Regionalization of environmental and economic performances of rainwater harvesting systems
Beijing Region Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and econom...
Saved in:
Published in | Journal of hydrology. Regional studies Vol. 53; p. 101810 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2214-5818 2214-5818 |
DOI | 10.1016/j.ejrh.2024.101810 |
Cover
Loading…
Abstract | Beijing Region
Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and economic performances of RHS by proposing a regionalization approach.
Higher water saving efficiency (WSE) and reliability (R) of RHS are linked with lower water demand, larger tank size and greater rainfall conditions. Differently, higher stormwater capture efficiency (SCE) is related to higher water demand, larger tank size and lower rainfall. The WSE and R of RHS demonstrate substantial regional differences; their maximized obtainable values closely depend on water demand scenarios and range from 9% to 99%, with smaller values in western mountain area but larger values in northeast suburban and central urban areas. The maximum obtainable values of SCE range from 61% to 100%, with higher values in western mountain area, but lower values in northeast suburban and central urban areas. A 10 m3 tank size can provide the highest benefit-cost ratio of RHS across the Beijing region. The regionalization approach proposed is a useful guidance for the implementation of RHS and sustainable urban water management, and thus it has the potential for wide uses in other regions with high rainfall gradients.
[Display omitted]
•A regionalization approach is proposed to explore RHS’ enviro-economic efficiency.•Northeast suburban-central urban area of Beijing is favorable for RHS’ water saving.•Western mountain area of Beijing is favorable for stormwater control from RHS.•Good economic performance of RHS is observed in northeast suburban area of Beijing. |
---|---|
AbstractList | Beijing Region
Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and economic performances of RHS by proposing a regionalization approach.
Higher water saving efficiency (WSE) and reliability (R) of RHS are linked with lower water demand, larger tank size and greater rainfall conditions. Differently, higher stormwater capture efficiency (SCE) is related to higher water demand, larger tank size and lower rainfall. The WSE and R of RHS demonstrate substantial regional differences; their maximized obtainable values closely depend on water demand scenarios and range from 9% to 99%, with smaller values in western mountain area but larger values in northeast suburban and central urban areas. The maximum obtainable values of SCE range from 61% to 100%, with higher values in western mountain area, but lower values in northeast suburban and central urban areas. A 10 m3 tank size can provide the highest benefit-cost ratio of RHS across the Beijing region. The regionalization approach proposed is a useful guidance for the implementation of RHS and sustainable urban water management, and thus it has the potential for wide uses in other regions with high rainfall gradients.
[Display omitted]
•A regionalization approach is proposed to explore RHS’ enviro-economic efficiency.•Northeast suburban-central urban area of Beijing is favorable for RHS’ water saving.•Western mountain area of Beijing is favorable for stormwater control from RHS.•Good economic performance of RHS is observed in northeast suburban area of Beijing. Study region: Beijing Region Study focus: Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and economic performances of RHS by proposing a regionalization approach. New hydrological insights for the region: Higher water saving efficiency (WSE) and reliability (R) of RHS are linked with lower water demand, larger tank size and greater rainfall conditions. Differently, higher stormwater capture efficiency (SCE) is related to higher water demand, larger tank size and lower rainfall. The WSE and R of RHS demonstrate substantial regional differences; their maximized obtainable values closely depend on water demand scenarios and range from 9% to 99%, with smaller values in western mountain area but larger values in northeast suburban and central urban areas. The maximum obtainable values of SCE range from 61% to 100%, with higher values in western mountain area, but lower values in northeast suburban and central urban areas. A 10 m3 tank size can provide the highest benefit-cost ratio of RHS across the Beijing region. The regionalization approach proposed is a useful guidance for the implementation of RHS and sustainable urban water management, and thus it has the potential for wide uses in other regions with high rainfall gradients. Beijing Region Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily rainfall records from 77 stations are used, and a hydro-economic model is adopted to examine regional water saving, stormwater control and economic performances of RHS by proposing a regionalization approach. Higher water saving efficiency (WSE) and reliability (R) of RHS are linked with lower water demand, larger tank size and greater rainfall conditions. Differently, higher stormwater capture efficiency (SCE) is related to higher water demand, larger tank size and lower rainfall. The WSE and R of RHS demonstrate substantial regional differences; their maximized obtainable values closely depend on water demand scenarios and range from 9% to 99%, with smaller values in western mountain area but larger values in northeast suburban and central urban areas. The maximum obtainable values of SCE range from 61% to 100%, with higher values in western mountain area, but lower values in northeast suburban and central urban areas. A 10 m³ tank size can provide the highest benefit-cost ratio of RHS across the Beijing region. The regionalization approach proposed is a useful guidance for the implementation of RHS and sustainable urban water management, and thus it has the potential for wide uses in other regions with high rainfall gradients. |
ArticleNumber | 101810 |
Author | Zhang, Shouhong Yang, Moyuan Ali, Shahbaz Shi, Jiali Sang, Yan-Fang |
Author_xml | – sequence: 1 givenname: Shahbaz surname: Ali fullname: Ali, Shahbaz organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 2 givenname: Yan-Fang surname: Sang fullname: Sang, Yan-Fang email: sangyf@igsnrr.ac.cn organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 3 givenname: Moyuan surname: Yang fullname: Yang, Moyuan organization: Beijing Water Science and Technology Institute, Beijing 100048, China – sequence: 4 givenname: Jiali surname: Shi fullname: Shi, Jiali organization: Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 5 givenname: Shouhong surname: Zhang fullname: Zhang, Shouhong organization: School of Soil and Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China |
BookMark | eNp9kU9rFTEUxQepYK39Al3N0s17JjfzJwNupGgtFARpN92E-5Kb1wwzyTNJn9RPb6ajIC66yuVyfofcc95WJz54qqoLzrac8e7DuKUxPmyBQbMsJGevqlMA3mxayeXJP_Ob6jylkbEi6uXQsdPq_jvtXfA4uV-Yy1AHW5M_uhj8TD7jVKM3Nengw-x0faBoQ5zRa0qLNKLzPzFTrB8wHill5_d1ekqZ5vSuem1xSnT-5z2r7r58vr38urn5dnV9-elmo5tG5I0Fw1vo-10vBpA9MGmGxujWICewhCBa24l-aBnuEHYoRQeCA5EGQUYYcVZdr74m4KgO0c0Yn1RAp54XIe4Vxuz0RGpnOrK2Ay2HtjE9G9CAYFbIYtgNTVu83q9ehxh-PJZ71OySpmlCT-ExKQGs47IVAy9SuUp1DClFskq7_JxhLqlMijO1tKNGtbSjlnbU2k5B4T_0769fhD6uEJUsj46iStpRKcK4SDqXY91L-G9itqtr |
CitedBy_id | crossref_primary_10_1007_s43615_025_00535_1 |
Cites_doi | 10.1007/s11269-015-1064-1 10.1016/j.jenvman.2017.01.025 10.1016/j.jhydrol.2020.125314 10.1016/j.jclepro.2014.03.075 10.1016/j.resconrec.2017.07.027 10.1007/s11269-018-1950-4 10.3390/w8040129 10.1016/j.jenvman.2020.111850 10.1016/j.resconrec.2012.03.007 10.1016/j.scitotenv.2019.02.135 10.1016/j.jenvman.2020.111847 10.1016/j.watres.2019.115372 10.1038/s43017-021-00251-y 10.2166/ws.2020.307 10.1016/j.resconrec.2013.05.001 10.1002/hyp.6499 10.1002/hyp.10142 10.1016/j.jhydrol.2016.12.027 10.3390/w15081518 10.1016/j.desal.2008.05.046 10.1016/j.jclepro.2018.06.133 10.1016/j.jclepro.2020.120044 10.3390/w9120916 10.1111/j.1752-1688.2004.tb01054.x 10.1016/j.jhydrol.2012.08.020 10.1016/j.jclepro.2020.121292 10.1016/j.resconrec.2018.02.007 10.1016/j.jaridenv.2014.07.007 10.1016/j.jhydrol.2016.08.036 10.1016/j.landurbplan.2011.12.012 10.1007/s11269-016-1429-0 10.1080/02508061003667271 10.1016/j.jenvman.2020.110731 10.3390/w8010018 10.1016/j.landurbplan.2014.04.007 10.2166/ws.2018.018 10.1177/014362440002100204 10.1016/j.resconrec.2014.11.004 10.3390/w11030458 10.1007/s11269-013-0507-9 10.1016/j.resconrec.2015.08.015 10.1016/j.resconrec.2014.01.001 10.1007/s11069-016-2614-4 10.1016/j.scs.2022.104304 10.1016/j.jclepro.2016.07.038 10.1016/j.landurbplan.2019.103600 10.1111/jawr.12038 10.1016/j.resconrec.2009.07.014 10.1016/j.landurbplan.2022.104416 10.1016/j.jclepro.2020.120829 10.5194/hess-22-757-2018 10.2166/hydro.2015.133 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.ejrh.2024.101810 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2214-5818 |
ExternalDocumentID | oai_doaj_org_article_bd6eff62c8954d709ad230f383126945 10_1016_j_ejrh_2024_101810 S2214581824001587 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ADVLN AFJKZ APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c443t-f2d15277b739287208d94dc5da1e2fea235f637950aba2ba8362312eec23ed3d3 |
IEDL.DBID | DOA |
ISSN | 2214-5818 |
IngestDate | Wed Aug 27 01:27:17 EDT 2025 Fri Aug 22 20:23:58 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 01:22:57 EDT 2025 Tue Jun 18 08:51:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regionalization Stormwater control Spatial distribution Rainwater harvesting Water saving Economic profits |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-f2d15277b739287208d94dc5da1e2fea235f637950aba2ba8362312eec23ed3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/bd6eff62c8954d709ad230f383126945 |
PQID | 3206185391 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bd6eff62c8954d709ad230f383126945 proquest_miscellaneous_3206185391 crossref_citationtrail_10_1016_j_ejrh_2024_101810 crossref_primary_10_1016_j_ejrh_2024_101810 elsevier_sciencedirect_doi_10_1016_j_ejrh_2024_101810 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 20240601 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology. Regional studies |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Cun, Zhang, Che, Sun (bib14) 2019; 190 Rahman, Snook, Haque, Hajani (bib38) 2020; 261 Sang, Yang (bib42) 2016; 85 Mitchell (bib34) 2007; 21 Zhong, Tong, Crosson, Zhang (bib55) 2022; 223 Londra, Theocharis, Baltas, Tsihrintzis (bib31) 2015; 29 Allen R.G., Pereira L.S., Raes D., Smith M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, Italy. Gikas, Tsihrintzis (bib18) 2012; 466–467 Dallman, Chaudhry, Muleta, Lee (bib15) 2016; 30 Burns, Fletcher, Walsh, Ladson, Hatt (bib8) 2012; 105 Campisano, D’Amico, Modica (bib9) 2017; 9 Liuzzo, Notaro, Freni (bib30) 2016; 8 Zhang, Hu (bib51) 2014; 28 Hajani, Rahman (bib19) 2014; 111 Zavala, Prieto, Rojas (bib50) 2018; 18 Hashim, Hudzori, Yusop, Ho (bib22) 2013; 80 Liaw, Tsai (bib29) 2004; 40 Zhang, Zhang, Yue, Jing (bib54) 2019; 665 Andrade, Maia, Lucio (bib5) 2017; 545 Yang, Sang, Sivakumar, Chan, Pan (bib48) 2020; 591 Haque, Rahman, Samali (bib21) 2016; 137 Zhang, Jing, Yue, Wang (bib52) 2020; 253 Campisano, Modica (bib10) 2012; 63 Sample, Liu (bib40) 2014; 75 Bocanegra-Martínez, Ponce-Ortega, Nápoles-Rivera, Serna-González, Castro-Montoya, El-Halwagi (bib6) 2014; 84 Fewkes, Butler (bib16) 2000; 21 Burns, Fletcher, Duncan, Hatt, Ladson, Walsh (bib7) 2015; 29 Silva, Sousa, Carvalho (bib43) 2015; 94 Ali, Sang (bib1) 2023; 89 Helmreich, Horn (bib23) 2009; 248 Jing, Zhang, Zhang, Wang (bib25) 2017; 126 Melville-Shreeve, Ward, Butler (bib32) 2016; 8 Chen, Zhang (bib13) 2021; 21 Steffen (bib45) 2013; 49 Ali, Zhang, Chandio (bib2) 2021; 280 Pelak, Porporato (bib37) 2016; 541 Kiprop, Lagat, Meshenga, Macharia (bib28) 2015; 6 Hanson (bib20) 2010 Campisano, Modica (bib11) 2016; 18 Jamali, Bach, Deletic (bib24) 2020; 171 Zuo, Liu, Zheng (bib56) 2010; 35 Sang, Sun, Singh, Xie, Sun (bib41) 2018; 22 Stec, A., Zelenˇáková, M., 2019. An Analysis of the Effectiveness of Two Rainwater Harvesting Systems Located in Central Eastern Europe. http://www.mdpi.com/journal/water. Ali, Zhang, Yue (bib3) 2020; 259 Geraldi, Ghisi (bib17) 2018; 133 Palla, Gnecco, La Barbera (bib36) 2017; 191 Mini, Hogue, Pincetl (bib33) 2014; 127 WMO, 1989. Calculation of Monthly and Annual 30-year Standard Normal, vol. 10. World Meteorological Organization, Geneva. WMO, technical document, n. 341; WCDP. Okoye, Solyal, Akıntuğ (bib35) 2015; 104 Zhang, Zhang, Jing, Wang, Wang, Yue (bib53) 2018; 196 Raimondi, Quinn, Abhijith, Becciu (bib39) 2023; 15 Tam, Tam, Zeng (bib46) 2010; 54 Chan, Chen, Gu, Peng, Sang (bib12) 2022; 3 Kim, Teh, Humphrey, Hofman (bib27) 2021; 280 Jing, Zhang, Zhang, Wang, Yue (bib26) 2018; 32 Yue, Zhang, Zhang, Zhang, Li (bib49) 2020; 269 Campisano (10.1016/j.ejrh.2024.101810_bib11) 2016; 18 Kiprop (10.1016/j.ejrh.2024.101810_bib28) 2015; 6 Zhang (10.1016/j.ejrh.2024.101810_bib53) 2018; 196 Jing (10.1016/j.ejrh.2024.101810_bib25) 2017; 126 Silva (10.1016/j.ejrh.2024.101810_bib43) 2015; 94 Jing (10.1016/j.ejrh.2024.101810_bib26) 2018; 32 Jamali (10.1016/j.ejrh.2024.101810_bib24) 2020; 171 Hanson (10.1016/j.ejrh.2024.101810_bib20) 2010 Helmreich (10.1016/j.ejrh.2024.101810_bib23) 2009; 248 Hajani (10.1016/j.ejrh.2024.101810_bib19) 2014; 111 Liaw (10.1016/j.ejrh.2024.101810_bib29) 2004; 40 Andrade (10.1016/j.ejrh.2024.101810_bib5) 2017; 545 Sang (10.1016/j.ejrh.2024.101810_bib41) 2018; 22 Zhang (10.1016/j.ejrh.2024.101810_bib51) 2014; 28 Raimondi (10.1016/j.ejrh.2024.101810_bib39) 2023; 15 Mini (10.1016/j.ejrh.2024.101810_bib33) 2014; 127 Kim (10.1016/j.ejrh.2024.101810_bib27) 2021; 280 Haque (10.1016/j.ejrh.2024.101810_bib21) 2016; 137 Ali (10.1016/j.ejrh.2024.101810_bib1) 2023; 89 10.1016/j.ejrh.2024.101810_bib4 Hashim (10.1016/j.ejrh.2024.101810_bib22) 2013; 80 Yue (10.1016/j.ejrh.2024.101810_bib49) 2020; 269 Zuo (10.1016/j.ejrh.2024.101810_bib56) 2010; 35 Campisano (10.1016/j.ejrh.2024.101810_bib9) 2017; 9 10.1016/j.ejrh.2024.101810_bib47 Geraldi (10.1016/j.ejrh.2024.101810_bib17) 2018; 133 Pelak (10.1016/j.ejrh.2024.101810_bib37) 2016; 541 10.1016/j.ejrh.2024.101810_bib44 Ali (10.1016/j.ejrh.2024.101810_bib2) 2021; 280 Sample (10.1016/j.ejrh.2024.101810_bib40) 2014; 75 Zavala (10.1016/j.ejrh.2024.101810_bib50) 2018; 18 Zhong (10.1016/j.ejrh.2024.101810_bib55) 2022; 223 Palla (10.1016/j.ejrh.2024.101810_bib36) 2017; 191 Londra (10.1016/j.ejrh.2024.101810_bib31) 2015; 29 Rahman (10.1016/j.ejrh.2024.101810_bib38) 2020; 261 Steffen (10.1016/j.ejrh.2024.101810_bib45) 2013; 49 Okoye (10.1016/j.ejrh.2024.101810_bib35) 2015; 104 Zhang (10.1016/j.ejrh.2024.101810_bib52) 2020; 253 Chen (10.1016/j.ejrh.2024.101810_bib13) 2021; 21 Yang (10.1016/j.ejrh.2024.101810_bib48) 2020; 591 Burns (10.1016/j.ejrh.2024.101810_bib7) 2015; 29 Burns (10.1016/j.ejrh.2024.101810_bib8) 2012; 105 Gikas (10.1016/j.ejrh.2024.101810_bib18) 2012; 466–467 Liuzzo (10.1016/j.ejrh.2024.101810_bib30) 2016; 8 Ali (10.1016/j.ejrh.2024.101810_bib3) 2020; 259 Dallman (10.1016/j.ejrh.2024.101810_bib15) 2016; 30 Fewkes (10.1016/j.ejrh.2024.101810_bib16) 2000; 21 Sang (10.1016/j.ejrh.2024.101810_bib42) 2016; 85 Zhang (10.1016/j.ejrh.2024.101810_bib54) 2019; 665 Bocanegra-Martínez (10.1016/j.ejrh.2024.101810_bib6) 2014; 84 Melville-Shreeve (10.1016/j.ejrh.2024.101810_bib32) 2016; 8 Campisano (10.1016/j.ejrh.2024.101810_bib10) 2012; 63 Tam (10.1016/j.ejrh.2024.101810_bib46) 2010; 54 Mitchell (10.1016/j.ejrh.2024.101810_bib34) 2007; 21 Chan (10.1016/j.ejrh.2024.101810_bib12) 2022; 3 Cun (10.1016/j.ejrh.2024.101810_bib14) 2019; 190 |
References_xml | – volume: 29 start-page: 4357 year: 2015 end-page: 4377 ident: bib31 article-title: Optimal sizing of rainwater harvesting tanks for domestic use in Greece publication-title: Water Resour. Manag. – volume: 84 start-page: 44 year: 2014 end-page: 56 ident: bib6 article-title: Optimal design of rainwater collecting systems for domestic use into a residential development publication-title: Resour. Conserv. Recycl. – volume: 22 start-page: 757 year: 2018 end-page: 766 ident: bib41 article-title: A discrete wavelet approach to identifying non-monotonic trend pattern of hydroclimate data publication-title: Hydrol. Earth Syst. Sci. – volume: 261 year: 2020 ident: bib38 article-title: Use of design curves in the implementation of a rainwater harvesting system publication-title: J. Clean. Prod. – volume: 28 start-page: 671 year: 2014 end-page: 682 ident: bib51 article-title: Effectiveness of rainwater harvesting in runoff volume reduction in a planned industrial park, China publication-title: Water Resour. Manag. – volume: 8 start-page: 129 year: 2016 ident: bib32 article-title: Rainwater harvesting typologies for UK houses: a multi criteria analysis of system configurations publication-title: Water – volume: 21 start-page: 99 year: 2000 end-page: 106 ident: bib16 article-title: Simulating the performance of rainwater collection systems using behavioural models publication-title: Build. Serv. Eng. Res. Technol. – reference: WMO, 1989. Calculation of Monthly and Annual 30-year Standard Normal, vol. 10. World Meteorological Organization, Geneva. WMO, technical document, n. 341; WCDP. – volume: 21 start-page: 386 year: 2021 end-page: 400 ident: bib13 article-title: Water saving potential and economic viability assessment of rainwater harvesting system for four different climatic regions in China publication-title: Water Supply – volume: 171 year: 2020 ident: bib24 article-title: Rainwater harvesting for urban flood management-an integrated modelling framework publication-title: Water Res – volume: 591 year: 2020 ident: bib48 article-title: Challenges in urban stormwater management in Chinese cities: a hydrologic perspective publication-title: J. Hydrol. – volume: 29 start-page: 152 year: 2015 end-page: 160 ident: bib7 article-title: The performance of rainwater tanks for stormwater retention and water supply at the household scale: an empirical study publication-title: Hydrol. Process. – volume: 3 start-page: 99 year: 2022 end-page: 101 ident: bib12 article-title: Transformation towards resilient sponge city in China publication-title: Nat. Rev. Earth Environ. – volume: 253 year: 2020 ident: bib52 article-title: Performance assessment of rainwater harvesting systems: influence of operating algorithm, length and temporal scale of rainfall time series publication-title: J. Clean. Prod. – start-page: 485 year: 2010 end-page: 494 ident: bib20 article-title: Rainwater harvesting performance in a changing climate publication-title: World Environ. Water Resour. Congr. – volume: 30 start-page: 1 year: 2016 end-page: 14 ident: bib15 article-title: The value of Rain: benefit cost analysis of rainwater harvesting systems publication-title: Water Resour. Manag. – volume: 35 start-page: 195 year: 2010 end-page: 209 ident: bib56 article-title: Cost-benefit analysis for urban rainwater harvesting in Beijing publication-title: Water Int – volume: 63 start-page: 9 year: 2012 end-page: 16 ident: bib10 article-title: Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily publication-title: Resour. Conserv. Recycl. – volume: 54 start-page: 178 year: 2010 end-page: 186 ident: bib46 article-title: Cost effectiveness and tradeoff on the use of rainwater tank: an empirical study in Australian residential decision-making publication-title: Resour. Conserv. Recycl. – volume: 280 year: 2021 ident: bib2 article-title: Impacts of rainfall change on stormwater control and water saving performance of rainwater harvesting systems publication-title: J. Environ. Manag. – volume: 94 start-page: 21 year: 2015 end-page: 34 ident: bib43 article-title: Evaluation of rainwater harvesting in Portugal: application to single-family residences publication-title: Resour. Conserv. Recycl. – volume: 105 start-page: 230 year: 2012 end-page: 240 ident: bib8 article-title: Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform publication-title: Landsc. Urban Plann. – reference: Stec, A., Zelenˇáková, M., 2019. An Analysis of the Effectiveness of Two Rainwater Harvesting Systems Located in Central Eastern Europe. http://www.mdpi.com/journal/water. – volume: 466–467 start-page: 115 year: 2012 end-page: 126 ident: bib18 article-title: Assessment of water quality of first-flush roof runoff and harvested rainwater publication-title: J. Hydrol. – volume: 191 start-page: 297 year: 2017 end-page: 305 ident: bib36 article-title: The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale publication-title: J. Environ. Manag. – volume: 111 start-page: 35 year: 2014 end-page: 41 ident: bib19 article-title: Rainwater utilization from roof catchments in arid regions: a case study for Australia publication-title: J. Arid Environ. – volume: 18 start-page: 1946 year: 2018 end-page: 1955 ident: bib50 article-title: Rainwater harvesting as an alternative for water supply in regions with high water stress publication-title: Water Supply – volume: 259 start-page: 120 year: 2020 end-page: 829 ident: bib3 article-title: Environmental and economic assessment of rainwater harvesting systems under five climatic conditions of Pakistan publication-title: J. Clean. Prod. – volume: 40 start-page: 901 year: 2004 end-page: 912 ident: bib29 article-title: Optimum storage volume of rooftop rainwater harvesting systems for domestic use publication-title: J. Am. Water Resour. Assoc – volume: 89 year: 2023 ident: bib1 article-title: Implementing rainwater harvesting systems as a novel approach for saving water and energy in flat urban areas publication-title: Sustain. Cities Soc. – volume: 269 year: 2020 ident: bib49 article-title: Variation of representative rainfall time series length for rainwater harvesting modelling in different climatic zones publication-title: J. Environ. Manag. – reference: Allen R.G., Pereira L.S., Raes D., Smith M., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, Italy. – volume: 21 start-page: 2850 year: 2007 end-page: 2861 ident: bib34 article-title: How important is the selection of computational analysis method to the accuracy of rainwater tank behavior modelling publication-title: Hydrol. Process. – volume: 15 start-page: 1518 year: 2023 ident: bib39 article-title: Rainwater harvesting and treatment: state of the art and perspectives publication-title: Water – volume: 6 start-page: 102 year: 2015 end-page: 107 ident: bib28 article-title: Determining the economic value of irrigation water in Kerio Valley Basin (Kenya) publication-title: Residual Value Method. J. Econ. Sustain. Dev. – volume: 665 start-page: 262 year: 2019 end-page: 274 ident: bib54 article-title: Impacts of climate change on urban rainwater harvesting systems publication-title: Sci. Total Environ. – volume: 49 start-page: 810 year: 2013 end-page: 824 ident: bib45 article-title: Water supply and stormwater management benefits of residential rainwater harvesting in U.S cities publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 223 year: 2022 ident: bib55 article-title: A GIS-based approach to assessing the capacity of rainwater harvesting for addressing outdoor irrigation publication-title: Landsc. Urban Plann. – volume: 133 start-page: 231 year: 2018 end-page: 241 ident: bib17 article-title: Assessment of the length of rainfall time series for rainwater harvesting in buildings publication-title: Resour. Conserv. Recycl. – volume: 104 start-page: 131 year: 2015 end-page: 140 ident: bib35 article-title: Optimal sizing of storage tanks in domestic rainwater harvesting systems: a linear programming approach publication-title: Resour. Conserv. Recycl. – volume: 127 start-page: 124 year: 2014 end-page: 135 ident: bib33 article-title: Estimation of residential outdoor water use in Los Angeles, California publication-title: Landsc. Urban Plann. – volume: 85 start-page: 1291 year: 2016 end-page: 1294 ident: bib42 article-title: Urban waterlogs control in China: more effective strategies and actions are needed publication-title: Nat. Haz. – volume: 75 start-page: 174 year: 2014 end-page: 194 ident: bib40 article-title: Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture publication-title: J. Clean. Prod. – volume: 545 start-page: 163 year: 2017 end-page: 171 ident: bib5 article-title: Relevance of hydrological variables in water- saving efficiency of domestic rainwater tanks: multivariate statistical analysis publication-title: J. Hydrol. – volume: 196 start-page: 1341 year: 2018 end-page: 1355 ident: bib53 article-title: Water saving efficiency and reliability of rainwater harvesting systems in the context of climate change publication-title: J. Clean. Prod. – volume: 280 year: 2021 ident: bib27 article-title: Optimal storage sizing for indoor arena rainwater harvesting: hydraulic simulation and economic assessment publication-title: J. Environ. Manag. – volume: 248 start-page: 118 year: 2009 end-page: 124 ident: bib23 article-title: Opportunities in rainwater harvesting publication-title: Desalination – volume: 541 start-page: 1340 year: 2016 end-page: 1347 ident: bib37 article-title: Sizing a rainwater harvesting cistern by minimizing costs publication-title: J. Hydrol. – volume: 190 year: 2019 ident: bib14 article-title: Review of urban drainage and stormwater management in ancient China publication-title: Landsc. Urban Plann. – volume: 137 start-page: 60 year: 2016 end-page: 69 ident: bib21 article-title: Evaluation of climate change impacts on rainwater harvesting publication-title: J. Clean. Prod. – volume: 80 start-page: 1 year: 2013 end-page: 9 ident: bib22 article-title: Simulation based programming for optimization of large-scale rainwater harvesting system: Malaysia case study publication-title: Resour. Conserv. Recycl. – volume: 126 start-page: 74 year: 2017 end-page: 85 ident: bib25 article-title: Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China publication-title: Resour. Conserv. Recycl. – volume: 9 year: 2017 ident: bib9 article-title: Water saving and cost analysis of large scale implementation of domestic rainwater harvesting in minor Mediterranean islands publication-title: Water – volume: 8 start-page: 20 year: 2016 ident: bib30 article-title: A reliability analysis of a rainfall harvesting system in southern Italy publication-title: Water – volume: 32 start-page: 2649 year: 2018 end-page: 2664 ident: bib26 article-title: Analysis and modelling of stormwater volume control performance of rainwater harvesting systems in four climatic zones of China publication-title: Water Resour. Manag. – volume: 18 start-page: 23 year: 2016 end-page: 32 ident: bib11 article-title: Rainwater harvesting as source control option to reduce roof runoff peaks to downstream drainage systems publication-title: J. Hydroinf. – volume: 29 start-page: 4357 issue: 12 year: 2015 ident: 10.1016/j.ejrh.2024.101810_bib31 article-title: Optimal sizing of rainwater harvesting tanks for domestic use in Greece publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-1064-1 – volume: 191 start-page: 297 year: 2017 ident: 10.1016/j.ejrh.2024.101810_bib36 article-title: The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.01.025 – volume: 591 year: 2020 ident: 10.1016/j.ejrh.2024.101810_bib48 article-title: Challenges in urban stormwater management in Chinese cities: a hydrologic perspective publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125314 – volume: 6 start-page: 102 year: 2015 ident: 10.1016/j.ejrh.2024.101810_bib28 article-title: Determining the economic value of irrigation water in Kerio Valley Basin (Kenya) publication-title: Residual Value Method. J. Econ. Sustain. Dev. – volume: 75 start-page: 174 year: 2014 ident: 10.1016/j.ejrh.2024.101810_bib40 article-title: Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.03.075 – volume: 126 start-page: 74 year: 2017 ident: 10.1016/j.ejrh.2024.101810_bib25 article-title: Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2017.07.027 – volume: 32 start-page: 2649 issue: 2 year: 2018 ident: 10.1016/j.ejrh.2024.101810_bib26 article-title: Analysis and modelling of stormwater volume control performance of rainwater harvesting systems in four climatic zones of China publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-1950-4 – volume: 8 start-page: 129 issue: 4 year: 2016 ident: 10.1016/j.ejrh.2024.101810_bib32 article-title: Rainwater harvesting typologies for UK houses: a multi criteria analysis of system configurations publication-title: Water doi: 10.3390/w8040129 – volume: 280 year: 2021 ident: 10.1016/j.ejrh.2024.101810_bib2 article-title: Impacts of rainfall change on stormwater control and water saving performance of rainwater harvesting systems publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111850 – volume: 63 start-page: 9 year: 2012 ident: 10.1016/j.ejrh.2024.101810_bib10 article-title: Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2012.03.007 – volume: 665 start-page: 262 year: 2019 ident: 10.1016/j.ejrh.2024.101810_bib54 article-title: Impacts of climate change on urban rainwater harvesting systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.135 – volume: 280 year: 2021 ident: 10.1016/j.ejrh.2024.101810_bib27 article-title: Optimal storage sizing for indoor arena rainwater harvesting: hydraulic simulation and economic assessment publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111847 – start-page: 485 year: 2010 ident: 10.1016/j.ejrh.2024.101810_bib20 article-title: Rainwater harvesting performance in a changing climate publication-title: World Environ. Water Resour. Congr. – volume: 171 year: 2020 ident: 10.1016/j.ejrh.2024.101810_bib24 article-title: Rainwater harvesting for urban flood management-an integrated modelling framework publication-title: Water Res doi: 10.1016/j.watres.2019.115372 – volume: 3 start-page: 99 issue: 2 year: 2022 ident: 10.1016/j.ejrh.2024.101810_bib12 article-title: Transformation towards resilient sponge city in China publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-021-00251-y – volume: 21 start-page: 386 year: 2021 ident: 10.1016/j.ejrh.2024.101810_bib13 article-title: Water saving potential and economic viability assessment of rainwater harvesting system for four different climatic regions in China publication-title: Water Supply doi: 10.2166/ws.2020.307 – volume: 80 start-page: 1 year: 2013 ident: 10.1016/j.ejrh.2024.101810_bib22 article-title: Simulation based programming for optimization of large-scale rainwater harvesting system: Malaysia case study publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2013.05.001 – volume: 21 start-page: 2850 year: 2007 ident: 10.1016/j.ejrh.2024.101810_bib34 article-title: How important is the selection of computational analysis method to the accuracy of rainwater tank behavior modelling publication-title: Hydrol. Process. doi: 10.1002/hyp.6499 – volume: 29 start-page: 152 year: 2015 ident: 10.1016/j.ejrh.2024.101810_bib7 article-title: The performance of rainwater tanks for stormwater retention and water supply at the household scale: an empirical study publication-title: Hydrol. Process. doi: 10.1002/hyp.10142 – volume: 545 start-page: 163 year: 2017 ident: 10.1016/j.ejrh.2024.101810_bib5 article-title: Relevance of hydrological variables in water- saving efficiency of domestic rainwater tanks: multivariate statistical analysis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.12.027 – volume: 15 start-page: 1518 issue: 8 year: 2023 ident: 10.1016/j.ejrh.2024.101810_bib39 article-title: Rainwater harvesting and treatment: state of the art and perspectives publication-title: Water doi: 10.3390/w15081518 – volume: 248 start-page: 118 issue: 1–3 year: 2009 ident: 10.1016/j.ejrh.2024.101810_bib23 article-title: Opportunities in rainwater harvesting publication-title: Desalination doi: 10.1016/j.desal.2008.05.046 – volume: 196 start-page: 1341 year: 2018 ident: 10.1016/j.ejrh.2024.101810_bib53 article-title: Water saving efficiency and reliability of rainwater harvesting systems in the context of climate change publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.133 – volume: 253 year: 2020 ident: 10.1016/j.ejrh.2024.101810_bib52 article-title: Performance assessment of rainwater harvesting systems: influence of operating algorithm, length and temporal scale of rainfall time series publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120044 – volume: 9 year: 2017 ident: 10.1016/j.ejrh.2024.101810_bib9 article-title: Water saving and cost analysis of large scale implementation of domestic rainwater harvesting in minor Mediterranean islands publication-title: Water doi: 10.3390/w9120916 – volume: 40 start-page: 901 year: 2004 ident: 10.1016/j.ejrh.2024.101810_bib29 article-title: Optimum storage volume of rooftop rainwater harvesting systems for domestic use publication-title: J. Am. Water Resour. Assoc doi: 10.1111/j.1752-1688.2004.tb01054.x – volume: 466–467 start-page: 115 year: 2012 ident: 10.1016/j.ejrh.2024.101810_bib18 article-title: Assessment of water quality of first-flush roof runoff and harvested rainwater publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.08.020 – volume: 261 year: 2020 ident: 10.1016/j.ejrh.2024.101810_bib38 article-title: Use of design curves in the implementation of a rainwater harvesting system publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121292 – volume: 133 start-page: 231 year: 2018 ident: 10.1016/j.ejrh.2024.101810_bib17 article-title: Assessment of the length of rainfall time series for rainwater harvesting in buildings publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2018.02.007 – volume: 111 start-page: 35 year: 2014 ident: 10.1016/j.ejrh.2024.101810_bib19 article-title: Rainwater utilization from roof catchments in arid regions: a case study for Australia publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2014.07.007 – volume: 541 start-page: 1340 year: 2016 ident: 10.1016/j.ejrh.2024.101810_bib37 article-title: Sizing a rainwater harvesting cistern by minimizing costs publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.08.036 – ident: 10.1016/j.ejrh.2024.101810_bib47 – volume: 105 start-page: 230 issue: 3 year: 2012 ident: 10.1016/j.ejrh.2024.101810_bib8 article-title: Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2011.12.012 – volume: 30 start-page: 1 year: 2016 ident: 10.1016/j.ejrh.2024.101810_bib15 article-title: The value of Rain: benefit cost analysis of rainwater harvesting systems publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1429-0 – volume: 35 start-page: 195 year: 2010 ident: 10.1016/j.ejrh.2024.101810_bib56 article-title: Cost-benefit analysis for urban rainwater harvesting in Beijing publication-title: Water Int doi: 10.1080/02508061003667271 – volume: 269 year: 2020 ident: 10.1016/j.ejrh.2024.101810_bib49 article-title: Variation of representative rainfall time series length for rainwater harvesting modelling in different climatic zones publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110731 – volume: 8 start-page: 20 issue: 1 year: 2016 ident: 10.1016/j.ejrh.2024.101810_bib30 article-title: A reliability analysis of a rainfall harvesting system in southern Italy publication-title: Water doi: 10.3390/w8010018 – volume: 127 start-page: 124 year: 2014 ident: 10.1016/j.ejrh.2024.101810_bib33 article-title: Estimation of residential outdoor water use in Los Angeles, California publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2014.04.007 – volume: 18 start-page: 1946 issue: 6 year: 2018 ident: 10.1016/j.ejrh.2024.101810_bib50 article-title: Rainwater harvesting as an alternative for water supply in regions with high water stress publication-title: Water Supply doi: 10.2166/ws.2018.018 – ident: 10.1016/j.ejrh.2024.101810_bib4 – volume: 21 start-page: 99 issue: 2 year: 2000 ident: 10.1016/j.ejrh.2024.101810_bib16 article-title: Simulating the performance of rainwater collection systems using behavioural models publication-title: Build. Serv. Eng. Res. Technol. doi: 10.1177/014362440002100204 – volume: 94 start-page: 21 year: 2015 ident: 10.1016/j.ejrh.2024.101810_bib43 article-title: Evaluation of rainwater harvesting in Portugal: application to single-family residences publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2014.11.004 – ident: 10.1016/j.ejrh.2024.101810_bib44 doi: 10.3390/w11030458 – volume: 28 start-page: 671 year: 2014 ident: 10.1016/j.ejrh.2024.101810_bib51 article-title: Effectiveness of rainwater harvesting in runoff volume reduction in a planned industrial park, China publication-title: Water Resour. Manag. doi: 10.1007/s11269-013-0507-9 – volume: 104 start-page: 131 year: 2015 ident: 10.1016/j.ejrh.2024.101810_bib35 article-title: Optimal sizing of storage tanks in domestic rainwater harvesting systems: a linear programming approach publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2015.08.015 – volume: 84 start-page: 44 year: 2014 ident: 10.1016/j.ejrh.2024.101810_bib6 article-title: Optimal design of rainwater collecting systems for domestic use into a residential development publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2014.01.001 – volume: 85 start-page: 1291 issue: 2 year: 2016 ident: 10.1016/j.ejrh.2024.101810_bib42 article-title: Urban waterlogs control in China: more effective strategies and actions are needed publication-title: Nat. Haz. doi: 10.1007/s11069-016-2614-4 – volume: 89 year: 2023 ident: 10.1016/j.ejrh.2024.101810_bib1 article-title: Implementing rainwater harvesting systems as a novel approach for saving water and energy in flat urban areas publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2022.104304 – volume: 137 start-page: 60 year: 2016 ident: 10.1016/j.ejrh.2024.101810_bib21 article-title: Evaluation of climate change impacts on rainwater harvesting publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.07.038 – volume: 190 year: 2019 ident: 10.1016/j.ejrh.2024.101810_bib14 article-title: Review of urban drainage and stormwater management in ancient China publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2019.103600 – volume: 49 start-page: 810 year: 2013 ident: 10.1016/j.ejrh.2024.101810_bib45 article-title: Water supply and stormwater management benefits of residential rainwater harvesting in U.S cities publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/jawr.12038 – volume: 54 start-page: 178 year: 2010 ident: 10.1016/j.ejrh.2024.101810_bib46 article-title: Cost effectiveness and tradeoff on the use of rainwater tank: an empirical study in Australian residential decision-making publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2009.07.014 – volume: 223 year: 2022 ident: 10.1016/j.ejrh.2024.101810_bib55 article-title: A GIS-based approach to assessing the capacity of rainwater harvesting for addressing outdoor irrigation publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2022.104416 – volume: 259 start-page: 120 year: 2020 ident: 10.1016/j.ejrh.2024.101810_bib3 article-title: Environmental and economic assessment of rainwater harvesting systems under five climatic conditions of Pakistan publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120829 – volume: 22 start-page: 757 year: 2018 ident: 10.1016/j.ejrh.2024.101810_bib41 article-title: A discrete wavelet approach to identifying non-monotonic trend pattern of hydroclimate data publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-757-2018 – volume: 18 start-page: 23 issue: 1 year: 2016 ident: 10.1016/j.ejrh.2024.101810_bib11 article-title: Rainwater harvesting as source control option to reduce roof runoff peaks to downstream drainage systems publication-title: J. Hydroinf. doi: 10.2166/hydro.2015.133 |
SSID | ssj0001878960 |
Score | 2.3013518 |
Snippet | Beijing Region
Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily... Beijing Region Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In this study, the daily... Study region: Beijing Region Study focus: Limited studies have yet been done on regionalization of multi-performances of rainwater harvesting systems (RHS). In... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101810 |
SubjectTerms | China cost benefit analysis Economic profits rain Rainwater harvesting Regionalization Spatial distribution stormwater Stormwater control water management Water saving |
Title | Regionalization of environmental and economic performances of rainwater harvesting systems |
URI | https://dx.doi.org/10.1016/j.ejrh.2024.101810 https://www.proquest.com/docview/3206185391 https://doaj.org/article/bd6eff62c8954d709ad230f383126945 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-yi17ET5xfVPAm1TZpm_ao4hiKguJgeAlpPjaHdKPbEP97Xz42Nw_z4qWHkjTh5aXv95L3fg-h85THZSQKHUpwP4yDkoccUxUWRCWpAeTK8nQ_PmXtTnLfTbsLpb5MTJijB3aCuyplprTOsMiLNJE0KrgE1KzBsYpNEqZlLwWbt-BM2dOVnOaAzX2WjAvoUoPa3D7g5NKyVEVLlsgS9i8ZpF-_ZmtvWlto0wPF4NpNcButqWoHrfua5f2vXfT2onr2HM9nUgZDHSykrUFfXslA-cTjYPSTITA2TU1piE8AmnXQ57Xl2qh6geN1Hu-hTuvu9bYd-koJoUgSMgk1lqY8LS0pwJ2c4iiXRSJFKnmssFYck1RnhBZpxEuOS56D2QL5KSUwUZJIso8a1bBSBygQUsaSl-AzY5IQoQEfSh3TTFADdTRuongmNSY8jbipZvHBZvFiA2YkzYykmZN0E13M-4wcicbK1jdmMeYtDQG2fQFqwbxasL_UoonS2VIyjyUcRoBPva8c_Gy27gw2mrk94ZUaTseMYIA-AG6K-PA_JniENsywLursGDUm9VSdAL6ZlKdWleH58Jx_A3fV-Lo |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regionalization+of+environmental+and+economic+performances+of+rainwater+harvesting+systems&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Shahbaz+Ali&rft.au=Yan-Fang+Sang&rft.au=Moyuan+Yang&rft.au=Jiali+Shi&rft.date=2024-06-01&rft.pub=Elsevier&rft.eissn=2214-5818&rft.volume=53&rft.spage=101810&rft_id=info:doi/10.1016%2Fj.ejrh.2024.101810&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bd6eff62c8954d709ad230f383126945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon |