Monitoring and Early Warning of SMEs’ Shutdown Risk under the Impact of Global Pandemic Shock
The COVID-19 outbreak devastated business operations and the world economy, especially for small and medium-sized enterprises (SMEs). With limited capital, poorer risk tolerance, and difficulty in withstanding prolonged crises, SMEs are more vulnerable to pandemics and face a higher risk of shutdown...
Saved in:
Published in | Systems (Basel) Vol. 11; no. 5; p. 260 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The COVID-19 outbreak devastated business operations and the world economy, especially for small and medium-sized enterprises (SMEs). With limited capital, poorer risk tolerance, and difficulty in withstanding prolonged crises, SMEs are more vulnerable to pandemics and face a higher risk of shutdown. This research sought to establish a model response to shutdown risk by investigating two questions: How do you measure SMEs’ shutdown risk due to pandemics? How do SMEs reduce shutdown risk? To the best of our knowledge, existing studies only analyzed the impact of the pandemic on SMEs through statistical surveys and trivial recommendations. Particularly, there is no case study focusing on an elaboration of SMEs’ shutdown risk. We developed a model to reduce cognitive uncertainty and differences in opinion among experts on COVID-19. The model was built by integrating the improved Dempster’s rule of combination and a Bayesian network, where the former is based on the method of weight assignment and matrix analysis. The model was first applied to a representative SME with basic characteristics for survival analysis during the pandemic. The results show that this SME has a probability of 79% on a lower risk of shutdown, 15% on a medium risk of shutdown, and 6% of high risk of shutdown. SMEs solving the capital chain problem and changing external conditions such as market demand are more difficult during a pandemic. Based on the counterfactual elaboration of the inferred results, the probability of occurrence of each risk factor was obtained by simulating the interventions. The most likely causal chain analysis based on counterfactual elaboration revealed that it is simpler to solve employee health problems. For the SMEs in the study, this approach can reduce the probability of being at high risk of shutdown by 16%. The results of the model are consistent with those identified by the SME respondents, which validates the model. |
---|---|
AbstractList | The COVID-19 outbreak devastated business operations and the world economy, especially for small and medium-sized enterprises (SMEs). With limited capital, poorer risk tolerance, and difficulty in withstanding prolonged crises, SMEs are more vulnerable to pandemics and face a higher risk of shutdown. This research sought to establish a model response to shutdown risk by investigating two questions: How do you measure SMEs' shutdown risk due to pandemics? How do SMEs reduce shutdown risk? To the best of our knowledge, existing studies only analyzed the impact of the pandemic on SMEs through statistical surveys and trivial recommendations. Particularly, there is no case study focusing on an elaboration of SMEs' shutdown risk. We developed a model to reduce cognitive uncertainty and differences in opinion among experts on COVID-19. The model was built by integrating the improved Dempster's rule of combination and a Bayesian network, where the former is based on the method of weight assignment and matrix analysis. The model was first applied to a representative SME with basic characteristics for survival analysis during the pandemic. The results show that this SME has a probability of 79% on a lower risk of shutdown, 15% on a medium risk of shutdown, and 6% of high risk of shutdown. SMEs solving the capital chain problem and changing external conditions such as market demand are more difficult during a pandemic. Based on the counterfactual elaboration of the inferred results, the probability of occurrence of each risk factor was obtained by simulating the interventions. The most likely causal chain analysis based on counterfactual elaboration revealed that it is simpler to solve employee health problems. For the SMEs in the study, this approach can reduce the probability of being at high risk of shutdown by 16%. The results of the model are consistent with those identified by the SME respondents, which validates the model. |
Audience | Academic |
Author | Jin, Xiaomin Chang, Ching-Ter Wei, Guo Xie, Xiaoliang |
Author_xml | – sequence: 1 givenname: Xiaoliang surname: Xie fullname: Xie, Xiaoliang – sequence: 2 givenname: Xiaomin surname: Jin fullname: Jin, Xiaomin – sequence: 3 givenname: Guo orcidid: 0000-0001-9988-0498 surname: Wei fullname: Wei, Guo – sequence: 4 givenname: Ching-Ter orcidid: 0000-0001-8137-8838 surname: Chang fullname: Chang, Ching-Ter |
BookMark | eNp1UUFvFCEYnZiaWGvPXkk8bwsDM8Cxada6SRuNrfFIPhjYsp2BFdiYvfk3_Hv-EtmuabWxcIC8vPc-eO91cxBisE3zluATSiU-zdtc7JQJwR1ue_yiOWwxlzMhO3bw1_1Vc5zzCtclCRU9O2zUVQy-xOTDEkEY0BzSuEVfIYUdEh26vprnXz9-ouvbTRni94A--3yHNmGwCZVbixbTGkzZMS_GqGFEn6qNnbypimju3jQvHYzZHv85j5ov7-c35x9mlx8vFudnlzPDGC0zJzvKdI81cNzpHjgzwjAOQ281lQ7DoLEVPeUDw0Q6Y43jmrSDIHwQGAM9ahZ73yHCSq2TnyBtVQSv7oGYlgpS8Wa0SoDGWhLLaiqMYQddb3SdzzHfZdRVr3d7r3WK3zY2F7WKmxTq81UriGSCVtojawnV1AcXSwIz-WzUGe-wlH0raGWd_IdV931GtUTnK_6P4HQvMCnmnKx7-AzBate1etJ1VXRPFMYXKD6GOsqPz-p-AwaNr-0 |
CitedBy_id | crossref_primary_10_1016_j_aej_2023_07_052 crossref_primary_10_1109_ACCESS_2024_3481034 crossref_primary_10_4018_IJSWIS_326120 crossref_primary_10_1007_s11356_023_28195_4 crossref_primary_10_1007_s00500_023_09125_5 crossref_primary_10_1007_s00500_023_09127_3 crossref_primary_10_1016_j_heliyon_2023_e18074 crossref_primary_10_1016_j_cmpb_2023_107745 crossref_primary_10_1007_s11356_023_29118_z crossref_primary_10_24857_rgsa_v18n1_085 crossref_primary_10_1007_s11356_023_29268_0 crossref_primary_10_3390_sym15081605 crossref_primary_10_1016_j_foodpol_2024_102712 crossref_primary_10_3390_su151410951 crossref_primary_10_1016_j_renene_2023_119132 crossref_primary_10_1007_s10257_023_00665_9 crossref_primary_10_1016_j_energy_2024_132480 crossref_primary_10_1016_j_iref_2023_11_006 crossref_primary_10_1016_j_enpol_2023_113749 crossref_primary_10_1080_10106049_2023_2240285 crossref_primary_10_1111_exsy_13468 crossref_primary_10_1002_csr_2621 crossref_primary_10_1007_s11356_023_29022_6 crossref_primary_10_1038_s41598_023_47177_7 crossref_primary_10_1007_s11356_023_29486_6 crossref_primary_10_1007_s11356_023_28103_w crossref_primary_10_1007_s11356_023_28827_9 crossref_primary_10_1007_s11356_023_29550_1 crossref_primary_10_1111_exsy_13460 crossref_primary_10_1007_s00500_023_09096_7 crossref_primary_10_1007_s11356_023_28846_6 crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_3390_su151712766 crossref_primary_10_1007_s00500_023_09416_x crossref_primary_10_3390_su151612406 crossref_primary_10_1016_j_bspc_2023_105423 crossref_primary_10_1007_s10668_023_03892_9 crossref_primary_10_4018_JGIM_332856 crossref_primary_10_54863_jief_1497748 crossref_primary_10_1080_15397734_2023_2229913 crossref_primary_10_1155_2023_6623005 crossref_primary_10_1016_j_resourpol_2023_104238 crossref_primary_10_1016_j_rinp_2023_106699 crossref_primary_10_3390_sym15071418 crossref_primary_10_1016_j_heliyon_2023_e19431 crossref_primary_10_1038_s41598_023_40651_2 crossref_primary_10_1007_s00500_023_09217_2 crossref_primary_10_1016_j_eneco_2023_106847 crossref_primary_10_1016_j_resourpol_2023_104043 crossref_primary_10_3390_su151712988 crossref_primary_10_3389_fenrg_2023_1258044 crossref_primary_10_1007_s40747_023_01183_4 |
Cites_doi | 10.1088/2515-7620/ac47d4 10.1016/j.jbvi.2020.e00169 10.1016/j.econmod.2022.105958 10.1108/JBIM-09-2018-0269 10.1016/j.cie.2022.107970 10.3389/fmars.2022.799141 10.1016/j.tourman.2020.104281 10.1016/j.eswa.2011.11.030 10.1016/j.jfineco.2022.05.006 10.1111/j.1365-246X.2011.05020.x 10.1002/jsc.2399 10.3389/fpubh.2021.650243 10.1080/12460125.2018.1468157 10.2196/18638 10.1371/journal.pone.0249145 10.1016/j.ress.2007.03.012 10.1371/journal.pone.0257036 10.1016/j.ijepes.2020.106384 10.1016/j.eswa.2013.01.044 10.1007/s11071-021-06385-4 10.1080/17477891.2020.1763902 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
DOI | 10.3390/systems11050260 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Business |
EISSN | 2079-8954 |
ExternalDocumentID | oai_doaj_org_article_8ab0b91e4079440fa56cb95370789545 A750996283 10_3390_systems11050260 |
GeographicLocations | China Brazil United States--US |
GeographicLocations_xml | – name: China – name: United States--US – name: Brazil |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RNS PMFND 3V. 7SC 7XB 8AL 8FD 8FK COVID JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c443t-f9534b60ba705b6a74c8c47ad6eb39f0adb0e8637d4019fcecf7b12d817d800a3 |
IEDL.DBID | BENPR |
ISSN | 2079-8954 |
IngestDate | Wed Aug 27 01:31:48 EDT 2025 Fri Jul 25 04:18:42 EDT 2025 Tue Jun 17 20:59:25 EDT 2025 Tue Jun 10 20:37:49 EDT 2025 Tue Jul 01 01:28:39 EDT 2025 Thu Apr 24 23:13:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-f9534b60ba705b6a74c8c47ad6eb39f0adb0e8637d4019fcecf7b12d817d800a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8137-8838 0000-0001-9988-0498 |
OpenAccessLink | https://www.proquest.com/docview/2819483954?pq-origsite=%requestingapplication% |
PQID | 2819483954 |
PQPubID | 2032325 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8ab0b91e4079440fa56cb95370789545 proquest_journals_2819483954 gale_infotracmisc_A750996283 gale_infotracacademiconefile_A750996283 crossref_primary_10_3390_systems11050260 crossref_citationtrail_10_3390_systems11050260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Systems (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Dai (ref_35) 2019; 19 (ref_31) 2018; 27 Peng (ref_27) 2019; 34 Liu (ref_29) 2022; 166 ref_12 ref_11 Ibrahim (ref_3) 2015; 3 ref_24 Yang (ref_44) 2019; 26 Granja (ref_48) 2022; 145 Xie (ref_32) 2020; 30 Yan (ref_26) 2021; 31 Wang (ref_36) 2018; 33 Zhang (ref_28) 2021; 7 Blaser (ref_46) 2011; 185 Wang (ref_45) 2017; 41 Wang (ref_42) 2021; 125 Kaczmarek (ref_18) 2021; 84 Chen (ref_20) 2020; 34 Harris (ref_33) 2013; 40 Schaefer (ref_2) 2020; 35 Kuckertz (ref_17) 2020; 13 Pang (ref_21) 2022; 54 Mokhtari (ref_34) 2012; 39 Thukral (ref_5) 2021; 30 Paroni (ref_25) 2021; 9 Yin (ref_22) 2021; 104 Qu (ref_10) 2022; 22 Kaya (ref_19) 2022; 115 Chen (ref_13) 2020; 38 Zhang (ref_15) 2021; 8 Huang (ref_23) 2020; 6 Li (ref_40) 2022; 9 Wang (ref_16) 2020; 37 ref_47 Chen (ref_38) 2020; 20 Li (ref_30) 2020; 16 Ye (ref_9) 2020; 8 Wang (ref_41) 2022; 4 ref_1 Zhu (ref_43) 2017; 34 Lu (ref_14) 2020; 19 Simon (ref_39) 2008; 93 ref_49 ref_8 Zhu (ref_37) 2019; 63 ref_4 ref_7 ref_6 |
References_xml | – volume: 4 start-page: 015008 year: 2022 ident: ref_41 article-title: A scenario analysis under epistemic uncertainty in Natech accidents: Imprecise probability reasoning in Bayesian Network publication-title: Environ. Res. Commun. doi: 10.1088/2515-7620/ac47d4 – volume: 3 start-page: 8 year: 2015 ident: ref_3 article-title: The Effect of SMEs’ Cost of Capital on Their Financial Performance in Nigeria publication-title: J. Financ. Account. – volume: 7 start-page: 355 year: 2021 ident: ref_28 article-title: Epidemic Prediction and Analysis of COVID-19 in Different Countries based on Neural Network publication-title: Int. Core J. Eng. – ident: ref_49 – volume: 13 start-page: e00169 year: 2020 ident: ref_17 article-title: Startups in times of crisis-A rapid response to the COVID-19 pandemic publication-title: J. Bus. Ventur. Insights doi: 10.1016/j.jbvi.2020.e00169 – volume: 37 start-page: 3 year: 2020 ident: ref_16 article-title: The Current Situation and Rescue Measures of SMEs under the Epidemic Shock publication-title: J. Quant. Tech. Econ. – volume: 38 start-page: 61 year: 2020 ident: ref_13 article-title: The Principles and Mechanisms of Labor Law for Distributing Shutdown Risk during the Period of Epidemic—From the Perspective of Risk-Sharing among the State, Companies and Employees publication-title: Trib. Political Sci. Law – volume: 115 start-page: 105958 year: 2022 ident: ref_19 article-title: Determinants and consequences of SME insolvency risk during the pandemic publication-title: Econ. Model. doi: 10.1016/j.econmod.2022.105958 – volume: 35 start-page: 13 year: 2020 ident: ref_2 article-title: Algorithm applied: Attracting MSEs to business associations publication-title: J. Bus. Ind. Mark. doi: 10.1108/JBIM-09-2018-0269 – volume: 166 start-page: 107970 year: 2022 ident: ref_29 article-title: Optimizing deep neural networks to predict the effect of social distancing on COVID-19 Spread publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.107970 – volume: 8 start-page: 68 year: 2021 ident: ref_15 article-title: Analysis of the current situation and countermeasures of China’s foreign trade enterprises in the COVID-19 post-pandemic era publication-title: New Econ. – volume: 9 start-page: 799141 year: 2022 ident: ref_40 article-title: Expert Knowledge-Driven Bayesian Network Modeling for Marine Disaster Assessment under the Small Sample Condition publication-title: Front. Mari. Sci. doi: 10.3389/fmars.2022.799141 – ident: ref_1 – volume: 84 start-page: 104281 year: 2021 ident: ref_18 article-title: How to survive a pandemic: The corporate resiliency of travel and leisure companies to the COVID-19 outbreak publication-title: Tour. Manag. doi: 10.1016/j.tourman.2020.104281 – volume: 22 start-page: 132 year: 2022 ident: ref_10 article-title: Difficulties and countermeasures of SMEs under the impact of emergencies publication-title: Coop. Econ. Technol. – volume: 34 start-page: 2445 year: 2019 ident: ref_27 article-title: Cyber security risk assessment of power plant control system based on D-AHP and TOPSIS publication-title: Control Decis. – volume: 39 start-page: 5087 year: 2012 ident: ref_34 article-title: Decision support framework for risk management on sea ports and terminals using fuzzy set theory and evidential reasoning approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.11.030 – volume: 145 start-page: 725 year: 2022 ident: ref_48 article-title: Did the paycheck protection program hit the target? publication-title: J. Financ. Econ. doi: 10.1016/j.jfineco.2022.05.006 – volume: 54 start-page: 73 year: 2022 ident: ref_21 article-title: COVID-19 prevention and control measures and infection risks in a boarding school publication-title: J. Harbin Inst. Technol. – ident: ref_8 – ident: ref_4 – volume: 185 start-page: 1431 year: 2011 ident: ref_46 article-title: Bayesian networks for tsunami early warning publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2011.05020.x – volume: 8 start-page: 32 year: 2020 ident: ref_9 article-title: Exploration and Analysis on Enterprise Informationization Construction Mode in the Post-epidemic Era publication-title: Inf. Technol. Stand. – volume: 34 start-page: 137 year: 2020 ident: ref_20 article-title: Set Pair Assessment Model for Risk of Enterprise’s COVID-19 Prevention and Control Based on Mahalanobis Taguchi System publication-title: Soft Sci. – volume: 63 start-page: 143 year: 2019 ident: ref_37 article-title: Progress and Trend of Knowledge Fusion Research in Recent Years publication-title: Libr. Inf. Serv. – volume: 20 start-page: 1683 year: 2020 ident: ref_38 article-title: Risk forecast and prediction model with the hazardous chemical road transportation publication-title: J. Saf. Environ. – volume: 30 start-page: 153 year: 2021 ident: ref_5 article-title: COVID-19: Small and medium enterprises challenges and responses with creativity, innovation, and entrepreneurship publication-title: Strateg. Chang. doi: 10.1002/jsc.2399 – volume: 9 start-page: 650243 year: 2021 ident: ref_25 article-title: The Traffic Light Approach: Indicators and Algorithms to Identify COVID-19 Epidemic Risk Across Italian Regions publication-title: Front. Public Health doi: 10.3389/fpubh.2021.650243 – volume: 41 start-page: 24 year: 2017 ident: ref_45 article-title: Information security risk assessment based on the improved DS evidence theory and BN publication-title: Video Eng. – volume: 27 start-page: 191 year: 2018 ident: ref_31 article-title: Systemic methodology for risks evaluation and management in the energy and mining sectors (SYSMEREM-EMS) using Bayesian networks publication-title: J. Decis. Syst. doi: 10.1080/12460125.2018.1468157 – volume: 6 start-page: e18638 year: 2020 ident: ref_23 article-title: Mathematical Modeling of COVID-19 Control and Prevention Based on Immigration Population Data in China: Model Development and Validation publication-title: JMIR Public Health Surveill. doi: 10.2196/18638 – volume: 16 start-page: 164 year: 2020 ident: ref_30 article-title: Study on risk paths of prevention and control on epidemic situation in resumption enterprises based on socio-technical system publication-title: J. Saf. Sci. Technol. – ident: ref_24 doi: 10.1371/journal.pone.0249145 – volume: 34 start-page: 337 year: 2017 ident: ref_43 article-title: Performance evaluation based on maximum entropy Markov model publication-title: Control Theory Appl. – volume: 93 start-page: 950 year: 2008 ident: ref_39 article-title: Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2007.03.012 – ident: ref_47 – ident: ref_11 – volume: 19 start-page: 49 year: 2019 ident: ref_35 article-title: Risk assessment of balise system based on the improved AHP and evidence theory publication-title: J. Saf. Environ. – ident: ref_7 doi: 10.1371/journal.pone.0257036 – volume: 26 start-page: 143 year: 2019 ident: ref_44 article-title: Safety Risk Assessment of Prefabricated Building Construction Based on Structure Entropy Weight and Modified Evidence Theory publication-title: Saf. Environ. Eng. – volume: 125 start-page: 106384 year: 2021 ident: ref_42 article-title: Method for fault location in a low-resistance grounded distribution network based on multi-source information fusion publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2020.106384 – volume: 40 start-page: 4404 year: 2013 ident: ref_33 article-title: Quantitative credit risk assessment using support vector machines: Broad versus Narrow default definitions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.01.044 – volume: 33 start-page: 521 year: 2018 ident: ref_36 article-title: Dynamic assessment model for C2C commodity purchasing risk based on evidential network publication-title: Control Decis. – ident: ref_6 – ident: ref_12 – volume: 104 start-page: 2865 year: 2021 ident: ref_22 article-title: Prevention schemes for future pandemic cases: Mathematical model and experience of interurban multi-agent COVID-19 epidemic prevention publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06385-4 – volume: 30 start-page: 19 year: 2020 ident: ref_32 article-title: DBN-based monitoring method of vaccine transportation quality and safety risk publication-title: China Saf. Sci. J. – volume: 19 start-page: 323 year: 2020 ident: ref_14 article-title: The perceived impact of the COVID-19 epidemic: Evidence from a sample of 4807 SMEs in Sichuan Province, China publication-title: Environ. Hazards doi: 10.1080/17477891.2020.1763902 – volume: 31 start-page: 21 year: 2021 ident: ref_26 article-title: Research on key index system and risk evaluation model of enterprise work safety publication-title: China Saf. Sci. J. |
SSID | ssj0000913864 |
Score | 2.4777486 |
Snippet | The COVID-19 outbreak devastated business operations and the world economy, especially for small and medium-sized enterprises (SMEs). With limited capital,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 260 |
SubjectTerms | Algorithms Bayesian analysis Bayesian network Case studies China Coronaviruses COVID-19 Disease transmission DS evidence theory Employees Employment Epidemics Global economy Impact analysis Literature reviews Matrix methods Pandemics Risk factors Sensitivity analysis Shutdowns Small and medium sized companies Small business SME Statistical analysis Surveys Unemployment |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQBwQHxCoKBfmABJdA0thOfCyoVUECIRbRm2U7tkBAi7rc-Q1-jy9hJk5Ri1Rx4ZjEjpzxLG-c8TMhh9xbLq1wkQcsETEBc5E7ocHwmPZZAyByWTx-dS06D-yyy7tTR31hTVigBw6CO821iY1MHCQekrHYay6skTxFlhoJ4R-9L8S8qWSq9MEySXPBApdPCnn9aSBGHkK040ijNROGSrb-eT65DDTtNbJaIUTaDCNbJwuut0GWJgXqG2RlikJwk6hglHhBda-gJWExfQzrHbTv6d1Va_j18UnvnsajAlJuevs8fKG4dWxAAfzRi3KbJLYM9P_0BpeV354t9ABfuUUe2q37805UHZoQWcbSUeRBNsyI2Ogs5kbojNncskwXAtJm6WNdmNjlIs0KyKykt876zCSNIk-yAsCjTrfJYq_fczuEgh-Et_A8N4ABfJbqBnL3OIs-IIE0q0ZOJjJUtmIUx4MtXhVkFih09UvoNXL80-E9kGnMb3qGk_LTDFmwyxugG6rSDfWXbtTIEU6pQluFgVldbTmAz0PWK9VEuCQFIKwaqc-0BBuzs48nSqEqGx8q_AXJAF9ytvsfg90jy3iUfSimrJPF0WDs9gHwjMxBqdvfozf7Gw priority: 102 providerName: Directory of Open Access Journals |
Title | Monitoring and Early Warning of SMEs’ Shutdown Risk under the Impact of Global Pandemic Shock |
URI | https://www.proquest.com/docview/2819483954 https://doaj.org/article/8ab0b91e4079440fa56cb95370789545 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxEB7RVEL0gCCACITIh0rlsu0ma3u9J9SihILUKkqo2ptle-1SQZOSTe68Bq_HkzCz6wSCVI67tlfrnxl_Mx5_A7AvghOFkz4JiCUSLnEulJcGBY-bkA8QItfB42fn8vSCf7oSV9HhVsWwyrVOrBV1OXfkIz-iAx-Ou7ng7-6-J5Q1ik5XYwqNHdhFFaxUC3ZPhufjycbLQqyXSvKG0ydD-_6oIUiucNcTRKe1tR3VrP336eZ6wxk9gccRKbLjZmqfwgM_a8PDdaB6G_b-ohJ8BroRTnpgZlaymriYXTZ-DzYPbHo2rH79-MmmX1bLEk1vNrmpvjK6QrZgCALZx_q6JNVs0gCwMbmXb28ctkCd-RwuRsPP70-TmDwhcZxnyyQUIuNWptbkqbDS5Nwpx3NTSjSfi5Ca0qZeySwv0cIqgvMu5LY_KFU_LxFEmuwFtGbzmX8JDPUhfkUoZRELhDwzA-Lw8Y50QR_NrQ4crsdQu8gsTgkuvmm0MGjQ9T-D3oG3mwZ3DanG_VVPaFI21YgNu34xX1zrKFxaGZvaou_ROC04T4MR0lnsPzEZ4YIRHTigKdUks_hjzsSrB9g9Yr_SxwSbColIqwPdrZooa267eL0odJT1Sv9Zma_-X_waHlGy-iZcsgut5WLl3yCkWdoe7KjRh15cvb3aMfAbjk33RA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIgE9ICgglhbwAQSX0GxiO8mhQgW67NJuhWir9mZsx24rYLfdbIW48Rq8BA_FkzATJwuLVG49Jnai2J6fbxzPNwBPhLeisNJFHrFExCWuRe6kRsXj2mcJQuT68PhwR_b3-btDcbgAP9tcGDpW2drE2lCXY0t75Gv0w4ejNxf85elZRFWj6O9qW0IjiMWW-_YVQ7ZqffAG1_dpkvQ29173o6aqQGQ5T6eRL0TKjYyNzmJhpM64zS3PdCkxrix8rEsTu1ymWYmhR-Gtsz4z3aTMu1mJ6Eqn-N4rcJWn6MkpM733dranQxybueSBQQjb47VAx1yhjxVE3jXn_OoaARd5gtq99W7BzQaXso0gSLdhwY2W4Vp7LH4Zlv4iLrwDKpgCumB6VLKaJpkdhF0WNvZsd7hZ_fr-g-0en09LDPTZh5PqE6OEtQlDyMkGdXIm9QxFB9h72sz-cmLxCbTQd2H_Uib1HiyOxiN3HxhaX3yLyHODyMNnqU6IMchZsjxdDO468KKdQ2UbHnMqp_FZYTxDk67-mfQOPJ89cBooPC7u-ooWZdaNuLfrG-PJkWpUWeXaxKboOgyFC85jr4W0BsdPvEkonqIDz2hJFVkI_DCrm0QHHB5xbakNAmmFRFzXgdW5nqjZdr65FQrVWJZK_dGDB_9vfgzX-3vDbbU92NlagRsJgrNwUHMVFqeTc_cQwdTUPKolmMHHy1aZ37u-Mcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVTBAUEBsaWADyC4hM0mtpMcEOrPrrqUrlYtFb25tmND1Xa3bLZC3HgNXoXH4Uk6k5-FRSq3HpM4UWzPzzf2-BuAF8JbkVnpAo9YIuAS5yJ1UqPice2TCCFymTy-N5Q7h_z9kThagl_NWRhKq2xsYmmo84mlNfIObfhw9OaCd3ydFjHa7r-7-BpQBSnaaW3KaVQisuu-f8PwrXg72Ma5fhlF_d7HrZ2grjAQWM7jWeAzEXMjQ6OTUBipE25TyxOdS4wxMx_q3IQulXGSYxiSeeusT0w3ytNukiPS0jF-9xYsJxQVtWB5szcc7c9XeIhxM5W84hOK4yzsVOTMBXpcQVReC66wrBhwnV8onV3_HtytUSrbqMTqPiy58SqsNEnyq3DnLxrDB6Aqw0AXTI9zVpIms0_VmgubeHaw1yt-__jJDr5cznIM-9n-SXHK6PjalCEAZYPyqCa1rEoQsBEtbZ-fWHwD7fVDOLyRYX0ErfFk7B4DQ1uMXxFpahCH-CTWEfEHOUt2qIuhXhveNGOobM1qTsU1zhRGNzTo6p9Bb8Pr-QsXFaHH9U03aVLmzYiJu7wxmX5WtWKrVJvQZF2HIpBxHnotpDXYf2JRQmEVbXhFU6rIXuCPWV0fe8DuEfOW2iDIlklEeW1YX2iJem4XHzdCoWo7U6g_WrH2_8fPYQXVRX0YDHefwO0IkVqVtbkOrdn00j1FZDUzz2oRZnB801pzBfctN14 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+and+Early+Warning+of+SMEs%E2%80%99+Shutdown+Risk+under+the+Impact+of+Global+Pandemic+Shock&rft.jtitle=Systems+%28Basel%29&rft.au=Xie%2C+Xiaoliang&rft.au=Jin%2C+Xiaomin&rft.au=Wei%2C+Guo&rft.au=Chang%2C+Ching-Ter&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.issn=2079-8954&rft.eissn=2079-8954&rft.volume=11&rft.issue=5&rft_id=info:doi/10.3390%2Fsystems11050260&rft.externalDocID=A750996283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-8954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-8954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-8954&client=summon |