CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase
CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the sy...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 118; no. 23; pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research. |
---|---|
AbstractList | CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research. Site-specific modification of epigenetic marks such as DNA methylation to regulate gene expression is a unique approach to enhance economically important crop traits. This approach allows for the maintenance of the introduced modifications in the absence of the initial transgene inducer in subsequent generations and relies largely on methylation of cytosines in the CG-specific sequence context. We have developed a targeted DNA methylation tool based on a bacterial methyltransferase and the CRISPR-Cas9 platform to directly methylate cytosines at CG sites in Arabidopsis . These tools expand the currently available CRISPR-based targeted DNA methylation tools and provide an approach for the establishment of heritable targeted DNA methylation in plants. CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research. CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research.CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research. |
Author | Ghoshal, Basudev Picard, Colette L. Vong, Brandon Jacobsen, Steven E. Feng, Suhua |
Author_xml | – sequence: 1 givenname: Basudev surname: Ghoshal fullname: Ghoshal, Basudev – sequence: 2 givenname: Colette L. surname: Picard fullname: Picard, Colette L. – sequence: 3 givenname: Brandon surname: Vong fullname: Vong, Brandon – sequence: 4 givenname: Suhua surname: Feng fullname: Feng, Suhua – sequence: 5 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34074795$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1vEzEUxC1URNPCmRPIEpdetn3-2LX3ghSFUipVgAqcLXvXmzja2FvbQcp_j9u0pVTiYh88M_69N0fowAdvEXpL4JSAYGeT1-mUEloDaQiRL9CMQEuqhrdwgGYAVFSSU36IjlJaA0BbS3iFDhkHwUVbz1BcXF_--H5dGZ1sj7OOS5udX-Iw4E9f53hj82o36uyCx87jedTG9WFKLuG80qPTXmOzw-XQXbbR6REvLqo02c4NrnsSkaP2abCxfPMavRz0mOyb-_sY_fp8_nPxpbr6dnG5mF9VHecsV9b0klIjbN9QxrSWVg6cMuhpPTTAmgEGSVlteC9lC1o2jBkDLQNjBO2pYMfo4z532pqN7TvrC8Sopug2Ou5U0E79--LdSi3DbyUpkLKoEnByHxDDzdamrDYudXYctbdhmxStWcMFBSBF-uGZdB220ZfxiopDXUN7R_T-KdEjykMdRVDvBV0MKUU7qM7lu-0XQDcqAuq2dnVbu_pbe_GdPfM9RP_f8W7vWKcc4qOcCuAFlbM_vai5Fw |
CitedBy_id | crossref_primary_10_1038_s41467_022_35675_7 crossref_primary_10_1016_j_tplants_2024_04_008 crossref_primary_10_3390_ijms24054778 crossref_primary_10_3390_ijms24043442 crossref_primary_10_3390_plants12061384 crossref_primary_10_1007_s00299_023_03071_0 crossref_primary_10_1080_10409238_2024_2320659 crossref_primary_10_3390_agronomy15010094 crossref_primary_10_1007_s12298_024_01539_1 crossref_primary_10_1016_j_ijbiomac_2025_142401 crossref_primary_10_1016_j_pbi_2024_102552 crossref_primary_10_3390_epigenomes5030017 crossref_primary_10_1093_plcell_koac220 crossref_primary_10_1111_nph_20347 crossref_primary_10_1016_j_ijbiomac_2022_08_182 crossref_primary_10_1007_s13237_024_00502_5 crossref_primary_10_1038_s42003_024_06306_2 crossref_primary_10_1016_j_bbagen_2024_130620 crossref_primary_10_1111_nyas_14675 crossref_primary_10_1093_jxb_erad175 crossref_primary_10_3390_plants11020212 crossref_primary_10_3389_fgene_2022_876987 crossref_primary_10_1038_s41467_024_45771_5 crossref_primary_10_1007_s13258_021_01187_9 crossref_primary_10_1016_j_pbi_2024_102569 crossref_primary_10_1038_s41477_025_01924_y crossref_primary_10_1016_j_pbi_2022_102241 crossref_primary_10_48130_seedbio_0024_0002 crossref_primary_10_1007_s00253_025_13442_0 crossref_primary_10_1016_j_bbrc_2023_02_080 crossref_primary_10_3389_fgeed_2022_937853 crossref_primary_10_3390_ijms231810202 crossref_primary_10_1038_s41580_025_00834_3 crossref_primary_10_1111_nph_18734 crossref_primary_10_1016_j_pbi_2022_102315 crossref_primary_10_1007_s13237_024_00483_5 crossref_primary_10_1042_ETLS20210258 crossref_primary_10_1002_adfm_202202585 crossref_primary_10_3390_ijms22168618 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1007_s00018_024_05255_7 crossref_primary_10_3389_fpls_2025_1544744 crossref_primary_10_1038_s41580_024_00769_1 crossref_primary_10_1093_nar_gkad306 crossref_primary_10_1007_s13258_021_01199_5 crossref_primary_10_1093_plphys_kiac033 crossref_primary_10_3390_f13111887 crossref_primary_10_1002_pmic_202200104 crossref_primary_10_1139_gen_2024_0098 crossref_primary_10_3389_fpls_2022_886162 crossref_primary_10_1093_plphys_kiac113 crossref_primary_10_3389_fpls_2022_826473 |
Cites_doi | 10.1371/journal.pbio.0040363 10.1074/jbc.M303892200 10.1126/science.1095989 10.1038/s41467-019-08736-7 10.1016/j.cell.2014.09.039 10.1126/science.1089835 10.1093/bioinformatics/bts635 10.1073/pnas.1413053112 10.1093/bib/bbs017 10.1038/nrm4043 10.1038/nature06745 10.1186/s13059-018-1529-7 10.1038/nature12931 10.1016/S1097-2765(05)00090-0 10.1038/ncomms16026 10.1186/s13059-017-1206-2 10.1111/j.1365-313X.2006.02936.x 10.1093/nar/gku365 10.1016/j.cell.2012.10.054 10.1126/science.1147939 10.1093/bioinformatics/btq351 10.1073/pnas.1716945115 10.1126/science.1165313 10.1186/s13059-014-0550-8 10.1038/s41467-021-23346-y 10.1093/bioinformatics/btr167 10.1038/nrg3683 10.1038/nsmb.2735 10.1371/journal.pgen.1008983 10.1016/j.cell.2019.01.029 10.1093/bioinformatics/btu638 |
ContentType | Journal Article |
Copyright | Copyright © 2021 the Author(s). Published by PNAS. Copyright National Academy of Sciences Jun 8, 2021 Copyright © 2021 the Author(s). Published by PNAS. 2021 |
Copyright_xml | – notice: Copyright © 2021 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Jun 8, 2021 – notice: Copyright © 2021 the Author(s). Published by PNAS. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2125016118 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 8 |
ExternalDocumentID | PMC8201958 34074795 10_1073_pnas_2125016118 27040924 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM130272 – fundername: NCI NIH HHS grantid: P30 CA016042 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: F32 GM136115 – fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation) grantid: OPP1210659 – fundername: HHS | National Institutes of Health (NIH) grantid: NIH R35 GM130272 – fundername: HHS | National Institutes of Health (NIH) grantid: NIH F32 GM136115 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c443t-ebd822b7ed6233aa8e8f4230d25f6036f0f8235b4d8890a8633bb0930bb72d273 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:40:32 EDT 2025 Fri Jul 11 07:30:06 EDT 2025 Mon Jun 30 08:45:58 EDT 2025 Thu Apr 03 06:58:42 EDT 2025 Tue Jul 01 01:02:57 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Thu May 29 08:51:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | DNA methylation SunTag Arabidopsis CRISPR-Cas9 |
Language | English |
License | Copyright © 2021 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-ebd822b7ed6233aa8e8f4230d25f6036f0f8235b4d8890a8633bb0930bb72d273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewers: S.P., New England Biolabs; and N.M.S., University of Minnesota. 1B.G. and C.L.P. contributed equally to this work. Contributed by Steven E. Jacobsen, April 27, 2021 (sent for review January 28, 2021; reviewed by Sriharsa Pradhan and Nathan M. Springer) Author contributions: B.G. and S.E.J. designed research; B.G., C.L.P., B.V., and S.F. performed research; B.G., C.L.P., and S.E.J. contributed new reagents/analytic tools; B.G., C.L.P., and S.E.J. analyzed data; and B.G. and S.E.J. wrote the paper. |
ORCID | 0000-0002-2177-2216 0000-0001-8278-1469 0000-0003-1387-0139 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8201958 |
PMID | 34074795 |
PQID | 2540550927 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8201958 proquest_miscellaneous_2536472001 proquest_journals_2540550927 pubmed_primary_34074795 crossref_citationtrail_10_1073_pnas_2125016118 crossref_primary_10_1073_pnas_2125016118 jstor_primary_27040924 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-08 |
PublicationDateYYYYMMDD | 2021-06-08 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_12_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_18_2 doi: 10.1371/journal.pbio.0040363 – ident: e_1_3_4_9_2 doi: 10.1074/jbc.M303892200 – ident: e_1_3_4_20_2 doi: 10.1126/science.1095989 – ident: e_1_3_4_8_2 doi: 10.1038/s41467-019-08736-7 – ident: e_1_3_4_21_2 doi: 10.1016/j.cell.2014.09.039 – ident: e_1_3_4_13_2 doi: 10.1126/science.1089835 – ident: e_1_3_4_27_2 doi: 10.1093/bioinformatics/bts635 – ident: e_1_3_4_16_2 doi: 10.1073/pnas.1413053112 – ident: e_1_3_4_26_2 doi: 10.1093/bib/bbs017 – ident: e_1_3_4_1_2 doi: 10.1038/nrm4043 – ident: e_1_3_4_25_2 doi: 10.1038/nature06745 – ident: e_1_3_4_19_2 doi: 10.1186/s13059-018-1529-7 – ident: e_1_3_4_14_2 doi: 10.1038/nature12931 – ident: e_1_3_4_11_2 doi: 10.1016/S1097-2765(05)00090-0 – ident: e_1_3_4_7_2 doi: 10.1038/ncomms16026 – ident: e_1_3_4_6_2 doi: 10.1186/s13059-017-1206-2 – ident: e_1_3_4_12_2 doi: 10.1111/j.1365-313X.2006.02936.x – ident: e_1_3_4_28_2 doi: 10.1093/nar/gku365 – ident: e_1_3_4_4_2 doi: 10.1016/j.cell.2012.10.054 – ident: e_1_3_4_5_2 doi: 10.1126/science.1147939 – ident: e_1_3_4_29_2 doi: 10.1093/bioinformatics/btq351 – ident: e_1_3_4_15_2 doi: 10.1073/pnas.1716945115 – ident: e_1_3_4_17_2 doi: 10.1126/science.1165313 – ident: e_1_3_4_31_2 doi: 10.1186/s13059-014-0550-8 – ident: e_1_3_4_22_2 doi: 10.1038/s41467-021-23346-y – ident: e_1_3_4_24_2 doi: 10.1093/bioinformatics/btr167 – ident: e_1_3_4_2_2 doi: 10.1038/nrg3683 – ident: e_1_3_4_3_2 doi: 10.1038/nsmb.2735 – ident: e_1_3_4_23_2 doi: 10.1371/journal.pgen.1008983 – ident: e_1_3_4_10_2 doi: 10.1016/j.cell.2019.01.029 – ident: e_1_3_4_30_2 doi: 10.1093/bioinformatics/btu638 |
SSID | ssj0009580 |
Score | 2.5626922 |
Snippet | CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their... Site-specific modification of epigenetic marks such as DNA methylation to regulate gene expression is a unique approach to enhance economically important crop... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Arabidopsis - enzymology Arabidopsis - genetics Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological Sciences CRISPR CRISPR-Cas Systems Cytosine Deoxyribonucleic acid DNA DNA Methylation DNA methyltransferase DNA, Plant - genetics DNA, Plant - metabolism DNA-Cytosine Methylases - genetics DNA-Cytosine Methylases - metabolism Epigenetics Gene expression Gene silencing Meiosis Nucleotide sequence Phenotypes Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Tenericutes - enzymology Tenericutes - genetics |
Title | CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase |
URI | https://www.jstor.org/stable/27040924 https://www.ncbi.nlm.nih.gov/pubmed/34074795 https://www.proquest.com/docview/2540550927 https://www.proquest.com/docview/2536472001 https://pubmed.ncbi.nlm.nih.gov/PMC8201958 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDBgEBjISh6EqJXPSOD2Wsh-gUarRot6iOHaVSlMyNQnSuPKP8xzbiTuKNLhYVeI4Ub-X588vn99D6C3xaEoAXDegPHIDkh7DO8cYrFpTwiMKpJfJ0MCXaXi-CD4vh8te75elWqorNkh_7txX8j-owjHAVe6S_Qdk20HhAPwGfKEFhKG9E8aTy0_fZpeunIl4X2m6tYj543TcFIe-UVK3JqqxSdiaF9cyA0mVNeGNRJJPaFTGZhlGOHPl1kspH7KGqBpyKzbmQ47msrN27iuN0mBqQovjbqOK9h5l3-3Ppl3Z47OsKLNEf_Moay5-tF4a7EYJ7ifFlVQi9dsA9XctIP4AT8Q7AQGAooLedVYndhyDKL2V7XqBubhhoIqHDsSOY8Zfdw67NruV_5gIwHPJ6sV5Ug5gch5KYqsv20q5Pf0any4uLuL5yXJ-D90nsNYgjXe3MzdHKqWFfhSTH4r6728Nv0VtlLp117rltvzW4jPzR-ihXojgsbKqfdQT-WO0b8DCRzof-bsnaGObGW7NDBcrDDaCLTPD6xxbZoaNmWF2g6ExZoYtM7OGsMzsKVqcnswn564u1eGmQeBXrmAcmCajggOd9pMkEtEKiLrHyXAVAklaeauI-EMW8CgaeUkU-j5j3gg8AaOEA4U-QHt5kYvnCHvCY5zK2rGMwupdRIRxER6LRJaJoow7aGD-5TjVeexlOZWruNFTUD-WsMQdLA46ai-4Vilc_t71oIGt7UcoTHIjEjjo0OAYawcA18nVDhBuQh30pj0N7ll-c0tyUdSyT1OgAcigg54p2NvB_UBWrxgNHUS3DKLtIFO_b5_J11mTAl7ydjDMF3e470v0oHvdDtFetanFKyDSFXvdGPpvUOnI2A |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-based+targeting+of+DNA+methylation+in+Arabidopsis+thaliana+by+a+bacterial+CG-specific+DNA+methyltransferase&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ghoshal%2C+Basudev&rft.au=Picard%2C+Colette+L&rft.au=Vong%2C+Brandon&rft.au=Feng%2C+Suhua&rft.date=2021-06-08&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=23&rft_id=info:doi/10.1073%2Fpnas.2125016118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |