Regionalization of environmental and economic performances of rainwater harvesting systems

Beijing Region Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and econom...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology. Regional studies Vol. 53; p. 101810
Main Authors Ali, Shahbaz, Sang, Yan-Fang, Yang, Moyuan, Shi, Jiali, Zhang, Shouhong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2214-5818
2214-5818
DOI10.1016/j.ejrh.2024.101810

Cover

Loading…
Abstract Beijing Region Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and economic performances of RHS by proposing a regionalization approach. Higher water saving efficiency (WSE) and reliability (R) of RHS are linked with lower water demand, larger tank size and greater rainfall conditions. Differently, higher stormwater capture efficiency (SCE) is related to higher water demand, larger tank size and lower rainfall. The WSE and R of RHS demonstrate substantial regional differences; their maximized obtainable values closely depend on water demand scenarios and range from 9% to 99%, with smaller values in western mountain area but larger values in northeast suburban and central urban areas. The maximum obtainable values of SCE range from 61% to 100%, with higher values in western mountain area, but lower values in northeast suburban and central urban areas. A 10 m3 tank size can provide the highest benefit-cost ratio of RHS across the Beijing region. The regionalization approach proposed is a useful guidance for the implementation of RHS and sustainable urban water management, and thus it has the potential for wide uses in other regions with high rainfall gradients. [Display omitted] •A regionalization approach is proposed to explore RHS’ enviro-economic efficiency.•Northeast suburban-central urban area of Beijing is favorable for RHS’ water saving.•Western mountain area of Beijing is favorable for stormwater control from RHS.•Good economic performance of RHS is observed in northeast suburban area of Beijing.
AbstractList Beijing Region Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and economic performances of RHS by proposing a regionalization approach. Higher water saving efficiency (WSE) and reliability (R) of RHS are linked with lower water demand, larger tank size and greater rainfall conditions. Differently, higher stormwater capture efficiency (SCE) is related to higher water demand, larger tank size and lower rainfall. The WSE and R of RHS demonstrate substantial regional differences; their maximized obtainable values closely depend on water demand scenarios and range from 9% to 99%, with smaller values in western mountain area but larger values in northeast suburban and central urban areas. The maximum obtainable values of SCE range from 61% to 100%, with higher values in western mountain area, but lower values in northeast suburban and central urban areas. A 10 m3 tank size can provide the highest benefit-cost ratio of RHS across the Beijing region. The regionalization approach proposed is a useful guidance for the implementation of RHS and sustainable urban water management, and thus it has the potential for wide uses in other regions with high rainfall gradients. [Display omitted] •A regionalization approach is proposed to explore RHS’ enviro-economic efficiency.•Northeast suburban-central urban area of Beijing is favorable for RHS’ water saving.•Western mountain area of Beijing is favorable for stormwater control from RHS.•Good economic performance of RHS is observed in northeast suburban area of Beijing.
Study region: Beijing Region Study focus: Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and economic performances of RHS by proposing a regionalization approach. New hydrological insights for the region: Higher water saving efficiency (WSE) and reliability (R) of RHS are linked with lower water demand, larger tank size and greater rainfall conditions. Differently, higher stormwater capture efficiency (SCE) is related to higher water demand, larger tank size and lower rainfall. The WSE and R of RHS demonstrate substantial regional differences; their maximized obtainable values closely depend on water demand scenarios and range from 9% to 99%, with smaller values in western mountain area but larger values in northeast suburban and central urban areas. The maximum obtainable values of SCE range from 61% to 100%, with higher values in western mountain area, but lower values in northeast suburban and central urban areas. A 10 m3 tank size can provide the highest benefit-cost ratio of RHS across the Beijing region. The regionalization approach proposed is a useful guidance for the implementation of RHS and sustainable urban water management, and thus it has the potential for wide uses in other regions with high rainfall gradients.
Beijing Region Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and economic performances of RHS by proposing a regionalization approach. Higher water saving efficiency (WSE) and reliability (R) of RHS are linked with lower water demand, larger tank size and greater rainfall conditions. Differently, higher stormwater capture efficiency (SCE) is related to higher water demand, larger tank size and lower rainfall. The WSE and R of RHS demonstrate substantial regional differences; their maximized obtainable values closely depend on water demand scenarios and range from 9% to 99%, with smaller values in western mountain area but larger values in northeast suburban and central urban areas. The maximum obtainable values of SCE range from 61% to 100%, with higher values in western mountain area, but lower values in northeast suburban and central urban areas. A 10 m³ tank size can provide the highest benefit-cost ratio of RHS across the Beijing region. The regionalization approach proposed is a useful guidance for the implementation of RHS and sustainable urban water management, and thus it has the potential for wide uses in other regions with high rainfall gradients.
ArticleNumber 101810
Author Zhang, Shouhong
Yang, Moyuan
Ali, Shahbaz
Shi, Jiali
Sang, Yan-Fang
Author_xml – sequence: 1
  givenname: Shahbaz
  surname: Ali
  fullname: Ali, Shahbaz
  organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 2
  givenname: Yan-Fang
  surname: Sang
  fullname: Sang, Yan-Fang
  email: sangyf@igsnrr.ac.cn
  organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 3
  givenname: Moyuan
  surname: Yang
  fullname: Yang, Moyuan
  organization: Beijing Water Science and Technology Institute, Beijing 100048, China
– sequence: 4
  givenname: Jiali
  surname: Shi
  fullname: Shi, Jiali
  organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 5
  givenname: Shouhong
  surname: Zhang
  fullname: Zhang, Shouhong
  organization: School of Soil and Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
BookMark eNp9kU9rFTEUxQepYK39Al3N0s17JjfzJwNupGgtFARpN92E-5Kb1wwzyTNJn9RPb6ajIC66yuVyfofcc95WJz54qqoLzrac8e7DuKUxPmyBQbMsJGevqlMA3mxayeXJP_Ob6jylkbEi6uXQsdPq_jvtXfA4uV-Yy1AHW5M_uhj8TD7jVKM3Nengw-x0faBoQ5zRa0qLNKLzPzFTrB8wHill5_d1ekqZ5vSuem1xSnT-5z2r7r58vr38urn5dnV9-elmo5tG5I0Fw1vo-10vBpA9MGmGxujWICewhCBa24l-aBnuEHYoRQeCA5EGQUYYcVZdr74m4KgO0c0Yn1RAp54XIe4Vxuz0RGpnOrK2Ay2HtjE9G9CAYFbIYtgNTVu83q9ehxh-PJZ71OySpmlCT-ExKQGs47IVAy9SuUp1DClFskq7_JxhLqlMijO1tKNGtbSjlnbU2k5B4T_0769fhD6uEJUsj46iStpRKcK4SDqXY91L-G9itqtr
CitedBy_id crossref_primary_10_1007_s43615_025_00535_1
Cites_doi 10.1007/s11269-015-1064-1
10.1016/j.jenvman.2017.01.025
10.1016/j.jhydrol.2020.125314
10.1016/j.jclepro.2014.03.075
10.1016/j.resconrec.2017.07.027
10.1007/s11269-018-1950-4
10.3390/w8040129
10.1016/j.jenvman.2020.111850
10.1016/j.resconrec.2012.03.007
10.1016/j.scitotenv.2019.02.135
10.1016/j.jenvman.2020.111847
10.1016/j.watres.2019.115372
10.1038/s43017-021-00251-y
10.2166/ws.2020.307
10.1016/j.resconrec.2013.05.001
10.1002/hyp.6499
10.1002/hyp.10142
10.1016/j.jhydrol.2016.12.027
10.3390/w15081518
10.1016/j.desal.2008.05.046
10.1016/j.jclepro.2018.06.133
10.1016/j.jclepro.2020.120044
10.3390/w9120916
10.1111/j.1752-1688.2004.tb01054.x
10.1016/j.jhydrol.2012.08.020
10.1016/j.jclepro.2020.121292
10.1016/j.resconrec.2018.02.007
10.1016/j.jaridenv.2014.07.007
10.1016/j.jhydrol.2016.08.036
10.1016/j.landurbplan.2011.12.012
10.1007/s11269-016-1429-0
10.1080/02508061003667271
10.1016/j.jenvman.2020.110731
10.3390/w8010018
10.1016/j.landurbplan.2014.04.007
10.2166/ws.2018.018
10.1177/014362440002100204
10.1016/j.resconrec.2014.11.004
10.3390/w11030458
10.1007/s11269-013-0507-9
10.1016/j.resconrec.2015.08.015
10.1016/j.resconrec.2014.01.001
10.1007/s11069-016-2614-4
10.1016/j.scs.2022.104304
10.1016/j.jclepro.2016.07.038
10.1016/j.landurbplan.2019.103600
10.1111/jawr.12038
10.1016/j.resconrec.2009.07.014
10.1016/j.landurbplan.2022.104416
10.1016/j.jclepro.2020.120829
10.5194/hess-22-757-2018
10.2166/hydro.2015.133
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ejrh.2024.101810
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2214-5818
ExternalDocumentID oai_doaj_org_article_bd6eff62c8954d709ad230f383126945
10_1016_j_ejrh_2024_101810
S2214581824001587
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ADVLN
AFJKZ
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c443t-f2d15277b739287208d94dc5da1e2fea235f637950aba2ba8362312eec23ed3d3
IEDL.DBID DOA
ISSN 2214-5818
IngestDate Wed Aug 27 01:27:17 EDT 2025
Fri Aug 22 20:23:58 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 01:22:57 EDT 2025
Tue Jun 18 08:51:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Regionalization
Stormwater control
Spatial distribution
Rainwater harvesting
Water saving
Economic profits
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-f2d15277b739287208d94dc5da1e2fea235f637950aba2ba8362312eec23ed3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/bd6eff62c8954d709ad230f383126945
PQID 3206185391
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_bd6eff62c8954d709ad230f383126945
proquest_miscellaneous_3206185391
crossref_citationtrail_10_1016_j_ejrh_2024_101810
crossref_primary_10_1016_j_ejrh_2024_101810
elsevier_sciencedirect_doi_10_1016_j_ejrh_2024_101810
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of hydrology. Regional studies
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Cun, Zhang, Che, Sun (bib14) 2019; 190
Rahman, Snook, Haque, Hajani (bib38) 2020; 261
Sang, Yang (bib42) 2016; 85
Mitchell (bib34) 2007; 21
Zhong, Tong, Crosson, Zhang (bib55) 2022; 223
Londra, Theocharis, Baltas, Tsihrintzis (bib31) 2015; 29
Allen R.G., Pereira L.S., Raes D., Smith M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, Italy.
Gikas, Tsihrintzis (bib18) 2012; 466–467
Dallman, Chaudhry, Muleta, Lee (bib15) 2016; 30
Burns, Fletcher, Walsh, Ladson, Hatt (bib8) 2012; 105
Campisano, D’Amico, Modica (bib9) 2017; 9
Liuzzo, Notaro, Freni (bib30) 2016; 8
Zhang, Hu (bib51) 2014; 28
Hajani, Rahman (bib19) 2014; 111
Zavala, Prieto, Rojas (bib50) 2018; 18
Hashim, Hudzori, Yusop, Ho (bib22) 2013; 80
Liaw, Tsai (bib29) 2004; 40
Zhang, Zhang, Yue, Jing (bib54) 2019; 665
Andrade, Maia, Lucio (bib5) 2017; 545
Yang, Sang, Sivakumar, Chan, Pan (bib48) 2020; 591
Haque, Rahman, Samali (bib21) 2016; 137
Zhang, Jing, Yue, Wang (bib52) 2020; 253
Campisano, Modica (bib10) 2012; 63
Sample, Liu (bib40) 2014; 75
Bocanegra-Martínez, Ponce-Ortega, Nápoles-Rivera, Serna-González, Castro-Montoya, El-Halwagi (bib6) 2014; 84
Fewkes, Butler (bib16) 2000; 21
Burns, Fletcher, Duncan, Hatt, Ladson, Walsh (bib7) 2015; 29
Silva, Sousa, Carvalho (bib43) 2015; 94
Ali, Sang (bib1) 2023; 89
Helmreich, Horn (bib23) 2009; 248
Jing, Zhang, Zhang, Wang (bib25) 2017; 126
Melville-Shreeve, Ward, Butler (bib32) 2016; 8
Chen, Zhang (bib13) 2021; 21
Steffen (bib45) 2013; 49
Ali, Zhang, Chandio (bib2) 2021; 280
Pelak, Porporato (bib37) 2016; 541
Kiprop, Lagat, Meshenga, Macharia (bib28) 2015; 6
Hanson (bib20) 2010
Campisano, Modica (bib11) 2016; 18
Jamali, Bach, Deletic (bib24) 2020; 171
Zuo, Liu, Zheng (bib56) 2010; 35
Sang, Sun, Singh, Xie, Sun (bib41) 2018; 22
Stec, A., Zelenˇáková, M., 2019. An Analysis of the Effectiveness of Two Rainwater Harvesting Systems Located in Central Eastern Europe. http://www.mdpi.com/journal/water.
Ali, Zhang, Yue (bib3) 2020; 259
Geraldi, Ghisi (bib17) 2018; 133
Palla, Gnecco, La Barbera (bib36) 2017; 191
Mini, Hogue, Pincetl (bib33) 2014; 127
WMO, 1989. Calculation of Monthly and Annual 30-year Standard Normal, vol. 10. World Meteorological Organization, Geneva. WMO, technical document, n. 341; WCDP.
Okoye, Solyal, Akıntuğ (bib35) 2015; 104
Zhang, Zhang, Jing, Wang, Wang, Yue (bib53) 2018; 196
Raimondi, Quinn, Abhijith, Becciu (bib39) 2023; 15
Tam, Tam, Zeng (bib46) 2010; 54
Chan, Chen, Gu, Peng, Sang (bib12) 2022; 3
Kim, Teh, Humphrey, Hofman (bib27) 2021; 280
Jing, Zhang, Zhang, Wang, Yue (bib26) 2018; 32
Yue, Zhang, Zhang, Zhang, Li (bib49) 2020; 269
Campisano (10.1016/j.ejrh.2024.101810_bib11) 2016; 18
Kiprop (10.1016/j.ejrh.2024.101810_bib28) 2015; 6
Zhang (10.1016/j.ejrh.2024.101810_bib53) 2018; 196
Jing (10.1016/j.ejrh.2024.101810_bib25) 2017; 126
Silva (10.1016/j.ejrh.2024.101810_bib43) 2015; 94
Jing (10.1016/j.ejrh.2024.101810_bib26) 2018; 32
Jamali (10.1016/j.ejrh.2024.101810_bib24) 2020; 171
Hanson (10.1016/j.ejrh.2024.101810_bib20) 2010
Helmreich (10.1016/j.ejrh.2024.101810_bib23) 2009; 248
Hajani (10.1016/j.ejrh.2024.101810_bib19) 2014; 111
Liaw (10.1016/j.ejrh.2024.101810_bib29) 2004; 40
Andrade (10.1016/j.ejrh.2024.101810_bib5) 2017; 545
Sang (10.1016/j.ejrh.2024.101810_bib41) 2018; 22
Zhang (10.1016/j.ejrh.2024.101810_bib51) 2014; 28
Raimondi (10.1016/j.ejrh.2024.101810_bib39) 2023; 15
Mini (10.1016/j.ejrh.2024.101810_bib33) 2014; 127
Kim (10.1016/j.ejrh.2024.101810_bib27) 2021; 280
Haque (10.1016/j.ejrh.2024.101810_bib21) 2016; 137
Ali (10.1016/j.ejrh.2024.101810_bib1) 2023; 89
10.1016/j.ejrh.2024.101810_bib4
Hashim (10.1016/j.ejrh.2024.101810_bib22) 2013; 80
Yue (10.1016/j.ejrh.2024.101810_bib49) 2020; 269
Zuo (10.1016/j.ejrh.2024.101810_bib56) 2010; 35
Campisano (10.1016/j.ejrh.2024.101810_bib9) 2017; 9
10.1016/j.ejrh.2024.101810_bib47
Geraldi (10.1016/j.ejrh.2024.101810_bib17) 2018; 133
Pelak (10.1016/j.ejrh.2024.101810_bib37) 2016; 541
10.1016/j.ejrh.2024.101810_bib44
Ali (10.1016/j.ejrh.2024.101810_bib2) 2021; 280
Sample (10.1016/j.ejrh.2024.101810_bib40) 2014; 75
Zavala (10.1016/j.ejrh.2024.101810_bib50) 2018; 18
Zhong (10.1016/j.ejrh.2024.101810_bib55) 2022; 223
Palla (10.1016/j.ejrh.2024.101810_bib36) 2017; 191
Londra (10.1016/j.ejrh.2024.101810_bib31) 2015; 29
Rahman (10.1016/j.ejrh.2024.101810_bib38) 2020; 261
Steffen (10.1016/j.ejrh.2024.101810_bib45) 2013; 49
Okoye (10.1016/j.ejrh.2024.101810_bib35) 2015; 104
Zhang (10.1016/j.ejrh.2024.101810_bib52) 2020; 253
Chen (10.1016/j.ejrh.2024.101810_bib13) 2021; 21
Yang (10.1016/j.ejrh.2024.101810_bib48) 2020; 591
Burns (10.1016/j.ejrh.2024.101810_bib7) 2015; 29
Burns (10.1016/j.ejrh.2024.101810_bib8) 2012; 105
Gikas (10.1016/j.ejrh.2024.101810_bib18) 2012; 466–467
Liuzzo (10.1016/j.ejrh.2024.101810_bib30) 2016; 8
Ali (10.1016/j.ejrh.2024.101810_bib3) 2020; 259
Dallman (10.1016/j.ejrh.2024.101810_bib15) 2016; 30
Fewkes (10.1016/j.ejrh.2024.101810_bib16) 2000; 21
Sang (10.1016/j.ejrh.2024.101810_bib42) 2016; 85
Zhang (10.1016/j.ejrh.2024.101810_bib54) 2019; 665
Bocanegra-Martínez (10.1016/j.ejrh.2024.101810_bib6) 2014; 84
Melville-Shreeve (10.1016/j.ejrh.2024.101810_bib32) 2016; 8
Campisano (10.1016/j.ejrh.2024.101810_bib10) 2012; 63
Tam (10.1016/j.ejrh.2024.101810_bib46) 2010; 54
Mitchell (10.1016/j.ejrh.2024.101810_bib34) 2007; 21
Chan (10.1016/j.ejrh.2024.101810_bib12) 2022; 3
Cun (10.1016/j.ejrh.2024.101810_bib14) 2019; 190
References_xml – volume: 29
  start-page: 4357
  year: 2015
  end-page: 4377
  ident: bib31
  article-title: Optimal sizing of rainwater harvesting tanks for domestic use in Greece
  publication-title: Water Resour. Manag.
– volume: 84
  start-page: 44
  year: 2014
  end-page: 56
  ident: bib6
  article-title: Optimal design of rainwater collecting systems for domestic use into a residential development
  publication-title: Resour. Conserv. Recycl.
– volume: 22
  start-page: 757
  year: 2018
  end-page: 766
  ident: bib41
  article-title: A discrete wavelet approach to identifying non-monotonic trend pattern of hydroclimate data
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 261
  year: 2020
  ident: bib38
  article-title: Use of design curves in the implementation of a rainwater harvesting system
  publication-title: J. Clean. Prod.
– volume: 28
  start-page: 671
  year: 2014
  end-page: 682
  ident: bib51
  article-title: Effectiveness of rainwater harvesting in runoff volume reduction in a planned industrial park, China
  publication-title: Water Resour. Manag.
– volume: 8
  start-page: 129
  year: 2016
  ident: bib32
  article-title: Rainwater harvesting typologies for UK houses: a multi criteria analysis of system configurations
  publication-title: Water
– volume: 21
  start-page: 99
  year: 2000
  end-page: 106
  ident: bib16
  article-title: Simulating the performance of rainwater collection systems using behavioural models
  publication-title: Build. Serv. Eng. Res. Technol.
– reference: WMO, 1989. Calculation of Monthly and Annual 30-year Standard Normal, vol. 10. World Meteorological Organization, Geneva. WMO, technical document, n. 341; WCDP.
– volume: 21
  start-page: 386
  year: 2021
  end-page: 400
  ident: bib13
  article-title: Water saving potential and economic viability assessment of rainwater harvesting system for four different climatic regions in China
  publication-title: Water Supply
– volume: 171
  year: 2020
  ident: bib24
  article-title: Rainwater harvesting for urban flood management-an integrated modelling framework
  publication-title: Water Res
– volume: 591
  year: 2020
  ident: bib48
  article-title: Challenges in urban stormwater management in Chinese cities: a hydrologic perspective
  publication-title: J. Hydrol.
– volume: 29
  start-page: 152
  year: 2015
  end-page: 160
  ident: bib7
  article-title: The performance of rainwater tanks for stormwater retention and water supply at the household scale: an empirical study
  publication-title: Hydrol. Process.
– volume: 3
  start-page: 99
  year: 2022
  end-page: 101
  ident: bib12
  article-title: Transformation towards resilient sponge city in China
  publication-title: Nat. Rev. Earth Environ.
– volume: 253
  year: 2020
  ident: bib52
  article-title: Performance assessment of rainwater harvesting systems: influence of operating algorithm, length and temporal scale of rainfall time series
  publication-title: J. Clean. Prod.
– start-page: 485
  year: 2010
  end-page: 494
  ident: bib20
  article-title: Rainwater harvesting performance in a changing climate
  publication-title: World Environ. Water Resour. Congr.
– volume: 30
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib15
  article-title: The value of Rain: benefit cost analysis of rainwater harvesting systems
  publication-title: Water Resour. Manag.
– volume: 35
  start-page: 195
  year: 2010
  end-page: 209
  ident: bib56
  article-title: Cost-benefit analysis for urban rainwater harvesting in Beijing
  publication-title: Water Int
– volume: 63
  start-page: 9
  year: 2012
  end-page: 16
  ident: bib10
  article-title: Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily
  publication-title: Resour. Conserv. Recycl.
– volume: 54
  start-page: 178
  year: 2010
  end-page: 186
  ident: bib46
  article-title: Cost effectiveness and tradeoff on the use of rainwater tank: an empirical study in Australian residential decision-making
  publication-title: Resour. Conserv. Recycl.
– volume: 280
  year: 2021
  ident: bib2
  article-title: Impacts of rainfall change on stormwater control and water saving performance of rainwater harvesting systems
  publication-title: J. Environ. Manag.
– volume: 94
  start-page: 21
  year: 2015
  end-page: 34
  ident: bib43
  article-title: Evaluation of rainwater harvesting in Portugal: application to single-family residences
  publication-title: Resour. Conserv. Recycl.
– volume: 105
  start-page: 230
  year: 2012
  end-page: 240
  ident: bib8
  article-title: Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform
  publication-title: Landsc. Urban Plann.
– reference: Stec, A., Zelenˇáková, M., 2019. An Analysis of the Effectiveness of Two Rainwater Harvesting Systems Located in Central Eastern Europe. http://www.mdpi.com/journal/water.
– volume: 466–467
  start-page: 115
  year: 2012
  end-page: 126
  ident: bib18
  article-title: Assessment of water quality of first-flush roof runoff and harvested rainwater
  publication-title: J. Hydrol.
– volume: 191
  start-page: 297
  year: 2017
  end-page: 305
  ident: bib36
  article-title: The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale
  publication-title: J. Environ. Manag.
– volume: 111
  start-page: 35
  year: 2014
  end-page: 41
  ident: bib19
  article-title: Rainwater utilization from roof catchments in arid regions: a case study for Australia
  publication-title: J. Arid Environ.
– volume: 18
  start-page: 1946
  year: 2018
  end-page: 1955
  ident: bib50
  article-title: Rainwater harvesting as an alternative for water supply in regions with high water stress
  publication-title: Water Supply
– volume: 259
  start-page: 120
  year: 2020
  end-page: 829
  ident: bib3
  article-title: Environmental and economic assessment of rainwater harvesting systems under five climatic conditions of Pakistan
  publication-title: J. Clean. Prod.
– volume: 40
  start-page: 901
  year: 2004
  end-page: 912
  ident: bib29
  article-title: Optimum storage volume of rooftop rainwater harvesting systems for domestic use
  publication-title: J. Am. Water Resour. Assoc
– volume: 89
  year: 2023
  ident: bib1
  article-title: Implementing rainwater harvesting systems as a novel approach for saving water and energy in flat urban areas
  publication-title: Sustain. Cities Soc.
– volume: 269
  year: 2020
  ident: bib49
  article-title: Variation of representative rainfall time series length for rainwater harvesting modelling in different climatic zones
  publication-title: J. Environ. Manag.
– reference: Allen R.G., Pereira L.S., Raes D., Smith M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, Italy.
– volume: 21
  start-page: 2850
  year: 2007
  end-page: 2861
  ident: bib34
  article-title: How important is the selection of computational analysis method to the accuracy of rainwater tank behavior modelling
  publication-title: Hydrol. Process.
– volume: 15
  start-page: 1518
  year: 2023
  ident: bib39
  article-title: Rainwater harvesting and treatment: state of the art and perspectives
  publication-title: Water
– volume: 6
  start-page: 102
  year: 2015
  end-page: 107
  ident: bib28
  article-title: Determining the economic value of irrigation water in Kerio Valley Basin (Kenya)
  publication-title: Residual Value Method. J. Econ. Sustain. Dev.
– volume: 665
  start-page: 262
  year: 2019
  end-page: 274
  ident: bib54
  article-title: Impacts of climate change on urban rainwater harvesting systems
  publication-title: Sci. Total Environ.
– volume: 49
  start-page: 810
  year: 2013
  end-page: 824
  ident: bib45
  article-title: Water supply and stormwater management benefits of residential rainwater harvesting in U.S cities
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 223
  year: 2022
  ident: bib55
  article-title: A GIS-based approach to assessing the capacity of rainwater harvesting for addressing outdoor irrigation
  publication-title: Landsc. Urban Plann.
– volume: 133
  start-page: 231
  year: 2018
  end-page: 241
  ident: bib17
  article-title: Assessment of the length of rainfall time series for rainwater harvesting in buildings
  publication-title: Resour. Conserv. Recycl.
– volume: 104
  start-page: 131
  year: 2015
  end-page: 140
  ident: bib35
  article-title: Optimal sizing of storage tanks in domestic rainwater harvesting systems: a linear programming approach
  publication-title: Resour. Conserv. Recycl.
– volume: 127
  start-page: 124
  year: 2014
  end-page: 135
  ident: bib33
  article-title: Estimation of residential outdoor water use in Los Angeles, California
  publication-title: Landsc. Urban Plann.
– volume: 85
  start-page: 1291
  year: 2016
  end-page: 1294
  ident: bib42
  article-title: Urban waterlogs control in China: more effective strategies and actions are needed
  publication-title: Nat. Haz.
– volume: 75
  start-page: 174
  year: 2014
  end-page: 194
  ident: bib40
  article-title: Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture
  publication-title: J. Clean. Prod.
– volume: 545
  start-page: 163
  year: 2017
  end-page: 171
  ident: bib5
  article-title: Relevance of hydrological variables in water- saving efficiency of domestic rainwater tanks: multivariate statistical analysis
  publication-title: J. Hydrol.
– volume: 196
  start-page: 1341
  year: 2018
  end-page: 1355
  ident: bib53
  article-title: Water saving efficiency and reliability of rainwater harvesting systems in the context of climate change
  publication-title: J. Clean. Prod.
– volume: 280
  year: 2021
  ident: bib27
  article-title: Optimal storage sizing for indoor arena rainwater harvesting: hydraulic simulation and economic assessment
  publication-title: J. Environ. Manag.
– volume: 248
  start-page: 118
  year: 2009
  end-page: 124
  ident: bib23
  article-title: Opportunities in rainwater harvesting
  publication-title: Desalination
– volume: 541
  start-page: 1340
  year: 2016
  end-page: 1347
  ident: bib37
  article-title: Sizing a rainwater harvesting cistern by minimizing costs
  publication-title: J. Hydrol.
– volume: 190
  year: 2019
  ident: bib14
  article-title: Review of urban drainage and stormwater management in ancient China
  publication-title: Landsc. Urban Plann.
– volume: 137
  start-page: 60
  year: 2016
  end-page: 69
  ident: bib21
  article-title: Evaluation of climate change impacts on rainwater harvesting
  publication-title: J. Clean. Prod.
– volume: 80
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib22
  article-title: Simulation based programming for optimization of large-scale rainwater harvesting system: Malaysia case study
  publication-title: Resour. Conserv. Recycl.
– volume: 126
  start-page: 74
  year: 2017
  end-page: 85
  ident: bib25
  article-title: Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China
  publication-title: Resour. Conserv. Recycl.
– volume: 9
  year: 2017
  ident: bib9
  article-title: Water saving and cost analysis of large scale implementation of domestic rainwater harvesting in minor Mediterranean islands
  publication-title: Water
– volume: 8
  start-page: 20
  year: 2016
  ident: bib30
  article-title: A reliability analysis of a rainfall harvesting system in southern Italy
  publication-title: Water
– volume: 32
  start-page: 2649
  year: 2018
  end-page: 2664
  ident: bib26
  article-title: Analysis and modelling of stormwater volume control performance of rainwater harvesting systems in four climatic zones of China
  publication-title: Water Resour. Manag.
– volume: 18
  start-page: 23
  year: 2016
  end-page: 32
  ident: bib11
  article-title: Rainwater harvesting as source control option to reduce roof runoff peaks to downstream drainage systems
  publication-title: J. Hydroinf.
– volume: 29
  start-page: 4357
  issue: 12
  year: 2015
  ident: 10.1016/j.ejrh.2024.101810_bib31
  article-title: Optimal sizing of rainwater harvesting tanks for domestic use in Greece
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1064-1
– volume: 191
  start-page: 297
  year: 2017
  ident: 10.1016/j.ejrh.2024.101810_bib36
  article-title: The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.01.025
– volume: 591
  year: 2020
  ident: 10.1016/j.ejrh.2024.101810_bib48
  article-title: Challenges in urban stormwater management in Chinese cities: a hydrologic perspective
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125314
– volume: 6
  start-page: 102
  year: 2015
  ident: 10.1016/j.ejrh.2024.101810_bib28
  article-title: Determining the economic value of irrigation water in Kerio Valley Basin (Kenya)
  publication-title: Residual Value Method. J. Econ. Sustain. Dev.
– volume: 75
  start-page: 174
  year: 2014
  ident: 10.1016/j.ejrh.2024.101810_bib40
  article-title: Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.03.075
– volume: 126
  start-page: 74
  year: 2017
  ident: 10.1016/j.ejrh.2024.101810_bib25
  article-title: Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2017.07.027
– volume: 32
  start-page: 2649
  issue: 2
  year: 2018
  ident: 10.1016/j.ejrh.2024.101810_bib26
  article-title: Analysis and modelling of stormwater volume control performance of rainwater harvesting systems in four climatic zones of China
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-1950-4
– volume: 8
  start-page: 129
  issue: 4
  year: 2016
  ident: 10.1016/j.ejrh.2024.101810_bib32
  article-title: Rainwater harvesting typologies for UK houses: a multi criteria analysis of system configurations
  publication-title: Water
  doi: 10.3390/w8040129
– volume: 280
  year: 2021
  ident: 10.1016/j.ejrh.2024.101810_bib2
  article-title: Impacts of rainfall change on stormwater control and water saving performance of rainwater harvesting systems
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111850
– volume: 63
  start-page: 9
  year: 2012
  ident: 10.1016/j.ejrh.2024.101810_bib10
  article-title: Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2012.03.007
– volume: 665
  start-page: 262
  year: 2019
  ident: 10.1016/j.ejrh.2024.101810_bib54
  article-title: Impacts of climate change on urban rainwater harvesting systems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.135
– volume: 280
  year: 2021
  ident: 10.1016/j.ejrh.2024.101810_bib27
  article-title: Optimal storage sizing for indoor arena rainwater harvesting: hydraulic simulation and economic assessment
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111847
– start-page: 485
  year: 2010
  ident: 10.1016/j.ejrh.2024.101810_bib20
  article-title: Rainwater harvesting performance in a changing climate
  publication-title: World Environ. Water Resour. Congr.
– volume: 171
  year: 2020
  ident: 10.1016/j.ejrh.2024.101810_bib24
  article-title: Rainwater harvesting for urban flood management-an integrated modelling framework
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.115372
– volume: 3
  start-page: 99
  issue: 2
  year: 2022
  ident: 10.1016/j.ejrh.2024.101810_bib12
  article-title: Transformation towards resilient sponge city in China
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-021-00251-y
– volume: 21
  start-page: 386
  year: 2021
  ident: 10.1016/j.ejrh.2024.101810_bib13
  article-title: Water saving potential and economic viability assessment of rainwater harvesting system for four different climatic regions in China
  publication-title: Water Supply
  doi: 10.2166/ws.2020.307
– volume: 80
  start-page: 1
  year: 2013
  ident: 10.1016/j.ejrh.2024.101810_bib22
  article-title: Simulation based programming for optimization of large-scale rainwater harvesting system: Malaysia case study
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2013.05.001
– volume: 21
  start-page: 2850
  year: 2007
  ident: 10.1016/j.ejrh.2024.101810_bib34
  article-title: How important is the selection of computational analysis method to the accuracy of rainwater tank behavior modelling
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6499
– volume: 29
  start-page: 152
  year: 2015
  ident: 10.1016/j.ejrh.2024.101810_bib7
  article-title: The performance of rainwater tanks for stormwater retention and water supply at the household scale: an empirical study
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10142
– volume: 545
  start-page: 163
  year: 2017
  ident: 10.1016/j.ejrh.2024.101810_bib5
  article-title: Relevance of hydrological variables in water- saving efficiency of domestic rainwater tanks: multivariate statistical analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.12.027
– volume: 15
  start-page: 1518
  issue: 8
  year: 2023
  ident: 10.1016/j.ejrh.2024.101810_bib39
  article-title: Rainwater harvesting and treatment: state of the art and perspectives
  publication-title: Water
  doi: 10.3390/w15081518
– volume: 248
  start-page: 118
  issue: 1–3
  year: 2009
  ident: 10.1016/j.ejrh.2024.101810_bib23
  article-title: Opportunities in rainwater harvesting
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.05.046
– volume: 196
  start-page: 1341
  year: 2018
  ident: 10.1016/j.ejrh.2024.101810_bib53
  article-title: Water saving efficiency and reliability of rainwater harvesting systems in the context of climate change
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.06.133
– volume: 253
  year: 2020
  ident: 10.1016/j.ejrh.2024.101810_bib52
  article-title: Performance assessment of rainwater harvesting systems: influence of operating algorithm, length and temporal scale of rainfall time series
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120044
– volume: 9
  year: 2017
  ident: 10.1016/j.ejrh.2024.101810_bib9
  article-title: Water saving and cost analysis of large scale implementation of domestic rainwater harvesting in minor Mediterranean islands
  publication-title: Water
  doi: 10.3390/w9120916
– volume: 40
  start-page: 901
  year: 2004
  ident: 10.1016/j.ejrh.2024.101810_bib29
  article-title: Optimum storage volume of rooftop rainwater harvesting systems for domestic use
  publication-title: J. Am. Water Resour. Assoc
  doi: 10.1111/j.1752-1688.2004.tb01054.x
– volume: 466–467
  start-page: 115
  year: 2012
  ident: 10.1016/j.ejrh.2024.101810_bib18
  article-title: Assessment of water quality of first-flush roof runoff and harvested rainwater
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.08.020
– volume: 261
  year: 2020
  ident: 10.1016/j.ejrh.2024.101810_bib38
  article-title: Use of design curves in the implementation of a rainwater harvesting system
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121292
– volume: 133
  start-page: 231
  year: 2018
  ident: 10.1016/j.ejrh.2024.101810_bib17
  article-title: Assessment of the length of rainfall time series for rainwater harvesting in buildings
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2018.02.007
– volume: 111
  start-page: 35
  year: 2014
  ident: 10.1016/j.ejrh.2024.101810_bib19
  article-title: Rainwater utilization from roof catchments in arid regions: a case study for Australia
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2014.07.007
– volume: 541
  start-page: 1340
  year: 2016
  ident: 10.1016/j.ejrh.2024.101810_bib37
  article-title: Sizing a rainwater harvesting cistern by minimizing costs
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.08.036
– ident: 10.1016/j.ejrh.2024.101810_bib47
– volume: 105
  start-page: 230
  issue: 3
  year: 2012
  ident: 10.1016/j.ejrh.2024.101810_bib8
  article-title: Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2011.12.012
– volume: 30
  start-page: 1
  year: 2016
  ident: 10.1016/j.ejrh.2024.101810_bib15
  article-title: The value of Rain: benefit cost analysis of rainwater harvesting systems
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1429-0
– volume: 35
  start-page: 195
  year: 2010
  ident: 10.1016/j.ejrh.2024.101810_bib56
  article-title: Cost-benefit analysis for urban rainwater harvesting in Beijing
  publication-title: Water Int
  doi: 10.1080/02508061003667271
– volume: 269
  year: 2020
  ident: 10.1016/j.ejrh.2024.101810_bib49
  article-title: Variation of representative rainfall time series length for rainwater harvesting modelling in different climatic zones
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.110731
– volume: 8
  start-page: 20
  issue: 1
  year: 2016
  ident: 10.1016/j.ejrh.2024.101810_bib30
  article-title: A reliability analysis of a rainfall harvesting system in southern Italy
  publication-title: Water
  doi: 10.3390/w8010018
– volume: 127
  start-page: 124
  year: 2014
  ident: 10.1016/j.ejrh.2024.101810_bib33
  article-title: Estimation of residential outdoor water use in Los Angeles, California
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2014.04.007
– volume: 18
  start-page: 1946
  issue: 6
  year: 2018
  ident: 10.1016/j.ejrh.2024.101810_bib50
  article-title: Rainwater harvesting as an alternative for water supply in regions with high water stress
  publication-title: Water Supply
  doi: 10.2166/ws.2018.018
– ident: 10.1016/j.ejrh.2024.101810_bib4
– volume: 21
  start-page: 99
  issue: 2
  year: 2000
  ident: 10.1016/j.ejrh.2024.101810_bib16
  article-title: Simulating the performance of rainwater collection systems using behavioural models
  publication-title: Build. Serv. Eng. Res. Technol.
  doi: 10.1177/014362440002100204
– volume: 94
  start-page: 21
  year: 2015
  ident: 10.1016/j.ejrh.2024.101810_bib43
  article-title: Evaluation of rainwater harvesting in Portugal: application to single-family residences
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2014.11.004
– ident: 10.1016/j.ejrh.2024.101810_bib44
  doi: 10.3390/w11030458
– volume: 28
  start-page: 671
  year: 2014
  ident: 10.1016/j.ejrh.2024.101810_bib51
  article-title: Effectiveness of rainwater harvesting in runoff volume reduction in a planned industrial park, China
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-013-0507-9
– volume: 104
  start-page: 131
  year: 2015
  ident: 10.1016/j.ejrh.2024.101810_bib35
  article-title: Optimal sizing of storage tanks in domestic rainwater harvesting systems: a linear programming approach
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2015.08.015
– volume: 84
  start-page: 44
  year: 2014
  ident: 10.1016/j.ejrh.2024.101810_bib6
  article-title: Optimal design of rainwater collecting systems for domestic use into a residential development
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2014.01.001
– volume: 85
  start-page: 1291
  issue: 2
  year: 2016
  ident: 10.1016/j.ejrh.2024.101810_bib42
  article-title: Urban waterlogs control in China: more effective strategies and actions are needed
  publication-title: Nat. Haz.
  doi: 10.1007/s11069-016-2614-4
– volume: 89
  year: 2023
  ident: 10.1016/j.ejrh.2024.101810_bib1
  article-title: Implementing rainwater harvesting systems as a novel approach for saving water and energy in flat urban areas
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2022.104304
– volume: 137
  start-page: 60
  year: 2016
  ident: 10.1016/j.ejrh.2024.101810_bib21
  article-title: Evaluation of climate change impacts on rainwater harvesting
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.038
– volume: 190
  year: 2019
  ident: 10.1016/j.ejrh.2024.101810_bib14
  article-title: Review of urban drainage and stormwater management in ancient China
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2019.103600
– volume: 49
  start-page: 810
  year: 2013
  ident: 10.1016/j.ejrh.2024.101810_bib45
  article-title: Water supply and stormwater management benefits of residential rainwater harvesting in U.S cities
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/jawr.12038
– volume: 54
  start-page: 178
  year: 2010
  ident: 10.1016/j.ejrh.2024.101810_bib46
  article-title: Cost effectiveness and tradeoff on the use of rainwater tank: an empirical study in Australian residential decision-making
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2009.07.014
– volume: 223
  year: 2022
  ident: 10.1016/j.ejrh.2024.101810_bib55
  article-title: A GIS-based approach to assessing the capacity of rainwater harvesting for addressing outdoor irrigation
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2022.104416
– volume: 259
  start-page: 120
  year: 2020
  ident: 10.1016/j.ejrh.2024.101810_bib3
  article-title: Environmental and economic assessment of rainwater harvesting systems under five climatic conditions of Pakistan
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120829
– volume: 22
  start-page: 757
  year: 2018
  ident: 10.1016/j.ejrh.2024.101810_bib41
  article-title: A discrete wavelet approach to identifying non-monotonic trend pattern of hydroclimate data
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-757-2018
– volume: 18
  start-page: 23
  issue: 1
  year: 2016
  ident: 10.1016/j.ejrh.2024.101810_bib11
  article-title: Rainwater harvesting as source control option to reduce roof runoff peaks to downstream drainage systems
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2015.133
SSID ssj0001878960
Score 2.3013518
Snippet Beijing Region Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily...
Beijing Region Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily...
Study region: Beijing Region Study focus: Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101810
SubjectTerms China
cost benefit analysis
Economic profits
rain
Rainwater harvesting
Regionalization
Spatial distribution
stormwater
Stormwater control
water management
Water saving
Title Regionalization of environmental and economic performances of rainwater harvesting systems
URI https://dx.doi.org/10.1016/j.ejrh.2024.101810
https://www.proquest.com/docview/3206185391
https://doaj.org/article/bd6eff62c8954d709ad230f383126945
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-yi17ET5xfVPAm1TZpm_ao4hiKguJgeAlpPjaHdKPbEP97Xz42Nw_z4qWHkjTh5aXv95L3fg-h85THZSQKHUpwP4yDkoccUxUWRCWpAeTK8nQ_PmXtTnLfTbsLpb5MTJijB3aCuyplprTOsMiLNJE0KrgE1KzBsYpNEqZlLwWbt-BM2dOVnOaAzX2WjAvoUoPa3D7g5NKyVEVLlsgS9i8ZpF-_ZmtvWlto0wPF4NpNcButqWoHrfua5f2vXfT2onr2HM9nUgZDHSykrUFfXslA-cTjYPSTITA2TU1piE8AmnXQ57Xl2qh6geN1Hu-hTuvu9bYd-koJoUgSMgk1lqY8LS0pwJ2c4iiXRSJFKnmssFYck1RnhBZpxEuOS56D2QL5KSUwUZJIso8a1bBSBygQUsaSl-AzY5IQoQEfSh3TTFADdTRuongmNSY8jbipZvHBZvFiA2YkzYykmZN0E13M-4wcicbK1jdmMeYtDQG2fQFqwbxasL_UoonS2VIyjyUcRoBPva8c_Gy27gw2mrk94ZUaTseMYIA-AG6K-PA_JniENsywLursGDUm9VSdAL6ZlKdWleH58Jx_A3fV-Lo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regionalization+of+environmental+and+economic+performances+of+rainwater+harvesting+systems&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Shahbaz+Ali&rft.au=Yan-Fang+Sang&rft.au=Moyuan+Yang&rft.au=Jiali+Shi&rft.date=2024-06-01&rft.pub=Elsevier&rft.eissn=2214-5818&rft.volume=53&rft.spage=101810&rft_id=info:doi/10.1016%2Fj.ejrh.2024.101810&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bd6eff62c8954d709ad230f383126945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon