An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter
Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lip...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 28; pp. 16383 - 16390 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
14.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes. |
---|---|
AbstractList | Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes. The assembly and function of membrane proteins depend on the lipid milieu. In recent years the protein components of the mitochondrial calcium uniporter have been identified, but its specific phospholipid requirements are not known. Utilizing yeast mutants defective in their ability to synthesize different phospholipids, we identify a specific requirement of cardiolipin (CL) in the stability and function of the mitochondrial uniporter. Our findings are translatable to higher organisms because endogenous uniporter abundance is decreased in patient-derived cells and cardiac tissue from Barth syndrome, an inherited deficiency in CL levels. This work shows that yeast phospholipid mutants can be leveraged to uncover specific lipid requirements of membrane proteins and suggests impaired mitochondrial calcium signaling in the pathogenesis of Barth syndrome. Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes. Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes.Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes. |
Author | Madesh, Muniswamy Gohil, Vishal M. Madaris, Travis R. Ball, Writoban Basu Ghosh, Sagnika Mootha, Vamsi K. Srikantan, Subramanya |
Author_xml | – sequence: 1 givenname: Sagnika surname: Ghosh fullname: Ghosh, Sagnika – sequence: 2 givenname: Writoban Basu surname: Ball fullname: Ball, Writoban Basu – sequence: 3 givenname: Travis R. surname: Madaris fullname: Madaris, Travis R. – sequence: 4 givenname: Subramanya surname: Srikantan fullname: Srikantan, Subramanya – sequence: 5 givenname: Muniswamy surname: Madesh fullname: Madesh, Muniswamy – sequence: 6 givenname: Vamsi K. surname: Mootha fullname: Mootha, Vamsi K. – sequence: 7 givenname: Vishal M. surname: Gohil fullname: Gohil, Vishal M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32601238$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rFTEUxYO02Nfq2pUScNPNtDcfM5PZCKVYLRS60XXIyyS-PDLJmGSE_vfm9dWndlEI3MX9nZN7OKfoKMRgEHpH4IJAzy7noPIFBYCOAyH9K7QiMJCm4wMcoRUA7RvBKT9BpzlvKza0Al6jE0Y7IJSJFbJXAZucTShOeZyiN9jGhLVKo4vezS7g-srG4FzU2nlXHrAKI7ZL0MXFgKN93E6uRL2JYUw7H628dsuEl-DmmIpJb9CxVT6bt0_zDH2_-fzt-mtzd__l9vrqrtGcs9JYyxgVA2_XmlhtBmpYK1qrgQzj2vZKtS2AJqPpja6sZdqOwipuCe86LgQ7Q5_2vvOynsyoa66kvJyTm1R6kFE5-f8muI38EX_JnnWCtlANzp8MUvy5mFzk5LI23qtg4pIl5WQAwftH9OMzdBuXFGq8SlUv4LTrK_Xh34sOp_ypoAKXe0CnmHMy9oAQkLuS5a5k-bfkqmifKbQratdGjeT8C7r3e902l5gO39BuYC1lwH4Duvm3sA |
CitedBy_id | crossref_primary_10_3389_fphys_2021_768411 crossref_primary_10_1042_BST20220317 crossref_primary_10_1152_physiol_00014_2024 crossref_primary_10_1007_s12264_022_01007_4 crossref_primary_10_1073_pnas_2100164118 crossref_primary_10_1016_j_molmet_2023_101859 crossref_primary_10_3389_fphys_2021_731961 crossref_primary_10_1016_j_cellsig_2024_111284 crossref_primary_10_7554_eLife_69312 crossref_primary_10_1002_dvdy_567 crossref_primary_10_3390_life10110277 crossref_primary_10_1002_bies_202200011 crossref_primary_10_1038_s44319_025_00393_w crossref_primary_10_3390_metabo14050261 crossref_primary_10_1016_j_tibs_2021_06_003 crossref_primary_10_1007_s00395_023_01017_x crossref_primary_10_1002_jimd_12427 crossref_primary_10_1016_j_bbadis_2021_166079 crossref_primary_10_3389_fphys_2022_921942 crossref_primary_10_3390_biology11111638 crossref_primary_10_1152_ajpcell_00502_2020 crossref_primary_10_1016_j_mito_2023_02_007 crossref_primary_10_1161_JAHA_121_023912 crossref_primary_10_1042_BST20220318 crossref_primary_10_1021_acs_jctc_4c00204 crossref_primary_10_1038_s41467_021_27422_1 crossref_primary_10_1113_EP090817 crossref_primary_10_1016_j_celrep_2023_113544 crossref_primary_10_1021_jacs_2c08602 crossref_primary_10_1016_j_tem_2021_01_006 crossref_primary_10_1093_hmg_ddab254 crossref_primary_10_1093_hmg_ddad153 crossref_primary_10_1007_s10911_021_09505_3 crossref_primary_10_1016_j_mito_2020_12_001 crossref_primary_10_1161_CIRCULATIONAHA_121_053755 crossref_primary_10_1038_s44161_024_00463_7 crossref_primary_10_1038_s44318_024_00219_w crossref_primary_10_3390_cells13070609 crossref_primary_10_1007_s11010_020_04021_0 crossref_primary_10_1016_j_mito_2021_04_006 crossref_primary_10_1016_j_jbc_2021_100539 crossref_primary_10_1016_j_lfs_2023_122032 crossref_primary_10_1242_jcs_260857 crossref_primary_10_1016_j_jmb_2020_08_013 crossref_primary_10_1039_D2MO00071G crossref_primary_10_1007_s12013_023_01145_0 crossref_primary_10_3389_fphys_2023_1107328 crossref_primary_10_1002_jimd_12447 crossref_primary_10_1016_j_metabol_2022_155244 crossref_primary_10_1016_j_mito_2020_12_011 crossref_primary_10_1016_j_ceca_2020_102287 crossref_primary_10_1039_D4AN00015C crossref_primary_10_3390_genes13040656 crossref_primary_10_1016_j_molmet_2024_102015 crossref_primary_10_1111_jnc_16213 crossref_primary_10_1111_febs_16665 crossref_primary_10_1016_j_jbc_2021_100383 crossref_primary_10_1098_rsob_210002 crossref_primary_10_3389_fcell_2020_604240 crossref_primary_10_3389_fmmed_2023_1235188 crossref_primary_10_1016_j_arr_2023_102087 crossref_primary_10_1093_genetics_iyae203 crossref_primary_10_1016_j_celrep_2024_114435 crossref_primary_10_1126_sciadv_abh2217 crossref_primary_10_3390_ijms22147349 |
Cites_doi | 10.1016/j.cell.2007.11.028 10.1073/pnas.1202194109 10.1038/nature10234 10.1038/s41598-018-24305-2 10.1038/nature10230 10.1074/jbc.M113.525733 10.1212/NXG.0000000000000059 10.1074/jbc.M112.434183 10.1074/jbc.M909868199 10.1074/jbc.M307382200 10.1074/jbc.RA118.004014 10.1016/j.bbamem.2004.04.010 10.1074/jbc.M116.722694 10.1074/jbc.C200551200 10.1002/1873-3468.12887 10.1016/j.biochi.2017.08.013 10.1016/S0021-9258(18)64849-5 10.1074/jbc.M111.322552 10.1101/2020.04.04.025205 10.1016/S0021-9258(18)70226-3 10.1038/s41586-018-0331-8 10.1016/j.bbabio.2016.03.019 10.1126/science.1242993 10.1038/emboj.2013.157 10.1073/pnas.1711303114 10.1371/journal.pone.0055785 10.1038/ng0496-385 10.1073/pnas.1900890116 10.1016/j.jmb.2012.09.001 10.1074/jbc.M308366200 10.1073/pnas.1400514111 10.1038/nature09358 10.1038/nrm4039 10.1091/mbc.E15-12-0865 10.1016/j.bbamem.2004.05.012 10.1038/ncb2868 10.1038/ng.2851 10.1126/science.1214977 10.1016/j.molcel.2017.11.023 10.15252/embr.201643748 10.1186/1750-1172-8-23 10.1083/jcb.200801152 10.1016/j.bbalip.2018.04.015 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Jul 14, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Jul 14, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2000640117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 16390 |
ExternalDocumentID | PMC7368250 32601238 10_1073_pnas_2000640117 26935230 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM109882 – fundername: NIAMS NIH HHS grantid: R01 AR071942 – fundername: NIGMS NIH HHS grantid: R01 GM111672 – fundername: Howard Hughes Medical Institute – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R01GM109882 – fundername: HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grantid: R01AR071942 – fundername: Welch Foundation grantid: A-1810 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R01GM111672 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-ff3328945bc1fce92e3585fc019dbf7aa5500c1de7ecff3f3cfd8fa4f14664883 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:47:49 EDT 2025 Fri Jul 11 14:55:32 EDT 2025 Mon Jun 30 09:58:15 EDT 2025 Thu Apr 03 06:59:21 EDT 2025 Tue Jul 01 03:40:25 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Thu May 29 09:13:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | Barth syndrome EMRE mitochondrial calcium uniporter (MCU) uniplex cardiolipin |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-ff3328945bc1fce92e3585fc019dbf7aa5500c1de7ecff3f3cfd8fa4f14664883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: S.G., M.M., V.K.M., and V.M.G. designed research; S.G., W.B.B., T.R.M., and S.S. performed research; V.K.M. contributed new reagents/analytic tools; S.G., W.B.B., T.R.M., S.S., M.M., and V.M.G. analyzed data; and S.G., V.K.M., and V.M.G. wrote the paper. Contributed by Vamsi K. Mootha, May 24, 2020 (sent for review January 14, 2020; reviewed by Miriam L. Greenberg and Murali Prakriya) Reviewers: M.L.G., Wayne State University; and M.P., Northwestern University Feinberg School of Medicine. |
ORCID | 0000-0002-0182-1949 0000-0003-1810-6519 0000-0003-2883-7008 0000-0002-9920-2563 0000-0001-6745-9092 0000-0001-9924-642X 0000-0001-7678-126X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7368250 |
PMID | 32601238 |
PQID | 2425004267 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7368250 proquest_miscellaneous_2419084750 proquest_journals_2425004267 pubmed_primary_32601238 crossref_primary_10_1073_pnas_2000640117 crossref_citationtrail_10_1073_pnas_2000640117 jstor_primary_26935230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-14 |
PublicationDateYYYYMMDD | 2020-07-14 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 Meisinger C. (e_1_3_3_41_2) 2006; 313 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 32932145 - Cell Calcium. 2020 Dec;92:102287 |
References_xml | – ident: e_1_3_3_4_2 doi: 10.1016/j.cell.2007.11.028 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.1202194109 – ident: e_1_3_3_1_2 doi: 10.1038/nature10234 – ident: e_1_3_3_20_2 doi: 10.1038/s41598-018-24305-2 – ident: e_1_3_3_2_2 doi: 10.1038/nature10230 – ident: e_1_3_3_22_2 doi: 10.1074/jbc.M113.525733 – ident: e_1_3_3_38_2 doi: 10.1212/NXG.0000000000000059 – ident: e_1_3_3_14_2 doi: 10.1074/jbc.M112.434183 – ident: e_1_3_3_27_2 doi: 10.1074/jbc.M909868199 – ident: e_1_3_3_35_2 doi: 10.1074/jbc.M307382200 – ident: e_1_3_3_21_2 doi: 10.1074/jbc.RA118.004014 – ident: e_1_3_3_24_2 doi: 10.1016/j.bbamem.2004.04.010 – ident: e_1_3_3_15_2 doi: 10.1074/jbc.M116.722694 – ident: e_1_3_3_10_2 doi: 10.1074/jbc.C200551200 – ident: e_1_3_3_17_2 doi: 10.1002/1873-3468.12887 – ident: e_1_3_3_32_2 doi: 10.1016/j.biochi.2017.08.013 – ident: e_1_3_3_42_2 doi: 10.1016/S0021-9258(18)64849-5 – ident: e_1_3_3_29_2 doi: 10.1074/jbc.M111.322552 – ident: e_1_3_3_31_2 doi: 10.1101/2020.04.04.025205 – ident: e_1_3_3_43_2 doi: 10.1016/S0021-9258(18)70226-3 – ident: e_1_3_3_16_2 doi: 10.1038/s41586-018-0331-8 – ident: e_1_3_3_19_2 doi: 10.1016/j.bbabio.2016.03.019 – ident: e_1_3_3_6_2 doi: 10.1126/science.1242993 – ident: e_1_3_3_9_2 doi: 10.1038/emboj.2013.157 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.1711303114 – ident: e_1_3_3_8_2 doi: 10.1371/journal.pone.0055785 – ident: e_1_3_3_34_2 doi: 10.1038/ng0496-385 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.1900890116 – ident: e_1_3_3_26_2 doi: 10.1016/j.jmb.2012.09.001 – ident: e_1_3_3_11_2 doi: 10.1074/jbc.M308366200 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.1400514111 – ident: e_1_3_3_7_2 doi: 10.1038/nature09358 – volume: 313 start-page: 33 year: 2006 ident: e_1_3_3_41_2 article-title: Isolation of yeast mitochondria publication-title: Methods Mol. Biol. – ident: e_1_3_3_5_2 doi: 10.1038/nrm4039 – ident: e_1_3_3_13_2 doi: 10.1091/mbc.E15-12-0865 – ident: e_1_3_3_25_2 doi: 10.1016/j.bbamem.2004.05.012 – ident: e_1_3_3_39_2 doi: 10.1038/ncb2868 – ident: e_1_3_3_37_2 doi: 10.1038/ng.2851 – ident: e_1_3_3_3_2 doi: 10.1126/science.1214977 – ident: e_1_3_3_44_2 doi: 10.1016/j.molcel.2017.11.023 – ident: e_1_3_3_30_2 doi: 10.15252/embr.201643748 – ident: e_1_3_3_36_2 doi: 10.1186/1750-1172-8-23 – ident: e_1_3_3_12_2 doi: 10.1083/jcb.200801152 – ident: e_1_3_3_23_2 doi: 10.1016/j.bbalip.2018.04.015 – reference: 32932145 - Cell Calcium. 2020 Dec;92:102287 |
SSID | ssj0009580 |
Score | 2.566926 |
Snippet | Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all... The assembly and function of membrane proteins depend on the lipid milieu. In recent years the protein components of the mitochondrial calcium uniporter have... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16383 |
SubjectTerms | Animals Barth Syndrome - genetics Barth Syndrome - metabolism Bioenergetics Biological Sciences Biological Transport Biosynthesis Calcium Calcium (mitochondrial) Calcium - metabolism Calcium Channels - chemistry Calcium Channels - genetics Calcium Channels - metabolism Calcium influx Calcium signalling Calcium transport Cardiolipin Cardiolipins - genetics Cardiolipins - metabolism Homology Humans Ion channels Lecithin Lipids Mice Mitochondria Mitochondria - chemistry Mitochondria - genetics Mitochondria - metabolism Mutants Myoblasts - metabolism Pathogenesis Phosphatidylcholine Phosphatidylethanolamine Phospholipids Pore formation Protein Stability Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Stability Yeast |
Title | An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter |
URI | https://www.jstor.org/stable/26935230 https://www.ncbi.nlm.nih.gov/pubmed/32601238 https://www.proquest.com/docview/2425004267 https://www.proquest.com/docview/2419084750 https://pubmed.ncbi.nlm.nih.gov/PMC7368250 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBiUDWQkDkNRShM7cXosCJiQVk1oE7tVjhOvFauL2uSy_5D_ivfsxE3LJg2kKmoT2236fnlffh-EvBNFonjCRiGTSR5yzlQohVYhEBvQzGMuBSYKn07Skwv-7TK57PV-d6KW6iofqJtb80r-h6pwDuiKWbL_QFm_KJyA90BfOAKF4XgvGo9NgKW_TYVubxsniEGDyoaYXmNT6jaKEVRAGwTrii2hLGsVRby6gKcauKApbAcPIJqa14ugNnNb9HzV1V_PvLxbt7MnrTtxvElOaTjGOgiDs8mm1fHX2XI9c37oKzP_ufEFyHUdfJRuB-THyjIZD9pTWWCjRAusFdZECL4PvF9oBauYqnHi1mD5L4C5ya4rA-xWLFDJu-w5BpHJXVL1oHQcGRSaMOWup6hn2S7fs8Fmk13uODDql6wjzuGzm_uXrADmhg2OjVy7fCU-bJfdqsq9Iy19DKPdvRdsigtMNws8IA9jsFhiKyO69Z8zlw3V3GFbZUqwDzu_YEtBcjGyt1k_u0G8Ha3o_Al53JgzdOywuU96pXlK9lvy0-Omqvn7Z0SPDfVgpQhWCmClHbBSeAGgqAcrBbDSFqx0qe3VLbDSBqzUg_U5ufjy-fzTSdg0-QgVcIYq1JoxMPp5kqtIq3IUlwwsWK3A9ChyLaQEE3qooqIUpYKxmildZFpyHWFjhCxjB2TPLE35ktCojNKcqRHTUoFeGslsKEQ-ZIyNIhalSZ8M2n92qpoK-NiI5Xp6By375NhP-OWKv9w99MCSyo-L0xHDHZc-OWppN21YB8wDSWm9FzDvrb8MjB1366QplzWOAV0ddMcElnjhSO0XZ1gIEJTtPhFbIPADsGj89hUzn9ni8YKlGXz5q_vf2iF5tHlYj8hetarL16CJV_kbi_E_xeDgQQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+essential+role+for+cardiolipin+in+the+stability+and+function+of+the+mitochondrial+calcium+uniporter&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ghosh%2C+Sagnika&rft.au=Basu+Ball%2C+Writoban&rft.au=Madaris%2C+Travis+R.&rft.au=Srikantan%2C+Subramanya&rft.date=2020-07-14&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=28&rft.spage=16383&rft.epage=16390&rft_id=info:doi/10.1073%2Fpnas.2000640117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2000640117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |