Phosphorylation Regulates the Ubiquitin-independent Degradation of Yeast Pah1 Phosphatidate Phosphatase by the 20S Proteasome
Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary ph...
Saved in:
Published in | The Journal of biological chemistry Vol. 290; no. 18; pp. 11467 - 11478 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2015
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state.
Background: Yeast Pah1 phosphatidate phosphatase required for triacylglycerol synthesis is subject to proteasome-mediated degradation.
Results: Pah1 is degraded by the 20S proteasome in a ubiquitin-independent manner that is governed by its phosphorylation state.
Conclusion: 20S proteasomal degradation of Pah1 is regulated by phosphorylation and dephosphorylation.
Significance: Pah1 function in lipid metabolism is regulated by the 20S proteasome. |
---|---|
AbstractList | Background:
Yeast Pah1 phosphatidate phosphatase required for triacylglycerol synthesis is subject to proteasome-mediated degradation.
Results:
Pah1 is degraded by the 20S proteasome in a ubiquitin-independent manner that is governed by its phosphorylation state.
Conclusion:
20S proteasomal degradation of Pah1 is regulated by phosphorylation and dephosphorylation.
Significance:
Pah1 function in lipid metabolism is regulated by the 20S proteasome.
Saccharomyces cerevisiae
Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in
S. cerevisiae
or
Escherichia coli
was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state. Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state. Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and simultaneously controls phosphatidate levels for phospholipid synthesis, is subject to the proteasome-mediated degradation in the stationary phase of growth. In this study, we examined the mechanism for its degradation using purified Pah1 and isolated proteasomes. Pah1 expressed in S. cerevisiae or Escherichia coli was not degraded by the 26S proteasome, but by its catalytic 20S core particle, indicating that its degradation is ubiquitin-independent. The degradation of Pah1 by the 20S proteasome was dependent on time and proteasome concentration at the pH optimum of 7.0. The 20S proteasomal degradation was conserved for human lipin 1 phosphatidate phosphatase. The degradation analysis using Pah1 truncations and its fusion with GFP indicated that proteolysis initiates at the N- and C-terminal unfolded regions. The folded region of Pah1, in particular the haloacid dehalogenase-like domain containing the DIDGT catalytic sequence, was resistant to the proteasomal degradation. The structural change of Pah1, as reflected by electrophoretic mobility shift, occurs through its phosphorylation by Pho85-Pho80, and the phosphorylation sites are located within its N- and C-terminal unfolded regions. Phosphorylation of Pah1 by Pho85-Pho80 inhibited its degradation, extending its half-life by ∼2-fold. The dephosphorylation of endogenously phosphorylated Pah1 by the Nem1-Spo7 protein phosphatase, which is highly specific for the sites phosphorylated by Pho85-Pho80, stimulated the 20S proteasomal degradation and reduced its half-life by 2.6-fold. These results indicate that the proteolysis of Pah1 by the 20S proteasome is controlled by its phosphorylation state. Background: Yeast Pah1 phosphatidate phosphatase required for triacylglycerol synthesis is subject to proteasome-mediated degradation. Results: Pah1 is degraded by the 20S proteasome in a ubiquitin-independent manner that is governed by its phosphorylation state. Conclusion: 20S proteasomal degradation of Pah1 is regulated by phosphorylation and dephosphorylation. Significance: Pah1 function in lipid metabolism is regulated by the 20S proteasome. |
Author | Hsieh, Lu-Sheng Han, Gil-Soo Su, Wen-Min Carman, George M. |
Author_xml | – sequence: 1 givenname: Lu-Sheng surname: Hsieh fullname: Hsieh, Lu-Sheng – sequence: 2 givenname: Wen-Min surname: Su fullname: Su, Wen-Min – sequence: 3 givenname: Gil-Soo surname: Han fullname: Han, Gil-Soo – sequence: 4 givenname: George M. surname: Carman fullname: Carman, George M. email: carman@aesop.rutgers.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25809482$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV9PHCEUxYmx0dX67FvDF5gVWIaFlyaNVdvEppuqSftEGLjsYHaHLbAm-9DvXnSqaZvIA__u-Z3APUdof4gDIHRKyZSSOT-77-z0C6XtVHApWrWHJpTIWTNr6fd9NCGE0UaxVh6io5zvSR1c0QN0WK-I4pJN0K9FH_Omj2m3MiXEAX-D5bZuIePSA77rws9tKGFowuBgA3UaCv4Iy2TcqI8e_wCTC16YnuLRrVZqFV5OJgPudk-GjNzgRYqlInENb9Ebb1YZTv6sx-ju8uL2_FNz_fXq8_mH68ZyPiuNF1JQR33HgTqvXH08E4wIIHMrPBeMqblRBiRX0jhvDZWSeFYJ2c25NbNj9H703Wy7NThbP5HMSm9SWJu009EE_W9lCL1exgfNORWypdXg3d8GL-RzI6ugHQU2xZwTeG1DeepQ9QsrTYl-DEzXwPRjYHoMrHJn_3HP1q8TaiSgNuwhQNLZBhgsuJDAFu1ieJX9DZpCr4Q |
CitedBy_id | crossref_primary_10_1194_jlr_RA120000937 crossref_primary_10_3390_ijms22169017 crossref_primary_10_1016_j_jbc_2023_105560 crossref_primary_10_1371_journal_pbio_3000203 crossref_primary_10_3390_molecules26185470 crossref_primary_10_1074_jbc_M116_726588 crossref_primary_10_1091_mbc_E15_03_0173 crossref_primary_10_1093_brain_awaa139 crossref_primary_10_1002_yea_3447 crossref_primary_10_1111_mmi_13976 crossref_primary_10_1016_j_bbalip_2024_159547 crossref_primary_10_1016_j_jbc_2023_104683 crossref_primary_10_1074_jbc_M117_819375 crossref_primary_10_1016_j_jbc_2024_107572 crossref_primary_10_1016_j_ceb_2024_102425 crossref_primary_10_1074_jbc_M115_680314 crossref_primary_10_1016_j_isci_2023_107539 crossref_primary_10_1016_j_cels_2019_07_010 crossref_primary_10_1074_jbc_RA118_007246 crossref_primary_10_1194_jlr_M075036 crossref_primary_10_3390_ijms222011184 crossref_primary_10_1074_jbc_RA118_005348 crossref_primary_10_1016_j_molcel_2020_02_001 crossref_primary_10_1074_jbc_RA119_010592 crossref_primary_10_1016_j_bbagen_2018_09_009 crossref_primary_10_1016_j_jprot_2015_12_002 crossref_primary_10_1038_s41477_020_0721_4 crossref_primary_10_1194_jlr_S087452 crossref_primary_10_1016_j_jbior_2025_101074 crossref_primary_10_1194_jlr_R070920 crossref_primary_10_1016_j_bbalip_2017_06_010 crossref_primary_10_1111_boc_70002 crossref_primary_10_1016_j_bbamem_2017_04_007 crossref_primary_10_1016_j_bbalip_2019_03_006 crossref_primary_10_1016_j_aca_2019_07_059 crossref_primary_10_1016_j_jbior_2017_08_001 crossref_primary_10_1074_jbc_RA119_011314 crossref_primary_10_1039_D4MD00718B crossref_primary_10_1242_jcs_248526 crossref_primary_10_1016_j_devcel_2016_06_017 crossref_primary_10_1016_j_jbc_2023_105587 crossref_primary_10_1074_jbc_TM118_004159 crossref_primary_10_1016_j_jbc_2023_105025 crossref_primary_10_1016_j_jbc_2024_108003 crossref_primary_10_1016_j_biopha_2021_111833 crossref_primary_10_1016_j_jlr_2022_100282 crossref_primary_10_1074_jbc_RA120_014129 crossref_primary_10_1016_j_jbc_2022_101578 crossref_primary_10_1074_jbc_M116_763839 crossref_primary_10_1371_journal_pgen_1010734 crossref_primary_10_3390_biom7030066 crossref_primary_10_1016_j_jbior_2022_100889 crossref_primary_10_1016_j_jbc_2022_102221 crossref_primary_10_3390_biom10030468 crossref_primary_10_1016_j_jbc_2021_100786 |
Cites_doi | 10.1074/jbc.M109.023663 10.1038/nature04187 10.1074/jbc.M001314200 10.1016/S0021-9258(19)40210-X 10.1016/j.plipres.2013.04.001 10.1074/jbc.M610745200 10.1128/MCB.00512-12 10.1194/jlr.M022798 10.1016/B978-0-12-397863-9.00006-7 10.1074/jbc.M110.197947 10.1016/S0021-9258(19)85178-5 10.1007/BF00277124 10.1016/S0021-9258(18)81840-3 10.1093/genetics/147.2.435 10.1074/jbc.M112.346023 10.1016/j.bbalip.2012.08.006 10.1016/0003-2697(81)90281-5 10.1016/S0076-6879(83)96017-2 10.1074/jbc.271.44.27280 10.1016/j.cmet.2004.12.002 10.1016/S0021-9258(18)43907-5 10.1126/science.1079293 10.1074/jbc.M114.550103 10.1093/nar/22.3.412 10.1002/(SICI)1097-0061(199907)15:10B<1001::AID-YEA400>3.0.CO;2-T 10.1038/nature02062 10.1074/jbc.M114.581462 10.1073/pnas.0607084104 10.1146/annurev.biochem.67.1.425 10.1093/emboj/21.4.615 10.1074/jbc.M802903200 10.1016/0378-1119(89)90358-2 10.1016/S0021-9258(18)66853-X 10.1016/S1097-2765(02)00638-X 10.1016/S0022-2275(20)39250-6 10.1093/nar/gkt1047 10.1074/jbc.M609537200 10.1083/jcb.200711154 10.1101/gad.1638008 10.1074/jbc.M509622200 10.1002/j.1460-2075.1995.tb07260.x 10.1111/j.1574-6976.2011.00287.x 10.1128/MMBR.68.2.187-206.2004 10.1146/annurev.genet.30.1.405 10.1002/bies.20447 10.1038/227680a0 10.1016/j.advenzreg.2009.01.005 10.1083/jcb.201009028 10.1074/jbc.271.2.789 10.1016/j.bbadis.2013.07.021 10.1016/0003-2697(76)90527-3 10.1074/jbc.M114.614883 10.1074/jbc.M600425200 10.1021/pr060559j 10.1038/nbt849 10.1128/MCB.01671-09 10.1038/sj.emboj.7600672 10.1083/jcb.201010111 10.1074/jbc.M705777200 10.1038/sj.ijo.0803434 10.1016/S0021-9258(18)70670-4 10.1046/j.1365-2958.2001.02495.x 10.1074/jbc.M606654200 10.1074/jbc.R700038200 10.1074/jbc.M110.155598 10.1083/jcb.125.2.299 10.1083/jcb.201211146 10.1074/jbc.M110.117747 10.1186/1471-2164-9-440 10.1038/83685 10.1146/annurev-biochem-060409-092229 10.1074/jbc.M111.258798 10.1074/jbc.M113.525766 10.1074/jbc.M112.402339 10.1091/mbc.e13-01-0021 10.1534/genetics.111.130286 10.1093/nar/gkh253 10.1016/j.ajhg.2008.09.002 10.1016/j.cmet.2013.03.018 10.1186/1471-2091-6-22 10.1074/jbc.M114.554105 10.1126/science.1090439 10.1093/bioinformatics/bti537 10.1074/jbc.M111.317420 10.1016/j.bbalip.2012.09.014 10.1073/pnas.1007974107 10.1186/gb-2012-13-9-r80 10.1021/cr900054t 10.1194/jlr.R800052-JLR200 10.1126/science.1096083 10.1093/emboj/17.22.6449 10.1074/jbc.M111.313130 10.1073/pnas.0509080102 10.1016/0005-2760(79)90022-5 10.1074/jbc.M804278200 10.1016/S0300-9084(01)01250-0 10.1194/jlr.R800019-JLR200 10.4161/cc.4.8.1900 10.1016/j.cmet.2014.05.003 10.1021/bi952808f |
ContentType | Journal Article |
Copyright | 2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 |
Copyright_xml | – notice: 2015 © 2015 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2015 by The American Society for Biochemistry and Molecular Biology, Inc. – notice: 2015 by The American Society for Biochemistry and Molecular Biology, Inc. 2015 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM |
DOI | 10.1074/jbc.M115.648659 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Proteasomal Degradation of Pah1 Phosphatidate Phosphatase |
EISSN | 1083-351X |
EndPage | 11478 |
ExternalDocumentID | PMC4416851 25809482 10_1074_jbc_M115_648659 S002192582056986X |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R37 GM028140 – fundername: NIGMS NIH HHS grantid: R01 GM028140 – fundername: NIGMS NIH HHS grantid: R01 GM050679 – fundername: NIGMS NIH HHS grantid: GM050679 – fundername: NIGMS NIH HHS grantid: GM028140 – fundername: National Institutes of Health grantid: GM028140; GM050679 |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .7T .GJ 0R~ 186 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFFNX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP C1A CITATION E.L FA8 H13 J5H MVM NHB OHT P-O QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 CGR CUY CVF ECM EIF NPM Z5M 5PM |
ID | FETCH-LOGICAL-c443t-f6861d1fb4e1df9d80926206e07c6f462297a9ae8498adfca1880f2d1f8b74ca3 |
ISSN | 0021-9258 |
IngestDate | Thu Aug 21 18:32:13 EDT 2025 Wed Feb 19 02:29:39 EST 2025 Tue Jul 01 00:48:18 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Fri Feb 23 02:46:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Yeast Phosphatidate Triacylglycerol Diacylglycerol Phosphatase Lipid Phosphatidate Phosphatase Proteasome |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 2015 by The American Society for Biochemistry and Molecular Biology, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-f6861d1fb4e1df9d80926206e07c6f462297a9ae8498adfca1880f2d1f8b74ca3 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M115.648659 |
PMID | 25809482 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4416851 pubmed_primary_25809482 crossref_citationtrail_10_1074_jbc_M115_648659 crossref_primary_10_1074_jbc_M115_648659 elsevier_sciencedirect_doi_10_1074_jbc_M115_648659 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2015 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Ho, Hunt, Horton, Pullen, Pease (bib63) 1989; 77 Adeyo, Horn, Lee, Binns, Chandrahas, Chapman, Goodman (bib20) 2011; 192 Xu, Su, Carman (bib52) 2012; 53 Haid, Suissa (bib71) 1983; 96 Carter, Kennedy (bib10) 1966; 7 Dephoure, Howson, Blethrow, Shokat, O'Shea (bib50) 2005; 102 Davies (bib82) 2001; 83 Braun, Matuschewski, Rape, Thoms, Jentsch (bib101) 2002; 21 Wu, Carman (bib57) 1994; 269 Orij, Urbanus, Vizeacoumar, Giaever, Boone, Nislow, Brul, Smits (bib91) 2012; 13 Peters, Hazan, Breker, Schuldiner, Ben-Aroya (bib93) 2013; 201 Phan, Reue (bib26) 2005; 1 Pascual, Hsieh, Soto-Cardalda, Carman (bib45) 2014; 289 Sambrook, Fritsch, Maniatis (bib60) 1989 Su, Han, Carman (bib42) 2014; 289 Reue, Brindley (bib30) 2008; 49 Asher, Reuven, Shaul (bib79) 2006; 28 Wu, Carman (bib55) 1996; 35 Harris, Huffman, Chi, Shabanowitz, Hunt, Kumar, Lawrence (bib98) 2007; 282 Smith, Weiss, Kennedy (bib4) 1957; 228 Tamura, Harada, Nishikawa, Yamano, Kamiya, Shiota, Kuroda, Kuge, Sesaki, Imai, Tomii, Endo (bib9) 2013; 17 Leggett, Glickman, Finley (bib65) 2005; 301 Tar, Dange, Yang, Yao, Bulteau, Salcedo, Braigen, Bouillaud, Finley, Schmidt (bib80) 2014; 289 Chi, Huttenhower, Geer, Coon, Syka, Bai, Shabanowitz, Burke, Troyanskaya, Hunt (bib46) 2007; 104 Carman, Han (bib5) 2011; 80 Soto-Cardalda, Fakas, Pascual, Choi, Carman (bib58) 2012; 287 Nadra, de Preux Charles, Médard, Hendriks, Han, Grès, Carman, Saulnier-Blache, Verheijen, Chrast (bib28) 2008; 22 Pickering, Davies (bib83) 2012; 109 Hochstrasser (bib86) 2009; 109 Gray, Petsko, Johnston, Ringe, Singer, Werner-Washburne (bib95) 2004; 68 Loewen, Gaspar, Jesch, Delon, Ktistakis, Henry, Levine (bib15) 2004; 304 Tanaka, Ii, Ichihara, Waxman, Goldberg (bib73) 1986; 261 Han, Carman (bib76) 2010; 285 Grkovich, Dennis (bib34) 2009; 49 Chirala, Zhong, Huang, al-Feel (bib103) 1994; 22 Lussier, White, Sheraton, di Paolo, Treadwell, Southard, Horenstein, Chen-Weiner, Ram, Kapteyn, Roemer, Vo, Bondoc, Hall, Zhong, Sdicu, Davies, Klis, Robbins, Bussey (bib23) 1997; 147 Siniossoglou, Hurt, Pelham (bib64) 2000; 275 Lin, Carman (bib74) 1989; 264 Irie, Takase, Araki, Oshima (bib22) 1993; 236 Grimsey, Han, O'Hara, Rochford, Carman, Siniossoglou (bib72) 2008; 283 Pascual, Soto-Cardalda, Carman (bib13) 2013; 288 Burnette (bib70) 1981; 112 Dinkel, Van Roey, Michael, Davey, Weatheritt, Born, Speck, Krüger, Grebnev, Kuban, Strumillo, Uyar, Budd, Altenberg, Seiler, Chemes, Glavina, Sánchez, Diella, Gibson (bib88) 2014; 42 Han, Sreenivas, Choi, Chang, Martin, Baldwin, Carman (bib59) 2005; 280 Lee, Lee, Jung, Kim, Kim (bib100) 2008; 9 Fakas, Qiu, Dixon, Han, Ruggles, Garbarino, Sturley, Carman (bib12) 2011; 286 Mul, Nadra, Jagalur, Nijman, Toonen, Médard, Grès, de Bruin, Han, Brouwers, Carman, Saulnier-Blache, Meijer, Chrast, Cuppen (bib35) 2011; 286 Wu, Lin, Wang, Merrill, Carman (bib56) 1993; 268 Liu, Corboy, DeMartino, Thomas (bib81) 2003; 299 Han, O'Hara, Carman, Siniossoglou (bib21) 2008; 283 Mah, Elia, Devgan, Ptacek, Schutkowski, Snyder, Yaffe, Deshaies (bib51) 2005; 6 Pascual, Carman (bib7) 2013; 1831 Su, Han, Carman (bib54) 2014; 289 Prilusky, Felder, Zeev-Ben-Mordehai, Rydberg, Man, Beckmann, Silman, Sussman (bib78) 2005; 21 Henry, Kohlwein, Carman (bib6) 2012; 190 Outeiro, Lindquist (bib62) 2003; 302 Innis, Gelfand (bib61) 1990 Wagner, Dietz, Wittmann, Albrecht, Schüller (bib14) 2001; 41 Michot, Mamoune, Vamecq, Viou, Hsieh, Testet, Lainé, Hubert, Dessein, Fontaine, Ottolenghi, Fouillen, Nadra, Blanc, Bastin, Candon, Pende, Munnich, Smahi, Djouadi, Carman, Romero, de Keyzer, de Lonlay (bib37) 2013; 1832 Hochstrasser (bib85) 1996; 30 De Virgilio (bib94) 2012; 36 Zeharia, Shaag, Houtkooper, Hindi, de Lonlay, Erez, Hubert, Saada, de Keyzer, Eshel, Vaz, Pines, Elpeleg (bib29) 2008; 83 Li, Gerber, Rudner, Beausoleil, Haas, Villén, Elias, Gygi (bib47) 2007; 6 Santos-Rosa, Leung, Grimsey, Peak-Chew, Siniossoglou (bib17) 2005; 24 Taylor, Parks (bib11) 1979; 575 Lin, Carman (bib75) 1990; 265 Hershko, Ciechanover (bib84) 1998; 67 Ptacek, Devgan, Michaud, Zhu, Zhu, Fasolo, Guo, Jona, Breitkreutz, Sopko, McCartney, Schmidt, Rachidi, Lee, Mah, Meng, Stark, Stern, De Virgilio, Tyers, Andrews, Gerstein, Schweitzer, Predki, Snyder (bib49) 2005; 438 Karanasios, Barbosa, Sembongi, Mari, Han, Reggiori, Carman, Siniossoglou (bib44) 2013; 24 Su, Han, Casciano, Carman (bib41) 2012; 287 Karanasios, Han, Xu, Carman, Siniossoglou (bib43) 2010; 107 Siniossoglou, Santos-Rosa, Rappsilber, Mann, Hurt (bib53) 1998; 17 Donkor, Zhang, Wong, O'Loughlin, Dewald, Kok, Brindley, Reue (bib32) 2009; 284 Sasser, Qiu, Karunakaran, Padolina, Reyes, Flood, Smith, Gonzales, Fratti (bib25) 2012; 287 Lindegaard, Larsen, Hansen, Gerstoft, Pedersen, Reue (bib27) 2007; 31 Leggett, Hanna, Borodovsky, Crosas, Schmidt, Baker, Walz, Ploegh, Finley (bib66) 2002; 10 Lee, Goldberg (bib68) 1996; 271 Ubersax, Woodbury, Quang, Paraz, Blethrow, Shah, Shokat, Morgan (bib48) 2003; 425 Laemmli (bib69) 1970; 227 Kim, Kumar, Wang, Liu, Keller, Lawrence, Finck, Harris (bib33) 2010; 30 Shen, Heacock, Clancey, Dowhan (bib8) 1996; 271 Donkor, Sariahmetoglu, Dewald, Brindley, Reue (bib3) 2007; 282 Nadra, Médard, Mul, Han, Grès, Pende, Metzger, Chambon, Cuppen, Saulnier-Blache, Carman, Desvergne, Chrast (bib36) 2012; 32 Han, Wu, Carman (bib1) 2006; 281 Csaki, Dwyer, Fong, Tontonoz, Young, Reue (bib97) 2013; 52 Peng, Schwartz, Elias, Thoreen, Cheng, Marsischky, Roelofs, Finley, Gygi (bib99) 2003; 21 Hampton, Rine (bib102) 1994; 125 Choi, Su, Morgan, Han, Xu, Karanasios, Siniossoglou, Carman (bib39) 2011; 286 Chen, Hochstrasser (bib77) 1995; 14 Choi, Su, Han, Plote, Xu, Carman (bib40) 2012; 287 Zhang, Verity, Reue (bib96) 2014; 20 Bradford (bib67) 1976; 72 Laporte, Lebaudy, Sahin, Pinson, Ceschin, Daignan-Fornier, Sagot (bib92) 2011; 192 Carman, Henry (bib16) 2007; 282 Laporte, Salin, Daignan-Fornier, Sagot (bib90) 2008; 181 O'Hara, Han, Peak-Chew, Grimsey, Carman, Siniossoglou (bib18) 2006; 281 Reue, Dwyer (bib31) 2009; 50 Ruiz, Cid, Lussier, Molina, Nombela (bib24) 1999; 15 Péterfy, Phan, Xu, Reue (bib2) 2001; 27 Han, Siniossoglou, Carman (bib19) 2007; 282 Iakoucheva, Radivojac, Brown, O'Connor, Sikes, Obradovic, Dunker (bib89) 2004; 32 Siniossoglou (bib38) 2013; 1831 Asher, Shaul (bib87) 2005; 4 Loewen (10.1074/jbc.M115.648659_bib15) 2004; 304 Han (10.1074/jbc.M115.648659_bib59) 2005; 280 Siniossoglou (10.1074/jbc.M115.648659_bib38) 2013; 1831 Carman (10.1074/jbc.M115.648659_bib5) 2011; 80 O'Hara (10.1074/jbc.M115.648659_bib18) 2006; 281 Leggett (10.1074/jbc.M115.648659_bib66) 2002; 10 Laporte (10.1074/jbc.M115.648659_bib90) 2008; 181 Zhang (10.1074/jbc.M115.648659_bib96) 2014; 20 Outeiro (10.1074/jbc.M115.648659_bib62) 2003; 302 Sasser (10.1074/jbc.M115.648659_bib25) 2012; 287 Wagner (10.1074/jbc.M115.648659_bib14) 2001; 41 Lin (10.1074/jbc.M115.648659_bib74) 1989; 264 Su (10.1074/jbc.M115.648659_bib42) 2014; 289 Burnette (10.1074/jbc.M115.648659_bib70) 1981; 112 Tar (10.1074/jbc.M115.648659_bib80) 2014; 289 Chirala (10.1074/jbc.M115.648659_bib103) 1994; 22 Csaki (10.1074/jbc.M115.648659_bib97) 2013; 52 Lee (10.1074/jbc.M115.648659_bib100) 2008; 9 Zeharia (10.1074/jbc.M115.648659_bib29) 2008; 83 Pascual (10.1074/jbc.M115.648659_bib45) 2014; 289 Sambrook (10.1074/jbc.M115.648659_bib60) 1989 Braun (10.1074/jbc.M115.648659_bib101) 2002; 21 Han (10.1074/jbc.M115.648659_bib76) 2010; 285 Han (10.1074/jbc.M115.648659_bib1) 2006; 281 Ptacek (10.1074/jbc.M115.648659_bib49) 2005; 438 Prilusky (10.1074/jbc.M115.648659_bib78) 2005; 21 Henry (10.1074/jbc.M115.648659_bib6) 2012; 190 Su (10.1074/jbc.M115.648659_bib54) 2014; 289 Peng (10.1074/jbc.M115.648659_bib99) 2003; 21 Asher (10.1074/jbc.M115.648659_bib87) 2005; 4 Bradford (10.1074/jbc.M115.648659_bib67) 1976; 72 Phan (10.1074/jbc.M115.648659_bib26) 2005; 1 Lindegaard (10.1074/jbc.M115.648659_bib27) 2007; 31 Xu (10.1074/jbc.M115.648659_bib52) 2012; 53 Choi (10.1074/jbc.M115.648659_bib39) 2011; 286 Su (10.1074/jbc.M115.648659_bib41) 2012; 287 Innis (10.1074/jbc.M115.648659_bib61) 1990 Laemmli (10.1074/jbc.M115.648659_bib69) 1970; 227 Haid (10.1074/jbc.M115.648659_bib71) 1983; 96 Harris (10.1074/jbc.M115.648659_bib98) 2007; 282 Hochstrasser (10.1074/jbc.M115.648659_bib86) 2009; 109 Mul (10.1074/jbc.M115.648659_bib35) 2011; 286 Chi (10.1074/jbc.M115.648659_bib46) 2007; 104 Carter (10.1074/jbc.M115.648659_bib10) 1966; 7 Chen (10.1074/jbc.M115.648659_bib77) 1995; 14 Donkor (10.1074/jbc.M115.648659_bib3) 2007; 282 Ruiz (10.1074/jbc.M115.648659_bib24) 1999; 15 Santos-Rosa (10.1074/jbc.M115.648659_bib17) 2005; 24 Siniossoglou (10.1074/jbc.M115.648659_bib64) 2000; 275 Hochstrasser (10.1074/jbc.M115.648659_bib85) 1996; 30 Peters (10.1074/jbc.M115.648659_bib93) 2013; 201 Li (10.1074/jbc.M115.648659_bib47) 2007; 6 Tanaka (10.1074/jbc.M115.648659_bib73) 1986; 261 Carman (10.1074/jbc.M115.648659_bib16) 2007; 282 Adeyo (10.1074/jbc.M115.648659_bib20) 2011; 192 Fakas (10.1074/jbc.M115.648659_bib12) 2011; 286 Grimsey (10.1074/jbc.M115.648659_bib72) 2008; 283 Hershko (10.1074/jbc.M115.648659_bib84) 1998; 67 Liu (10.1074/jbc.M115.648659_bib81) 2003; 299 Lussier (10.1074/jbc.M115.648659_bib23) 1997; 147 Michot (10.1074/jbc.M115.648659_bib37) 2013; 1832 Donkor (10.1074/jbc.M115.648659_bib32) 2009; 284 Mah (10.1074/jbc.M115.648659_bib51) 2005; 6 Taylor (10.1074/jbc.M115.648659_bib11) 1979; 575 Grkovich (10.1074/jbc.M115.648659_bib34) 2009; 49 Davies (10.1074/jbc.M115.648659_bib82) 2001; 83 Karanasios (10.1074/jbc.M115.648659_bib44) 2013; 24 Dinkel (10.1074/jbc.M115.648659_bib88) 2014; 42 Irie (10.1074/jbc.M115.648659_bib22) 1993; 236 Laporte (10.1074/jbc.M115.648659_bib92) 2011; 192 Siniossoglou (10.1074/jbc.M115.648659_bib53) 1998; 17 Péterfy (10.1074/jbc.M115.648659_bib2) 2001; 27 Ho (10.1074/jbc.M115.648659_bib63) 1989; 77 Wu (10.1074/jbc.M115.648659_bib55) 1996; 35 Leggett (10.1074/jbc.M115.648659_bib65) 2005; 301 Iakoucheva (10.1074/jbc.M115.648659_bib89) 2004; 32 Pascual (10.1074/jbc.M115.648659_bib13) 2013; 288 Reue (10.1074/jbc.M115.648659_bib30) 2008; 49 Han (10.1074/jbc.M115.648659_bib21) 2008; 283 Orij (10.1074/jbc.M115.648659_bib91) 2012; 13 Shen (10.1074/jbc.M115.648659_bib8) 1996; 271 Nadra (10.1074/jbc.M115.648659_bib36) 2012; 32 Wu (10.1074/jbc.M115.648659_bib56) 1993; 268 Gray (10.1074/jbc.M115.648659_bib95) 2004; 68 Asher (10.1074/jbc.M115.648659_bib79) 2006; 28 Karanasios (10.1074/jbc.M115.648659_bib43) 2010; 107 Pickering (10.1074/jbc.M115.648659_bib83) 2012; 109 Kim (10.1074/jbc.M115.648659_bib33) 2010; 30 Dephoure (10.1074/jbc.M115.648659_bib50) 2005; 102 Wu (10.1074/jbc.M115.648659_bib57) 1994; 269 Choi (10.1074/jbc.M115.648659_bib40) 2012; 287 De Virgilio (10.1074/jbc.M115.648659_bib94) 2012; 36 Pascual (10.1074/jbc.M115.648659_bib7) 2013; 1831 Han (10.1074/jbc.M115.648659_bib19) 2007; 282 Hampton (10.1074/jbc.M115.648659_bib102) 1994; 125 Nadra (10.1074/jbc.M115.648659_bib28) 2008; 22 Tamura (10.1074/jbc.M115.648659_bib9) 2013; 17 Reue (10.1074/jbc.M115.648659_bib31) 2009; 50 Smith (10.1074/jbc.M115.648659_bib4) 1957; 228 Soto-Cardalda (10.1074/jbc.M115.648659_bib58) 2012; 287 Lee (10.1074/jbc.M115.648659_bib68) 1996; 271 Ubersax (10.1074/jbc.M115.648659_bib48) 2003; 425 Lin (10.1074/jbc.M115.648659_bib75) 1990; 265 |
References_xml | – volume: 49 start-page: 2493 year: 2008 end-page: 2503 ident: bib30 article-title: Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism publication-title: J. Lipid Res. – volume: 287 start-page: 33364 year: 2012 end-page: 33376 ident: bib41 article-title: Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast publication-title: J. Biol. Chem. – volume: 285 start-page: 14628 year: 2010 end-page: 14638 ident: bib76 article-title: Characterization of the human publication-title: J. Biol. Chem. – volume: 268 start-page: 13830 year: 1993 end-page: 13837 ident: bib56 article-title: Regulation of phosphatidate phosphatase activity from the yeast publication-title: J. Biol. Chem. – volume: 102 start-page: 17940 year: 2005 end-page: 17945 ident: bib50 article-title: Combining chemical genetics and proteomics to identify protein kinase substrates publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 302 start-page: 1772 year: 2003 end-page: 1775 ident: bib62 article-title: Yeast cells provide insight into α-synuclein biology and pathobiology publication-title: Science. – volume: 13 start-page: R80 year: 2012 ident: bib91 article-title: Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH publication-title: Genome Biol. – volume: 21 start-page: 615 year: 2002 end-page: 621 ident: bib101 article-title: Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of publication-title: EMBO J. – volume: 301 start-page: 57 year: 2005 end-page: 70 ident: bib65 article-title: Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast publication-title: Methods Mol. Biol. – volume: 282 start-page: 3450 year: 2007 end-page: 3457 ident: bib3 article-title: Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns publication-title: J. Biol. Chem. – volume: 275 start-page: 19352 year: 2000 end-page: 19360 ident: bib64 article-title: Psr1p/Psr2p, two plasma membrane phosphatases with an essential D publication-title: J. Biol. Chem. – start-page: 3 year: 1990 end-page: 12 ident: bib61 publication-title: PCR Protocols: A Guide to Methods and Applications – volume: 1832 start-page: 2103 year: 2013 end-page: 2114 ident: bib37 article-title: Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts publication-title: Biochim. Biophys. Acta. – volume: 72 start-page: 248 year: 1976 end-page: 254 ident: bib67 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. – volume: 32 start-page: 1037 year: 2004 end-page: 1049 ident: bib89 article-title: The importance of intrinsic disorder for protein phosphorylation publication-title: Nucleic Acids Res. – volume: 287 start-page: 2221 year: 2012 end-page: 2236 ident: bib25 article-title: The yeast lipin 1 orthologue Pah1p regulates vacuole homeostasis and membrane fusion publication-title: J. Biol. Chem. – volume: 50 start-page: S109 year: 2009 end-page: S114 ident: bib31 article-title: Lipin proteins and metabolic homeostasis publication-title: J. Lipid Res. – volume: 299 start-page: 408 year: 2003 end-page: 411 ident: bib81 article-title: Endoproteolytic activity of the proteasome publication-title: Science. – volume: 80 start-page: 859 year: 2011 end-page: 883 ident: bib5 article-title: Regulation of phospholipid synthesis in the yeast publication-title: Annu. Rev. Biochem. – volume: 49 start-page: 114 year: 2009 end-page: 120 ident: bib34 article-title: Phosphatidic acid phosphohydrolase in the regulation of inflammatory signaling publication-title: Adv. Enzyme Regul. – volume: 22 start-page: 1647 year: 2008 end-page: 1661 ident: bib28 article-title: Phosphatidic acid mediates demyelination in publication-title: Genes Dev. – volume: 283 start-page: 29166 year: 2008 end-page: 29174 ident: bib72 article-title: Temporal and spatial regulation of the phosphatidate phosphatases lipin 1 and 2 publication-title: J. Biol. Chem. – volume: 35 start-page: 3790 year: 1996 end-page: 3796 ident: bib55 article-title: Regulation of phosphatidate phosphatase activity from the yeast publication-title: Biochemistry. – volume: 6 start-page: 22 year: 2005 ident: bib51 article-title: Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening publication-title: BMC Biochem. – volume: 30 start-page: 3126 year: 2010 end-page: 3139 ident: bib33 article-title: Lipin 1 represses NFATc4 transcriptional activity in adipocytes to inhibit secretion of inflammatory factors publication-title: Mol. Cell. Biol. – volume: 109 start-page: 1479 year: 2009 end-page: 1480 ident: bib86 article-title: Introduction to intracellular protein degradation publication-title: Chem. Rev. – volume: 190 start-page: 317 year: 2012 end-page: 349 ident: bib6 article-title: Metabolism and regulation of glycerolipids in the yeast publication-title: Genetics. – volume: 281 start-page: 34537 year: 2006 end-page: 34548 ident: bib18 article-title: Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg publication-title: J. Biol. Chem. – volume: 67 start-page: 425 year: 1998 end-page: 479 ident: bib84 article-title: The ubiquitin system publication-title: Annu. Rev. Biochem. – volume: 112 start-page: 195 year: 1981 end-page: 203 ident: bib70 article-title: Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A publication-title: Anal. Biochem. – volume: 264 start-page: 8641 year: 1989 end-page: 8645 ident: bib74 article-title: Purification and characterization of phosphatidate phosphatase from publication-title: J. Biol. Chem. – volume: 31 start-page: 449 year: 2007 end-page: 456 ident: bib27 article-title: Adipose tissue lipin expression levels distinguish HIV patients with and without lipodystrophy publication-title: Int. J. Obes. – volume: 286 start-page: 1486 year: 2011 end-page: 1498 ident: bib39 article-title: Phosphorylation of phosphatidate phosphatase regulates its membrane association and physiological functions in publication-title: J. Biol. Chem. – volume: 14 start-page: 2620 year: 1995 end-page: 2630 ident: bib77 article-title: Biogenesis, structure and function of the yeast 20S proteasome publication-title: EMBO J. – volume: 575 start-page: 204 year: 1979 end-page: 214 ident: bib11 article-title: Triacylglycerol metabolism in publication-title: Biochim. Biophys. Acta. – volume: 68 start-page: 187 year: 2004 end-page: 206 ident: bib95 article-title: “Sleeping beauty”: quiescence in publication-title: Microbiol. Mol. Biol. Rev. – volume: 287 start-page: 11290 year: 2012 end-page: 11301 ident: bib40 article-title: Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism publication-title: J. Biol. Chem. – volume: 77 start-page: 51 year: 1989 end-page: 59 ident: bib63 article-title: Site-directed mutagenesis by overlap extension using the polymerase chain reaction publication-title: Gene. – volume: 425 start-page: 859 year: 2003 end-page: 864 ident: bib48 article-title: Targets of the cyclin-dependent kinase Cdk1 publication-title: Nature. – volume: 289 start-page: 9811 year: 2014 end-page: 9822 ident: bib45 article-title: Yeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation publication-title: J. Biol. Chem. – year: 1989 ident: bib60 publication-title: Molecular Cloning: A Laboratory Manual – volume: 7 start-page: 678 year: 1966 end-page: 683 ident: bib10 article-title: Enzymatic synthesis of cytidine diphosphate diglyceride publication-title: J. Lipid Res. – volume: 1831 start-page: 514 year: 2013 end-page: 522 ident: bib7 article-title: Phosphatidate phosphatase, a key regulator of lipid homeostasis publication-title: Biochim. Biophys. Acta. – volume: 289 start-page: 34699 year: 2014 end-page: 34708 ident: bib54 article-title: Yeast Nem1-Spo7 protein phosphatase activity on Pah1 phosphatidate phosphatase is specific for the Pho85-Pho80 protein kinase phosphorylation sites publication-title: J. Biol. Chem. – volume: 28 start-page: 844 year: 2006 end-page: 849 ident: bib79 article-title: 20S proteasomes and protein degradation “by default” publication-title: BioEssays. – volume: 201 start-page: 663 year: 2013 end-page: 671 ident: bib93 article-title: Formation and dissociation of proteasome storage granules are regulated by cytosolic pH publication-title: J. Cell Biol. – volume: 283 start-page: 20433 year: 2008 end-page: 20442 ident: bib21 article-title: An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth publication-title: J. Biol. Chem. – volume: 147 start-page: 435 year: 1997 end-page: 450 ident: bib23 article-title: Large scale identification of genes involved in cell surface biosynthesis and architecture in publication-title: Genetics. – volume: 6 start-page: 1190 year: 2007 end-page: 1197 ident: bib47 article-title: Large-scale phosphorylation analysis of α-factor-arrested publication-title: J. Proteome. Res. – volume: 280 start-page: 38328 year: 2005 end-page: 38336 ident: bib59 article-title: Expression of human CTP synthetase in publication-title: J. Biol. Chem. – volume: 438 start-page: 679 year: 2005 end-page: 684 ident: bib49 article-title: Global analysis of protein phosphorylation in yeast publication-title: Nature. – volume: 24 start-page: 1931 year: 2005 end-page: 1941 ident: bib17 article-title: The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth publication-title: EMBO J. – volume: 36 start-page: 306 year: 2012 end-page: 339 ident: bib94 article-title: The essence of yeast quiescence publication-title: FEMS Microbiol. Rev. – volume: 24 start-page: 2124 year: 2013 end-page: 2133 ident: bib44 article-title: Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p publication-title: Mol. Biol. Cell. – volume: 286 start-page: 29074 year: 2011 end-page: 29085 ident: bib12 article-title: Phosphatidate phosphatase activity plays a key role in protection against fatty acid-induced toxicity in yeast publication-title: J. Biol. Chem. – volume: 42 start-page: D259 year: 2014 end-page: D266 ident: bib88 article-title: The eukaryotic linear motif resource ELM: 10 years and counting publication-title: Nucleic Acids Res. – volume: 265 start-page: 166 year: 1990 end-page: 170 ident: bib75 article-title: Kinetic analysis of yeast phosphatidate phosphatase toward Triton X-100/phosphatidate mixed micelles publication-title: J. Biol. Chem. – volume: 109 start-page: 227 year: 2012 end-page: 248 ident: bib83 article-title: Degradation of damaged proteins: the main function of the 20S proteasome publication-title: Prog. Mol. Biol. Transl. Sci. – volume: 17 start-page: 709 year: 2013 end-page: 718 ident: bib9 article-title: Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria publication-title: Cell Metab. – volume: 288 start-page: 35781 year: 2013 end-page: 35792 ident: bib13 article-title: -encoded phosphatidate phosphatase plays a role in the growth phase- and inositol-mediated regulation of lipid synthesis in publication-title: J. Biol. Chem. – volume: 4 start-page: 1015 year: 2005 end-page: 1018 ident: bib87 article-title: p53 proteasomal degradation: poly-ubiquitination is not the whole story publication-title: Cell Cycle. – volume: 289 start-page: 18818 year: 2014 end-page: 18830 ident: bib42 article-title: Cross-talk phosphorylations by protein kinase C and Pho85p-Pho80p protein kinase regulate Pah1p phosphatidate phosphatase abundance in publication-title: J. Biol. Chem. – volume: 30 start-page: 405 year: 1996 end-page: 439 ident: bib85 article-title: Ubiquitin-dependent protein degradation publication-title: Annu. Rev. Genet. – volume: 22 start-page: 412 year: 1994 end-page: 418 ident: bib103 article-title: Analysis of publication-title: Nucleic Acids Res. – volume: 21 start-page: 3435 year: 2005 end-page: 3438 ident: bib78 article-title: FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded publication-title: Bioinformatics. – volume: 21 start-page: 921 year: 2003 end-page: 926 ident: bib99 article-title: A proteomics approach to understanding protein ubiquitination publication-title: Nat. Biotechnol. – volume: 269 start-page: 29495 year: 1994 end-page: 29501 ident: bib57 article-title: Regulation of phosphatidate phosphatase activity from the yeast publication-title: J. Biol. Chem. – volume: 27 start-page: 121 year: 2001 end-page: 124 ident: bib2 article-title: Lipodystrophy in the publication-title: Nat. Genet. – volume: 271 start-page: 789 year: 1996 end-page: 795 ident: bib8 article-title: The publication-title: J. Biol. Chem. – volume: 227 start-page: 680 year: 1970 end-page: 685 ident: bib69 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature. – volume: 10 start-page: 495 year: 2002 end-page: 507 ident: bib66 article-title: Multiple associated proteins regulate proteasome structure and function publication-title: Mol. Cell. – volume: 107 start-page: 17539 year: 2010 end-page: 17544 ident: bib43 article-title: A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 1 start-page: 73 year: 2005 end-page: 83 ident: bib26 article-title: Lipin, a lipodystrophy and obesity gene publication-title: Cell Metab. – volume: 32 start-page: 4794 year: 2012 end-page: 4810 ident: bib36 article-title: Cell autonomous lipin 1 function is essential for development and maintenance of white and brown adipose tissue publication-title: Mol. Cell. Biol. – volume: 286 start-page: 26781 year: 2011 end-page: 26793 ident: bib35 article-title: A hypomorphic mutation in publication-title: J. Biol. Chem. – volume: 192 start-page: 949 year: 2011 end-page: 957 ident: bib92 article-title: Metabolic status rather than cell cycle signals control quiescence entry and exit publication-title: J. Cell Biol. – volume: 20 start-page: 267 year: 2014 end-page: 279 ident: bib96 article-title: Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle publication-title: Cell Metab. – volume: 282 start-page: 37026 year: 2007 end-page: 37035 ident: bib19 article-title: The cellular functions of the yeast lipin homolog Pah1p are dependent on its phosphatidate phosphatase activity publication-title: J. Biol. Chem. – volume: 236 start-page: 283 year: 1993 end-page: 288 ident: bib22 article-title: A gene, publication-title: Mol. Gen. Genet. – volume: 125 start-page: 299 year: 1994 end-page: 312 ident: bib102 article-title: Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast publication-title: J. Cell Biol. – volume: 181 start-page: 737 year: 2008 end-page: 745 ident: bib90 article-title: Reversible cytoplasmic localization of the proteasome in quiescent yeast cells publication-title: J. Cell Biol. – volume: 53 start-page: 522 year: 2012 end-page: 528 ident: bib52 article-title: Fluorescence spectroscopy measures yeast publication-title: J. Lipid Res. – volume: 41 start-page: 155 year: 2001 end-page: 166 ident: bib14 article-title: The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2 publication-title: Mol. Microbiol. – volume: 289 start-page: 12145 year: 2014 end-page: 12156 ident: bib80 article-title: Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1 publication-title: J. Biol. Chem. – volume: 1831 start-page: 575 year: 2013 end-page: 581 ident: bib38 article-title: Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases publication-title: Biochim. Biophys. Acta. – volume: 15 start-page: 1001 year: 1999 end-page: 1008 ident: bib24 article-title: A large-scale sonication assay for cell wall mutant analysis in yeast publication-title: Yeast. – volume: 9 start-page: 440 year: 2008 ident: bib100 article-title: SCUD: publication-title: BMC Genomics. – volume: 287 start-page: 968 year: 2012 end-page: 977 ident: bib58 article-title: Phosphatidate phosphatase plays role in zinc-mediated regulation of phospholipid synthesis in yeast publication-title: J. Biol. Chem. – volume: 282 start-page: 37293 year: 2007 end-page: 37297 ident: bib16 article-title: Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in publication-title: J. Biol. Chem. – volume: 192 start-page: 1043 year: 2011 end-page: 1055 ident: bib20 article-title: The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets publication-title: J. Cell Biol. – volume: 104 start-page: 2193 year: 2007 end-page: 2198 ident: bib46 article-title: Analysis of phosphorylation sites on proteins from publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 52 start-page: 305 year: 2013 end-page: 316 ident: bib97 article-title: Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling publication-title: Prog. Lipid Res. – volume: 282 start-page: 277 year: 2007 end-page: 286 ident: bib98 article-title: Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1 publication-title: J. Biol. Chem. – volume: 281 start-page: 9210 year: 2006 end-page: 9218 ident: bib1 article-title: The publication-title: J. Biol. Chem. – volume: 284 start-page: 29968 year: 2009 end-page: 29978 ident: bib32 article-title: A conserved serine residue is required for the phosphatidate phosphatase activity but not transcriptional coactivator functions of lipin-1 and lipin-2 publication-title: J. Biol. Chem. – volume: 228 start-page: 915 year: 1957 end-page: 922 ident: bib4 article-title: The enzymatic dephosphorylation of phosphatidic acids publication-title: J. Biol. Chem. – volume: 261 start-page: 15197 year: 1986 end-page: 15203 ident: bib73 article-title: A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution publication-title: J. Biol. Chem. – volume: 271 start-page: 27280 year: 1996 end-page: 27284 ident: bib68 article-title: Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in publication-title: J. Biol. Chem. – volume: 83 start-page: 489 year: 2008 end-page: 494 ident: bib29 article-title: Mutations in publication-title: Am. J. Hum. Genet. – volume: 83 start-page: 301 year: 2001 end-page: 310 ident: bib82 article-title: Degradation of oxidized proteins by the 20S proteasome publication-title: Biochimie. – volume: 304 start-page: 1644 year: 2004 end-page: 1647 ident: bib15 article-title: Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid publication-title: Science. – volume: 96 start-page: 192 year: 1983 end-page: 205 ident: bib71 article-title: Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis publication-title: Methods Enzymol. – volume: 17 start-page: 6449 year: 1998 end-page: 6464 ident: bib53 article-title: A novel complex of membrane proteins required for formation of a spherical nucleus publication-title: EMBO J. – volume: 284 start-page: 29968 year: 2009 ident: 10.1074/jbc.M115.648659_bib32 article-title: A conserved serine residue is required for the phosphatidate phosphatase activity but not transcriptional coactivator functions of lipin-1 and lipin-2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.023663 – volume: 438 start-page: 679 year: 2005 ident: 10.1074/jbc.M115.648659_bib49 article-title: Global analysis of protein phosphorylation in yeast publication-title: Nature. doi: 10.1038/nature04187 – volume: 275 start-page: 19352 year: 2000 ident: 10.1074/jbc.M115.648659_bib64 article-title: Psr1p/Psr2p, two plasma membrane phosphatases with an essential DXDX(T/V) motif required for sodium stress response in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M001314200 – volume: 265 start-page: 166 year: 1990 ident: 10.1074/jbc.M115.648659_bib75 article-title: Kinetic analysis of yeast phosphatidate phosphatase toward Triton X-100/phosphatidate mixed micelles publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)40210-X – volume: 52 start-page: 305 year: 2013 ident: 10.1074/jbc.M115.648659_bib97 article-title: Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2013.04.001 – volume: 282 start-page: 3450 year: 2007 ident: 10.1074/jbc.M115.648659_bib3 article-title: Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns publication-title: J. Biol. Chem. doi: 10.1074/jbc.M610745200 – volume: 32 start-page: 4794 year: 2012 ident: 10.1074/jbc.M115.648659_bib36 article-title: Cell autonomous lipin 1 function is essential for development and maintenance of white and brown adipose tissue publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00512-12 – volume: 53 start-page: 522 year: 2012 ident: 10.1074/jbc.M115.648659_bib52 article-title: Fluorescence spectroscopy measures yeast PAH1-encoded phosphatidate phosphatase interaction with liposome membranes publication-title: J. Lipid Res. doi: 10.1194/jlr.M022798 – start-page: 3 year: 1990 ident: 10.1074/jbc.M115.648659_bib61 – volume: 109 start-page: 227 year: 2012 ident: 10.1074/jbc.M115.648659_bib83 article-title: Degradation of damaged proteins: the main function of the 20S proteasome publication-title: Prog. Mol. Biol. Transl. Sci. doi: 10.1016/B978-0-12-397863-9.00006-7 – volume: 286 start-page: 26781 year: 2011 ident: 10.1074/jbc.M115.648659_bib35 article-title: A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.197947 – volume: 268 start-page: 13830 year: 1993 ident: 10.1074/jbc.M115.648659_bib56 article-title: Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by sphingoid bases publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)85178-5 – volume: 236 start-page: 283 year: 1993 ident: 10.1074/jbc.M115.648659_bib22 article-title: A gene, SMP2, involved in plasmid maintenance and respiration in Saccharomyces cerevisiae encodes a highly charged protein publication-title: Mol. Gen. Genet. doi: 10.1007/BF00277124 – volume: 264 start-page: 8641 year: 1989 ident: 10.1074/jbc.M115.648659_bib74 article-title: Purification and characterization of phosphatidate phosphatase from Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)81840-3 – volume: 147 start-page: 435 year: 1997 ident: 10.1074/jbc.M115.648659_bib23 article-title: Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae publication-title: Genetics. doi: 10.1093/genetics/147.2.435 – volume: 287 start-page: 11290 year: 2012 ident: 10.1074/jbc.M115.648659_bib40 article-title: Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.346023 – volume: 1831 start-page: 514 year: 2013 ident: 10.1074/jbc.M115.648659_bib7 article-title: Phosphatidate phosphatase, a key regulator of lipid homeostasis publication-title: Biochim. Biophys. Acta. doi: 10.1016/j.bbalip.2012.08.006 – volume: 112 start-page: 195 year: 1981 ident: 10.1074/jbc.M115.648659_bib70 article-title: Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A publication-title: Anal. Biochem. doi: 10.1016/0003-2697(81)90281-5 – volume: 96 start-page: 192 year: 1983 ident: 10.1074/jbc.M115.648659_bib71 article-title: Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(83)96017-2 – volume: 271 start-page: 27280 year: 1996 ident: 10.1074/jbc.M115.648659_bib68 article-title: Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.44.27280 – volume: 1 start-page: 73 year: 2005 ident: 10.1074/jbc.M115.648659_bib26 article-title: Lipin, a lipodystrophy and obesity gene publication-title: Cell Metab. doi: 10.1016/j.cmet.2004.12.002 – volume: 269 start-page: 29495 year: 1994 ident: 10.1074/jbc.M115.648659_bib57 article-title: Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by nucleotides publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)43907-5 – volume: 301 start-page: 57 year: 2005 ident: 10.1074/jbc.M115.648659_bib65 article-title: Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast publication-title: Methods Mol. Biol. – volume: 299 start-page: 408 year: 2003 ident: 10.1074/jbc.M115.648659_bib81 article-title: Endoproteolytic activity of the proteasome publication-title: Science. doi: 10.1126/science.1079293 – volume: 289 start-page: 9811 year: 2014 ident: 10.1074/jbc.M115.648659_bib45 article-title: Yeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.550103 – volume: 22 start-page: 412 year: 1994 ident: 10.1074/jbc.M115.648659_bib103 article-title: Analysis of FAS3/ACC regulatory region of Saccharomyces cerevisiae: identification of a functional UASINO and sequences responsible for fatty acid mediated repression publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.3.412 – volume: 15 start-page: 1001 year: 1999 ident: 10.1074/jbc.M115.648659_bib24 article-title: A large-scale sonication assay for cell wall mutant analysis in yeast publication-title: Yeast. doi: 10.1002/(SICI)1097-0061(199907)15:10B<1001::AID-YEA400>3.0.CO;2-T – volume: 425 start-page: 859 year: 2003 ident: 10.1074/jbc.M115.648659_bib48 article-title: Targets of the cyclin-dependent kinase Cdk1 publication-title: Nature. doi: 10.1038/nature02062 – volume: 289 start-page: 18818 year: 2014 ident: 10.1074/jbc.M115.648659_bib42 article-title: Cross-talk phosphorylations by protein kinase C and Pho85p-Pho80p protein kinase regulate Pah1p phosphatidate phosphatase abundance in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.581462 – volume: 104 start-page: 2193 year: 2007 ident: 10.1074/jbc.M115.648659_bib46 article-title: Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0607084104 – volume: 67 start-page: 425 year: 1998 ident: 10.1074/jbc.M115.648659_bib84 article-title: The ubiquitin system publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.425 – volume: 21 start-page: 615 year: 2002 ident: 10.1074/jbc.M115.648659_bib101 article-title: Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates publication-title: EMBO J. doi: 10.1093/emboj/21.4.615 – volume: 283 start-page: 20433 year: 2008 ident: 10.1074/jbc.M115.648659_bib21 article-title: An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802903200 – volume: 77 start-page: 51 year: 1989 ident: 10.1074/jbc.M115.648659_bib63 article-title: Site-directed mutagenesis by overlap extension using the polymerase chain reaction publication-title: Gene. doi: 10.1016/0378-1119(89)90358-2 – volume: 261 start-page: 15197 year: 1986 ident: 10.1074/jbc.M115.648659_bib73 article-title: A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)66853-X – year: 1989 ident: 10.1074/jbc.M115.648659_bib60 – volume: 10 start-page: 495 year: 2002 ident: 10.1074/jbc.M115.648659_bib66 article-title: Multiple associated proteins regulate proteasome structure and function publication-title: Mol. Cell. doi: 10.1016/S1097-2765(02)00638-X – volume: 7 start-page: 678 year: 1966 ident: 10.1074/jbc.M115.648659_bib10 article-title: Enzymatic synthesis of cytidine diphosphate diglyceride publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)39250-6 – volume: 42 start-page: D259 year: 2014 ident: 10.1074/jbc.M115.648659_bib88 article-title: The eukaryotic linear motif resource ELM: 10 years and counting publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1047 – volume: 282 start-page: 277 year: 2007 ident: 10.1074/jbc.M115.648659_bib98 article-title: Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M609537200 – volume: 181 start-page: 737 year: 2008 ident: 10.1074/jbc.M115.648659_bib90 article-title: Reversible cytoplasmic localization of the proteasome in quiescent yeast cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200711154 – volume: 22 start-page: 1647 year: 2008 ident: 10.1074/jbc.M115.648659_bib28 article-title: Phosphatidic acid mediates demyelination in Lpin1 mutant mice publication-title: Genes Dev. doi: 10.1101/gad.1638008 – volume: 280 start-page: 38328 year: 2005 ident: 10.1074/jbc.M115.648659_bib59 article-title: Expression of human CTP synthetase in Saccharomyces cerevisiae reveals phosphorylation by protein kinase A publication-title: J. Biol. Chem. doi: 10.1074/jbc.M509622200 – volume: 14 start-page: 2620 year: 1995 ident: 10.1074/jbc.M115.648659_bib77 article-title: Biogenesis, structure and function of the yeast 20S proteasome publication-title: EMBO J. doi: 10.1002/j.1460-2075.1995.tb07260.x – volume: 36 start-page: 306 year: 2012 ident: 10.1074/jbc.M115.648659_bib94 article-title: The essence of yeast quiescence publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2011.00287.x – volume: 68 start-page: 187 year: 2004 ident: 10.1074/jbc.M115.648659_bib95 article-title: “Sleeping beauty”: quiescence in Saccharomyces cerevisiae publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.68.2.187-206.2004 – volume: 30 start-page: 405 year: 1996 ident: 10.1074/jbc.M115.648659_bib85 article-title: Ubiquitin-dependent protein degradation publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.30.1.405 – volume: 28 start-page: 844 year: 2006 ident: 10.1074/jbc.M115.648659_bib79 article-title: 20S proteasomes and protein degradation “by default” publication-title: BioEssays. doi: 10.1002/bies.20447 – volume: 227 start-page: 680 year: 1970 ident: 10.1074/jbc.M115.648659_bib69 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature. doi: 10.1038/227680a0 – volume: 49 start-page: 114 year: 2009 ident: 10.1074/jbc.M115.648659_bib34 article-title: Phosphatidic acid phosphohydrolase in the regulation of inflammatory signaling publication-title: Adv. Enzyme Regul. doi: 10.1016/j.advenzreg.2009.01.005 – volume: 192 start-page: 949 year: 2011 ident: 10.1074/jbc.M115.648659_bib92 article-title: Metabolic status rather than cell cycle signals control quiescence entry and exit publication-title: J. Cell Biol. doi: 10.1083/jcb.201009028 – volume: 271 start-page: 789 year: 1996 ident: 10.1074/jbc.M115.648659_bib8 article-title: The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.2.789 – volume: 1832 start-page: 2103 year: 2013 ident: 10.1074/jbc.M115.648659_bib37 article-title: Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts publication-title: Biochim. Biophys. Acta. doi: 10.1016/j.bbadis.2013.07.021 – volume: 72 start-page: 248 year: 1976 ident: 10.1074/jbc.M115.648659_bib67 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 289 start-page: 34699 year: 2014 ident: 10.1074/jbc.M115.648659_bib54 article-title: Yeast Nem1-Spo7 protein phosphatase activity on Pah1 phosphatidate phosphatase is specific for the Pho85-Pho80 protein kinase phosphorylation sites publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.614883 – volume: 281 start-page: 9210 year: 2006 ident: 10.1074/jbc.M115.648659_bib1 article-title: The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600425200 – volume: 6 start-page: 1190 year: 2007 ident: 10.1074/jbc.M115.648659_bib47 article-title: Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae publication-title: J. Proteome. Res. doi: 10.1021/pr060559j – volume: 21 start-page: 921 year: 2003 ident: 10.1074/jbc.M115.648659_bib99 article-title: A proteomics approach to understanding protein ubiquitination publication-title: Nat. Biotechnol. doi: 10.1038/nbt849 – volume: 30 start-page: 3126 year: 2010 ident: 10.1074/jbc.M115.648659_bib33 article-title: Lipin 1 represses NFATc4 transcriptional activity in adipocytes to inhibit secretion of inflammatory factors publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01671-09 – volume: 24 start-page: 1931 year: 2005 ident: 10.1074/jbc.M115.648659_bib17 article-title: The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth publication-title: EMBO J. doi: 10.1038/sj.emboj.7600672 – volume: 192 start-page: 1043 year: 2011 ident: 10.1074/jbc.M115.648659_bib20 article-title: The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets publication-title: J. Cell Biol. doi: 10.1083/jcb.201010111 – volume: 282 start-page: 37026 year: 2007 ident: 10.1074/jbc.M115.648659_bib19 article-title: The cellular functions of the yeast lipin homolog Pah1p are dependent on its phosphatidate phosphatase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M705777200 – volume: 31 start-page: 449 year: 2007 ident: 10.1074/jbc.M115.648659_bib27 article-title: Adipose tissue lipin expression levels distinguish HIV patients with and without lipodystrophy publication-title: Int. J. Obes. doi: 10.1038/sj.ijo.0803434 – volume: 228 start-page: 915 year: 1957 ident: 10.1074/jbc.M115.648659_bib4 article-title: The enzymatic dephosphorylation of phosphatidic acids publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)70670-4 – volume: 41 start-page: 155 year: 2001 ident: 10.1074/jbc.M115.648659_bib14 article-title: The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2001.02495.x – volume: 281 start-page: 34537 year: 2006 ident: 10.1074/jbc.M115.648659_bib18 article-title: Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606654200 – volume: 282 start-page: 37293 year: 2007 ident: 10.1074/jbc.M115.648659_bib16 article-title: Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700038200 – volume: 286 start-page: 1486 year: 2011 ident: 10.1074/jbc.M115.648659_bib39 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.155598 – volume: 125 start-page: 299 year: 1994 ident: 10.1074/jbc.M115.648659_bib102 article-title: Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast publication-title: J. Cell Biol. doi: 10.1083/jcb.125.2.299 – volume: 201 start-page: 663 year: 2013 ident: 10.1074/jbc.M115.648659_bib93 article-title: Formation and dissociation of proteasome storage granules are regulated by cytosolic pH publication-title: J. Cell Biol. doi: 10.1083/jcb.201211146 – volume: 285 start-page: 14628 year: 2010 ident: 10.1074/jbc.M115.648659_bib76 article-title: Characterization of the human LPIN1-encoded phosphatidate phosphatase isoforms publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.117747 – volume: 9 start-page: 440 year: 2008 ident: 10.1074/jbc.M115.648659_bib100 article-title: SCUD: Saccharomyces cerevisiae ubiquitination database publication-title: BMC Genomics. doi: 10.1186/1471-2164-9-440 – volume: 27 start-page: 121 year: 2001 ident: 10.1074/jbc.M115.648659_bib2 article-title: Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin publication-title: Nat. Genet. doi: 10.1038/83685 – volume: 80 start-page: 859 year: 2011 ident: 10.1074/jbc.M115.648659_bib5 article-title: Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060409-092229 – volume: 286 start-page: 29074 year: 2011 ident: 10.1074/jbc.M115.648659_bib12 article-title: Phosphatidate phosphatase activity plays a key role in protection against fatty acid-induced toxicity in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.258798 – volume: 288 start-page: 35781 year: 2013 ident: 10.1074/jbc.M115.648659_bib13 article-title: PAH1-encoded phosphatidate phosphatase plays a role in the growth phase- and inositol-mediated regulation of lipid synthesis in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.525766 – volume: 287 start-page: 33364 year: 2012 ident: 10.1074/jbc.M115.648659_bib41 article-title: Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.402339 – volume: 24 start-page: 2124 year: 2013 ident: 10.1074/jbc.M115.648659_bib44 article-title: Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e13-01-0021 – volume: 190 start-page: 317 year: 2012 ident: 10.1074/jbc.M115.648659_bib6 article-title: Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae publication-title: Genetics. doi: 10.1534/genetics.111.130286 – volume: 32 start-page: 1037 year: 2004 ident: 10.1074/jbc.M115.648659_bib89 article-title: The importance of intrinsic disorder for protein phosphorylation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh253 – volume: 83 start-page: 489 year: 2008 ident: 10.1074/jbc.M115.648659_bib29 article-title: Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2008.09.002 – volume: 17 start-page: 709 year: 2013 ident: 10.1074/jbc.M115.648659_bib9 article-title: Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.03.018 – volume: 6 start-page: 22 year: 2005 ident: 10.1074/jbc.M115.648659_bib51 article-title: Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening publication-title: BMC Biochem. doi: 10.1186/1471-2091-6-22 – volume: 289 start-page: 12145 year: 2014 ident: 10.1074/jbc.M115.648659_bib80 article-title: Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.554105 – volume: 302 start-page: 1772 year: 2003 ident: 10.1074/jbc.M115.648659_bib62 article-title: Yeast cells provide insight into α-synuclein biology and pathobiology publication-title: Science. doi: 10.1126/science.1090439 – volume: 21 start-page: 3435 year: 2005 ident: 10.1074/jbc.M115.648659_bib78 article-title: FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bti537 – volume: 287 start-page: 2221 year: 2012 ident: 10.1074/jbc.M115.648659_bib25 article-title: The yeast lipin 1 orthologue Pah1p regulates vacuole homeostasis and membrane fusion publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.317420 – volume: 1831 start-page: 575 year: 2013 ident: 10.1074/jbc.M115.648659_bib38 article-title: Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases publication-title: Biochim. Biophys. Acta. doi: 10.1016/j.bbalip.2012.09.014 – volume: 107 start-page: 17539 year: 2010 ident: 10.1074/jbc.M115.648659_bib43 article-title: A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1007974107 – volume: 13 start-page: R80 year: 2012 ident: 10.1074/jbc.M115.648659_bib91 article-title: Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae publication-title: Genome Biol. doi: 10.1186/gb-2012-13-9-r80 – volume: 109 start-page: 1479 year: 2009 ident: 10.1074/jbc.M115.648659_bib86 article-title: Introduction to intracellular protein degradation publication-title: Chem. Rev. doi: 10.1021/cr900054t – volume: 50 start-page: S109 year: 2009 ident: 10.1074/jbc.M115.648659_bib31 article-title: Lipin proteins and metabolic homeostasis publication-title: J. Lipid Res. doi: 10.1194/jlr.R800052-JLR200 – volume: 304 start-page: 1644 year: 2004 ident: 10.1074/jbc.M115.648659_bib15 article-title: Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid publication-title: Science. doi: 10.1126/science.1096083 – volume: 17 start-page: 6449 year: 1998 ident: 10.1074/jbc.M115.648659_bib53 article-title: A novel complex of membrane proteins required for formation of a spherical nucleus publication-title: EMBO J. doi: 10.1093/emboj/17.22.6449 – volume: 287 start-page: 968 year: 2012 ident: 10.1074/jbc.M115.648659_bib58 article-title: Phosphatidate phosphatase plays role in zinc-mediated regulation of phospholipid synthesis in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.313130 – volume: 102 start-page: 17940 year: 2005 ident: 10.1074/jbc.M115.648659_bib50 article-title: Combining chemical genetics and proteomics to identify protein kinase substrates publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0509080102 – volume: 575 start-page: 204 year: 1979 ident: 10.1074/jbc.M115.648659_bib11 article-title: Triacylglycerol metabolism in Saccharomyces cerevisiae relation to phospholipid synthesis publication-title: Biochim. Biophys. Acta. doi: 10.1016/0005-2760(79)90022-5 – volume: 283 start-page: 29166 year: 2008 ident: 10.1074/jbc.M115.648659_bib72 article-title: Temporal and spatial regulation of the phosphatidate phosphatases lipin 1 and 2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804278200 – volume: 83 start-page: 301 year: 2001 ident: 10.1074/jbc.M115.648659_bib82 article-title: Degradation of oxidized proteins by the 20S proteasome publication-title: Biochimie. doi: 10.1016/S0300-9084(01)01250-0 – volume: 49 start-page: 2493 year: 2008 ident: 10.1074/jbc.M115.648659_bib30 article-title: Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism publication-title: J. Lipid Res. doi: 10.1194/jlr.R800019-JLR200 – volume: 4 start-page: 1015 year: 2005 ident: 10.1074/jbc.M115.648659_bib87 article-title: p53 proteasomal degradation: poly-ubiquitination is not the whole story publication-title: Cell Cycle. doi: 10.4161/cc.4.8.1900 – volume: 20 start-page: 267 year: 2014 ident: 10.1074/jbc.M115.648659_bib96 article-title: Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.05.003 – volume: 35 start-page: 3790 year: 1996 ident: 10.1074/jbc.M115.648659_bib55 article-title: Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by phospholipids publication-title: Biochemistry. doi: 10.1021/bi952808f |
SSID | ssj0000491 |
Score | 2.405587 |
Snippet | Saccharomyces cerevisiae Pah1 phosphatidate phosphatase, which catalyzes the conversion of phosphatidate to diacylglycerol for triacylglycerol synthesis and... Background: Yeast Pah1 phosphatidate phosphatase required for triacylglycerol synthesis is subject to proteasome-mediated degradation. Results: Pah1 is... |
SourceID | pubmedcentral pubmed crossref elsevier |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 11467 |
SubjectTerms | Diacylglycerol Humans Lipid Lipids Phosphatase Phosphatidate Phosphatidate Phosphatase Phosphatidate Phosphatase - chemistry Phosphatidate Phosphatase - genetics Phosphatidate Phosphatase - metabolism Phosphorylation Proteasome Proteasome Endopeptidase Complex - metabolism Proteolysis Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Sequence Deletion Triacylglycerol Ubiquitin - metabolism Yeast |
Title | Phosphorylation Regulates the Ubiquitin-independent Degradation of Yeast Pah1 Phosphatidate Phosphatase by the 20S Proteasome |
URI | https://dx.doi.org/10.1074/jbc.M115.648659 https://www.ncbi.nlm.nih.gov/pubmed/25809482 https://pubmed.ncbi.nlm.nih.gov/PMC4416851 |
Volume | 290 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7c9NBeSpv04fTBHkopmFX1WL2OITQJbV1anIBvQlrtIkEiObZ0cCD_oT-5s7t62dj0cRG2VjsGfZ9HM6vZbxB6D09UYbksJgLSB0L9xCGxyynhTDgB46admnKj8PS7d3FFv8zd-Wj0a1C1VFeJwe527iv5H1ThHOAqd8n-A7KdUTgBnwFfOALCcPwrjH9k5WqRlcu1LmibLHVjeanaAOjXSX5b51VekLzrdVtNUqkOkXaB4lr27oE4MrMmC2UNRuQiQPcNnnIqRAWDtjmbKF2HeLWlcdBvMFOhrVZ20tojbUO5jj-rnKulnG81mWW8eXCq11Kq3o8XZJoXvWNUXvE8vyazsuxfmCybhVu9pN8s6TaLF5bblwoaXDtcCAHlboL50CPbuoNoS71g4GDlJmp_p-uHWEi6_oQZU4hyDY8GntYaHxBhcaOYYLsBZLW66dGW2nY79AA9tCHxkD0xvv7s9echn7JagSifftr6Naks3cz_Y5izWYI7iGkun6InDWL4RDPrGRrx4hAdnRRxVd6s8QesyoPVe5dD9Oi0RfII3W8RD3fEw8ATvJN4eEA8XAqsiIcl8fAG8fCAeDhZK4NAPNwT7zm6Ovt8eXpBmj4ehFHqVER4gWellkgot1IRpnCHZBsEj5s-8wT1bDv0pUh8QMMgTgWLpUagsGFGkPiUxc4LdFCUBX-FsBVbZuIGAjwJjLAUDLlh6ggzhrw7pM4YGe1tj1gjci97rVxHqtjCpxFAFknIIg3ZGH3sJiy0vsv-S-0Wx6gJT3XYGQEF9096qYHurLcMGSN_gwLdBVLwfXOkyDMl_A6piwcZ0vFem6_R4_5f9gYdVMuav4WguUreKR7_Bo18yIg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorylation+regulates+the+ubiquitin-independent+degradation+of+yeast+Pah1+phosphatidate+phosphatase+by+the+20S+proteasome&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Hsieh%2C+Lu-Sheng&rft.au=Su%2C+Wen-Min&rft.au=Han%2C+Gil-Soo&rft.au=Carman%2C+George+M&rft.date=2015-05-01&rft.eissn=1083-351X&rft.volume=290&rft.issue=18&rft.spage=11467&rft_id=info:doi/10.1074%2Fjbc.M115.648659&rft_id=info%3Apmid%2F25809482&rft.externalDocID=25809482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |