An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter

Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lip...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 28; pp. 16383 - 16390
Main Authors Ghosh, Sagnika, Ball, Writoban Basu, Madaris, Travis R., Srikantan, Subramanya, Madesh, Muniswamy, Mootha, Vamsi K., Gohil, Vishal M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 14.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes.
AbstractList Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes.
The assembly and function of membrane proteins depend on the lipid milieu. In recent years the protein components of the mitochondrial calcium uniporter have been identified, but its specific phospholipid requirements are not known. Utilizing yeast mutants defective in their ability to synthesize different phospholipids, we identify a specific requirement of cardiolipin (CL) in the stability and function of the mitochondrial uniporter. Our findings are translatable to higher organisms because endogenous uniporter abundance is decreased in patient-derived cells and cardiac tissue from Barth syndrome, an inherited deficiency in CL levels. This work shows that yeast phospholipid mutants can be leveraged to uncover specific lipid requirements of membrane proteins and suggests impaired mitochondrial calcium signaling in the pathogenesis of Barth syndrome. Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes.
Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes.Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all protein components of the mitochondrial calcium uniporter have been identified, including MCU, the pore-forming subunit. However, the specific lipid requirements, if any, for the function and formation of this channel complex are currently not known. Here we utilize yeast, which lacks the mitochondrial calcium uniporter, as a model system to address this problem. We use heterologous expression to functionally reconstitute human uniporter machinery both in wild-type yeast as well as in mutants defective in the biosynthesis of phosphatidylethanolamine, phosphatidylcholine, or cardiolipin (CL). We uncover a specific requirement of CL for in vivo reconstituted MCU stability and activity. The CL requirement of MCU is evolutionarily conserved with loss of CL triggering rapid turnover of MCU homologs and impaired calcium transport. Furthermore, we observe reduced abundance and activity of endogenous MCU in mammalian cellular models of Barth syndrome, which is characterized by a partial loss of CL. MCU abundance is also decreased in the cardiac tissue of Barth syndrome patients. Our work raises the hypothesis that impaired mitochondrial calcium transport contributes to the pathogenesis of Barth syndrome, and more generally, showcases the utility of yeast phospholipid mutants in dissecting the phospholipid requirements of ion channel complexes.
Author Madesh, Muniswamy
Gohil, Vishal M.
Madaris, Travis R.
Ball, Writoban Basu
Ghosh, Sagnika
Mootha, Vamsi K.
Srikantan, Subramanya
Author_xml – sequence: 1
  givenname: Sagnika
  surname: Ghosh
  fullname: Ghosh, Sagnika
– sequence: 2
  givenname: Writoban Basu
  surname: Ball
  fullname: Ball, Writoban Basu
– sequence: 3
  givenname: Travis R.
  surname: Madaris
  fullname: Madaris, Travis R.
– sequence: 4
  givenname: Subramanya
  surname: Srikantan
  fullname: Srikantan, Subramanya
– sequence: 5
  givenname: Muniswamy
  surname: Madesh
  fullname: Madesh, Muniswamy
– sequence: 6
  givenname: Vamsi K.
  surname: Mootha
  fullname: Mootha, Vamsi K.
– sequence: 7
  givenname: Vishal M.
  surname: Gohil
  fullname: Gohil, Vishal M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32601238$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFTEUxYO02Nfq2pUScNPNtDcfM5PZCKVYLRS60XXIyyS-PDLJmGSE_vfm9dWndlEI3MX9nZN7OKfoKMRgEHpH4IJAzy7noPIFBYCOAyH9K7QiMJCm4wMcoRUA7RvBKT9BpzlvKza0Al6jE0Y7IJSJFbJXAZucTShOeZyiN9jGhLVKo4vezS7g-srG4FzU2nlXHrAKI7ZL0MXFgKN93E6uRL2JYUw7H628dsuEl-DmmIpJb9CxVT6bt0_zDH2_-fzt-mtzd__l9vrqrtGcs9JYyxgVA2_XmlhtBmpYK1qrgQzj2vZKtS2AJqPpja6sZdqOwipuCe86LgQ7Q5_2vvOynsyoa66kvJyTm1R6kFE5-f8muI38EX_JnnWCtlANzp8MUvy5mFzk5LI23qtg4pIl5WQAwftH9OMzdBuXFGq8SlUv4LTrK_Xh34sOp_ypoAKXe0CnmHMy9oAQkLuS5a5k-bfkqmifKbQratdGjeT8C7r3e902l5gO39BuYC1lwH4Duvm3sA
CitedBy_id crossref_primary_10_3389_fphys_2021_768411
crossref_primary_10_1042_BST20220317
crossref_primary_10_1152_physiol_00014_2024
crossref_primary_10_1007_s12264_022_01007_4
crossref_primary_10_1073_pnas_2100164118
crossref_primary_10_1016_j_molmet_2023_101859
crossref_primary_10_3389_fphys_2021_731961
crossref_primary_10_1016_j_cellsig_2024_111284
crossref_primary_10_7554_eLife_69312
crossref_primary_10_1002_dvdy_567
crossref_primary_10_3390_life10110277
crossref_primary_10_1002_bies_202200011
crossref_primary_10_1038_s44319_025_00393_w
crossref_primary_10_3390_metabo14050261
crossref_primary_10_1016_j_tibs_2021_06_003
crossref_primary_10_1007_s00395_023_01017_x
crossref_primary_10_1002_jimd_12427
crossref_primary_10_1016_j_bbadis_2021_166079
crossref_primary_10_3389_fphys_2022_921942
crossref_primary_10_3390_biology11111638
crossref_primary_10_1152_ajpcell_00502_2020
crossref_primary_10_1016_j_mito_2023_02_007
crossref_primary_10_1161_JAHA_121_023912
crossref_primary_10_1042_BST20220318
crossref_primary_10_1021_acs_jctc_4c00204
crossref_primary_10_1038_s41467_021_27422_1
crossref_primary_10_1113_EP090817
crossref_primary_10_1016_j_celrep_2023_113544
crossref_primary_10_1021_jacs_2c08602
crossref_primary_10_1016_j_tem_2021_01_006
crossref_primary_10_1093_hmg_ddab254
crossref_primary_10_1093_hmg_ddad153
crossref_primary_10_1007_s10911_021_09505_3
crossref_primary_10_1016_j_mito_2020_12_001
crossref_primary_10_1161_CIRCULATIONAHA_121_053755
crossref_primary_10_1038_s44161_024_00463_7
crossref_primary_10_1038_s44318_024_00219_w
crossref_primary_10_3390_cells13070609
crossref_primary_10_1007_s11010_020_04021_0
crossref_primary_10_1016_j_mito_2021_04_006
crossref_primary_10_1016_j_jbc_2021_100539
crossref_primary_10_1016_j_lfs_2023_122032
crossref_primary_10_1242_jcs_260857
crossref_primary_10_1016_j_jmb_2020_08_013
crossref_primary_10_1039_D2MO00071G
crossref_primary_10_1007_s12013_023_01145_0
crossref_primary_10_3389_fphys_2023_1107328
crossref_primary_10_1002_jimd_12447
crossref_primary_10_1016_j_metabol_2022_155244
crossref_primary_10_1016_j_mito_2020_12_011
crossref_primary_10_1016_j_ceca_2020_102287
crossref_primary_10_1039_D4AN00015C
crossref_primary_10_3390_genes13040656
crossref_primary_10_1016_j_molmet_2024_102015
crossref_primary_10_1111_jnc_16213
crossref_primary_10_1111_febs_16665
crossref_primary_10_1016_j_jbc_2021_100383
crossref_primary_10_1098_rsob_210002
crossref_primary_10_3389_fcell_2020_604240
crossref_primary_10_3389_fmmed_2023_1235188
crossref_primary_10_1016_j_arr_2023_102087
crossref_primary_10_1093_genetics_iyae203
crossref_primary_10_1016_j_celrep_2024_114435
crossref_primary_10_1126_sciadv_abh2217
crossref_primary_10_3390_ijms22147349
Cites_doi 10.1016/j.cell.2007.11.028
10.1073/pnas.1202194109
10.1038/nature10234
10.1038/s41598-018-24305-2
10.1038/nature10230
10.1074/jbc.M113.525733
10.1212/NXG.0000000000000059
10.1074/jbc.M112.434183
10.1074/jbc.M909868199
10.1074/jbc.M307382200
10.1074/jbc.RA118.004014
10.1016/j.bbamem.2004.04.010
10.1074/jbc.M116.722694
10.1074/jbc.C200551200
10.1002/1873-3468.12887
10.1016/j.biochi.2017.08.013
10.1016/S0021-9258(18)64849-5
10.1074/jbc.M111.322552
10.1101/2020.04.04.025205
10.1016/S0021-9258(18)70226-3
10.1038/s41586-018-0331-8
10.1016/j.bbabio.2016.03.019
10.1126/science.1242993
10.1038/emboj.2013.157
10.1073/pnas.1711303114
10.1371/journal.pone.0055785
10.1038/ng0496-385
10.1073/pnas.1900890116
10.1016/j.jmb.2012.09.001
10.1074/jbc.M308366200
10.1073/pnas.1400514111
10.1038/nature09358
10.1038/nrm4039
10.1091/mbc.E15-12-0865
10.1016/j.bbamem.2004.05.012
10.1038/ncb2868
10.1038/ng.2851
10.1126/science.1214977
10.1016/j.molcel.2017.11.023
10.15252/embr.201643748
10.1186/1750-1172-8-23
10.1083/jcb.200801152
10.1016/j.bbalip.2018.04.015
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Jul 14, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Jul 14, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2000640117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
Virology and AIDS Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 16390
ExternalDocumentID PMC7368250
32601238
10_1073_pnas_2000640117
26935230
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM109882
– fundername: NIAMS NIH HHS
  grantid: R01 AR071942
– fundername: NIGMS NIH HHS
  grantid: R01 GM111672
– fundername: Howard Hughes Medical Institute
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R01GM109882
– fundername: HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
  grantid: R01AR071942
– fundername: Welch Foundation
  grantid: A-1810
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R01GM111672
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-ff3328945bc1fce92e3585fc019dbf7aa5500c1de7ecff3f3cfd8fa4f14664883
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:47:49 EDT 2025
Fri Jul 11 14:55:32 EDT 2025
Mon Jun 30 09:58:15 EDT 2025
Thu Apr 03 06:59:21 EDT 2025
Tue Jul 01 03:40:25 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Thu May 29 09:13:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords Barth syndrome
EMRE
mitochondrial calcium uniporter (MCU)
uniplex
cardiolipin
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-ff3328945bc1fce92e3585fc019dbf7aa5500c1de7ecff3f3cfd8fa4f14664883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: S.G., M.M., V.K.M., and V.M.G. designed research; S.G., W.B.B., T.R.M., and S.S. performed research; V.K.M. contributed new reagents/analytic tools; S.G., W.B.B., T.R.M., S.S., M.M., and V.M.G. analyzed data; and S.G., V.K.M., and V.M.G. wrote the paper.
Contributed by Vamsi K. Mootha, May 24, 2020 (sent for review January 14, 2020; reviewed by Miriam L. Greenberg and Murali Prakriya)
Reviewers: M.L.G., Wayne State University; and M.P., Northwestern University Feinberg School of Medicine.
ORCID 0000-0002-0182-1949
0000-0003-1810-6519
0000-0003-2883-7008
0000-0002-9920-2563
0000-0001-6745-9092
0000-0001-9924-642X
0000-0001-7678-126X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7368250
PMID 32601238
PQID 2425004267
PQPubID 42026
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7368250
proquest_miscellaneous_2419084750
proquest_journals_2425004267
pubmed_primary_32601238
crossref_primary_10_1073_pnas_2000640117
crossref_citationtrail_10_1073_pnas_2000640117
jstor_primary_26935230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-14
PublicationDateYYYYMMDD 2020-07-14
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
Meisinger C. (e_1_3_3_41_2) 2006; 313
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
32932145 - Cell Calcium. 2020 Dec;92:102287
References_xml – ident: e_1_3_3_4_2
  doi: 10.1016/j.cell.2007.11.028
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.1202194109
– ident: e_1_3_3_1_2
  doi: 10.1038/nature10234
– ident: e_1_3_3_20_2
  doi: 10.1038/s41598-018-24305-2
– ident: e_1_3_3_2_2
  doi: 10.1038/nature10230
– ident: e_1_3_3_22_2
  doi: 10.1074/jbc.M113.525733
– ident: e_1_3_3_38_2
  doi: 10.1212/NXG.0000000000000059
– ident: e_1_3_3_14_2
  doi: 10.1074/jbc.M112.434183
– ident: e_1_3_3_27_2
  doi: 10.1074/jbc.M909868199
– ident: e_1_3_3_35_2
  doi: 10.1074/jbc.M307382200
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.RA118.004014
– ident: e_1_3_3_24_2
  doi: 10.1016/j.bbamem.2004.04.010
– ident: e_1_3_3_15_2
  doi: 10.1074/jbc.M116.722694
– ident: e_1_3_3_10_2
  doi: 10.1074/jbc.C200551200
– ident: e_1_3_3_17_2
  doi: 10.1002/1873-3468.12887
– ident: e_1_3_3_32_2
  doi: 10.1016/j.biochi.2017.08.013
– ident: e_1_3_3_42_2
  doi: 10.1016/S0021-9258(18)64849-5
– ident: e_1_3_3_29_2
  doi: 10.1074/jbc.M111.322552
– ident: e_1_3_3_31_2
  doi: 10.1101/2020.04.04.025205
– ident: e_1_3_3_43_2
  doi: 10.1016/S0021-9258(18)70226-3
– ident: e_1_3_3_16_2
  doi: 10.1038/s41586-018-0331-8
– ident: e_1_3_3_19_2
  doi: 10.1016/j.bbabio.2016.03.019
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1242993
– ident: e_1_3_3_9_2
  doi: 10.1038/emboj.2013.157
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.1711303114
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.pone.0055785
– ident: e_1_3_3_34_2
  doi: 10.1038/ng0496-385
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.1900890116
– ident: e_1_3_3_26_2
  doi: 10.1016/j.jmb.2012.09.001
– ident: e_1_3_3_11_2
  doi: 10.1074/jbc.M308366200
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.1400514111
– ident: e_1_3_3_7_2
  doi: 10.1038/nature09358
– volume: 313
  start-page: 33
  year: 2006
  ident: e_1_3_3_41_2
  article-title: Isolation of yeast mitochondria
  publication-title: Methods Mol. Biol.
– ident: e_1_3_3_5_2
  doi: 10.1038/nrm4039
– ident: e_1_3_3_13_2
  doi: 10.1091/mbc.E15-12-0865
– ident: e_1_3_3_25_2
  doi: 10.1016/j.bbamem.2004.05.012
– ident: e_1_3_3_39_2
  doi: 10.1038/ncb2868
– ident: e_1_3_3_37_2
  doi: 10.1038/ng.2851
– ident: e_1_3_3_3_2
  doi: 10.1126/science.1214977
– ident: e_1_3_3_44_2
  doi: 10.1016/j.molcel.2017.11.023
– ident: e_1_3_3_30_2
  doi: 10.15252/embr.201643748
– ident: e_1_3_3_36_2
  doi: 10.1186/1750-1172-8-23
– ident: e_1_3_3_12_2
  doi: 10.1083/jcb.200801152
– ident: e_1_3_3_23_2
  doi: 10.1016/j.bbalip.2018.04.015
– reference: 32932145 - Cell Calcium. 2020 Dec;92:102287
SSID ssj0009580
Score 2.566926
Snippet Calcium uptake by the mitochondrial calcium uniporter coordinates cytosolic signaling events with mitochondrial bioenergetics. During the past decade all...
The assembly and function of membrane proteins depend on the lipid milieu. In recent years the protein components of the mitochondrial calcium uniporter have...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16383
SubjectTerms Animals
Barth Syndrome - genetics
Barth Syndrome - metabolism
Bioenergetics
Biological Sciences
Biological Transport
Biosynthesis
Calcium
Calcium (mitochondrial)
Calcium - metabolism
Calcium Channels - chemistry
Calcium Channels - genetics
Calcium Channels - metabolism
Calcium influx
Calcium signalling
Calcium transport
Cardiolipin
Cardiolipins - genetics
Cardiolipins - metabolism
Homology
Humans
Ion channels
Lecithin
Lipids
Mice
Mitochondria
Mitochondria - chemistry
Mitochondria - genetics
Mitochondria - metabolism
Mutants
Myoblasts - metabolism
Pathogenesis
Phosphatidylcholine
Phosphatidylethanolamine
Phospholipids
Pore formation
Protein Stability
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Stability
Yeast
Title An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter
URI https://www.jstor.org/stable/26935230
https://www.ncbi.nlm.nih.gov/pubmed/32601238
https://www.proquest.com/docview/2425004267
https://www.proquest.com/docview/2419084750
https://pubmed.ncbi.nlm.nih.gov/PMC7368250
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBiUDWQkDkNRShM7cXosCJiQVk1oE7tVjhOvFauL2uSy_5D_ivfsxE3LJg2kKmoT2236fnlffh-EvBNFonjCRiGTSR5yzlQohVYhEBvQzGMuBSYKn07Skwv-7TK57PV-d6KW6iofqJtb80r-h6pwDuiKWbL_QFm_KJyA90BfOAKF4XgvGo9NgKW_TYVubxsniEGDyoaYXmNT6jaKEVRAGwTrii2hLGsVRby6gKcauKApbAcPIJqa14ugNnNb9HzV1V_PvLxbt7MnrTtxvElOaTjGOgiDs8mm1fHX2XI9c37oKzP_ufEFyHUdfJRuB-THyjIZD9pTWWCjRAusFdZECL4PvF9oBauYqnHi1mD5L4C5ya4rA-xWLFDJu-w5BpHJXVL1oHQcGRSaMOWup6hn2S7fs8Fmk13uODDql6wjzuGzm_uXrADmhg2OjVy7fCU-bJfdqsq9Iy19DKPdvRdsigtMNws8IA9jsFhiKyO69Z8zlw3V3GFbZUqwDzu_YEtBcjGyt1k_u0G8Ha3o_Al53JgzdOywuU96pXlK9lvy0-Omqvn7Z0SPDfVgpQhWCmClHbBSeAGgqAcrBbDSFqx0qe3VLbDSBqzUg_U5ufjy-fzTSdg0-QgVcIYq1JoxMPp5kqtIq3IUlwwsWK3A9ChyLaQEE3qooqIUpYKxmildZFpyHWFjhCxjB2TPLE35ktCojNKcqRHTUoFeGslsKEQ-ZIyNIhalSZ8M2n92qpoK-NiI5Xp6By375NhP-OWKv9w99MCSyo-L0xHDHZc-OWppN21YB8wDSWm9FzDvrb8MjB1366QplzWOAV0ddMcElnjhSO0XZ1gIEJTtPhFbIPADsGj89hUzn9ni8YKlGXz5q_vf2iF5tHlYj8hetarL16CJV_kbi_E_xeDgQQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+essential+role+for+cardiolipin+in+the+stability+and+function+of+the+mitochondrial+calcium+uniporter&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ghosh%2C+Sagnika&rft.au=Basu+Ball%2C+Writoban&rft.au=Madaris%2C+Travis+R.&rft.au=Srikantan%2C+Subramanya&rft.date=2020-07-14&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=28&rft.spage=16383&rft.epage=16390&rft_id=info:doi/10.1073%2Fpnas.2000640117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2000640117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon