematic evaluation of over 47,000 youth and adult brains. Our study captured the most contrastive difference between the two life stages in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor sub‐domains, supplemented by anticorrelation with other subdomains in adults, a pattern that was consistently less modular or absent in adolescents and presented a negative association with age in adults, thus indicating an overall inverted U‐shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and the gradual decline of this pattern during the healthy aging process.
AbstractList The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time‐resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time‐resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U‐shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State‐based statistical summary measures presented robust and significant group differences that also showed significant age‐related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time‐resolved brain state trajectories.
The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time‐resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time‐resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U‐shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State‐based statistical summary measures presented robust and significant group differences that also showed significant age‐related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time‐resolved brain state trajectories. We highlight the replicable time‐resolved developmental and aging functional brain patterns in a systematic evaluation of over 47,000 youth and adult brains. Our study captured the most contrastive difference between the two life stages in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor sub‐domains, supplemented by anticorrelation with other subdomains in adults, a pattern that was consistently less modular or absent in adolescents and presented a negative association with age in adults, thus indicating an overall inverted U‐shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and the gradual decline of this pattern during the healthy aging process.
The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time-resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time-resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U-shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State-based statistical summary measures presented robust and significant group differences that also showed significant age-related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time-resolved brain state trajectories.The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time-resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time-resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U-shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State-based statistical summary measures presented robust and significant group differences that also showed significant age-related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time-resolved brain state trajectories.
Author Wang, Yu‐Ping
Stephen, Julia M.
Du, Yuhui
Wilson, Tony W.
Calhoun, Vince D.
Abrol, Anees
Fu, Zening
AuthorAffiliation 3 Boys Town National Research Hospital Institute for Human Neuroscience Boys Town Nebraska USA
1 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, and Emory University Atlanta Georgia USA
6 The Mind Research Network Albuquerque New Mexico USA
2 School of Computer & Information Technology Shanxi University Taiyuan China
4 Department of Biomedical Engineering Tulane University New Orleans Louisiana USA
5 Department of Global Biostatistics and Data Science Tulane University New Orleans Louisiana USA
AuthorAffiliation_xml – name: 2 School of Computer & Information Technology Shanxi University Taiyuan China
– name: 5 Department of Global Biostatistics and Data Science Tulane University New Orleans Louisiana USA
– name: 6 The Mind Research Network Albuquerque New Mexico USA
– name: 3 Boys Town National Research Hospital Institute for Human Neuroscience Boys Town Nebraska USA
– name: 1 Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, and Emory University Atlanta Georgia USA
– name: 4 Department of Biomedical Engineering Tulane University New Orleans Louisiana USA
Author_xml – sequence: 1
  givenname: Anees
  orcidid: 0000-0001-9223-5314
  surname: Abrol
  fullname: Abrol, Anees
  email: abrolanees@gmail.com
  organization: Georgia State University, Georgia Institute of Technology, and Emory University
– sequence: 2
  givenname: Zening
  surname: Fu
  fullname: Fu, Zening
  organization: Georgia State University, Georgia Institute of Technology, and Emory University
– sequence: 3
  givenname: Yuhui
  surname: Du
  fullname: Du, Yuhui
  organization: Shanxi University
– sequence: 4
  givenname: Tony W.
  orcidid: 0000-0002-5053-8306
  surname: Wilson
  fullname: Wilson, Tony W.
  organization: Institute for Human Neuroscience
– sequence: 5
  givenname: Yu‐Ping
  surname: Wang
  fullname: Wang, Yu‐Ping
  organization: Tulane University
– sequence: 6
  givenname: Julia M.
  orcidid: 0000-0003-2486-747X
  surname: Stephen
  fullname: Stephen, Julia M.
  organization: The Mind Research Network
– sequence: 7
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: Georgia State University, Georgia Institute of Technology, and Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36629328$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1URC-w4AWQJTbtIq3tOE7CAlTKpYgCG1hbju2krhz7YCdF5yl4ZSZNqaASrGzPfPPrnxnvo50Qg0XoKSXHlBB2ctmNx0wwQh6gPUrauiC0LXeWu6iKltd0F-3nfEUIpRWhj9BuKQRrS9bsoZ9v7LX1cTPaMCmPVTBYDS4MONk8LWc_Bz25GCA5qiHYyeklB4GgLXbjSndJuYDzpCaLlVEbuEBNxhBUJnqbNejnVd7Mfsov8Cn2Kg0Wf8aHL3n98QiqZ7N9jB72ymf75PY8QN_evf16dl5cfHn_4ez0otCcc1IwXvVUEV6aVnDBDak6vjx6y1THjIEXZaLRHWn6qiZaAM_70nQQarq2LQ_Qq1V3M3ejNYu9pLzcJOgobWVUTv6dCe5SDvFaLgNvRF2CwuGtQorfZ5iWHB206b0KNs5ZslqAVSqaGtDn99CrOCcY6UI1TU1gURSoZ39auvPye1kAHK2ATjHnZPs7hJIbXxI-grz5CMCe3GO1W5cC3Tj_v4ofztvtv6Xl-etPa8UvkqjFGA
CitedBy_id crossref_primary_10_1016_j_biopsych_2023_12_019
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1007_s11357_024_01436_1
crossref_primary_10_1016_j_neuroimage_2024_120617
crossref_primary_10_1093_bfgp_elae042
Cites_doi 10.1016/j.neuroimage.2007.11.001
10.3389/fnsys.2021.724805
10.1007/s10334-010-0197-8
10.1016/j.neuroimage.2017.09.020
10.1016/j.neuroimage.2011.10.018
10.1016/j.arr.2016.02.006
10.1093/cercor/bhw082
10.1109/EMBC.2016.7591989
10.1016/j.nicl.2020.102375
10.1016/j.euroneuro.2010.03.008
10.1109/embc48229.2022.9871305
10.1109/10.391164
10.1016/j.neuroimage.2012.11.008
10.1002/hbm.23896
10.1155/2019/9027803
10.3389/fnhum.2015.00418
10.1523/jneurosci.4638-14.2015
10.1007/s00424-021-02520-7
10.1523/jneurosci.1476-16.2016
10.1002/hbm.22985
10.1371/journal.pbio.1000157
10.1016/j.neurobiolaging.2016.02.020
10.3389/fped.2020.00412
10.1016/j.dcn.2018.03.001
10.1093/cercor/bhaa367
10.21203/rs.3.rs-1514598/v1
10.1089/brain.2011.0008
10.1038/s41586-022-04492-9
10.3389/fnagi.2017.00203
10.3389/fnins.2018.00551
10.1016/j.neurobiolaging.2013.07.003
10.1186/s13643-015-0173-5
10.1523/jneurosci.2612-10.2010
10.1016/j.neuron.2010.08.017
10.1007/s10654-013-9768-0
10.1016/j.neuroimage.2018.01.040
10.1093/cercor/bhs352
10.1016/j.neuroimage.2016.12.061
10.1002/hbm.1048
10.1038/nn.4393
10.1038/sdata.2015.31
10.1038/s42003-021-02592-2
10.1002/hbm.24064
10.1016/S2352-4642(18)30022-1
10.1016/j.tics.2013.09.015
10.1016/j.neuroimage.2011.12.063
10.1109/BIBE52308.2021.9635525
10.1016/j.neuroimage.2013.05.079
10.1093/cercor/bhq104
10.1002/hbm.23346
10.1016/j.neuroimage.2020.117438
10.1162/netn_a_00116
10.1073/pnas.0705843104
10.1016/j.neubiorev.2015.08.013
10.1016/j.neuron.2014.10.015
10.1016/j.neuroimage.2013.05.041
10.1016/j.jadohealth.2008.01.007
10.1109/rbme.2012.2211076
10.1146/annurev-clinpsy-032814-112753
10.3389/fpsyg.2015.00663
10.3389/fnagi.2016.00330
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC.
2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC.
– notice: 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.26200
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Technology Research Database

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Abrol et al
EISSN 1097-0193
EndPage 2175
ExternalDocumentID PMC10028673
36629328
10_1002_hbm_26200
HBM26200
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P20GM144641; R01MH116782; R01MH118695; R01MH121101; R01MH123610
– fundername: Natural Science Foundation of China
  funderid: 62076157; 61703253
– fundername: National Science Foundation
  funderid: 2112455
– fundername: NIDA NIH HHS
  grantid: R01 DA056223
– fundername: NIMH NIH HHS
  grantid: R01 MH116782
– fundername: NIMH NIH HHS
  grantid: R01 MH123610
– fundername: NIGMS NIH HHS
  grantid: P20 GM144641
– fundername: NIMH NIH HHS
  grantid: R01 MH118695
– fundername: NIMH NIH HHS
  grantid: R01 MH121101
– fundername: ;
  grantid: 2112455
– fundername: ;
  grantid: P20GM144641; R01MH116782; R01MH118695; R01MH121101; R01MH123610
– fundername: ;
  grantid: 62076157; 61703253
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4440-245f1a043d96464d05b443d9fe2ab2ddb441268cb08f570c645f4f3db8cb8b993
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:37:57 EDT 2025
Tue Aug 05 09:42:09 EDT 2025
Sat Jul 26 02:35:38 EDT 2025
Thu Apr 03 06:57:53 EDT 2025
Tue Jul 01 01:11:11 EDT 2025
Thu Apr 24 22:53:41 EDT 2025
Wed Jan 22 16:22:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords brain development
brain aging
functional connectivity
connectivity
resting state fMRI
time-resolved functional connectivity
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4440-245f1a043d96464d05b443d9fe2ab2ddb441268cb08f570c645f4f3db8cb8b993
Notes Funding information
National Institutes of Health, Grant/Award Numbers: P20GM144641, R01MH116782, R01MH118695, R01MH121101, R01MH123610; National Science Foundation, Grant/Award Number: 2112455; Natural Science Foundation of China, Grant/Award Numbers: 62076157, 61703253
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information National Institutes of Health, Grant/Award Numbers: P20GM144641, R01MH116782, R01MH118695, R01MH121101, R01MH123610; National Science Foundation, Grant/Award Number: 2112455; Natural Science Foundation of China, Grant/Award Numbers: 62076157, 61703253
ORCID 0000-0003-2486-747X
0000-0002-5053-8306
0000-0001-9223-5314
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26200
PMID 36629328
PQID 2788701061
PQPubID 996345
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10028673
proquest_miscellaneous_2764441687
proquest_journals_2788701061
pubmed_primary_36629328
crossref_primary_10_1002_hbm_26200
crossref_citationtrail_10_1002_hbm_26200
wiley_primary_10_1002_hbm_26200_HBM26200
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 15, 2023
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: April 15, 2023
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 35
2007; 104
2012; 60
2019; 2019
2015; 36
2013; 69
2013; 28
2008; 39
2016; 30
2014; 24
2012; 59
2017; 9
2016; 36
2020; 8
2010; 67
2010; 23
2018; 39
2010; 20
2020; 4
2021; 31
2018; 2
2013; 17
2018; 172
2017; 38
2016; 41
2017; 160
2011; 21
2017; 163
2021; 473
2022; 603
2018; 32
2001; 14
2010; 30
2015; 2
2015; 57
2015; 6
2021; 4
2011; 1
2016; 19
2021; 225
2017; 27
2015; 11
2014; 84
2015; 9
1995; 42
2016; 5
2021; 15
2022; 2022
2022
2021
2020; 28
2013; 80
2014; 35
2016
2009; 7
2008; 42
2018; 12
2012; 5
2016; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 6
  start-page: 663
  year: 2015
  article-title: Reorganization of brain networks in aging: A review of functional connectivity studies
  publication-title: Frontiers in Psychology
– volume: 7
  issue: 7
  year: 2009
  article-title: Development of large‐scale functional brain networks in children
  publication-title: PLoS Biology
– volume: 39
  start-page: 3127
  issue: 8
  year: 2018
  end-page: 3142
  article-title: Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder
  publication-title: Human Brain Mapping
– volume: 28
  year: 2020
  article-title: NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
  publication-title: NeuroImage: Clinical
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  end-page: 676
  article-title: Tracking whole‐brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
– year: 2021
– volume: 41
  start-page: 159
  year: 2016
  end-page: 172
  article-title: Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks
  publication-title: Neurobiology of Aging
– volume: 15
  year: 2021
  article-title: Developmental changes in dynamic functional connectivity from childhood into adolescence [original research]
  publication-title: Frontiers in Systems Neuroscience
– volume: 2
  start-page: 223
  issue: 3
  year: 2018
  end-page: 228
  article-title: The age of adolescence
  publication-title: The Lancet Child & Adolescent Health
– volume: 30
  start-page: 61
  year: 2016
  end-page: 72
  article-title: Functional neuroimaging of normal aging: Declining brain, adapting brain
  publication-title: Ageing Research Reviews
– volume: 104
  start-page: 13507
  issue: 33
  year: 2007
  end-page: 13512
  article-title: Development of distinct control networks through segregation and integration
  publication-title: Proceedings of the National Academy of Sciences
– volume: 4
  start-page: 1073
  issue: 1
  year: 2021
  article-title: Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
  publication-title: Communications Biology
– volume: 8
  start-page: 412
  year: 2020
  article-title: Changes of dynamic functional connectivity associated with maturity in late preterm infants
  publication-title: Frontiers in Pediatrics
– volume: 9
  year: 2015
  article-title: Predicting individual brain maturity using dynamic functional connectivity [original research]
  publication-title: Frontiers in Human Neuroscience
– volume: 5
  start-page: 60
  year: 2012
  end-page: 73
  article-title: Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 69
  start-page: 157
  year: 2013
  end-page: 197
  article-title: Group information guided ICA for fMRI data analysis
  publication-title: NeuroImage
– volume: 19
  start-page: 1523
  issue: 11
  year: 2016
  end-page: 1536
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nature Neuroscience
– volume: 38
  start-page: 97
  issue: 1
  year: 2017
  end-page: 108
  article-title: Dynamic functional connectivity of neurocognitive networks in children
  publication-title: Human Brain Mapping
– volume: 225
  year: 2021
  article-title: The developmental chronnecto‐genomics (Dev‐CoG) study: A multimodal study on the developing brain
  publication-title: NeuroImage
– volume: 2019
  year: 2019
  article-title: Tracking the brain state transition process of dynamic function connectivity based on resting state fMRI
  publication-title: Computational Intelligence and Neuroscience
– volume: 60
  start-page: 623
  issue: 1
  year: 2012
  end-page: 632
  article-title: Impact of in‐scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth
  publication-title: NeuroImage
– volume: 2
  issue: 1
  year: 2015
  article-title: Brain genomics superstruct project initial data release with structural, functional, and behavioral measures
  publication-title: Scientific Data
– year: 2022
  article-title: Functional connectivity uniqueness and variability?
  publication-title: Research Square
– volume: 31
  start-page: 2466
  issue: 5
  year: 2021
  end-page: 2481
  article-title: Whole‐brain dynamics in aging: Disruptions in functional connectivity and the role of the rich club
  publication-title: Cerebral Cortex
– volume: 21
  start-page: 385
  issue: 2
  year: 2011
  end-page: 391
  article-title: A comprehensive study of whole‐brain functional connectivity in children and young adults
  publication-title: Cerebral Cortex
– volume: 27
  start-page: 2303
  issue: 3
  year: 2017
  end-page: 2317
  article-title: The disconnected brain and executive function decline in aging
  publication-title: Cerebral Cortex
– volume: 36
  start-page: 4926
  issue: 12
  year: 2015
  end-page: 4937
  article-title: Temporal stability of network centrality in control and default mode networks: Specific associations with externalizing psychopathology in children and adolescents
  publication-title: Human Brain Mapping
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  end-page: 151
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Human Brain Mapping
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The WU‐Minn human connectome project: An overview
  publication-title: NeuroImage
– volume: 20
  start-page: 519
  issue: 8
  year: 2010
  end-page: 534
  article-title: Exploring the brain network: A review on resting‐state fMRI functional connectivity
  publication-title: European Neuropsychopharmacology
– volume: 11
  start-page: 361
  year: 2015
  end-page: 377
  article-title: fMRI functional connectivity applied to adolescent neurodevelopment
  publication-title: Annual Review of Clinical Psychology
– volume: 28
  start-page: 99
  issue: 1
  year: 2013
  end-page: 111
  article-title: Pediatric population‐based neuroimaging and the generation R study: The intersection of developmental neuroscience and epidemiology
  publication-title: European Journal of Epidemiology
– volume: 12
  year: 2018
  article-title: Resting‐state fMRI dynamics and null models: Perspectives, sampling variability, and simulations [perspective]
  publication-title: Frontiers in Neuroscience
– volume: 23
  start-page: 351
  issue: 5–6
  year: 2010
  end-page: 366
  article-title: A method for evaluating dynamic functional network connectivity and task‐modulation: Application to schizophrenia
  publication-title: Magma
– volume: 2022
  start-page: 1867
  year: 2022
  end-page: 1870
  article-title: Spatially constrained ICA enables robust detection of schizophrenia from very short resting‐state fMRI
  publication-title: Annual International Conference of IEEE Engineering in Medicine and Biological Society
– volume: 9
  start-page: 203
  year: 2017
  article-title: Age‐related decline in the variation of dynamic functional connectivity: A resting state analysis
  publication-title: Frontiers in Aging Neuroscience
– volume: 42
  start-page: 658
  issue: 7
  year: 1995
  end-page: 665
  article-title: Segmentation of brain electrical activity into microstates: Model estimation and validation
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 36
  start-page: 10060
  issue: 39
  year: 2016
  end-page: 10074
  article-title: Dissociable changes of frontal and parietal cortices in inherent functional flexibility across the human life span
  publication-title: The Journal of Neuroscience
– volume: 160
  start-page: 41
  year: 2017
  end-page: 54
  article-title: The dynamic functional connectome: State‐of‐the‐art and perspectives
  publication-title: NeuroImage
– volume: 35
  start-page: 6849
  issue: 17
  year: 2015
  end-page: 6859
  article-title: Tracking the brain's functional coupling dynamics over development
  publication-title: The Journal of Neuroscience
– volume: 4
  start-page: 30
  issue: 1
  year: 2020
  end-page: 69
  article-title: Questions and controversies in the study of time‐varying functional connectivity in resting fMRI
  publication-title: Network Neuroscience (Cambridge, Mass.)
– volume: 84
  start-page: 262
  issue: 2
  year: 2014
  end-page: 274
  article-title: The chronnectome: Time‐varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
– volume: 603
  start-page: 654
  issue: 7902
  year: 2022
  end-page: 660
  article-title: Reproducible brain‐wide association studies require thousands of individuals
  publication-title: Nature
– year: 2016
– volume: 39
  start-page: 1108
  issue: 3
  year: 2018
  end-page: 1117
  article-title: Changing brain connectivity dynamics: From early childhood to adulthood
  publication-title: Human Brain Mapping
– volume: 1
  start-page: 13
  issue: 1
  year: 2011
  end-page: 36
  article-title: Functional and effective connectivity: A review
  publication-title: Brain Connectivity
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 163
  start-page: 160
  year: 2017
  end-page: 176
  article-title: Replicability of time‐varying connectivity patterns in large resting state fMRI samples
  publication-title: NeuroImage
– volume: 473
  start-page: 793
  issue: 5
  year: 2021
  end-page: 803
  article-title: Resting‐state networks in the course of aging‐differential insights from studies across the lifespan vs. amongst the old
  publication-title: Pflügers Archiv
– volume: 30
  start-page: 15034
  issue: 45
  year: 2010
  end-page: 15043
  article-title: Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy
  publication-title: The Journal of Neuroscience
– volume: 32
  start-page: 43
  year: 2018
  end-page: 54
  article-title: The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites
  publication-title: Developmental Cognitive Neuroscience
– volume: 8
  start-page: 330
  year: 2016
  article-title: Early age‐related functional connectivity decline in high‐order cognitive networks
  publication-title: Frontiers in Aging Neuroscience
– volume: 67
  start-page: 735
  issue: 5
  year: 2010
  end-page: 748
  article-title: The development of human functional brain networks
  publication-title: Neuron
– volume: 172
  start-page: 31
  year: 2018
  end-page: 39
  article-title: Changes in dynamic functional connections with aging
  publication-title: NeuroImage
– volume: 5
  start-page: 3
  issue: 1
  year: 2016
  article-title: A systematic review of adolescent physiological development and its relationship with health‐related behaviour: A protocol
  publication-title: Systematic Reviews
– volume: 39
  start-page: 1666
  issue: 4
  year: 2008
  end-page: 1681
  article-title: A method for functional network connectivity among spatially independent resting‐state components in schizophrenia
  publication-title: NeuroImage
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  article-title: Dynamic functional connectivity: Promise, issues, and interpretations
  publication-title: NeuroImage
– volume: 17
  start-page: 627
  issue: 12
  year: 2013
  end-page: 640
  article-title: Developmental pathways to functional brain networks: Emerging principles
  publication-title: Trends in Cognitive Sciences
– volume: 35
  start-page: 42
  issue: 1
  year: 2014
  end-page: 54
  article-title: Age‐related functional reorganization, structural changes, and preserved cognition
  publication-title: Neurobiology of Aging
– volume: 42
  start-page: 335
  issue: 4
  year: 2008
  end-page: 343
  article-title: The teen brain: Insights from neuroimaging
  publication-title: The Journal of Adolescent Health
– volume: 57
  start-page: 156
  year: 2015
  end-page: 174
  article-title: Putting age‐related task activation into large‐scale brain networks: A meta‐analysis of 114 fMRI studies on healthy aging
  publication-title: Neuroscience and Biobehavioral Reviews
– ident: e_1_2_8_27_1
  doi: 10.1016/j.neuroimage.2007.11.001
– ident: e_1_2_8_32_1
  doi: 10.3389/fnsys.2021.724805
– ident: e_1_2_8_48_1
  doi: 10.1007/s10334-010-0197-8
– ident: e_1_2_8_3_1
  doi: 10.1016/j.neuroimage.2017.09.020
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_8_55_1
  doi: 10.1016/j.arr.2016.02.006
– ident: e_1_2_8_19_1
  doi: 10.1093/cercor/bhw082
– ident: e_1_2_8_2_1
  doi: 10.1109/EMBC.2016.7591989
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nicl.2020.102375
– ident: e_1_2_8_58_1
  doi: 10.1016/j.euroneuro.2010.03.008
– ident: e_1_2_8_14_1
  doi: 10.1109/embc48229.2022.9871305
– ident: e_1_2_8_41_1
  doi: 10.1109/10.391164
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuroimage.2012.11.008
– ident: e_1_2_8_17_1
  doi: 10.1002/hbm.23896
– ident: e_1_2_8_31_1
  doi: 10.1155/2019/9027803
– ident: e_1_2_8_46_1
  doi: 10.3389/fnhum.2015.00418
– ident: e_1_2_8_25_1
  doi: 10.1523/jneurosci.4638-14.2015
– ident: e_1_2_8_28_1
  doi: 10.1007/s00424-021-02520-7
– ident: e_1_2_8_61_1
  doi: 10.1523/jneurosci.1476-16.2016
– ident: e_1_2_8_50_1
  doi: 10.1002/hbm.22985
– ident: e_1_2_8_56_1
  doi: 10.1371/journal.pbio.1000157
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neurobiolaging.2016.02.020
– ident: e_1_2_8_34_1
  doi: 10.3389/fped.2020.00412
– ident: e_1_2_8_8_1
  doi: 10.1016/j.dcn.2018.03.001
– ident: e_1_2_8_16_1
  doi: 10.1093/cercor/bhaa367
– ident: e_1_2_8_21_1
  doi: 10.21203/rs.3.rs-1514598/v1
– ident: e_1_2_8_20_1
  doi: 10.1089/brain.2011.0008
– ident: e_1_2_8_35_1
  doi: 10.1038/s41586-022-04492-9
– ident: e_1_2_8_9_1
  doi: 10.3389/fnagi.2017.00203
– ident: e_1_2_8_40_1
  doi: 10.3389/fnins.2018.00551
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neurobiolaging.2013.07.003
– ident: e_1_2_8_45_1
  doi: 10.1186/s13643-015-0173-5
– ident: e_1_2_8_62_1
  doi: 10.1523/jneurosci.2612-10.2010
– ident: e_1_2_8_43_1
  doi: 10.1016/j.neuron.2010.08.017
– ident: e_1_2_8_60_1
  doi: 10.1007/s10654-013-9768-0
– ident: e_1_2_8_57_1
  doi: 10.1016/j.neuroimage.2018.01.040
– ident: e_1_2_8_4_1
  doi: 10.1093/cercor/bhs352
– ident: e_1_2_8_44_1
  doi: 10.1016/j.neuroimage.2016.12.061
– ident: e_1_2_8_6_1
  doi: 10.1002/hbm.1048
– ident: e_1_2_8_39_1
  doi: 10.1038/nn.4393
– ident: e_1_2_8_24_1
  doi: 10.1038/sdata.2015.31
– ident: e_1_2_8_13_1
  doi: 10.1038/s42003-021-02592-2
– ident: e_1_2_8_47_1
  doi: 10.1002/hbm.24064
– ident: e_1_2_8_52_1
  doi: 10.1016/S2352-4642(18)30022-1
– ident: e_1_2_8_37_1
  doi: 10.1016/j.tics.2013.09.015
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neuroimage.2011.12.063
– ident: e_1_2_8_10_1
  doi: 10.1109/BIBE52308.2021.9635525
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neuroimage.2013.05.079
– ident: e_1_2_8_29_1
  doi: 10.1093/cercor/bhq104
– ident: e_1_2_8_36_1
  doi: 10.1002/hbm.23346
– ident: e_1_2_8_54_1
  doi: 10.1016/j.neuroimage.2020.117438
– ident: e_1_2_8_33_1
  doi: 10.1162/netn_a_00116
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.0705843104
– ident: e_1_2_8_30_1
  doi: 10.1016/j.neubiorev.2015.08.013
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neuron.2014.10.015
– ident: e_1_2_8_59_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jadohealth.2008.01.007
– ident: e_1_2_8_5_1
  doi: 10.1109/rbme.2012.2211076
– ident: e_1_2_8_15_1
  doi: 10.1146/annurev-clinpsy-032814-112753
– ident: e_1_2_8_49_1
  doi: 10.3389/fpsyg.2015.00663
– ident: e_1_2_8_53_1
  doi: 10.3389/fnagi.2016.00330
SSID ssj0011501
Score 2.446764
Snippet The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2158
SubjectTerms Adaptation
Adolescent
Adolescents
Adult
Adults
Age
Aging
Aging - pathology
Biobanks
Brain
brain aging
Brain architecture
brain development
Brain mapping
Brain Mapping - methods
Brain research
Child
Child development
Cognitive ability
connectivity
Datasets
Developmental stages
functional connectivity
Functional magnetic resonance imaging
Functional morphology
Human subjects
Humans
Life span
Longevity
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Modularization
Neural networks
Neural Pathways - diagnostic imaging
Neuroimaging
Rest
resting state fMRI
Sensorimotor integration
Sensory integration
Strengthening
Teenagers
time‐resolved functional connectivity
Youth
Title Developmental and aging resting functional magnetic resonance imaging brain state adaptations in adolescents and adults: A large N (>47K) study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26200
https://www.ncbi.nlm.nih.gov/pubmed/36629328
https://www.proquest.com/docview/2788701061
https://www.proquest.com/docview/2764441687
https://pubmed.ncbi.nlm.nih.gov/PMC10028673
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NISFe-NhgBEZlEELjIV3qOIkDElKHNlWgVdPEpD4gRXZss4k1nWj7AP8E_zJ3zgctAwnx0jbxOXHSO9_P9vl3AC_QablEyyg0uVChyJwN88iJ0HFucxdHVhsfbTFOR2fi_SSZbMCbdi9MzQ_RTbiRZfj-mgxc6fn-L9LQcz3tE5s6jdcpVosA0WlHHUVAxw-20MWGOfbALatQxPe7muu-6BrAvB4nuYpfvQM6uguf2qbXcSdf-suF7pfff2N1_M9nuwd3GmDKhrUm3YcNW23B9rDCQfn0G3vJfKion4PfglvHzYr8NvxYiTrC6qoyzOc9YpTzg77JcdbzjWyqPle0Z5LKZkT0YdnFtJbWlKmC-d1NTBl1VQcIzBmeXOGcqi9PjCHz12zILimKnY3Z3luRfXjFPFPuAzg7Ovz4bhQ2SR7CUtC6MheJG6hIxCZPRSpMlGhBB85ypbkxeDTgqSx1JF2SRWWK8sLFRuMpqRFdPYTNalbZR8DK3MlcuywpXS5kabGjN1ppmSgVDZTiAey1f3dRNgzolIjjsqi5m3mB773w7z2A553oVU378Seh3VZnisby5wWn8Ew_0A7gWVeMNksLMaqysyXJIApFJCyzAHZqFevuEqcpIjAuA5BrytcJEB_4ekl1ce55wal1Ms1ifE6vXH9veTE6OPY_Hv-76BO4zRHg0UraINmFzcXXpX2KgGyhe3CDixP8zCZZD24eHI5PTnt-cqPnbfInPvE4Bw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIuPFoegQIGIVQO2WYdJ3EQQloe1UK7e0Ct1AuK7MRuq3azFbt7gD_BX2bGTsIuBQlxysOTxElmPJ_t8TcAz9Fp2UTLKKxyoUKRWRPmkRWh5dzkNo6Mrly0xTgdHopPR8nRGrxu18J4fohuwI0sw7XXZOA0IL3zizX0RE96RKeOHfYrlNGbmPPff-7IowjquO4WOtkwxza45RWK-E536ao3ugQxL0dKLiNY54J2b8KXtvI-8uSst5jrXvn9N17H_327W3CjwaZs4JXpNqyZegM2BzX2yyff2AvmokXdMPwGXB01k_Kb8GMp8AgvV3XFXOojRmk_aEu-0w85sok6rmnZJJVNievDsNOJl9aUrIK5BU5MVerCxwjMGJ5cop3ytyfSkNkrNmDnFMjOxmz7jcj2XjJHlnsHDnc_HLwbhk2eh7AUNLXMRWL7KhJxlaciFVWUaEEH1nCleVXhUZ-nstSRtEkWlSnKCxtXGk9JjQDrLqzX09rcB1bmVubaZklpcyFLg219pZWWiVJRXykewHb7v4uyIUGnXBznhadv5gV-98J99wCedaIXnvnjT0JbrdIUjfHPCk4Rmq6vHcDTrhjNluZiVG2mC5JBIIpgWGYB3PM61j0lTlMEYVwGIFe0rxMgSvDVkvr0xFGDU-1kmsX4nk67_l7zYvh25HYe_LvoE7g2PBjtF_sfx3sP4TpHvEcTa_1kC9bnXxfmEeKzuX7szPAn2yo31g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9NQ5p4QWzjIzDAIITGQ5jrOIkDElL5qApj1R6YtLfIjm02aU2rdXvgr-Bf5s5OQ6uBxFM-fElTnc_3s-_8O4CX6LR8bhRPbSV1Kkvv0op7mXohXOUz7owN2RaTYnwiv57mpxvwbrkXJvJD9AtuZBlhvCYDn1t_8Ic09MxM3xCbOs7Xb1Gwj_K5hDzuQwiIdMJsC31sWuEQvKQV4uKgf3TdGd1AmDcTJVcBbPBAo7twp4OObBh1vQ0brt2B3WGL0-bpT_aKhWTOsEq-A1tHXcx8F36t5AXh47q1LFQmYlSVg47k2uKKIJvqHy3taqS2GVFxOHY-jdKGakmwsP-IaavnMYS_YHhzhRUqvp44PRZv2ZBdUJ45m7D997I8fM0Cl-09OBl9_v5xnHZlGNJGUuRXyNwPNJeZrQpZSMtzI-nCO6GNsBavBqJQjeHK5yVvCpSXPrMGbymD-Oc-bLaz1j0E1lReVcaXeeMrqRqHQ7E12qhcaz7QWiSwv9RH3XQc5VQq46KO7MqiRtXVQXUJvOhF55GY429Ce0ul1p1tLmpBCZRhKpzA874ZrYpCJbp1s2uSQZyIWFWVCTyIfaD_lawoECMJlYBa6x29ADF2r7e052eBuZu-ThVlhv8zdKR_f3k9_nAUTh79v-gz2Dr-NKq_fZkcPobbAtEYhb0G-R5sXl1euyeInq7M02AlvwE8kxZj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+and+aging+resting+functional+magnetic+resonance+imaging+brain+state+adaptations+in+adolescents+and+adults%3A+A+large+N+%28%3E47K%29+study&rft.jtitle=Human+brain+mapping&rft.au=Abrol%2C+Anees&rft.au=Fu%2C+Zening&rft.au=Du%2C+Yuhui&rft.au=Wilson%2C+Tony+W.&rft.date=2023-04-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=44&rft.issue=6&rft.spage=2158&rft.epage=2175&rft_id=info:doi/10.1002%2Fhbm.26200&rft.externalDBID=10.1002%252Fhbm.26200&rft.externalDocID=HBM26200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon