Phosphorylation Regulates the Ubiquitin-independent Degradation of Yeast Pah1 Phosphatidate Phosphatase by the 20S Proteasome

Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary ph...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 290; no. 18; pp. 11467 - 11478
Main Authors Hsieh, Lu-Sheng, Su, Wen-Min, Han, Gil-Soo, Carman, George M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2015
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state. Background: Yeast Pah1 phosphatidate phosphatase required for triacylglycerol synthesis is subject to proteasome-mediated degradation. Results: Pah1 is degraded by the 20S proteasome in a ubiquitin-independent manner that is governed by its phosphorylation state. Conclusion: 20S proteasomal degradation of Pah1 is regulated by phosphorylation and dephosphorylation. Significance: Pah1 function in lipid metabolism is regulated by the 20S proteasome.
AbstractList Background: Yeast Pah1 phosphatidate phosphatase required for triacylglycerol synthesis is subject to proteasome-mediated degradation. Results: Pah1 is degraded by the 20S proteasome in a ubiquitin-independent manner that is governed by its phosphorylation state. Conclusion: 20S proteasomal degradation of Pah1 is regulated by phosphorylation and dephosphorylation. Significance: Pah1 function in lipid metabolism is regulated by the 20S proteasome. Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state.
Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state.
Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state. Background: Yeast Pah1 phosphatidate phosphatase required for triacylglycerol synthesis is subject to proteasome-mediated degradation. Results: Pah1 is degraded by the 20S proteasome in a ubiquitin-independent manner that is governed by its phosphorylation state. Conclusion: 20S proteasomal degradation of Pah1 is regulated by phosphorylation and dephosphorylation. Significance: Pah1 function in lipid metabolism is regulated by the 20S proteasome.
Author Hsieh, Lu-Sheng
Han, Gil-Soo
Su, Wen-Min
Carman, George M.
Author_xml – sequence: 1
  givenname: Lu-Sheng
  surname: Hsieh
  fullname: Hsieh, Lu-Sheng
– sequence: 2
  givenname: Wen-Min
  surname: Su
  fullname: Su, Wen-Min
– sequence: 3
  givenname: Gil-Soo
  surname: Han
  fullname: Han, Gil-Soo
– sequence: 4
  givenname: George M.
  surname: Carman
  fullname: Carman, George M.
  email: carman@aesop.rutgers.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25809482$$D View this record in MEDLINE/PubMed
BookMark eNp1kV9PHCEUxYmx0dX67FvDF5gVWIaFlyaNVdvEppuqSftEGLjsYHaHLbAm-9DvXnSqaZvIA__u-Z3APUdof4gDIHRKyZSSOT-77-z0C6XtVHApWrWHJpTIWTNr6fd9NCGE0UaxVh6io5zvSR1c0QN0WK-I4pJN0K9FH_Omj2m3MiXEAX-D5bZuIePSA77rws9tKGFowuBgA3UaCv4Iy2TcqI8e_wCTC16YnuLRrVZqFV5OJgPudk-GjNzgRYqlInENb9Ebb1YZTv6sx-ju8uL2_FNz_fXq8_mH68ZyPiuNF1JQR33HgTqvXH08E4wIIHMrPBeMqblRBiRX0jhvDZWSeFYJ2c25NbNj9H703Wy7NThbP5HMSm9SWJu009EE_W9lCL1exgfNORWypdXg3d8GL-RzI6ugHQU2xZwTeG1DeepQ9QsrTYl-DEzXwPRjYHoMrHJn_3HP1q8TaiSgNuwhQNLZBhgsuJDAFu1ieJX9DZpCr4Q
CitedBy_id crossref_primary_10_1194_jlr_RA120000937
crossref_primary_10_3390_ijms22169017
crossref_primary_10_1016_j_jbc_2023_105560
crossref_primary_10_1371_journal_pbio_3000203
crossref_primary_10_3390_molecules26185470
crossref_primary_10_1074_jbc_M116_726588
crossref_primary_10_1091_mbc_E15_03_0173
crossref_primary_10_1093_brain_awaa139
crossref_primary_10_1002_yea_3447
crossref_primary_10_1111_mmi_13976
crossref_primary_10_1016_j_bbalip_2024_159547
crossref_primary_10_1016_j_jbc_2023_104683
crossref_primary_10_1074_jbc_M117_819375
crossref_primary_10_1016_j_jbc_2024_107572
crossref_primary_10_1016_j_ceb_2024_102425
crossref_primary_10_1074_jbc_M115_680314
crossref_primary_10_1016_j_isci_2023_107539
crossref_primary_10_1016_j_cels_2019_07_010
crossref_primary_10_1074_jbc_RA118_007246
crossref_primary_10_1194_jlr_M075036
crossref_primary_10_3390_ijms222011184
crossref_primary_10_1074_jbc_RA118_005348
crossref_primary_10_1016_j_molcel_2020_02_001
crossref_primary_10_1074_jbc_RA119_010592
crossref_primary_10_1016_j_bbagen_2018_09_009
crossref_primary_10_1016_j_jprot_2015_12_002
crossref_primary_10_1038_s41477_020_0721_4
crossref_primary_10_1194_jlr_S087452
crossref_primary_10_1016_j_jbior_2025_101074
crossref_primary_10_1194_jlr_R070920
crossref_primary_10_1016_j_bbalip_2017_06_010
crossref_primary_10_1111_boc_70002
crossref_primary_10_1016_j_bbamem_2017_04_007
crossref_primary_10_1016_j_bbalip_2019_03_006
crossref_primary_10_1016_j_aca_2019_07_059
crossref_primary_10_1016_j_jbior_2017_08_001
crossref_primary_10_1074_jbc_RA119_011314
crossref_primary_10_1039_D4MD00718B
crossref_primary_10_1242_jcs_248526
crossref_primary_10_1016_j_devcel_2016_06_017
crossref_primary_10_1016_j_jbc_2023_105587
crossref_primary_10_1074_jbc_TM118_004159
crossref_primary_10_1016_j_jbc_2023_105025
crossref_primary_10_1016_j_jbc_2024_108003
crossref_primary_10_1016_j_biopha_2021_111833
crossref_primary_10_1016_j_jlr_2022_100282
crossref_primary_10_1074_jbc_RA120_014129
crossref_primary_10_1016_j_jbc_2022_101578
crossref_primary_10_1074_jbc_M116_763839
crossref_primary_10_1371_journal_pgen_1010734
crossref_primary_10_3390_biom7030066
crossref_primary_10_1016_j_jbior_2022_100889
crossref_primary_10_1016_j_jbc_2022_102221
crossref_primary_10_3390_biom10030468
crossref_primary_10_1016_j_jbc_2021_100786
Cites_doi 10.1074/jbc.M109.023663
10.1038/nature04187
10.1074/jbc.M001314200
10.1016/S0021-9258(19)40210-X
10.1016/j.plipres.2013.04.001
10.1074/jbc.M610745200
10.1128/MCB.00512-12
10.1194/jlr.M022798
10.1016/B978-0-12-397863-9.00006-7
10.1074/jbc.M110.197947
10.1016/S0021-9258(19)85178-5
10.1007/BF00277124
10.1016/S0021-9258(18)81840-3
10.1093/genetics/147.2.435
10.1074/jbc.M112.346023
10.1016/j.bbalip.2012.08.006
10.1016/0003-2697(81)90281-5
10.1016/S0076-6879(83)96017-2
10.1074/jbc.271.44.27280
10.1016/j.cmet.2004.12.002
10.1016/S0021-9258(18)43907-5
10.1126/science.1079293
10.1074/jbc.M114.550103
10.1093/nar/22.3.412
10.1002/(SICI)1097-0061(199907)15:10B<1001::AID-YEA400>3.0.CO;2-T
10.1038/nature02062
10.1074/jbc.M114.581462
10.1073/pnas.0607084104
10.1146/annurev.biochem.67.1.425
10.1093/emboj/21.4.615
10.1074/jbc.M802903200
10.1016/0378-1119(89)90358-2
10.1016/S0021-9258(18)66853-X
10.1016/S1097-2765(02)00638-X
10.1016/S0022-2275(20)39250-6
10.1093/nar/gkt1047
10.1074/jbc.M609537200
10.1083/jcb.200711154
10.1101/gad.1638008
10.1074/jbc.M509622200
10.1002/j.1460-2075.1995.tb07260.x
10.1111/j.1574-6976.2011.00287.x
10.1128/MMBR.68.2.187-206.2004
10.1146/annurev.genet.30.1.405
10.1002/bies.20447
10.1038/227680a0
10.1016/j.advenzreg.2009.01.005
10.1083/jcb.201009028
10.1074/jbc.271.2.789
10.1016/j.bbadis.2013.07.021
10.1016/0003-2697(76)90527-3
10.1074/jbc.M114.614883
10.1074/jbc.M600425200
10.1021/pr060559j
10.1038/nbt849
10.1128/MCB.01671-09
10.1038/sj.emboj.7600672
10.1083/jcb.201010111
10.1074/jbc.M705777200
10.1038/sj.ijo.0803434
10.1016/S0021-9258(18)70670-4
10.1046/j.1365-2958.2001.02495.x
10.1074/jbc.M606654200
10.1074/jbc.R700038200
10.1074/jbc.M110.155598
10.1083/jcb.125.2.299
10.1083/jcb.201211146
10.1074/jbc.M110.117747
10.1186/1471-2164-9-440
10.1038/83685
10.1146/annurev-biochem-060409-092229
10.1074/jbc.M111.258798
10.1074/jbc.M113.525766
10.1074/jbc.M112.402339
10.1091/mbc.e13-01-0021
10.1534/genetics.111.130286
10.1093/nar/gkh253
10.1016/j.ajhg.2008.09.002
10.1016/j.cmet.2013.03.018
10.1186/1471-2091-6-22
10.1074/jbc.M114.554105
10.1126/science.1090439
10.1093/bioinformatics/bti537
10.1074/jbc.M111.317420
10.1016/j.bbalip.2012.09.014
10.1073/pnas.1007974107
10.1186/gb-2012-13-9-r80
10.1021/cr900054t
10.1194/jlr.R800052-JLR200
10.1126/science.1096083
10.1093/emboj/17.22.6449
10.1074/jbc.M111.313130
10.1073/pnas.0509080102
10.1016/0005-2760(79)90022-5
10.1074/jbc.M804278200
10.1016/S0300-9084(01)01250-0
10.1194/jlr.R800019-JLR200
10.4161/cc.4.8.1900
10.1016/j.cmet.2014.05.003
10.1021/bi952808f
ContentType Journal Article
Copyright 2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
2015 by The American Society for Biochemistry and Molecular Biology, Inc.
2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015
Copyright_xml – notice: 2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
– notice: 2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
DOI 10.1074/jbc.M115.648659
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Proteasomal Degradation of Pah1 Phosphatidate Phosphatase
EISSN 1083-351X
EndPage 11478
ExternalDocumentID PMC4416851
25809482
10_1074_jbc_M115_648659
S002192582056986X
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R37 GM028140
– fundername: NIGMS NIH HHS
  grantid: R01 GM028140
– fundername: NIGMS NIH HHS
  grantid: R01 GM050679
– fundername: NIGMS NIH HHS
  grantid: GM050679
– fundername: NIGMS NIH HHS
  grantid: GM028140
– fundername: National Institutes of Health
  grantid: GM028140; GM050679
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
E.L
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
5PM
ID FETCH-LOGICAL-c443t-f6861d1fb4e1df9d80926206e07c6f462297a9ae8498adfca1880f2d1f8b74ca3
ISSN 0021-9258
IngestDate Thu Aug 21 18:32:13 EDT 2025
Wed Feb 19 02:29:39 EST 2025
Tue Jul 01 00:48:18 EDT 2025
Thu Apr 24 22:58:30 EDT 2025
Fri Feb 23 02:46:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Yeast
Phosphatidate
Triacylglycerol
Diacylglycerol
Phosphatase
Lipid
Phosphatidate Phosphatase
Proteasome
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
2015 by The American Society for Biochemistry and Molecular Biology, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-f6861d1fb4e1df9d80926206e07c6f462297a9ae8498adfca1880f2d1f8b74ca3
OpenAccessLink https://dx.doi.org/10.1074/jbc.M115.648659
PMID 25809482
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4416851
pubmed_primary_25809482
crossref_citationtrail_10_1074_jbc_M115_648659
crossref_primary_10_1074_jbc_M115_648659
elsevier_sciencedirect_doi_10_1074_jbc_M115_648659
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2015
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Ho, Hunt, Horton, Pullen, Pease (bib63) 1989; 77
Adeyo, Horn, Lee, Binns, Chandrahas, Chapman, Goodman (bib20) 2011; 192
Xu, Su, Carman (bib52) 2012; 53
Haid, Suissa (bib71) 1983; 96
Carter, Kennedy (bib10) 1966; 7
Dephoure, Howson, Blethrow, Shokat, O'Shea (bib50) 2005; 102
Davies (bib82) 2001; 83
Braun, Matuschewski, Rape, Thoms, Jentsch (bib101) 2002; 21
Wu, Carman (bib57) 1994; 269
Orij, Urbanus, Vizeacoumar, Giaever, Boone, Nislow, Brul, Smits (bib91) 2012; 13
Peters, Hazan, Breker, Schuldiner, Ben-Aroya (bib93) 2013; 201
Phan, Reue (bib26) 2005; 1
Pascual, Hsieh, Soto-Cardalda, Carman (bib45) 2014; 289
Sambrook, Fritsch, Maniatis (bib60) 1989
Su, Han, Carman (bib42) 2014; 289
Reue, Brindley (bib30) 2008; 49
Asher, Reuven, Shaul (bib79) 2006; 28
Wu, Carman (bib55) 1996; 35
Harris, Huffman, Chi, Shabanowitz, Hunt, Kumar, Lawrence (bib98) 2007; 282
Smith, Weiss, Kennedy (bib4) 1957; 228
Tamura, Harada, Nishikawa, Yamano, Kamiya, Shiota, Kuroda, Kuge, Sesaki, Imai, Tomii, Endo (bib9) 2013; 17
Leggett, Glickman, Finley (bib65) 2005; 301
Tar, Dange, Yang, Yao, Bulteau, Salcedo, Braigen, Bouillaud, Finley, Schmidt (bib80) 2014; 289
Chi, Huttenhower, Geer, Coon, Syka, Bai, Shabanowitz, Burke, Troyanskaya, Hunt (bib46) 2007; 104
Carman, Han (bib5) 2011; 80
Soto-Cardalda, Fakas, Pascual, Choi, Carman (bib58) 2012; 287
Nadra, de Preux Charles, Médard, Hendriks, Han, Grès, Carman, Saulnier-Blache, Verheijen, Chrast (bib28) 2008; 22
Pickering, Davies (bib83) 2012; 109
Hochstrasser (bib86) 2009; 109
Gray, Petsko, Johnston, Ringe, Singer, Werner-Washburne (bib95) 2004; 68
Loewen, Gaspar, Jesch, Delon, Ktistakis, Henry, Levine (bib15) 2004; 304
Tanaka, Ii, Ichihara, Waxman, Goldberg (bib73) 1986; 261
Han, Carman (bib76) 2010; 285
Grkovich, Dennis (bib34) 2009; 49
Chirala, Zhong, Huang, al-Feel (bib103) 1994; 22
Lussier, White, Sheraton, di Paolo, Treadwell, Southard, Horenstein, Chen-Weiner, Ram, Kapteyn, Roemer, Vo, Bondoc, Hall, Zhong, Sdicu, Davies, Klis, Robbins, Bussey (bib23) 1997; 147
Siniossoglou, Hurt, Pelham (bib64) 2000; 275
Lin, Carman (bib74) 1989; 264
Irie, Takase, Araki, Oshima (bib22) 1993; 236
Grimsey, Han, O'Hara, Rochford, Carman, Siniossoglou (bib72) 2008; 283
Pascual, Soto-Cardalda, Carman (bib13) 2013; 288
Burnette (bib70) 1981; 112
Dinkel, Van Roey, Michael, Davey, Weatheritt, Born, Speck, Krüger, Grebnev, Kuban, Strumillo, Uyar, Budd, Altenberg, Seiler, Chemes, Glavina, Sánchez, Diella, Gibson (bib88) 2014; 42
Han, Sreenivas, Choi, Chang, Martin, Baldwin, Carman (bib59) 2005; 280
Lee, Lee, Jung, Kim, Kim (bib100) 2008; 9
Fakas, Qiu, Dixon, Han, Ruggles, Garbarino, Sturley, Carman (bib12) 2011; 286
Mul, Nadra, Jagalur, Nijman, Toonen, Médard, Grès, de Bruin, Han, Brouwers, Carman, Saulnier-Blache, Meijer, Chrast, Cuppen (bib35) 2011; 286
Wu, Lin, Wang, Merrill, Carman (bib56) 1993; 268
Liu, Corboy, DeMartino, Thomas (bib81) 2003; 299
Han, O'Hara, Carman, Siniossoglou (bib21) 2008; 283
Mah, Elia, Devgan, Ptacek, Schutkowski, Snyder, Yaffe, Deshaies (bib51) 2005; 6
Pascual, Carman (bib7) 2013; 1831
Su, Han, Carman (bib54) 2014; 289
Prilusky, Felder, Zeev-Ben-Mordehai, Rydberg, Man, Beckmann, Silman, Sussman (bib78) 2005; 21
Henry, Kohlwein, Carman (bib6) 2012; 190
Outeiro, Lindquist (bib62) 2003; 302
Innis, Gelfand (bib61) 1990
Wagner, Dietz, Wittmann, Albrecht, Schüller (bib14) 2001; 41
Michot, Mamoune, Vamecq, Viou, Hsieh, Testet, Lainé, Hubert, Dessein, Fontaine, Ottolenghi, Fouillen, Nadra, Blanc, Bastin, Candon, Pende, Munnich, Smahi, Djouadi, Carman, Romero, de Keyzer, de Lonlay (bib37) 2013; 1832
Hochstrasser (bib85) 1996; 30
De Virgilio (bib94) 2012; 36
Zeharia, Shaag, Houtkooper, Hindi, de Lonlay, Erez, Hubert, Saada, de Keyzer, Eshel, Vaz, Pines, Elpeleg (bib29) 2008; 83
Li, Gerber, Rudner, Beausoleil, Haas, Villén, Elias, Gygi (bib47) 2007; 6
Santos-Rosa, Leung, Grimsey, Peak-Chew, Siniossoglou (bib17) 2005; 24
Taylor, Parks (bib11) 1979; 575
Lin, Carman (bib75) 1990; 265
Hershko, Ciechanover (bib84) 1998; 67
Ptacek, Devgan, Michaud, Zhu, Zhu, Fasolo, Guo, Jona, Breitkreutz, Sopko, McCartney, Schmidt, Rachidi, Lee, Mah, Meng, Stark, Stern, De Virgilio, Tyers, Andrews, Gerstein, Schweitzer, Predki, Snyder (bib49) 2005; 438
Karanasios, Barbosa, Sembongi, Mari, Han, Reggiori, Carman, Siniossoglou (bib44) 2013; 24
Su, Han, Casciano, Carman (bib41) 2012; 287
Karanasios, Han, Xu, Carman, Siniossoglou (bib43) 2010; 107
Siniossoglou, Santos-Rosa, Rappsilber, Mann, Hurt (bib53) 1998; 17
Donkor, Zhang, Wong, O'Loughlin, Dewald, Kok, Brindley, Reue (bib32) 2009; 284
Sasser, Qiu, Karunakaran, Padolina, Reyes, Flood, Smith, Gonzales, Fratti (bib25) 2012; 287
Lindegaard, Larsen, Hansen, Gerstoft, Pedersen, Reue (bib27) 2007; 31
Leggett, Hanna, Borodovsky, Crosas, Schmidt, Baker, Walz, Ploegh, Finley (bib66) 2002; 10
Lee, Goldberg (bib68) 1996; 271
Ubersax, Woodbury, Quang, Paraz, Blethrow, Shah, Shokat, Morgan (bib48) 2003; 425
Laemmli (bib69) 1970; 227
Kim, Kumar, Wang, Liu, Keller, Lawrence, Finck, Harris (bib33) 2010; 30
Shen, Heacock, Clancey, Dowhan (bib8) 1996; 271
Donkor, Sariahmetoglu, Dewald, Brindley, Reue (bib3) 2007; 282
Nadra, Médard, Mul, Han, Grès, Pende, Metzger, Chambon, Cuppen, Saulnier-Blache, Carman, Desvergne, Chrast (bib36) 2012; 32
Han, Wu, Carman (bib1) 2006; 281
Csaki, Dwyer, Fong, Tontonoz, Young, Reue (bib97) 2013; 52
Peng, Schwartz, Elias, Thoreen, Cheng, Marsischky, Roelofs, Finley, Gygi (bib99) 2003; 21
Hampton, Rine (bib102) 1994; 125
Choi, Su, Morgan, Han, Xu, Karanasios, Siniossoglou, Carman (bib39) 2011; 286
Chen, Hochstrasser (bib77) 1995; 14
Choi, Su, Han, Plote, Xu, Carman (bib40) 2012; 287
Zhang, Verity, Reue (bib96) 2014; 20
Bradford (bib67) 1976; 72
Laporte, Lebaudy, Sahin, Pinson, Ceschin, Daignan-Fornier, Sagot (bib92) 2011; 192
Carman, Henry (bib16) 2007; 282
Laporte, Salin, Daignan-Fornier, Sagot (bib90) 2008; 181
O'Hara, Han, Peak-Chew, Grimsey, Carman, Siniossoglou (bib18) 2006; 281
Reue, Dwyer (bib31) 2009; 50
Ruiz, Cid, Lussier, Molina, Nombela (bib24) 1999; 15
Péterfy, Phan, Xu, Reue (bib2) 2001; 27
Han, Siniossoglou, Carman (bib19) 2007; 282
Iakoucheva, Radivojac, Brown, O'Connor, Sikes, Obradovic, Dunker (bib89) 2004; 32
Siniossoglou (bib38) 2013; 1831
Asher, Shaul (bib87) 2005; 4
Loewen (10.1074/jbc.M115.648659_bib15) 2004; 304
Han (10.1074/jbc.M115.648659_bib59) 2005; 280
Siniossoglou (10.1074/jbc.M115.648659_bib38) 2013; 1831
Carman (10.1074/jbc.M115.648659_bib5) 2011; 80
O'Hara (10.1074/jbc.M115.648659_bib18) 2006; 281
Leggett (10.1074/jbc.M115.648659_bib66) 2002; 10
Laporte (10.1074/jbc.M115.648659_bib90) 2008; 181
Zhang (10.1074/jbc.M115.648659_bib96) 2014; 20
Outeiro (10.1074/jbc.M115.648659_bib62) 2003; 302
Sasser (10.1074/jbc.M115.648659_bib25) 2012; 287
Wagner (10.1074/jbc.M115.648659_bib14) 2001; 41
Lin (10.1074/jbc.M115.648659_bib74) 1989; 264
Su (10.1074/jbc.M115.648659_bib42) 2014; 289
Burnette (10.1074/jbc.M115.648659_bib70) 1981; 112
Tar (10.1074/jbc.M115.648659_bib80) 2014; 289
Chirala (10.1074/jbc.M115.648659_bib103) 1994; 22
Csaki (10.1074/jbc.M115.648659_bib97) 2013; 52
Lee (10.1074/jbc.M115.648659_bib100) 2008; 9
Zeharia (10.1074/jbc.M115.648659_bib29) 2008; 83
Pascual (10.1074/jbc.M115.648659_bib45) 2014; 289
Sambrook (10.1074/jbc.M115.648659_bib60) 1989
Braun (10.1074/jbc.M115.648659_bib101) 2002; 21
Han (10.1074/jbc.M115.648659_bib76) 2010; 285
Han (10.1074/jbc.M115.648659_bib1) 2006; 281
Ptacek (10.1074/jbc.M115.648659_bib49) 2005; 438
Prilusky (10.1074/jbc.M115.648659_bib78) 2005; 21
Henry (10.1074/jbc.M115.648659_bib6) 2012; 190
Su (10.1074/jbc.M115.648659_bib54) 2014; 289
Peng (10.1074/jbc.M115.648659_bib99) 2003; 21
Asher (10.1074/jbc.M115.648659_bib87) 2005; 4
Bradford (10.1074/jbc.M115.648659_bib67) 1976; 72
Phan (10.1074/jbc.M115.648659_bib26) 2005; 1
Lindegaard (10.1074/jbc.M115.648659_bib27) 2007; 31
Xu (10.1074/jbc.M115.648659_bib52) 2012; 53
Choi (10.1074/jbc.M115.648659_bib39) 2011; 286
Su (10.1074/jbc.M115.648659_bib41) 2012; 287
Innis (10.1074/jbc.M115.648659_bib61) 1990
Laemmli (10.1074/jbc.M115.648659_bib69) 1970; 227
Haid (10.1074/jbc.M115.648659_bib71) 1983; 96
Harris (10.1074/jbc.M115.648659_bib98) 2007; 282
Hochstrasser (10.1074/jbc.M115.648659_bib86) 2009; 109
Mul (10.1074/jbc.M115.648659_bib35) 2011; 286
Chi (10.1074/jbc.M115.648659_bib46) 2007; 104
Carter (10.1074/jbc.M115.648659_bib10) 1966; 7
Chen (10.1074/jbc.M115.648659_bib77) 1995; 14
Donkor (10.1074/jbc.M115.648659_bib3) 2007; 282
Ruiz (10.1074/jbc.M115.648659_bib24) 1999; 15
Santos-Rosa (10.1074/jbc.M115.648659_bib17) 2005; 24
Siniossoglou (10.1074/jbc.M115.648659_bib64) 2000; 275
Hochstrasser (10.1074/jbc.M115.648659_bib85) 1996; 30
Peters (10.1074/jbc.M115.648659_bib93) 2013; 201
Li (10.1074/jbc.M115.648659_bib47) 2007; 6
Tanaka (10.1074/jbc.M115.648659_bib73) 1986; 261
Carman (10.1074/jbc.M115.648659_bib16) 2007; 282
Adeyo (10.1074/jbc.M115.648659_bib20) 2011; 192
Fakas (10.1074/jbc.M115.648659_bib12) 2011; 286
Grimsey (10.1074/jbc.M115.648659_bib72) 2008; 283
Hershko (10.1074/jbc.M115.648659_bib84) 1998; 67
Liu (10.1074/jbc.M115.648659_bib81) 2003; 299
Lussier (10.1074/jbc.M115.648659_bib23) 1997; 147
Michot (10.1074/jbc.M115.648659_bib37) 2013; 1832
Donkor (10.1074/jbc.M115.648659_bib32) 2009; 284
Mah (10.1074/jbc.M115.648659_bib51) 2005; 6
Taylor (10.1074/jbc.M115.648659_bib11) 1979; 575
Grkovich (10.1074/jbc.M115.648659_bib34) 2009; 49
Davies (10.1074/jbc.M115.648659_bib82) 2001; 83
Karanasios (10.1074/jbc.M115.648659_bib44) 2013; 24
Dinkel (10.1074/jbc.M115.648659_bib88) 2014; 42
Irie (10.1074/jbc.M115.648659_bib22) 1993; 236
Laporte (10.1074/jbc.M115.648659_bib92) 2011; 192
Siniossoglou (10.1074/jbc.M115.648659_bib53) 1998; 17
Péterfy (10.1074/jbc.M115.648659_bib2) 2001; 27
Ho (10.1074/jbc.M115.648659_bib63) 1989; 77
Wu (10.1074/jbc.M115.648659_bib55) 1996; 35
Leggett (10.1074/jbc.M115.648659_bib65) 2005; 301
Iakoucheva (10.1074/jbc.M115.648659_bib89) 2004; 32
Pascual (10.1074/jbc.M115.648659_bib13) 2013; 288
Reue (10.1074/jbc.M115.648659_bib30) 2008; 49
Han (10.1074/jbc.M115.648659_bib21) 2008; 283
Orij (10.1074/jbc.M115.648659_bib91) 2012; 13
Shen (10.1074/jbc.M115.648659_bib8) 1996; 271
Nadra (10.1074/jbc.M115.648659_bib36) 2012; 32
Wu (10.1074/jbc.M115.648659_bib56) 1993; 268
Gray (10.1074/jbc.M115.648659_bib95) 2004; 68
Asher (10.1074/jbc.M115.648659_bib79) 2006; 28
Karanasios (10.1074/jbc.M115.648659_bib43) 2010; 107
Pickering (10.1074/jbc.M115.648659_bib83) 2012; 109
Kim (10.1074/jbc.M115.648659_bib33) 2010; 30
Dephoure (10.1074/jbc.M115.648659_bib50) 2005; 102
Wu (10.1074/jbc.M115.648659_bib57) 1994; 269
Choi (10.1074/jbc.M115.648659_bib40) 2012; 287
De Virgilio (10.1074/jbc.M115.648659_bib94) 2012; 36
Pascual (10.1074/jbc.M115.648659_bib7) 2013; 1831
Han (10.1074/jbc.M115.648659_bib19) 2007; 282
Hampton (10.1074/jbc.M115.648659_bib102) 1994; 125
Nadra (10.1074/jbc.M115.648659_bib28) 2008; 22
Tamura (10.1074/jbc.M115.648659_bib9) 2013; 17
Reue (10.1074/jbc.M115.648659_bib31) 2009; 50
Smith (10.1074/jbc.M115.648659_bib4) 1957; 228
Soto-Cardalda (10.1074/jbc.M115.648659_bib58) 2012; 287
Lee (10.1074/jbc.M115.648659_bib68) 1996; 271
Ubersax (10.1074/jbc.M115.648659_bib48) 2003; 425
Lin (10.1074/jbc.M115.648659_bib75) 1990; 265
References_xml – volume: 49
  start-page: 2493
  year: 2008
  end-page: 2503
  ident: bib30
  article-title: Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism
  publication-title: J. Lipid Res.
– volume: 287
  start-page: 33364
  year: 2012
  end-page: 33376
  ident: bib41
  article-title: Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast
  publication-title: J. Biol. Chem.
– volume: 285
  start-page: 14628
  year: 2010
  end-page: 14638
  ident: bib76
  article-title: Characterization of the human
  publication-title: J. Biol. Chem.
– volume: 268
  start-page: 13830
  year: 1993
  end-page: 13837
  ident: bib56
  article-title: Regulation of phosphatidate phosphatase activity from the yeast
  publication-title: J. Biol. Chem.
– volume: 102
  start-page: 17940
  year: 2005
  end-page: 17945
  ident: bib50
  article-title: Combining chemical genetics and proteomics to identify protein kinase substrates
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 302
  start-page: 1772
  year: 2003
  end-page: 1775
  ident: bib62
  article-title: Yeast cells provide insight into α-synuclein biology and pathobiology
  publication-title: Science.
– volume: 13
  start-page: R80
  year: 2012
  ident: bib91
  article-title: Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH
  publication-title: Genome Biol.
– volume: 21
  start-page: 615
  year: 2002
  end-page: 621
  ident: bib101
  article-title: Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of
  publication-title: EMBO J.
– volume: 301
  start-page: 57
  year: 2005
  end-page: 70
  ident: bib65
  article-title: Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast
  publication-title: Methods Mol. Biol.
– volume: 282
  start-page: 3450
  year: 2007
  end-page: 3457
  ident: bib3
  article-title: Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns
  publication-title: J. Biol. Chem.
– volume: 275
  start-page: 19352
  year: 2000
  end-page: 19360
  ident: bib64
  article-title: Psr1p/Psr2p, two plasma membrane phosphatases with an essential D
  publication-title: J. Biol. Chem.
– start-page: 3
  year: 1990
  end-page: 12
  ident: bib61
  publication-title: PCR Protocols: A Guide to Methods and Applications
– volume: 1832
  start-page: 2103
  year: 2013
  end-page: 2114
  ident: bib37
  article-title: Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts
  publication-title: Biochim. Biophys. Acta.
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  ident: bib67
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
– volume: 32
  start-page: 1037
  year: 2004
  end-page: 1049
  ident: bib89
  article-title: The importance of intrinsic disorder for protein phosphorylation
  publication-title: Nucleic Acids Res.
– volume: 287
  start-page: 2221
  year: 2012
  end-page: 2236
  ident: bib25
  article-title: The yeast lipin 1 orthologue Pah1p regulates vacuole homeostasis and membrane fusion
  publication-title: J. Biol. Chem.
– volume: 50
  start-page: S109
  year: 2009
  end-page: S114
  ident: bib31
  article-title: Lipin proteins and metabolic homeostasis
  publication-title: J. Lipid Res.
– volume: 299
  start-page: 408
  year: 2003
  end-page: 411
  ident: bib81
  article-title: Endoproteolytic activity of the proteasome
  publication-title: Science.
– volume: 80
  start-page: 859
  year: 2011
  end-page: 883
  ident: bib5
  article-title: Regulation of phospholipid synthesis in the yeast
  publication-title: Annu. Rev. Biochem.
– volume: 49
  start-page: 114
  year: 2009
  end-page: 120
  ident: bib34
  article-title: Phosphatidic acid phosphohydrolase in the regulation of inflammatory signaling
  publication-title: Adv. Enzyme Regul.
– volume: 22
  start-page: 1647
  year: 2008
  end-page: 1661
  ident: bib28
  article-title: Phosphatidic acid mediates demyelination in
  publication-title: Genes Dev.
– volume: 283
  start-page: 29166
  year: 2008
  end-page: 29174
  ident: bib72
  article-title: Temporal and spatial regulation of the phosphatidate phosphatases lipin 1 and 2
  publication-title: J. Biol. Chem.
– volume: 35
  start-page: 3790
  year: 1996
  end-page: 3796
  ident: bib55
  article-title: Regulation of phosphatidate phosphatase activity from the yeast
  publication-title: Biochemistry.
– volume: 6
  start-page: 22
  year: 2005
  ident: bib51
  article-title: Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening
  publication-title: BMC Biochem.
– volume: 30
  start-page: 3126
  year: 2010
  end-page: 3139
  ident: bib33
  article-title: Lipin 1 represses NFATc4 transcriptional activity in adipocytes to inhibit secretion of inflammatory factors
  publication-title: Mol. Cell. Biol.
– volume: 109
  start-page: 1479
  year: 2009
  end-page: 1480
  ident: bib86
  article-title: Introduction to intracellular protein degradation
  publication-title: Chem. Rev.
– volume: 190
  start-page: 317
  year: 2012
  end-page: 349
  ident: bib6
  article-title: Metabolism and regulation of glycerolipids in the yeast
  publication-title: Genetics.
– volume: 281
  start-page: 34537
  year: 2006
  end-page: 34548
  ident: bib18
  article-title: Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg
  publication-title: J. Biol. Chem.
– volume: 67
  start-page: 425
  year: 1998
  end-page: 479
  ident: bib84
  article-title: The ubiquitin system
  publication-title: Annu. Rev. Biochem.
– volume: 112
  start-page: 195
  year: 1981
  end-page: 203
  ident: bib70
  article-title: Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A
  publication-title: Anal. Biochem.
– volume: 264
  start-page: 8641
  year: 1989
  end-page: 8645
  ident: bib74
  article-title: Purification and characterization of phosphatidate phosphatase from
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 449
  year: 2007
  end-page: 456
  ident: bib27
  article-title: Adipose tissue lipin expression levels distinguish HIV patients with and without lipodystrophy
  publication-title: Int. J. Obes.
– volume: 286
  start-page: 1486
  year: 2011
  end-page: 1498
  ident: bib39
  article-title: Phosphorylation of phosphatidate phosphatase regulates its membrane association and physiological functions in
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 2620
  year: 1995
  end-page: 2630
  ident: bib77
  article-title: Biogenesis, structure and function of the yeast 20S proteasome
  publication-title: EMBO J.
– volume: 575
  start-page: 204
  year: 1979
  end-page: 214
  ident: bib11
  article-title: Triacylglycerol metabolism in
  publication-title: Biochim. Biophys. Acta.
– volume: 68
  start-page: 187
  year: 2004
  end-page: 206
  ident: bib95
  article-title: “Sleeping beauty”: quiescence in
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 287
  start-page: 11290
  year: 2012
  end-page: 11301
  ident: bib40
  article-title: Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism
  publication-title: J. Biol. Chem.
– volume: 77
  start-page: 51
  year: 1989
  end-page: 59
  ident: bib63
  article-title: Site-directed mutagenesis by overlap extension using the polymerase chain reaction
  publication-title: Gene.
– volume: 425
  start-page: 859
  year: 2003
  end-page: 864
  ident: bib48
  article-title: Targets of the cyclin-dependent kinase Cdk1
  publication-title: Nature.
– volume: 289
  start-page: 9811
  year: 2014
  end-page: 9822
  ident: bib45
  article-title: Yeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation
  publication-title: J. Biol. Chem.
– year: 1989
  ident: bib60
  publication-title: Molecular Cloning: A Laboratory Manual
– volume: 7
  start-page: 678
  year: 1966
  end-page: 683
  ident: bib10
  article-title: Enzymatic synthesis of cytidine diphosphate diglyceride
  publication-title: J. Lipid Res.
– volume: 1831
  start-page: 514
  year: 2013
  end-page: 522
  ident: bib7
  article-title: Phosphatidate phosphatase, a key regulator of lipid homeostasis
  publication-title: Biochim. Biophys. Acta.
– volume: 289
  start-page: 34699
  year: 2014
  end-page: 34708
  ident: bib54
  article-title: Yeast Nem1-Spo7 protein phosphatase activity on Pah1 phosphatidate phosphatase is specific for the Pho85-Pho80 protein kinase phosphorylation sites
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 844
  year: 2006
  end-page: 849
  ident: bib79
  article-title: 20S proteasomes and protein degradation “by default”
  publication-title: BioEssays.
– volume: 201
  start-page: 663
  year: 2013
  end-page: 671
  ident: bib93
  article-title: Formation and dissociation of proteasome storage granules are regulated by cytosolic pH
  publication-title: J. Cell Biol.
– volume: 283
  start-page: 20433
  year: 2008
  end-page: 20442
  ident: bib21
  article-title: An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth
  publication-title: J. Biol. Chem.
– volume: 147
  start-page: 435
  year: 1997
  end-page: 450
  ident: bib23
  article-title: Large scale identification of genes involved in cell surface biosynthesis and architecture in
  publication-title: Genetics.
– volume: 6
  start-page: 1190
  year: 2007
  end-page: 1197
  ident: bib47
  article-title: Large-scale phosphorylation analysis of α-factor-arrested
  publication-title: J. Proteome. Res.
– volume: 280
  start-page: 38328
  year: 2005
  end-page: 38336
  ident: bib59
  article-title: Expression of human CTP synthetase in
  publication-title: J. Biol. Chem.
– volume: 438
  start-page: 679
  year: 2005
  end-page: 684
  ident: bib49
  article-title: Global analysis of protein phosphorylation in yeast
  publication-title: Nature.
– volume: 24
  start-page: 1931
  year: 2005
  end-page: 1941
  ident: bib17
  article-title: The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth
  publication-title: EMBO J.
– volume: 36
  start-page: 306
  year: 2012
  end-page: 339
  ident: bib94
  article-title: The essence of yeast quiescence
  publication-title: FEMS Microbiol. Rev.
– volume: 24
  start-page: 2124
  year: 2013
  end-page: 2133
  ident: bib44
  article-title: Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p
  publication-title: Mol. Biol. Cell.
– volume: 286
  start-page: 29074
  year: 2011
  end-page: 29085
  ident: bib12
  article-title: Phosphatidate phosphatase activity plays a key role in protection against fatty acid-induced toxicity in yeast
  publication-title: J. Biol. Chem.
– volume: 42
  start-page: D259
  year: 2014
  end-page: D266
  ident: bib88
  article-title: The eukaryotic linear motif resource ELM: 10 years and counting
  publication-title: Nucleic Acids Res.
– volume: 265
  start-page: 166
  year: 1990
  end-page: 170
  ident: bib75
  article-title: Kinetic analysis of yeast phosphatidate phosphatase toward Triton X-100/phosphatidate mixed micelles
  publication-title: J. Biol. Chem.
– volume: 109
  start-page: 227
  year: 2012
  end-page: 248
  ident: bib83
  article-title: Degradation of damaged proteins: the main function of the 20S proteasome
  publication-title: Prog. Mol. Biol. Transl. Sci.
– volume: 17
  start-page: 709
  year: 2013
  end-page: 718
  ident: bib9
  article-title: Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria
  publication-title: Cell Metab.
– volume: 288
  start-page: 35781
  year: 2013
  end-page: 35792
  ident: bib13
  article-title: -encoded phosphatidate phosphatase plays a role in the growth phase- and inositol-mediated regulation of lipid synthesis in
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 1015
  year: 2005
  end-page: 1018
  ident: bib87
  article-title: p53 proteasomal degradation: poly-ubiquitination is not the whole story
  publication-title: Cell Cycle.
– volume: 289
  start-page: 18818
  year: 2014
  end-page: 18830
  ident: bib42
  article-title: Cross-talk phosphorylations by protein kinase C and Pho85p-Pho80p protein kinase regulate Pah1p phosphatidate phosphatase abundance in
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 405
  year: 1996
  end-page: 439
  ident: bib85
  article-title: Ubiquitin-dependent protein degradation
  publication-title: Annu. Rev. Genet.
– volume: 22
  start-page: 412
  year: 1994
  end-page: 418
  ident: bib103
  article-title: Analysis of
  publication-title: Nucleic Acids Res.
– volume: 21
  start-page: 3435
  year: 2005
  end-page: 3438
  ident: bib78
  article-title: FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded
  publication-title: Bioinformatics.
– volume: 21
  start-page: 921
  year: 2003
  end-page: 926
  ident: bib99
  article-title: A proteomics approach to understanding protein ubiquitination
  publication-title: Nat. Biotechnol.
– volume: 269
  start-page: 29495
  year: 1994
  end-page: 29501
  ident: bib57
  article-title: Regulation of phosphatidate phosphatase activity from the yeast
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 121
  year: 2001
  end-page: 124
  ident: bib2
  article-title: Lipodystrophy in the
  publication-title: Nat. Genet.
– volume: 271
  start-page: 789
  year: 1996
  end-page: 795
  ident: bib8
  article-title: The
  publication-title: J. Biol. Chem.
– volume: 227
  start-page: 680
  year: 1970
  end-page: 685
  ident: bib69
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature.
– volume: 10
  start-page: 495
  year: 2002
  end-page: 507
  ident: bib66
  article-title: Multiple associated proteins regulate proteasome structure and function
  publication-title: Mol. Cell.
– volume: 107
  start-page: 17539
  year: 2010
  end-page: 17544
  ident: bib43
  article-title: A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 1
  start-page: 73
  year: 2005
  end-page: 83
  ident: bib26
  article-title: Lipin, a lipodystrophy and obesity gene
  publication-title: Cell Metab.
– volume: 32
  start-page: 4794
  year: 2012
  end-page: 4810
  ident: bib36
  article-title: Cell autonomous lipin 1 function is essential for development and maintenance of white and brown adipose tissue
  publication-title: Mol. Cell. Biol.
– volume: 286
  start-page: 26781
  year: 2011
  end-page: 26793
  ident: bib35
  article-title: A hypomorphic mutation in
  publication-title: J. Biol. Chem.
– volume: 192
  start-page: 949
  year: 2011
  end-page: 957
  ident: bib92
  article-title: Metabolic status rather than cell cycle signals control quiescence entry and exit
  publication-title: J. Cell Biol.
– volume: 20
  start-page: 267
  year: 2014
  end-page: 279
  ident: bib96
  article-title: Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle
  publication-title: Cell Metab.
– volume: 282
  start-page: 37026
  year: 2007
  end-page: 37035
  ident: bib19
  article-title: The cellular functions of the yeast lipin homolog Pah1p are dependent on its phosphatidate phosphatase activity
  publication-title: J. Biol. Chem.
– volume: 236
  start-page: 283
  year: 1993
  end-page: 288
  ident: bib22
  article-title: A gene,
  publication-title: Mol. Gen. Genet.
– volume: 125
  start-page: 299
  year: 1994
  end-page: 312
  ident: bib102
  article-title: Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast
  publication-title: J. Cell Biol.
– volume: 181
  start-page: 737
  year: 2008
  end-page: 745
  ident: bib90
  article-title: Reversible cytoplasmic localization of the proteasome in quiescent yeast cells
  publication-title: J. Cell Biol.
– volume: 53
  start-page: 522
  year: 2012
  end-page: 528
  ident: bib52
  article-title: Fluorescence spectroscopy measures yeast
  publication-title: J. Lipid Res.
– volume: 41
  start-page: 155
  year: 2001
  end-page: 166
  ident: bib14
  article-title: The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2
  publication-title: Mol. Microbiol.
– volume: 289
  start-page: 12145
  year: 2014
  end-page: 12156
  ident: bib80
  article-title: Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1
  publication-title: J. Biol. Chem.
– volume: 1831
  start-page: 575
  year: 2013
  end-page: 581
  ident: bib38
  article-title: Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases
  publication-title: Biochim. Biophys. Acta.
– volume: 15
  start-page: 1001
  year: 1999
  end-page: 1008
  ident: bib24
  article-title: A large-scale sonication assay for cell wall mutant analysis in yeast
  publication-title: Yeast.
– volume: 9
  start-page: 440
  year: 2008
  ident: bib100
  article-title: SCUD:
  publication-title: BMC Genomics.
– volume: 287
  start-page: 968
  year: 2012
  end-page: 977
  ident: bib58
  article-title: Phosphatidate phosphatase plays role in zinc-mediated regulation of phospholipid synthesis in yeast
  publication-title: J. Biol. Chem.
– volume: 282
  start-page: 37293
  year: 2007
  end-page: 37297
  ident: bib16
  article-title: Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in
  publication-title: J. Biol. Chem.
– volume: 192
  start-page: 1043
  year: 2011
  end-page: 1055
  ident: bib20
  article-title: The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets
  publication-title: J. Cell Biol.
– volume: 104
  start-page: 2193
  year: 2007
  end-page: 2198
  ident: bib46
  article-title: Analysis of phosphorylation sites on proteins from
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 52
  start-page: 305
  year: 2013
  end-page: 316
  ident: bib97
  article-title: Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling
  publication-title: Prog. Lipid Res.
– volume: 282
  start-page: 277
  year: 2007
  end-page: 286
  ident: bib98
  article-title: Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1
  publication-title: J. Biol. Chem.
– volume: 281
  start-page: 9210
  year: 2006
  end-page: 9218
  ident: bib1
  article-title: The
  publication-title: J. Biol. Chem.
– volume: 284
  start-page: 29968
  year: 2009
  end-page: 29978
  ident: bib32
  article-title: A conserved serine residue is required for the phosphatidate phosphatase activity but not transcriptional coactivator functions of lipin-1 and lipin-2
  publication-title: J. Biol. Chem.
– volume: 228
  start-page: 915
  year: 1957
  end-page: 922
  ident: bib4
  article-title: The enzymatic dephosphorylation of phosphatidic acids
  publication-title: J. Biol. Chem.
– volume: 261
  start-page: 15197
  year: 1986
  end-page: 15203
  ident: bib73
  article-title: A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution
  publication-title: J. Biol. Chem.
– volume: 271
  start-page: 27280
  year: 1996
  end-page: 27284
  ident: bib68
  article-title: Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in
  publication-title: J. Biol. Chem.
– volume: 83
  start-page: 489
  year: 2008
  end-page: 494
  ident: bib29
  article-title: Mutations in
  publication-title: Am. J. Hum. Genet.
– volume: 83
  start-page: 301
  year: 2001
  end-page: 310
  ident: bib82
  article-title: Degradation of oxidized proteins by the 20S proteasome
  publication-title: Biochimie.
– volume: 304
  start-page: 1644
  year: 2004
  end-page: 1647
  ident: bib15
  article-title: Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid
  publication-title: Science.
– volume: 96
  start-page: 192
  year: 1983
  end-page: 205
  ident: bib71
  article-title: Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  publication-title: Methods Enzymol.
– volume: 17
  start-page: 6449
  year: 1998
  end-page: 6464
  ident: bib53
  article-title: A novel complex of membrane proteins required for formation of a spherical nucleus
  publication-title: EMBO J.
– volume: 284
  start-page: 29968
  year: 2009
  ident: 10.1074/jbc.M115.648659_bib32
  article-title: A conserved serine residue is required for the phosphatidate phosphatase activity but not transcriptional coactivator functions of lipin-1 and lipin-2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.023663
– volume: 438
  start-page: 679
  year: 2005
  ident: 10.1074/jbc.M115.648659_bib49
  article-title: Global analysis of protein phosphorylation in yeast
  publication-title: Nature.
  doi: 10.1038/nature04187
– volume: 275
  start-page: 19352
  year: 2000
  ident: 10.1074/jbc.M115.648659_bib64
  article-title: Psr1p/Psr2p, two plasma membrane phosphatases with an essential DXDX(T/V) motif required for sodium stress response in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M001314200
– volume: 265
  start-page: 166
  year: 1990
  ident: 10.1074/jbc.M115.648659_bib75
  article-title: Kinetic analysis of yeast phosphatidate phosphatase toward Triton X-100/phosphatidate mixed micelles
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)40210-X
– volume: 52
  start-page: 305
  year: 2013
  ident: 10.1074/jbc.M115.648659_bib97
  article-title: Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2013.04.001
– volume: 282
  start-page: 3450
  year: 2007
  ident: 10.1074/jbc.M115.648659_bib3
  article-title: Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M610745200
– volume: 32
  start-page: 4794
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib36
  article-title: Cell autonomous lipin 1 function is essential for development and maintenance of white and brown adipose tissue
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00512-12
– volume: 53
  start-page: 522
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib52
  article-title: Fluorescence spectroscopy measures yeast PAH1-encoded phosphatidate phosphatase interaction with liposome membranes
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M022798
– start-page: 3
  year: 1990
  ident: 10.1074/jbc.M115.648659_bib61
– volume: 109
  start-page: 227
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib83
  article-title: Degradation of damaged proteins: the main function of the 20S proteasome
  publication-title: Prog. Mol. Biol. Transl. Sci.
  doi: 10.1016/B978-0-12-397863-9.00006-7
– volume: 286
  start-page: 26781
  year: 2011
  ident: 10.1074/jbc.M115.648659_bib35
  article-title: A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.197947
– volume: 268
  start-page: 13830
  year: 1993
  ident: 10.1074/jbc.M115.648659_bib56
  article-title: Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by sphingoid bases
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)85178-5
– volume: 236
  start-page: 283
  year: 1993
  ident: 10.1074/jbc.M115.648659_bib22
  article-title: A gene, SMP2, involved in plasmid maintenance and respiration in Saccharomyces cerevisiae encodes a highly charged protein
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00277124
– volume: 264
  start-page: 8641
  year: 1989
  ident: 10.1074/jbc.M115.648659_bib74
  article-title: Purification and characterization of phosphatidate phosphatase from Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)81840-3
– volume: 147
  start-page: 435
  year: 1997
  ident: 10.1074/jbc.M115.648659_bib23
  article-title: Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae
  publication-title: Genetics.
  doi: 10.1093/genetics/147.2.435
– volume: 287
  start-page: 11290
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib40
  article-title: Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.346023
– volume: 1831
  start-page: 514
  year: 2013
  ident: 10.1074/jbc.M115.648659_bib7
  article-title: Phosphatidate phosphatase, a key regulator of lipid homeostasis
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/j.bbalip.2012.08.006
– volume: 112
  start-page: 195
  year: 1981
  ident: 10.1074/jbc.M115.648659_bib70
  article-title: Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(81)90281-5
– volume: 96
  start-page: 192
  year: 1983
  ident: 10.1074/jbc.M115.648659_bib71
  article-title: Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(83)96017-2
– volume: 271
  start-page: 27280
  year: 1996
  ident: 10.1074/jbc.M115.648659_bib68
  article-title: Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.44.27280
– volume: 1
  start-page: 73
  year: 2005
  ident: 10.1074/jbc.M115.648659_bib26
  article-title: Lipin, a lipodystrophy and obesity gene
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2004.12.002
– volume: 269
  start-page: 29495
  year: 1994
  ident: 10.1074/jbc.M115.648659_bib57
  article-title: Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by nucleotides
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)43907-5
– volume: 301
  start-page: 57
  year: 2005
  ident: 10.1074/jbc.M115.648659_bib65
  article-title: Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast
  publication-title: Methods Mol. Biol.
– volume: 299
  start-page: 408
  year: 2003
  ident: 10.1074/jbc.M115.648659_bib81
  article-title: Endoproteolytic activity of the proteasome
  publication-title: Science.
  doi: 10.1126/science.1079293
– volume: 289
  start-page: 9811
  year: 2014
  ident: 10.1074/jbc.M115.648659_bib45
  article-title: Yeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.550103
– volume: 22
  start-page: 412
  year: 1994
  ident: 10.1074/jbc.M115.648659_bib103
  article-title: Analysis of FAS3/ACC regulatory region of Saccharomyces cerevisiae: identification of a functional UASINO and sequences responsible for fatty acid mediated repression
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.3.412
– volume: 15
  start-page: 1001
  year: 1999
  ident: 10.1074/jbc.M115.648659_bib24
  article-title: A large-scale sonication assay for cell wall mutant analysis in yeast
  publication-title: Yeast.
  doi: 10.1002/(SICI)1097-0061(199907)15:10B<1001::AID-YEA400>3.0.CO;2-T
– volume: 425
  start-page: 859
  year: 2003
  ident: 10.1074/jbc.M115.648659_bib48
  article-title: Targets of the cyclin-dependent kinase Cdk1
  publication-title: Nature.
  doi: 10.1038/nature02062
– volume: 289
  start-page: 18818
  year: 2014
  ident: 10.1074/jbc.M115.648659_bib42
  article-title: Cross-talk phosphorylations by protein kinase C and Pho85p-Pho80p protein kinase regulate Pah1p phosphatidate phosphatase abundance in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.581462
– volume: 104
  start-page: 2193
  year: 2007
  ident: 10.1074/jbc.M115.648659_bib46
  article-title: Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0607084104
– volume: 67
  start-page: 425
  year: 1998
  ident: 10.1074/jbc.M115.648659_bib84
  article-title: The ubiquitin system
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.67.1.425
– volume: 21
  start-page: 615
  year: 2002
  ident: 10.1074/jbc.M115.648659_bib101
  article-title: Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.4.615
– volume: 283
  start-page: 20433
  year: 2008
  ident: 10.1074/jbc.M115.648659_bib21
  article-title: An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802903200
– volume: 77
  start-page: 51
  year: 1989
  ident: 10.1074/jbc.M115.648659_bib63
  article-title: Site-directed mutagenesis by overlap extension using the polymerase chain reaction
  publication-title: Gene.
  doi: 10.1016/0378-1119(89)90358-2
– volume: 261
  start-page: 15197
  year: 1986
  ident: 10.1074/jbc.M115.648659_bib73
  article-title: A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)66853-X
– year: 1989
  ident: 10.1074/jbc.M115.648659_bib60
– volume: 10
  start-page: 495
  year: 2002
  ident: 10.1074/jbc.M115.648659_bib66
  article-title: Multiple associated proteins regulate proteasome structure and function
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(02)00638-X
– volume: 7
  start-page: 678
  year: 1966
  ident: 10.1074/jbc.M115.648659_bib10
  article-title: Enzymatic synthesis of cytidine diphosphate diglyceride
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)39250-6
– volume: 42
  start-page: D259
  year: 2014
  ident: 10.1074/jbc.M115.648659_bib88
  article-title: The eukaryotic linear motif resource ELM: 10 years and counting
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1047
– volume: 282
  start-page: 277
  year: 2007
  ident: 10.1074/jbc.M115.648659_bib98
  article-title: Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M609537200
– volume: 181
  start-page: 737
  year: 2008
  ident: 10.1074/jbc.M115.648659_bib90
  article-title: Reversible cytoplasmic localization of the proteasome in quiescent yeast cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200711154
– volume: 22
  start-page: 1647
  year: 2008
  ident: 10.1074/jbc.M115.648659_bib28
  article-title: Phosphatidic acid mediates demyelination in Lpin1 mutant mice
  publication-title: Genes Dev.
  doi: 10.1101/gad.1638008
– volume: 280
  start-page: 38328
  year: 2005
  ident: 10.1074/jbc.M115.648659_bib59
  article-title: Expression of human CTP synthetase in Saccharomyces cerevisiae reveals phosphorylation by protein kinase A
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M509622200
– volume: 14
  start-page: 2620
  year: 1995
  ident: 10.1074/jbc.M115.648659_bib77
  article-title: Biogenesis, structure and function of the yeast 20S proteasome
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb07260.x
– volume: 36
  start-page: 306
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib94
  article-title: The essence of yeast quiescence
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2011.00287.x
– volume: 68
  start-page: 187
  year: 2004
  ident: 10.1074/jbc.M115.648659_bib95
  article-title: “Sleeping beauty”: quiescence in Saccharomyces cerevisiae
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.68.2.187-206.2004
– volume: 30
  start-page: 405
  year: 1996
  ident: 10.1074/jbc.M115.648659_bib85
  article-title: Ubiquitin-dependent protein degradation
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.30.1.405
– volume: 28
  start-page: 844
  year: 2006
  ident: 10.1074/jbc.M115.648659_bib79
  article-title: 20S proteasomes and protein degradation “by default”
  publication-title: BioEssays.
  doi: 10.1002/bies.20447
– volume: 227
  start-page: 680
  year: 1970
  ident: 10.1074/jbc.M115.648659_bib69
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature.
  doi: 10.1038/227680a0
– volume: 49
  start-page: 114
  year: 2009
  ident: 10.1074/jbc.M115.648659_bib34
  article-title: Phosphatidic acid phosphohydrolase in the regulation of inflammatory signaling
  publication-title: Adv. Enzyme Regul.
  doi: 10.1016/j.advenzreg.2009.01.005
– volume: 192
  start-page: 949
  year: 2011
  ident: 10.1074/jbc.M115.648659_bib92
  article-title: Metabolic status rather than cell cycle signals control quiescence entry and exit
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201009028
– volume: 271
  start-page: 789
  year: 1996
  ident: 10.1074/jbc.M115.648659_bib8
  article-title: The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.2.789
– volume: 1832
  start-page: 2103
  year: 2013
  ident: 10.1074/jbc.M115.648659_bib37
  article-title: Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/j.bbadis.2013.07.021
– volume: 72
  start-page: 248
  year: 1976
  ident: 10.1074/jbc.M115.648659_bib67
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 289
  start-page: 34699
  year: 2014
  ident: 10.1074/jbc.M115.648659_bib54
  article-title: Yeast Nem1-Spo7 protein phosphatase activity on Pah1 phosphatidate phosphatase is specific for the Pho85-Pho80 protein kinase phosphorylation sites
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.614883
– volume: 281
  start-page: 9210
  year: 2006
  ident: 10.1074/jbc.M115.648659_bib1
  article-title: The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M600425200
– volume: 6
  start-page: 1190
  year: 2007
  ident: 10.1074/jbc.M115.648659_bib47
  article-title: Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae
  publication-title: J. Proteome. Res.
  doi: 10.1021/pr060559j
– volume: 21
  start-page: 921
  year: 2003
  ident: 10.1074/jbc.M115.648659_bib99
  article-title: A proteomics approach to understanding protein ubiquitination
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt849
– volume: 30
  start-page: 3126
  year: 2010
  ident: 10.1074/jbc.M115.648659_bib33
  article-title: Lipin 1 represses NFATc4 transcriptional activity in adipocytes to inhibit secretion of inflammatory factors
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01671-09
– volume: 24
  start-page: 1931
  year: 2005
  ident: 10.1074/jbc.M115.648659_bib17
  article-title: The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600672
– volume: 192
  start-page: 1043
  year: 2011
  ident: 10.1074/jbc.M115.648659_bib20
  article-title: The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201010111
– volume: 282
  start-page: 37026
  year: 2007
  ident: 10.1074/jbc.M115.648659_bib19
  article-title: The cellular functions of the yeast lipin homolog Pah1p are dependent on its phosphatidate phosphatase activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M705777200
– volume: 31
  start-page: 449
  year: 2007
  ident: 10.1074/jbc.M115.648659_bib27
  article-title: Adipose tissue lipin expression levels distinguish HIV patients with and without lipodystrophy
  publication-title: Int. J. Obes.
  doi: 10.1038/sj.ijo.0803434
– volume: 228
  start-page: 915
  year: 1957
  ident: 10.1074/jbc.M115.648659_bib4
  article-title: The enzymatic dephosphorylation of phosphatidic acids
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)70670-4
– volume: 41
  start-page: 155
  year: 2001
  ident: 10.1074/jbc.M115.648659_bib14
  article-title: The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2001.02495.x
– volume: 281
  start-page: 34537
  year: 2006
  ident: 10.1074/jbc.M115.648659_bib18
  article-title: Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606654200
– volume: 282
  start-page: 37293
  year: 2007
  ident: 10.1074/jbc.M115.648659_bib16
  article-title: Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R700038200
– volume: 286
  start-page: 1486
  year: 2011
  ident: 10.1074/jbc.M115.648659_bib39
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.155598
– volume: 125
  start-page: 299
  year: 1994
  ident: 10.1074/jbc.M115.648659_bib102
  article-title: Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.125.2.299
– volume: 201
  start-page: 663
  year: 2013
  ident: 10.1074/jbc.M115.648659_bib93
  article-title: Formation and dissociation of proteasome storage granules are regulated by cytosolic pH
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201211146
– volume: 285
  start-page: 14628
  year: 2010
  ident: 10.1074/jbc.M115.648659_bib76
  article-title: Characterization of the human LPIN1-encoded phosphatidate phosphatase isoforms
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.117747
– volume: 9
  start-page: 440
  year: 2008
  ident: 10.1074/jbc.M115.648659_bib100
  article-title: SCUD: Saccharomyces cerevisiae ubiquitination database
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-9-440
– volume: 27
  start-page: 121
  year: 2001
  ident: 10.1074/jbc.M115.648659_bib2
  article-title: Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin
  publication-title: Nat. Genet.
  doi: 10.1038/83685
– volume: 80
  start-page: 859
  year: 2011
  ident: 10.1074/jbc.M115.648659_bib5
  article-title: Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060409-092229
– volume: 286
  start-page: 29074
  year: 2011
  ident: 10.1074/jbc.M115.648659_bib12
  article-title: Phosphatidate phosphatase activity plays a key role in protection against fatty acid-induced toxicity in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.258798
– volume: 288
  start-page: 35781
  year: 2013
  ident: 10.1074/jbc.M115.648659_bib13
  article-title: PAH1-encoded phosphatidate phosphatase plays a role in the growth phase- and inositol-mediated regulation of lipid synthesis in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.525766
– volume: 287
  start-page: 33364
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib41
  article-title: Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.402339
– volume: 24
  start-page: 2124
  year: 2013
  ident: 10.1074/jbc.M115.648659_bib44
  article-title: Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e13-01-0021
– volume: 190
  start-page: 317
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib6
  article-title: Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae
  publication-title: Genetics.
  doi: 10.1534/genetics.111.130286
– volume: 32
  start-page: 1037
  year: 2004
  ident: 10.1074/jbc.M115.648659_bib89
  article-title: The importance of intrinsic disorder for protein phosphorylation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh253
– volume: 83
  start-page: 489
  year: 2008
  ident: 10.1074/jbc.M115.648659_bib29
  article-title: Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2008.09.002
– volume: 17
  start-page: 709
  year: 2013
  ident: 10.1074/jbc.M115.648659_bib9
  article-title: Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.03.018
– volume: 6
  start-page: 22
  year: 2005
  ident: 10.1074/jbc.M115.648659_bib51
  article-title: Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening
  publication-title: BMC Biochem.
  doi: 10.1186/1471-2091-6-22
– volume: 289
  start-page: 12145
  year: 2014
  ident: 10.1074/jbc.M115.648659_bib80
  article-title: Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.554105
– volume: 302
  start-page: 1772
  year: 2003
  ident: 10.1074/jbc.M115.648659_bib62
  article-title: Yeast cells provide insight into α-synuclein biology and pathobiology
  publication-title: Science.
  doi: 10.1126/science.1090439
– volume: 21
  start-page: 3435
  year: 2005
  ident: 10.1074/jbc.M115.648659_bib78
  article-title: FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bti537
– volume: 287
  start-page: 2221
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib25
  article-title: The yeast lipin 1 orthologue Pah1p regulates vacuole homeostasis and membrane fusion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.317420
– volume: 1831
  start-page: 575
  year: 2013
  ident: 10.1074/jbc.M115.648659_bib38
  article-title: Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/j.bbalip.2012.09.014
– volume: 107
  start-page: 17539
  year: 2010
  ident: 10.1074/jbc.M115.648659_bib43
  article-title: A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1007974107
– volume: 13
  start-page: R80
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib91
  article-title: Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-9-r80
– volume: 109
  start-page: 1479
  year: 2009
  ident: 10.1074/jbc.M115.648659_bib86
  article-title: Introduction to intracellular protein degradation
  publication-title: Chem. Rev.
  doi: 10.1021/cr900054t
– volume: 50
  start-page: S109
  year: 2009
  ident: 10.1074/jbc.M115.648659_bib31
  article-title: Lipin proteins and metabolic homeostasis
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R800052-JLR200
– volume: 304
  start-page: 1644
  year: 2004
  ident: 10.1074/jbc.M115.648659_bib15
  article-title: Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid
  publication-title: Science.
  doi: 10.1126/science.1096083
– volume: 17
  start-page: 6449
  year: 1998
  ident: 10.1074/jbc.M115.648659_bib53
  article-title: A novel complex of membrane proteins required for formation of a spherical nucleus
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.22.6449
– volume: 287
  start-page: 968
  year: 2012
  ident: 10.1074/jbc.M115.648659_bib58
  article-title: Phosphatidate phosphatase plays role in zinc-mediated regulation of phospholipid synthesis in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.313130
– volume: 102
  start-page: 17940
  year: 2005
  ident: 10.1074/jbc.M115.648659_bib50
  article-title: Combining chemical genetics and proteomics to identify protein kinase substrates
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0509080102
– volume: 575
  start-page: 204
  year: 1979
  ident: 10.1074/jbc.M115.648659_bib11
  article-title: Triacylglycerol metabolism in Saccharomyces cerevisiae relation to phospholipid synthesis
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/0005-2760(79)90022-5
– volume: 283
  start-page: 29166
  year: 2008
  ident: 10.1074/jbc.M115.648659_bib72
  article-title: Temporal and spatial regulation of the phosphatidate phosphatases lipin 1 and 2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804278200
– volume: 83
  start-page: 301
  year: 2001
  ident: 10.1074/jbc.M115.648659_bib82
  article-title: Degradation of oxidized proteins by the 20S proteasome
  publication-title: Biochimie.
  doi: 10.1016/S0300-9084(01)01250-0
– volume: 49
  start-page: 2493
  year: 2008
  ident: 10.1074/jbc.M115.648659_bib30
  article-title: Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R800019-JLR200
– volume: 4
  start-page: 1015
  year: 2005
  ident: 10.1074/jbc.M115.648659_bib87
  article-title: p53 proteasomal degradation: poly-ubiquitination is not the whole story
  publication-title: Cell Cycle.
  doi: 10.4161/cc.4.8.1900
– volume: 20
  start-page: 267
  year: 2014
  ident: 10.1074/jbc.M115.648659_bib96
  article-title: Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.05.003
– volume: 35
  start-page: 3790
  year: 1996
  ident: 10.1074/jbc.M115.648659_bib55
  article-title: Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by phospholipids
  publication-title: Biochemistry.
  doi: 10.1021/bi952808f
SSID ssj0000491
Score 2.405587
Snippet Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and...
Background: Yeast Pah1 phosphatidate phosphatase required for triacylglycerol synthesis is subject to proteasome-mediated degradation. Results: Pah1 is...
SourceID pubmedcentral
pubmed
crossref
elsevier
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 11467
SubjectTerms Diacylglycerol
Humans
Lipid
Lipids
Phosphatase
Phosphatidate
Phosphatidate Phosphatase
Phosphatidate Phosphatase - chemistry
Phosphatidate Phosphatase - genetics
Phosphatidate Phosphatase - metabolism
Phosphorylation
Proteasome
Proteasome Endopeptidase Complex - metabolism
Proteolysis
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Deletion
Triacylglycerol
Ubiquitin - metabolism
Yeast
Title Phosphorylation Regulates the Ubiquitin-independent Degradation of Yeast Pah1 Phosphatidate Phosphatase by the 20S Proteasome
URI https://dx.doi.org/10.1074/jbc.M115.648659
https://www.ncbi.nlm.nih.gov/pubmed/25809482
https://pubmed.ncbi.nlm.nih.gov/PMC4416851
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7c9NBeSpv04fTBHkopmFX1WL2OITQJbV1anIBvQlrtIkEiObZ0cCD_oT-5s7t62dj0cRG2VjsGfZ9HM6vZbxB6D09UYbksJgLSB0L9xCGxyynhTDgB46admnKj8PS7d3FFv8zd-Wj0a1C1VFeJwe527iv5H1ThHOAqd8n-A7KdUTgBnwFfOALCcPwrjH9k5WqRlcu1LmibLHVjeanaAOjXSX5b51VekLzrdVtNUqkOkXaB4lr27oE4MrMmC2UNRuQiQPcNnnIqRAWDtjmbKF2HeLWlcdBvMFOhrVZ20tojbUO5jj-rnKulnG81mWW8eXCq11Kq3o8XZJoXvWNUXvE8vyazsuxfmCybhVu9pN8s6TaLF5bblwoaXDtcCAHlboL50CPbuoNoS71g4GDlJmp_p-uHWEi6_oQZU4hyDY8GntYaHxBhcaOYYLsBZLW66dGW2nY79AA9tCHxkD0xvv7s9echn7JagSifftr6Naks3cz_Y5izWYI7iGkun6InDWL4RDPrGRrx4hAdnRRxVd6s8QesyoPVe5dD9Oi0RfII3W8RD3fEw8ATvJN4eEA8XAqsiIcl8fAG8fCAeDhZK4NAPNwT7zm6Ovt8eXpBmj4ehFHqVER4gWellkgot1IRpnCHZBsEj5s-8wT1bDv0pUh8QMMgTgWLpUagsGFGkPiUxc4LdFCUBX-FsBVbZuIGAjwJjLAUDLlh6ggzhrw7pM4YGe1tj1gjci97rVxHqtjCpxFAFknIIg3ZGH3sJiy0vsv-S-0Wx6gJT3XYGQEF9096qYHurLcMGSN_gwLdBVLwfXOkyDMl_A6piwcZ0vFem6_R4_5f9gYdVMuav4WguUreKR7_Bo18yIg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+regulates+the+ubiquitin-independent+degradation+of+yeast+Pah1+phosphatidate+phosphatase+by+the+20S+proteasome&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Hsieh%2C+Lu-Sheng&rft.au=Su%2C+Wen-Min&rft.au=Han%2C+Gil-Soo&rft.au=Carman%2C+George+M&rft.date=2015-05-01&rft.eissn=1083-351X&rft.volume=290&rft.issue=18&rft.spage=11467&rft_id=info:doi/10.1074%2Fjbc.M115.648659&rft_id=info%3Apmid%2F25809482&rft.externalDocID=25809482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon