CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase

CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the sy...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 23; pp. 1 - 8
Main Authors Ghoshal, Basudev, Picard, Colette L., Vong, Brandon, Feng, Suhua, Jacobsen, Steven E.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research.
AbstractList CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research.
Site-specific modification of epigenetic marks such as DNA methylation to regulate gene expression is a unique approach to enhance economically important crop traits. This approach allows for the maintenance of the introduced modifications in the absence of the initial transgene inducer in subsequent generations and relies largely on methylation of cytosines in the CG-specific sequence context. We have developed a targeted DNA methylation tool based on a bacterial methyltransferase and the CRISPR-Cas9 platform to directly methylate cytosines at CG sites in Arabidopsis . These tools expand the currently available CRISPR-based targeted DNA methylation tools and provide an approach for the establishment of heritable targeted DNA methylation in plants. CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research.
CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research.CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research.
Author Ghoshal, Basudev
Picard, Colette L.
Vong, Brandon
Jacobsen, Steven E.
Feng, Suhua
Author_xml – sequence: 1
  givenname: Basudev
  surname: Ghoshal
  fullname: Ghoshal, Basudev
– sequence: 2
  givenname: Colette L.
  surname: Picard
  fullname: Picard, Colette L.
– sequence: 3
  givenname: Brandon
  surname: Vong
  fullname: Vong, Brandon
– sequence: 4
  givenname: Suhua
  surname: Feng
  fullname: Feng, Suhua
– sequence: 5
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34074795$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1vEzEUxC1URNPCmRPIEpdetn3-2LX3ghSFUipVgAqcLXvXmzja2FvbQcp_j9u0pVTiYh88M_69N0fowAdvEXpL4JSAYGeT1-mUEloDaQiRL9CMQEuqhrdwgGYAVFSSU36IjlJaA0BbS3iFDhkHwUVbz1BcXF_--H5dGZ1sj7OOS5udX-Iw4E9f53hj82o36uyCx87jedTG9WFKLuG80qPTXmOzw-XQXbbR6REvLqo02c4NrnsSkaP2abCxfPMavRz0mOyb-_sY_fp8_nPxpbr6dnG5mF9VHecsV9b0klIjbN9QxrSWVg6cMuhpPTTAmgEGSVlteC9lC1o2jBkDLQNjBO2pYMfo4z532pqN7TvrC8Sopug2Ou5U0E79--LdSi3DbyUpkLKoEnByHxDDzdamrDYudXYctbdhmxStWcMFBSBF-uGZdB220ZfxiopDXUN7R_T-KdEjykMdRVDvBV0MKUU7qM7lu-0XQDcqAuq2dnVbu_pbe_GdPfM9RP_f8W7vWKcc4qOcCuAFlbM_vai5Fw
CitedBy_id crossref_primary_10_1038_s41467_022_35675_7
crossref_primary_10_1016_j_tplants_2024_04_008
crossref_primary_10_3390_ijms24054778
crossref_primary_10_3390_ijms24043442
crossref_primary_10_3390_plants12061384
crossref_primary_10_1007_s00299_023_03071_0
crossref_primary_10_1080_10409238_2024_2320659
crossref_primary_10_3390_agronomy15010094
crossref_primary_10_1007_s12298_024_01539_1
crossref_primary_10_1016_j_ijbiomac_2025_142401
crossref_primary_10_1016_j_pbi_2024_102552
crossref_primary_10_3390_epigenomes5030017
crossref_primary_10_1093_plcell_koac220
crossref_primary_10_1111_nph_20347
crossref_primary_10_1016_j_ijbiomac_2022_08_182
crossref_primary_10_1007_s13237_024_00502_5
crossref_primary_10_1038_s42003_024_06306_2
crossref_primary_10_1016_j_bbagen_2024_130620
crossref_primary_10_1111_nyas_14675
crossref_primary_10_1093_jxb_erad175
crossref_primary_10_3390_plants11020212
crossref_primary_10_3389_fgene_2022_876987
crossref_primary_10_1038_s41467_024_45771_5
crossref_primary_10_1007_s13258_021_01187_9
crossref_primary_10_1016_j_pbi_2024_102569
crossref_primary_10_1038_s41477_025_01924_y
crossref_primary_10_1016_j_pbi_2022_102241
crossref_primary_10_48130_seedbio_0024_0002
crossref_primary_10_1007_s00253_025_13442_0
crossref_primary_10_1016_j_bbrc_2023_02_080
crossref_primary_10_3389_fgeed_2022_937853
crossref_primary_10_3390_ijms231810202
crossref_primary_10_1038_s41580_025_00834_3
crossref_primary_10_1111_nph_18734
crossref_primary_10_1016_j_pbi_2022_102315
crossref_primary_10_1007_s13237_024_00483_5
crossref_primary_10_1042_ETLS20210258
crossref_primary_10_1002_adfm_202202585
crossref_primary_10_3390_ijms22168618
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1007_s00018_024_05255_7
crossref_primary_10_3389_fpls_2025_1544744
crossref_primary_10_1038_s41580_024_00769_1
crossref_primary_10_1093_nar_gkad306
crossref_primary_10_1007_s13258_021_01199_5
crossref_primary_10_1093_plphys_kiac033
crossref_primary_10_3390_f13111887
crossref_primary_10_1002_pmic_202200104
crossref_primary_10_1139_gen_2024_0098
crossref_primary_10_3389_fpls_2022_886162
crossref_primary_10_1093_plphys_kiac113
crossref_primary_10_3389_fpls_2022_826473
Cites_doi 10.1371/journal.pbio.0040363
10.1074/jbc.M303892200
10.1126/science.1095989
10.1038/s41467-019-08736-7
10.1016/j.cell.2014.09.039
10.1126/science.1089835
10.1093/bioinformatics/bts635
10.1073/pnas.1413053112
10.1093/bib/bbs017
10.1038/nrm4043
10.1038/nature06745
10.1186/s13059-018-1529-7
10.1038/nature12931
10.1016/S1097-2765(05)00090-0
10.1038/ncomms16026
10.1186/s13059-017-1206-2
10.1111/j.1365-313X.2006.02936.x
10.1093/nar/gku365
10.1016/j.cell.2012.10.054
10.1126/science.1147939
10.1093/bioinformatics/btq351
10.1073/pnas.1716945115
10.1126/science.1165313
10.1186/s13059-014-0550-8
10.1038/s41467-021-23346-y
10.1093/bioinformatics/btr167
10.1038/nrg3683
10.1038/nsmb.2735
10.1371/journal.pgen.1008983
10.1016/j.cell.2019.01.029
10.1093/bioinformatics/btu638
ContentType Journal Article
Copyright Copyright © 2021 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Jun 8, 2021
Copyright © 2021 the Author(s). Published by PNAS. 2021
Copyright_xml – notice: Copyright © 2021 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Jun 8, 2021
– notice: Copyright © 2021 the Author(s). Published by PNAS. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2125016118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8
ExternalDocumentID PMC8201958
34074795
10_1073_pnas_2125016118
27040924
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM130272
– fundername: NCI NIH HHS
  grantid: P30 CA016042
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: F32 GM136115
– fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
  grantid: OPP1210659
– fundername: HHS | National Institutes of Health (NIH)
  grantid: NIH R35 GM130272
– fundername: HHS | National Institutes of Health (NIH)
  grantid: NIH F32 GM136115
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-ebd822b7ed6233aa8e8f4230d25f6036f0f8235b4d8890a8633bb0930bb72d273
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:40:32 EDT 2025
Fri Jul 11 07:30:06 EDT 2025
Mon Jun 30 08:45:58 EDT 2025
Thu Apr 03 06:58:42 EDT 2025
Tue Jul 01 01:02:57 EDT 2025
Thu Apr 24 23:02:07 EDT 2025
Thu May 29 08:51:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords DNA methylation
SunTag
Arabidopsis
CRISPR-Cas9
Language English
License Copyright © 2021 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-ebd822b7ed6233aa8e8f4230d25f6036f0f8235b4d8890a8633bb0930bb72d273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewers: S.P., New England Biolabs; and N.M.S., University of Minnesota.
1B.G. and C.L.P. contributed equally to this work.
Contributed by Steven E. Jacobsen, April 27, 2021 (sent for review January 28, 2021; reviewed by Sriharsa Pradhan and Nathan M. Springer)
Author contributions: B.G. and S.E.J. designed research; B.G., C.L.P., B.V., and S.F. performed research; B.G., C.L.P., and S.E.J. contributed new reagents/analytic tools; B.G., C.L.P., and S.E.J. analyzed data; and B.G. and S.E.J. wrote the paper.
ORCID 0000-0002-2177-2216
0000-0001-8278-1469
0000-0003-1387-0139
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8201958
PMID 34074795
PQID 2540550927
PQPubID 42026
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8201958
proquest_miscellaneous_2536472001
proquest_journals_2540550927
pubmed_primary_34074795
crossref_citationtrail_10_1073_pnas_2125016118
crossref_primary_10_1073_pnas_2125016118
jstor_primary_27040924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-08
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_12_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_18_2
  doi: 10.1371/journal.pbio.0040363
– ident: e_1_3_4_9_2
  doi: 10.1074/jbc.M303892200
– ident: e_1_3_4_20_2
  doi: 10.1126/science.1095989
– ident: e_1_3_4_8_2
  doi: 10.1038/s41467-019-08736-7
– ident: e_1_3_4_21_2
  doi: 10.1016/j.cell.2014.09.039
– ident: e_1_3_4_13_2
  doi: 10.1126/science.1089835
– ident: e_1_3_4_27_2
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_3_4_16_2
  doi: 10.1073/pnas.1413053112
– ident: e_1_3_4_26_2
  doi: 10.1093/bib/bbs017
– ident: e_1_3_4_1_2
  doi: 10.1038/nrm4043
– ident: e_1_3_4_25_2
  doi: 10.1038/nature06745
– ident: e_1_3_4_19_2
  doi: 10.1186/s13059-018-1529-7
– ident: e_1_3_4_14_2
  doi: 10.1038/nature12931
– ident: e_1_3_4_11_2
  doi: 10.1016/S1097-2765(05)00090-0
– ident: e_1_3_4_7_2
  doi: 10.1038/ncomms16026
– ident: e_1_3_4_6_2
  doi: 10.1186/s13059-017-1206-2
– ident: e_1_3_4_12_2
  doi: 10.1111/j.1365-313X.2006.02936.x
– ident: e_1_3_4_28_2
  doi: 10.1093/nar/gku365
– ident: e_1_3_4_4_2
  doi: 10.1016/j.cell.2012.10.054
– ident: e_1_3_4_5_2
  doi: 10.1126/science.1147939
– ident: e_1_3_4_29_2
  doi: 10.1093/bioinformatics/btq351
– ident: e_1_3_4_15_2
  doi: 10.1073/pnas.1716945115
– ident: e_1_3_4_17_2
  doi: 10.1126/science.1165313
– ident: e_1_3_4_31_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_4_22_2
  doi: 10.1038/s41467-021-23346-y
– ident: e_1_3_4_24_2
  doi: 10.1093/bioinformatics/btr167
– ident: e_1_3_4_2_2
  doi: 10.1038/nrg3683
– ident: e_1_3_4_3_2
  doi: 10.1038/nsmb.2735
– ident: e_1_3_4_23_2
  doi: 10.1371/journal.pgen.1008983
– ident: e_1_3_4_10_2
  doi: 10.1016/j.cell.2019.01.029
– ident: e_1_3_4_30_2
  doi: 10.1093/bioinformatics/btu638
SSID ssj0009580
Score 2.5626922
Snippet CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their...
Site-specific modification of epigenetic marks such as DNA methylation to regulate gene expression is a unique approach to enhance economically important crop...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Arabidopsis - enzymology
Arabidopsis - genetics
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Sciences
CRISPR
CRISPR-Cas Systems
Cytosine
Deoxyribonucleic acid
DNA
DNA Methylation
DNA methyltransferase
DNA, Plant - genetics
DNA, Plant - metabolism
DNA-Cytosine Methylases - genetics
DNA-Cytosine Methylases - metabolism
Epigenetics
Gene expression
Gene silencing
Meiosis
Nucleotide sequence
Phenotypes
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Tenericutes - enzymology
Tenericutes - genetics
Title CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase
URI https://www.jstor.org/stable/27040924
https://www.ncbi.nlm.nih.gov/pubmed/34074795
https://www.proquest.com/docview/2540550927
https://www.proquest.com/docview/2536472001
https://pubmed.ncbi.nlm.nih.gov/PMC8201958
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDBgEBjISh6EqJXPSOD2Wsh-gUarRot6iOHaVSlMyNQnSuPKP8xzbiTuKNLhYVeI4Ub-X588vn99D6C3xaEoAXDegPHIDkh7DO8cYrFpTwiMKpJfJ0MCXaXi-CD4vh8te75elWqorNkh_7txX8j-owjHAVe6S_Qdk20HhAPwGfKEFhKG9E8aTy0_fZpeunIl4X2m6tYj543TcFIe-UVK3JqqxSdiaF9cyA0mVNeGNRJJPaFTGZhlGOHPl1kspH7KGqBpyKzbmQ47msrN27iuN0mBqQovjbqOK9h5l3-3Ppl3Z47OsKLNEf_Moay5-tF4a7EYJ7ifFlVQi9dsA9XctIP4AT8Q7AQGAooLedVYndhyDKL2V7XqBubhhoIqHDsSOY8Zfdw67NruV_5gIwHPJ6sV5Ug5gch5KYqsv20q5Pf0any4uLuL5yXJ-D90nsNYgjXe3MzdHKqWFfhSTH4r6728Nv0VtlLp117rltvzW4jPzR-ihXojgsbKqfdQT-WO0b8DCRzof-bsnaGObGW7NDBcrDDaCLTPD6xxbZoaNmWF2g6ExZoYtM7OGsMzsKVqcnswn564u1eGmQeBXrmAcmCajggOd9pMkEtEKiLrHyXAVAklaeauI-EMW8CgaeUkU-j5j3gg8AaOEA4U-QHt5kYvnCHvCY5zK2rGMwupdRIRxER6LRJaJoow7aGD-5TjVeexlOZWruNFTUD-WsMQdLA46ai-4Vilc_t71oIGt7UcoTHIjEjjo0OAYawcA18nVDhBuQh30pj0N7ll-c0tyUdSyT1OgAcigg54p2NvB_UBWrxgNHUS3DKLtIFO_b5_J11mTAl7ydjDMF3e470v0oHvdDtFetanFKyDSFXvdGPpvUOnI2A
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-based+targeting+of+DNA+methylation+in+Arabidopsis+thaliana+by+a+bacterial+CG-specific+DNA+methyltransferase&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ghoshal%2C+Basudev&rft.au=Picard%2C+Colette+L&rft.au=Vong%2C+Brandon&rft.au=Feng%2C+Suhua&rft.date=2021-06-08&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=23&rft_id=info:doi/10.1073%2Fpnas.2125016118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon