A Sos proteomimetic as a pan-Ras inhibitor

Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide ex...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 18; pp. 1 - 11
Main Authors Hong, Seong Ho, Yoo, Daniel Y., Conway, Louis, Richards-Corke, Khyle C., Parker, Christopher G., Arora, Paramjit S.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras–Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix–loop–helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with upregulated macropinocytosis, including those that feature oncogenic Ras mutations.
AbstractList Oncogenic Ras isoforms are the subject of intense study due to the difficulty in targeting these biomedically important yet “undruggable” proteins. Recent success in covalent targeting of a Ras mutant illustrates avenues for ligand design; however, many mutant Ras forms do not feature appropriately-placed nucleophiles, suggesting that strategies for noncovalent engagement of Ras are required. We report the design of a conformationally-defined proteomimetic that reproduces a key binding surface of Sos, a well-characterized effector of Ras. The proteomimetic binds wild-type and various mutant forms of Ras and modulates downstream signaling. Significantly, the compound shows enhanced internalization and selective toxicity toward cancer cells that up-regulate macropinocytosis. We anticipate these studies will foster new therapeutic modalities to engage mutant Ras. Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras–Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix–loop–helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with up-regulated macropinocytosis, including those that feature oncogenic Ras mutations.
Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras-Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix-loop-helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with up-regulated macropinocytosis, including those that feature oncogenic Ras mutations.
Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras-Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix-loop-helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with up-regulated macropinocytosis, including those that feature oncogenic Ras mutations.Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras-Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix-loop-helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with up-regulated macropinocytosis, including those that feature oncogenic Ras mutations.
Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the subject of intense and ongoing drug discovery efforts. The cellular activity of Ras is modulated by its association with the guanine nucleotide exchange factor Son of sevenless (Sos), and the high-resolution crystal structure of the Ras–Sos complex provides a basis for the rational design of orthosteric Ras ligands. We constructed a synthetic Sos protein mimic that engages the wild-type and oncogenic forms of nucleotide-bound Ras and modulates downstream kinase signaling. The Sos mimic was designed to capture the conformation of the Sos helix–loop–helix motif that makes critical contacts with Ras in its switch region. Chemoproteomic studies illustrate that the proteomimetic engages Ras and other cellular GTPases. The synthetic proteomimetic resists proteolytic degradation and enters cells through macropinocytosis. As such, it is selectively toxic to cancer cells with upregulated macropinocytosis, including those that feature oncogenic Ras mutations.
Author Hong, Seong Ho
Yoo, Daniel Y.
Arora, Paramjit S.
Parker, Christopher G.
Conway, Louis
Richards-Corke, Khyle C.
Author_xml – sequence: 1
  givenname: Seong Ho
  surname: Hong
  fullname: Hong, Seong Ho
– sequence: 2
  givenname: Daniel Y.
  surname: Yoo
  fullname: Yoo, Daniel Y.
– sequence: 3
  givenname: Louis
  surname: Conway
  fullname: Conway, Louis
– sequence: 4
  givenname: Khyle C.
  surname: Richards-Corke
  fullname: Richards-Corke, Khyle C.
– sequence: 5
  givenname: Christopher G.
  surname: Parker
  fullname: Parker, Christopher G.
– sequence: 6
  givenname: Paramjit S.
  surname: Arora
  fullname: Arora, Paramjit S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33926964$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVIyUwe66waDN2UgpOrh_XYFIahbQqBQNKuheyRGw225EieQv99ZWYyeSyyktD9zrn36hyjQx-8RegcwyUGQa8Gb9IlwYCBCIzlAZpjULjkTMEhmkN-LSUjbIaOU1oDgKokHKEZpYpwxdkcfVkU9yEVQwyjDb3r7eiawqTCFIPx5V2-Of_gajeGeIo-tKZL9mx3nqDf37_9Wl6XN7c_fi4XN2XDGB3LFmpbY14r09YtlUAqLIVoFcOi5VwJbowyilpreS1lW1UrWwuilF2tjBBK0BP0des7bOrerhrrx2g6PUTXm_hPB-P064p3D_pP-KslBk5UlQ0-7wxieNzYNOrepcZ2nfE2bJImFQEpQXCW0U9v0HXYRJ_XmyiKuQQ5URcvJ9qP8vSNGbjaAk0MKUXb7hEMegpKT0Hp56CyonqjaNxoRhemlVz3ju7jVrdOOZJ9GyKAAc31_5UYn-4
CitedBy_id crossref_primary_10_1038_s41401_022_00897_4
crossref_primary_10_1021_acs_jmedchem_1c01130
crossref_primary_10_1002_cbic_202200561
crossref_primary_10_1002_cpz1_315
crossref_primary_10_1021_jacs_1c13717
crossref_primary_10_1038_s42004_022_00691_7
crossref_primary_10_1038_s41392_024_01823_2
crossref_primary_10_1021_acs_chemrev_4c00423
crossref_primary_10_1038_s41392_023_01441_4
crossref_primary_10_1016_j_bioorg_2023_106500
crossref_primary_10_1002_adma_202208309
crossref_primary_10_1002_cbic_202100111
crossref_primary_10_1021_acsinfecdis_1c00651
crossref_primary_10_1039_D1OB01353J
crossref_primary_10_1021_acs_jmedchem_2c01729
crossref_primary_10_1016_j_ejmech_2024_116878
crossref_primary_10_1016_j_ejmech_2025_117568
crossref_primary_10_1038_s41589_022_01060_0
crossref_primary_10_1016_j_tips_2021_11_008
crossref_primary_10_3390_ijms22126613
Cites_doi 10.1002/bip.360310511
10.1021/bi970296u
10.1021/ja208855x
10.1038/srep32301
10.1021/jacs.7b05960
10.1016/j.chembiol.2017.10.001
10.1177/1947601911408081
10.1038/nrc2960
10.1038/s41557-020-0420-9
10.1038/nchembio.2231
10.1038/nrc969
10.1021/jacs.8b10082
10.1038/nrm2901
10.1038/nchembio.612
10.1002/anie.201201358
10.1038/nrd.2016.139
10.1016/j.trecan.2018.07.002
10.1073/pnas.2009206117
10.1016/j.cell.2016.12.029
10.1038/nrd2221
10.1021/jacs.5b05527
10.1517/17425247.2015.1046431
10.1073/pnas.1312473110
10.1073/pnas.1116510109
10.1126/stke.2192004pl2
10.1021/sb300028q
10.1038/srep21949
10.1016/S0092-8674(03)00149-1
10.1016/j.cell.2020.01.025
10.1093/nar/gkq369
10.1016/j.ccr.2014.02.017
10.1002/jcc.20084
10.1038/s41467-020-19224-8
10.1038/s41573-020-0068-6
10.1126/stke.2502004re13
10.1016/j.cell.2017.02.006
10.1002/9780470559277.ch090102
10.1038/s41467-020-15576-3
10.1021/acs.jmedchem.9b01180
10.1038/s41557-019-0351-5
10.1073/pnas.1815294115
10.1038/s41586-019-1694-1
10.1073/pnas.1303002110
10.1073/pnas.0709068105
10.1038/nature12138
10.1038/nature12796
10.1007/978-1-4757-2508-7_7
10.1038/28548
10.1186/s12953-017-0123-3
10.1126/science.271.5252.1136
10.1021/acscentsci.0c00514
10.1021/jacs.5b05525
10.1016/j.cell.2004.10.005
10.1002/anie.201412070
10.1126/science.1604319
10.1038/s41598-020-78712-5
10.1021/ac502040v
10.1038/nrd4281
10.1021/acschembio.0c00204
10.1021/acs.jmedchem.0c01312
10.1021/jacs.0c02109
ContentType Journal Article
Copyright Copyright National Academy of Sciences May 4, 2021
2021
Copyright_xml – notice: Copyright National Academy of Sciences May 4, 2021
– notice: 2021
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2101027118
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Virology and AIDS Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11
ExternalDocumentID PMC8106295
33926964
10_1073_pnas_2101027118
27040318
Genre Journal Article
GrantInformation_xml – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R35GM130333
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-f0beb16b9afbf380251877f9417f66976aa9a93eee6b88f55deb7299edda77973
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:34:30 EDT 2025
Thu Jul 10 23:27:04 EDT 2025
Mon Jun 30 08:27:54 EDT 2025
Wed Feb 19 02:27:27 EST 2025
Thu Apr 24 22:54:40 EDT 2025
Tue Jul 01 01:02:55 EDT 2025
Thu May 29 08:53:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords peptide
proteomimetic
Ras
Sos
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-f0beb16b9afbf380251877f9417f66976aa9a93eee6b88f55deb7299edda77973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Daniel-Adriano Silva, Neoleukin Therapeutics, Seattle, WA, and accepted by Editorial Board Member Stephen J. Benkovic March 19, 2021 (received for review January 18, 2021)
1S.H.H. and D.Y.Y. contributed equally to this work.
Author contributions: S.H.H., D.Y.Y., and P.S.A. designed research; S.H.H., D.Y.Y., L.C., K.C.R.-C., and C.G.P. performed research; S.H.H., D.Y.Y., L.C., C.G.P., and P.S.A. analyzed data; and S.H.H., D.Y.Y., and P.S.A. wrote the paper.
ORCID 0000-0001-8509-9289
0000-0002-8928-2686
0000-0002-8634-452X
0000-0002-5433-0115
0000-0001-5315-401X
OpenAccessLink https://www.pnas.org/content/pnas/118/18/e2101027118.full.pdf
PMID 33926964
PQID 2523168084
PQPubID 42026
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8106295
proquest_miscellaneous_2520880764
proquest_journals_2523168084
pubmed_primary_33926964
crossref_primary_10_1073_pnas_2101027118
crossref_citationtrail_10_1073_pnas_2101027118
jstor_primary_27040318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-04
PublicationDateYYYYMMDD 2021-05-04
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
Taylor S. J. (e_1_3_4_40_2) 2001
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_33_2
  doi: 10.1002/bip.360310511
– ident: e_1_3_4_61_2
  doi: 10.1021/bi970296u
– ident: e_1_3_4_25_2
  doi: 10.1021/ja208855x
– ident: e_1_3_4_36_2
  doi: 10.1038/srep32301
– ident: e_1_3_4_23_2
  doi: 10.1021/jacs.7b05960
– ident: e_1_3_4_58_2
  doi: 10.1016/j.chembiol.2017.10.001
– ident: e_1_3_4_39_2
  doi: 10.1177/1947601911408081
– ident: e_1_3_4_43_2
  doi: 10.1038/nrc2960
– ident: e_1_3_4_16_2
  doi: 10.1038/s41557-020-0420-9
– ident: e_1_3_4_50_2
  doi: 10.1038/nchembio.2231
– ident: e_1_3_4_55_2
  doi: 10.1038/nrc969
– ident: e_1_3_4_20_2
  doi: 10.1021/jacs.8b10082
– ident: e_1_3_4_11_2
  doi: 10.1038/nrm2901
– ident: e_1_3_4_10_2
  doi: 10.1038/nchembio.612
– ident: e_1_3_4_53_2
  doi: 10.1002/anie.201201358
– ident: e_1_3_4_54_2
  doi: 10.1038/nrd.2016.139
– ident: e_1_3_4_41_2
  doi: 10.1016/j.trecan.2018.07.002
– ident: e_1_3_4_62_2
  doi: 10.1073/pnas.2009206117
– ident: e_1_3_4_45_2
  doi: 10.1016/j.cell.2016.12.029
– ident: e_1_3_4_1_2
  doi: 10.1038/nrd2221
– ident: e_1_3_4_19_2
  doi: 10.1021/jacs.5b05527
– ident: e_1_3_4_37_2
  doi: 10.1517/17425247.2015.1046431
– ident: e_1_3_4_13_2
  doi: 10.1073/pnas.1312473110
– ident: e_1_3_4_52_2
  doi: 10.1073/pnas.1116510109
– ident: e_1_3_4_24_2
  doi: 10.1126/stke.2192004pl2
– ident: e_1_3_4_27_2
  doi: 10.1021/sb300028q
– ident: e_1_3_4_38_2
  doi: 10.1038/srep21949
– ident: e_1_3_4_60_2
  doi: 10.1016/S0092-8674(03)00149-1
– ident: e_1_3_4_44_2
  doi: 10.1016/j.cell.2020.01.025
– ident: e_1_3_4_22_2
  doi: 10.1093/nar/gkq369
– ident: e_1_3_4_56_2
  doi: 10.1016/j.ccr.2014.02.017
– ident: e_1_3_4_29_2
  doi: 10.1002/jcc.20084
– ident: e_1_3_4_17_2
  doi: 10.1038/s41467-020-19224-8
– ident: e_1_3_4_3_2
  doi: 10.1038/s41573-020-0068-6
– ident: e_1_3_4_49_2
  doi: 10.1126/stke.2502004re13
– ident: e_1_3_4_51_2
  doi: 10.1016/j.cell.2017.02.006
– ident: e_1_3_4_31_2
  doi: 10.1002/9780470559277.ch090102
– ident: e_1_3_4_18_2
  doi: 10.1038/s41467-020-15576-3
– ident: e_1_3_4_57_2
  doi: 10.1021/acs.jmedchem.9b01180
– ident: e_1_3_4_46_2
  doi: 10.1038/s41557-019-0351-5
– ident: e_1_3_4_14_2
  doi: 10.1073/pnas.1815294115
– ident: e_1_3_4_5_2
  doi: 10.1038/s41586-019-1694-1
– start-page: 333
  volume-title: Methods in Enzymology
  year: 2001
  ident: e_1_3_4_40_2
– ident: e_1_3_4_12_2
  doi: 10.1073/pnas.1303002110
– ident: e_1_3_4_26_2
  doi: 10.1073/pnas.0709068105
– ident: e_1_3_4_35_2
  doi: 10.1038/nature12138
– ident: e_1_3_4_6_2
  doi: 10.1038/nature12796
– ident: e_1_3_4_32_2
  doi: 10.1007/978-1-4757-2508-7_7
– ident: e_1_3_4_2_2
  doi: 10.1038/28548
– ident: e_1_3_4_59_2
  doi: 10.1186/s12953-017-0123-3
– ident: e_1_3_4_28_2
  doi: 10.1126/science.271.5252.1136
– ident: e_1_3_4_7_2
  doi: 10.1021/acscentsci.0c00514
– ident: e_1_3_4_21_2
  doi: 10.1021/jacs.5b05525
– ident: e_1_3_4_30_2
  doi: 10.1016/j.cell.2004.10.005
– ident: e_1_3_4_15_2
  doi: 10.1002/anie.201412070
– ident: e_1_3_4_48_2
  doi: 10.1126/science.1604319
– ident: e_1_3_4_8_2
  doi: 10.1038/s41598-020-78712-5
– ident: e_1_3_4_47_2
  doi: 10.1021/ac502040v
– ident: e_1_3_4_42_2
  doi: 10.1038/nrd4281
– ident: e_1_3_4_9_2
  doi: 10.1021/acschembio.0c00204
– ident: e_1_3_4_4_2
  doi: 10.1021/acs.jmedchem.0c01312
– ident: e_1_3_4_34_2
  doi: 10.1021/jacs.0c02109
SSID ssj0009580
Score 2.4773583
Snippet Aberrant Ras signaling is linked to a wide spectrum of hyperproliferative diseases, and components of the signaling pathway, including Ras, have been the...
Oncogenic Ras isoforms are the subject of intense study due to the difficulty in targeting these biomedically important yet “undruggable” proteins. Recent...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Biological Sciences
Crystal structure
Guanine
Guanine nucleotide exchange factor
Kinases
Mutation
Nucleotides
Physical Sciences
Proteolysis
Ras protein
Signal transduction
Signaling
Title A Sos proteomimetic as a pan-Ras inhibitor
URI https://www.jstor.org/stable/27040318
https://www.ncbi.nlm.nih.gov/pubmed/33926964
https://www.proquest.com/docview/2523168084
https://www.proquest.com/docview/2520880764
https://pubmed.ncbi.nlm.nih.gov/PMC8106295
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCGDAoDBQkHgaRSxI7dvJYVZsqmMrEWqlvkZPYaqQtQaQVgr-ec2I76yjS4CWK_NXIdz7fXe9-h9C7koCMg5OEi4BEmIqCYdCTQ5ywJKZ5XOraODraYs5mS_ppFa9svXuTXbLJx8WvvXkl_0NVaAO66izZf6CsWxQa4B3oC0-gMDzvROOJf9m0fge10FxX17IDX2194cMRx1-FDrVaV3nVAwo7HfTC3VmtjRCYW5fgZEgwMae-9bF_MR_KFc9MDO-l1FWKZs0gNpohZd13CvK0qX-I3ivebKshsN6ke-FpY8KDPq9_XknjszVeiCjsYv7oDcEJegdmtC_9OZZ72qy0HcTt1sreP8Q4yB1de7gW7RhMUtCBuJ22A5g9_5KdLc_Ps8XpanEfPYjAUiDWYeNwl5MekMJ8ikV34uTjreV3FJM-NnWf1XE7ePaGNrJ4jB4ZM8Kb9DxxiO7J-gk6tCTzTgya-Pun6MPEAybxdpjEE60nPMMknmOSZ2h5drqYzrApkIELSskGqyCHq5blqVC5Iok2FxPOVUpDrhgDRVOIVKRESsnyJFFxXMocjKlUlqXgPOXkCB3UTS1fII-BClMWJQlZSWhB0kSVsVBRqWIRExWEIzS2u5MVBj1eFzG5yrooBk4yvZ3ZsJ0jdOImfOuBU_4-9Kjbbjcu4nC1EN1xbPc_M8cO5sWRLrYWJHSE3rpuEIr6ny5Ry2bbjYHbM-AMxjzvyeUWJ2ARsFT38B1CugEacH23p67WHfB6EgYsSuOXd_jdV-jhcEyO0cHm-1a-BvV1k7_pGPQ3nQOXBg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sos+proteomimetic+as+a+pan-Ras+inhibitor&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hong%2C+Seong+Ho&rft.au=Yoo%2C+Daniel+Y&rft.au=Conway%2C+Louis&rft.au=Richards-Corke%2C+Khyle+C&rft.date=2021-05-04&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=18&rft_id=info:doi/10.1073%2Fpnas.2101027118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon