Fibroblast Growth Factor 21 Is Regulated by the IRE1α-XBP1 Branch of the Unfolded Protein Response and Counteracts Endoplasmic Reticulum Stress-induced Hepatic Steatosis
Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR) and represents a critical mechanism that underlies metabolic dysfunctions. Fibroblast growth factor 21 (FGF21), a hormone that is predominantly secreted by the liver, exerts a broad range of effects upon the met...
Saved in:
Published in | The Journal of biological chemistry Vol. 289; no. 43; pp. 29751 - 29765 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.10.2014
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR) and represents a critical mechanism that underlies metabolic dysfunctions. Fibroblast growth factor 21 (FGF21), a hormone that is predominantly secreted by the liver, exerts a broad range of effects upon the metabolism of carbohydrates and lipids. Although increased circulating levels of FGF21 have been documented in animal models and human subjects with obesity and nonalcoholic fatty liver disease, the functional interconnections between metabolic ER stress and FGF21 are incompletely understood. Here, we report that increased ER stress along with the simultaneous elevation of FGF21 expression were associated with the occurrence of nonalcoholic fatty liver disease both in diet-induced obese mice and human patients. Intraperitoneal administration of the ER stressor tunicamycin in mice resulted in hepatic steatosis, accompanied by activation of the three canonical UPR branches and increased the expression of FGF21. Furthermore, the IRE1α-XBP1 pathway of the UPR could directly activate the transcriptional expression of Fgf21. Administration of recombinant FGF21 in mice alleviated tunicamycin-induced liver steatosis, in parallel with reduced eIF2α-ATF4-CHOP signaling. Taken together, these results suggest that FGF21 is an integral physiological component of the cellular UPR program, which exerts beneficial feedback effects upon lipid metabolism through counteracting ER stress. |
---|---|
AbstractList | Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR) and represents a critical mechanism that underlies metabolic dysfunctions. Fibroblast growth factor 21 (FGF21), a hormone that is predominantly secreted by the liver, exerts a broad range of effects upon the metabolism of carbohydrates and lipids. Although increased circulating levels of FGF21 have been documented in animal models and human subjects with obesity and nonalcoholic fatty liver disease, the functional interconnections between metabolic ER stress and FGF21 are incompletely understood. Here, we report that increased ER stress along with the simultaneous elevation of FGF21 expression were associated with the occurrence of nonalcoholic fatty liver disease both in diet-induced obese mice and human patients. Intraperitoneal administration of the ER stressor tunicamycin in mice resulted in hepatic steatosis, accompanied by activation of the three canonical UPR branches and increased the expression of FGF21. Furthermore, the IRE1α-XBP1 pathway of the UPR could directly activate the transcriptional expression of Fgf21. Administration of recombinant FGF21 in mice alleviated tunicamycin-induced liver steatosis, in parallel with reduced eIF2α-ATF4-CHOP signaling. Taken together, these results suggest that FGF21 is an integral physiological component of the cellular UPR program, which exerts beneficial feedback effects upon lipid metabolism through counteracting ER stress. Background: Although both are involved in metabolic homeostasis, the interconnection between ER stress and FGF21 remains incompletely understood. Results: Directly up-regulated by the IRE1α-XBP1 pathway, FGF21 could alleviate ER stress-induced liver steatosis. Conclusion: FGF21 acts as a metabolic effector of the UPR program, exerting feedback effects upon lipid metabolism. Significance: These findings reveal a regulatory mechanism linking FGF21 actions to metabolic ER stress. Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR) and represents a critical mechanism that underlies metabolic dysfunctions. Fibroblast growth factor 21 (FGF21), a hormone that is predominantly secreted by the liver, exerts a broad range of effects upon the metabolism of carbohydrates and lipids. Although increased circulating levels of FGF21 have been documented in animal models and human subjects with obesity and nonalcoholic fatty liver disease, the functional interconnections between metabolic ER stress and FGF21 are incompletely understood. Here, we report that increased ER stress along with the simultaneous elevation of FGF21 expression were associated with the occurrence of nonalcoholic fatty liver disease both in diet-induced obese mice and human patients. Intraperitoneal administration of the ER stressor tunicamycin in mice resulted in hepatic steatosis, accompanied by activation of the three canonical UPR branches and increased the expression of FGF21. Furthermore, the IRE1α-XBP1 pathway of the UPR could directly activate the transcriptional expression of Fgf21 . Administration of recombinant FGF21 in mice alleviated tunicamycin-induced liver steatosis, in parallel with reduced eIF2α-ATF4-CHOP signaling. Taken together, these results suggest that FGF21 is an integral physiological component of the cellular UPR program, which exerts beneficial feedback effects upon lipid metabolism through counteracting ER stress. Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR) and represents a critical mechanism that underlies metabolic dysfunctions. Fibroblast growth factor 21 (FGF21), a hormone that is predominantly secreted by the liver, exerts a broad range of effects upon the metabolism of carbohydrates and lipids. Although increased circulating levels of FGF21 have been documented in animal models and human subjects with obesity and nonalcoholic fatty liver disease, the functional interconnections between metabolic ER stress and FGF21 are incompletely understood. Here, we report that increased ER stress along with the simultaneous elevation of FGF21 expression were associated with the occurrence of nonalcoholic fatty liver disease both in diet-induced obese mice and human patients. Intraperitoneal administration of the ER stressor tunicamycin in mice resulted in hepatic steatosis, accompanied by activation of the three canonical UPR branches and increased the expression of FGF21. Furthermore, the IRE1α-XBP1 pathway of the UPR could directly activate the transcriptional expression of Fgf21. Administration of recombinant FGF21 in mice alleviated tunicamycin-induced liver steatosis, in parallel with reduced eIF2α-ATF4-CHOP signaling. Taken together, these results suggest that FGF21 is an integral physiological component of the cellular UPR program, which exerts beneficial feedback effects upon lipid metabolism through counteracting ER stress.Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR) and represents a critical mechanism that underlies metabolic dysfunctions. Fibroblast growth factor 21 (FGF21), a hormone that is predominantly secreted by the liver, exerts a broad range of effects upon the metabolism of carbohydrates and lipids. Although increased circulating levels of FGF21 have been documented in animal models and human subjects with obesity and nonalcoholic fatty liver disease, the functional interconnections between metabolic ER stress and FGF21 are incompletely understood. Here, we report that increased ER stress along with the simultaneous elevation of FGF21 expression were associated with the occurrence of nonalcoholic fatty liver disease both in diet-induced obese mice and human patients. Intraperitoneal administration of the ER stressor tunicamycin in mice resulted in hepatic steatosis, accompanied by activation of the three canonical UPR branches and increased the expression of FGF21. Furthermore, the IRE1α-XBP1 pathway of the UPR could directly activate the transcriptional expression of Fgf21. Administration of recombinant FGF21 in mice alleviated tunicamycin-induced liver steatosis, in parallel with reduced eIF2α-ATF4-CHOP signaling. Taken together, these results suggest that FGF21 is an integral physiological component of the cellular UPR program, which exerts beneficial feedback effects upon lipid metabolism through counteracting ER stress. |
Author | Zhou, Jian Li, Hua-ting Deng, Yi-ping Liu, Yang Yang, Liu Dai, Zhi Fang, Qi-chen Shan, Bo Jia, Wei-ping Jiang, Shan Yan, Cheng Zhang, Yong-liang Liu, Jing-qi Shao, Meng-le Liu, Yong |
Author_xml | – sequence: 1 givenname: Shan surname: Jiang fullname: Jiang, Shan organization: Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233 – sequence: 2 givenname: Cheng surname: Yan fullname: Yan, Cheng organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and – sequence: 3 givenname: Qi-chen surname: Fang fullname: Fang, Qi-chen organization: Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233 – sequence: 4 givenname: Meng-le surname: Shao fullname: Shao, Meng-le organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and – sequence: 5 givenname: Yong-liang surname: Zhang fullname: Zhang, Yong-liang organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and – sequence: 6 givenname: Yang surname: Liu fullname: Liu, Yang organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and – sequence: 7 givenname: Yi-ping surname: Deng fullname: Deng, Yi-ping organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and – sequence: 8 givenname: Bo surname: Shan fullname: Shan, Bo organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and – sequence: 9 givenname: Jing-qi surname: Liu fullname: Liu, Jing-qi organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and – sequence: 10 givenname: Hua-ting surname: Li fullname: Li, Hua-ting organization: Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233 – sequence: 11 givenname: Liu surname: Yang fullname: Yang, Liu organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and – sequence: 12 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China – sequence: 13 givenname: Zhi surname: Dai fullname: Dai, Zhi organization: Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China – sequence: 14 givenname: Yong surname: Liu fullname: Liu, Yong email: liuy@sibs.ac.cn organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and – sequence: 15 givenname: Wei-ping surname: Jia fullname: Jia, Wei-ping email: wpjia@sjtu.edu.cn organization: Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25170079$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuEzEUtVARTQtrdshLNpPaM56HN0g0StpIRVSFSt1ZftxpXE3sYHta9ZfY8SP9pjqkVIAE3li-9zyse88B2nPeAUJvKZlS0rKjG6Wnnyhl07qpeUNeoAklXVVUNb3aQxNCSlrwsu720UGMNyQfxukrtF_WtCWk5RP0fWFV8GqQMeGT4O_SCi-kTj7gkuJlxBdwPQ4ygcHqHqcV4OXFnD78KK6Ozyk-DtLpFfb9z86l6_1gMvI8-ATWZW7ceBcBS2fwzI8uQcjaEc-d8ZtsubY6g5LV4zCu8ZcUIMbCOjPqrHIKG5lbuQwy-Wjja_Syl0OEN0_3IbpczL_OTouzzyfL2cezQjNWpQIkUV3fEdMZ1iluZE8ZKwGM5KB5VbV1WZZK1a0ynMj8phy41LJTpGp7xatD9GGnuxnVGowGl4IcxCbYtQz3wksr_uw4uxLX_lawMo-02wq8fxII_tsIMYm1jRqGQTrwYxS0oQ1rGSFNhr773evZ5NeCMuBoB9DBxxigf4ZQIrYREDkCYhsBsYtAZtR_MbRNeZJ--1k7_IfHdzzIs721EETUFlxehQ2gkzDe_pP7CE_izQ8 |
CitedBy_id | crossref_primary_10_1007_s10545_015_9849_1 crossref_primary_10_1089_dna_2019_5151 crossref_primary_10_1126_scitranslmed_aaa9134 crossref_primary_10_1126_scitranslmed_aau4760 crossref_primary_10_1016_j_tips_2019_12_005 crossref_primary_10_3389_fendo_2020_601290 crossref_primary_10_1016_j_molmet_2017_12_008 crossref_primary_10_1002_hep_29871 crossref_primary_10_1074_jbc_M116_762922 crossref_primary_10_1016_j_ejphar_2023_175834 crossref_primary_10_2147_TCRM_S352008 crossref_primary_10_1111_obr_13861 crossref_primary_10_1016_j_cca_2019_08_005 crossref_primary_10_1016_j_livres_2019_01_002 crossref_primary_10_3390_nu10091195 crossref_primary_10_2337_db21_0240 crossref_primary_10_1016_j_cellsig_2017_08_009 crossref_primary_10_1016_j_isci_2021_102181 crossref_primary_10_3389_fcell_2022_820949 crossref_primary_10_1038_s41598_017_16312_6 crossref_primary_10_3389_fendo_2021_773975 crossref_primary_10_1016_j_yfrne_2018_06_002 crossref_primary_10_1038_ncomms7693 crossref_primary_10_1038_srep30484 crossref_primary_10_1038_s41573_024_01125_w crossref_primary_10_1080_17474124_2016_1179575 crossref_primary_10_1002_hep_30507 crossref_primary_10_1016_j_jbc_2022_101997 crossref_primary_10_1111_hepr_12825 crossref_primary_10_1186_s40104_021_00621_y crossref_primary_10_1038_nrd_2015_3 crossref_primary_10_1007_s00109_016_1477_1 crossref_primary_10_2139_ssrn_4152835 crossref_primary_10_1016_j_celrep_2024_114972 crossref_primary_10_1016_j_phrs_2017_12_013 crossref_primary_10_14336_AD_2022_0824 crossref_primary_10_1074_jbc_M116_715151 crossref_primary_10_1016_j_gtc_2019_09_003 crossref_primary_10_1016_j_metabol_2019_06_015 crossref_primary_10_1002_mnfr_202300634 crossref_primary_10_1242_jcs_232850 crossref_primary_10_4093_dmj_2017_41_1_10 crossref_primary_10_1096_fj_201700709RR crossref_primary_10_1016_j_tem_2015_05_007 crossref_primary_10_3390_ani13010131 crossref_primary_10_1371_journal_pone_0114085 crossref_primary_10_3389_fendo_2024_1325286 crossref_primary_10_1194_jlr_M085209 crossref_primary_10_1016_j_biocel_2015_06_006 crossref_primary_10_1016_j_bbrc_2017_08_096 crossref_primary_10_3389_fendo_2015_00147 crossref_primary_10_1210_endocr_bqaa019 crossref_primary_10_1038_s41598_024_75107_8 crossref_primary_10_18632_oncotarget_18812 crossref_primary_10_1126_scisignal_aao4617 crossref_primary_10_1080_10408398_2022_2148090 crossref_primary_10_1007_s00125_018_4675_2 crossref_primary_10_1242_dmm_033530 crossref_primary_10_1016_j_cmet_2016_12_004 crossref_primary_10_1016_j_molmet_2017_09_006 crossref_primary_10_1530_JOE_15_0160 crossref_primary_10_1016_j_fshw_2022_03_025 crossref_primary_10_31083_j_fbl2812351 crossref_primary_10_1016_j_livres_2017_11_002 crossref_primary_10_3389_fphar_2022_1011008 crossref_primary_10_1124_mol_116_104687 crossref_primary_10_3892_ijmm_2018_3705 crossref_primary_10_1016_j_bbrc_2015_12_045 crossref_primary_10_19163_1994_9480_2018_2_66__125_130 crossref_primary_10_3390_nu14193920 crossref_primary_10_1016_j_bbrc_2015_02_104 crossref_primary_10_3892_ijmm_2019_4210 crossref_primary_10_1016_j_neuroscience_2022_11_003 crossref_primary_10_3390_nu9030230 crossref_primary_10_3390_ijms23052746 crossref_primary_10_1016_j_arr_2017_05_004 crossref_primary_10_1124_jpet_121_000514 crossref_primary_10_1053_j_gastro_2020_01_051 crossref_primary_10_15252_embj_201898947 crossref_primary_10_1016_j_ebiom_2019_08_033 crossref_primary_10_1007_s11154_019_09488_x crossref_primary_10_1007_s11060_015_2003_y crossref_primary_10_3390_cells11030505 crossref_primary_10_1007_s00125_014_3475_6 crossref_primary_10_3390_ijms18010008 crossref_primary_10_1177_1535370216677354 crossref_primary_10_1080_13543784_2020_1718104 crossref_primary_10_1210_jc_2018_02414 crossref_primary_10_1016_j_biochi_2024_05_012 crossref_primary_10_1016_j_bbadis_2018_04_004 crossref_primary_10_1152_ajpendo_00244_2022 crossref_primary_10_1172_JCI93560 crossref_primary_10_1152_ajpendo_00361_2014 crossref_primary_10_3390_cells9051160 crossref_primary_10_1016_j_biopha_2019_108848 crossref_primary_10_1007_s13105_023_00977_x crossref_primary_10_3177_jnsv_64_200 crossref_primary_10_1016_j_phymed_2024_156017 crossref_primary_10_1016_j_celrep_2023_112615 crossref_primary_10_1074_jbc_REV119_007036 crossref_primary_10_1186_s12986_021_00570_3 crossref_primary_10_1038_s12276_018_0131_0 crossref_primary_10_1038_s41419_019_1758_z crossref_primary_10_1073_pnas_1525093113 crossref_primary_10_1515_hmbci_2016_0016 crossref_primary_10_1194_jlr_M077016 crossref_primary_10_1016_j_ijbiomac_2024_136911 crossref_primary_10_1038_s41467_017_00163_w crossref_primary_10_1016_j_mce_2015_02_018 crossref_primary_10_1002_ana_24506 crossref_primary_10_1055_s_0042_1755316 crossref_primary_10_3390_biomedicines9070791 crossref_primary_10_3389_fendo_2021_635556 crossref_primary_10_1002_jcp_29879 crossref_primary_10_1016_j_lfs_2020_118507 crossref_primary_10_3390_ijms20194692 crossref_primary_10_1002_biof_1300 crossref_primary_10_1016_j_pharmthera_2019_107401 crossref_primary_10_1016_j_jhep_2021_01_042 crossref_primary_10_1016_j_bbadis_2015_02_012 crossref_primary_10_1053_j_gastro_2016_10_007 crossref_primary_10_1111_bph_14678 crossref_primary_10_1016_j_ajpath_2019_09_011 crossref_primary_10_12659_MSM_900033 crossref_primary_10_1074_jbc_M115_710582 crossref_primary_10_1210_er_2017_00016 crossref_primary_10_3390_ijms222312886 crossref_primary_10_1111_febs_16430 crossref_primary_10_2174_0118715257262366230928051902 crossref_primary_10_1080_14728222_2022_2170780 crossref_primary_10_1038_nrendo_2016_124 crossref_primary_10_15252_embj_201899277 crossref_primary_10_3389_fendo_2021_802541 crossref_primary_10_1016_j_phrs_2020_105131 crossref_primary_10_3390_ijms19051396 crossref_primary_10_3389_fphar_2022_1089214 crossref_primary_10_1016_j_molmed_2015_08_005 crossref_primary_10_1038_srep21924 crossref_primary_10_1080_14728222_2017_1397133 crossref_primary_10_2337_db16_0155 crossref_primary_10_1111_apha_12640 crossref_primary_10_1074_jbc_RA119_009868 crossref_primary_10_1016_j_tox_2017_01_009 crossref_primary_10_1016_j_canlet_2020_11_026 crossref_primary_10_1016_j_celrep_2016_05_062 crossref_primary_10_1080_09168451_2015_1135045 crossref_primary_10_1016_j_biopha_2018_10_154 crossref_primary_10_1152_ajpgi_00175_2020 crossref_primary_10_14814_phy2_13819 crossref_primary_10_1016_j_jare_2025_03_007 crossref_primary_10_2337_db17_0923 |
Cites_doi | 10.1038/nm.3014 10.1152/ajpendo.00348.2009 10.1074/jbc.271.30.18181 10.1016/j.cmet.2007.05.003 10.1042/BJ20121671 10.1002/hep.20701 10.1016/j.cmet.2013.04.005 10.1210/jc.2009-0111 10.1016/j.jhep.2012.10.029 10.1016/j.cmet.2013.03.019 10.1016/j.jhep.2010.05.018 10.1002/hep.22774 10.2337/dc09-0684 10.1073/pnas.0809632106 10.1111/j.1440-1746.2007.05001.x 10.1210/jc.2008-2331 10.1002/j.1460-2075.1996.tb00666.x 10.1371/journal.pone.0024895 10.1038/nrm3270 10.2337/db08-0392 10.1016/S0092-8674(01)00611-0 10.1210/en.2008-0816 10.1053/j.gastro.2007.10.039 10.1038/emboj.2011.52 10.1210/jc.2013-1250 10.1074/jbc.M704165200 10.3748/wjg.14.185 10.1016/0092-8674(93)90648-A 10.1016/S1097-2765(00)00108-8 10.1210/er.2007-0015 10.1038/ncomms4528 10.1073/pnas.0701600104 10.1210/jc.2008-1001 10.1091/mbc.e09-02-0133 10.1016/j.biochi.2012.10.019 10.1016/S0092-8674(00)80369-4 10.1016/j.cell.2010.02.034 10.1093/jb/mvh122 10.1101/gad.184788.111 10.1042/BJ20111748 10.1016/j.cmet.2008.06.014 10.2337/db08-1220 10.2337/db07-1476 10.1126/science.1158042 10.1172/JCI23606 10.1038/nrm2199 10.1126/science.1209038 10.1016/j.cmet.2012.03.007 10.1002/hep.20734 10.1073/pnas.1107394108 10.1016/j.devcel.2008.10.015 10.1074/jbc.M601252200 10.2337/db10-0193 10.1126/science.1201396 10.1152/ajpendo.90355.2008 10.1016/j.cmet.2007.05.002 10.1016/j.cell.2011.11.062 10.1016/j.jhep.2010.11.005 |
ContentType | Journal Article |
Copyright | 2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014 |
Copyright_xml | – notice: 2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2014 by The American Society for Biochemistry and Molecular Biology, Inc. – notice: 2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.M114.565960 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | FGF21 Acts as a UPR Effector |
EISSN | 1083-351X |
EndPage | 29765 |
ExternalDocumentID | PMC4207989 25170079 10_1074_jbc_M114_565960 S0021925820373142 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .7T .GJ 0R~ 186 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFFNX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP C1A CITATION E.L FA8 H13 J5H MVM NHB OHT P-O QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 CGR CUY CVF ECM EIF NPM Z5M 7X8 5PM |
ID | FETCH-LOGICAL-c443t-ea0b8f80d8d48b9daf1442eeda9ec93375222bb57bd90a33719e9aca8b037fb93 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 14:12:58 EDT 2025 Fri Jul 11 05:23:45 EDT 2025 Wed Feb 19 02:29:37 EST 2025 Thu Apr 24 22:56:39 EDT 2025 Tue Jul 01 00:48:09 EDT 2025 Fri Feb 23 02:45:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | Unfolded Protein Response (UPR) Fibroblast Growth Factor (FGF) Liver Metabolism ER Stress Hepatocyte |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 2014 by The American Society for Biochemistry and Molecular Biology, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c443t-ea0b8f80d8d48b9daf1442eeda9ec93375222bb57bd90a33719e9aca8b037fb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Both authors contributed equally to this work. |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M114.565960 |
PMID | 25170079 |
PQID | 1616474006 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4207989 proquest_miscellaneous_1616474006 pubmed_primary_25170079 crossref_primary_10_1074_jbc_M114_565960 crossref_citationtrail_10_1074_jbc_M114_565960 elsevier_sciencedirect_doi_10_1074_jbc_M114_565960 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-24 |
PublicationDateYYYYMMDD | 2014-10-24 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2014 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Welihinda, Kaufman (bib7) 1996; 271 Malhi, Kaufman (bib15) 2011; 54 Zhang, Wang, Malhotra, Hassler, Back, Wang, Chang, Xu, Miao, Leonardi, Chen, Jackowski, Kaufman (bib23) 2011; 30 Eizirik, Cardozo, Cnop (bib13) 2008; 29 Gälman, Lundåsen, Kharitonenkov, Bina, Eriksson, Hafström, Dahlin, Amark, Angelin, Rudling (bib27) 2008; 8 Shamu, Walter (bib6) 1996; 15 Hotamisligil (bib14) 2010; 140 Holland, Adams, Brozinick, Bui, Miyauchi, Kusminski, Bauer, Wade, Singhal, Cheng, Volk, Kuo, Gordillo, Kharitonenkov, Scherer (bib58) 2013; 17 Sidrauski, Walter (bib5) 1997; 90 Li, Dong, Fang, Hou, Zhou, Bao, Xiang, Xu, Jia (bib38) 2013; 58 Kim, Jeong, Oh, Kim, Cho, Kim, Kim, Kim do, Hur, Kim, Ko, Han, Kim, Kim, Back, Komatsu, Chen, Chan, Konishi, Itoh, Choi, Lee (bib43) 2013; 19 Tsaytler, Harding, Ron, Bertolotti (bib10) 2011; 332 Yamamoto, Takahara, Oyadomari, Okada, Sato, Harada, Mori (bib53) 2010; 21 Walter, Ron (bib2) 2011; 334 Li, Bao, Xu, Pan, Lu, Wu, Lu, Xiang, Jia (bib35) 2009; 94 Zhang, Ibrahimi, Olsen, Umemori, Mohammadi, Ornitz (bib50) 2006; 281 Rector, Thyfault, Wei, Ibdah (bib17) 2008; 14 Wang, Jiang, Wang, Li, Yu, You, Zeng, Gao, Rui, Li, Liu (bib48) 2009; 49 Yamamoto, Yoshida, Kokame, Kaufman, Mori (bib52) 2004; 136 Lee, Scapa, Cohen, Glimcher (bib54) 2008; 320 Kharitonenkov, Shiyanova, Koester, Ford, Micanovic, Galbreath, Sandusky, Hammond, Moyers, Owens, Gromada, Brozinick, Hawkins, Wroblewski, Li, Mehrbod, Jaskunas, Shanafelt (bib29) 2005; 115 Chavez, Molina-Carrion, Abdul-Ghani, Folli, Defronzo, Tripathy (bib36) 2009; 32 Yoshida, Matsui, Yamamoto, Okada, Mori (bib8) 2001; 107 Hetz (bib12) 2012; 13 Inagaki, Dutchak, Zhao, Ding, Gautron, Parameswara, Li, Goetz, Mohammadi, Esser, Elmquist, Gerard, Burgess, Hammer, Mangelsdorf, Kliewer (bib26) 2007; 5 Fisher, Chui, Antonellis, Bina, Kharitonenkov, Flier, Maratos-Flier (bib33) 2010; 59 Ron, Walter (bib1) 2007; 8 Chitturi, Farrell, Hashimoto, Saibara, Lau, Sollano (bib45) 2007; 22 Yan, Xia, Chang, Xu, Bian, Zeng, Rao, Yao, Tu, Jia, Gao (bib39) 2011; 6 Cox, Shamu, Walter (bib4) 1993; 73 Ogawa, Kurosu, Yamamoto, Nandi, Rosenblatt, Goetz, Eliseenkova, Mohammadi, Kuro-o (bib51) 2007; 104 Dutchak, Katafuchi, Bookout, Choi, Yu, Mangelsdorf, Kliewer (bib56) 2012; 148 Zhang, Yeung, Karpisek, Stejskal, Zhou, Liu, Wong, Chow, Tso, Lam, Xu (bib34) 2008; 57 Das, Chu, Mondal, Sharma, Kern, Rasouli, Elbein (bib18) 2008; 295 Giannini, Feldstein, Santoro, Kim, Kursawe, Pierpont, Caprio (bib40) 2013; 98 Harding, Novoa, Zhang, Zeng, Wek, Schapira, Ron (bib9) 2000; 6 Lin, Tian, Lam, Lin, Hoo, Konishi, Itoh, Wang, Bornstein, Xu, Li (bib57) 2013; 17 Harding, Zhang, Scheuner, Chen, Kaufman, Ron (bib11) 2009; 106 Sharma, Das, Mondal, Hackney, Chu, Kern, Rasouli, Spencer, Yao-Borengasser, Elbein (bib21) 2008; 93 Coskun, Bina, Schneider, Dunbar, Hu, Chen, Moller, Kharitonenkov (bib32) 2008; 149 Gregor, Yang, Fabbrini, Mohammed, Eagon, Hotamisligil, Klein (bib19) 2009; 58 Potthoff, Kliewer, Mangelsdorf (bib24) 2012; 26 Schaap, Kremer, Lamers, Jansen, Gaemers (bib42) 2013; 95 Christodoulides, Dyson, Sprecher, Tsintzas, Karpe (bib28) 2009; 94 Li, Pi, Liu, Zhang, Huang, Hu, Chevet, Yi, Liu (bib55) 2013; 452 Rutkowski, Wu, Back, Callaghan, Ferris, Iqbal, Clark, Miao, Hassler, Fornek, Katze, Hussain, Song, Swathirajan, Wang, Yau, Kaufman (bib22) 2008; 15 Kurosu, Choi, Ogawa, Dickson, Goetz, Eliseenkova, Mohammadi, Rosenblatt, Kliewer, Kuro-o (bib49) 2007; 282 Mao, Shao, Qiu, Huang, Zhang, Song, Wang, Jiang, Liu, Han, Cao, Li, Gao, Rui, Qi, Li (bib47) 2011; 108 Puri, Mirshahi, Cheung, Natarajan, Maher, Kellum, Sanyal (bib20) 2008; 134 Kleiner, Brunt, Van Natta, Behling, Contos, Cummings, Ferrell, Liu, Torbenson, Unalp-Arida, Yeh, McCullough, Sanyal (bib46) 2005; 41 Fu, Watkins, Hotamisligil (bib3) 2012; 15 Xu, Lloyd, Hale, Stanislaus, Chen, Sivits, Vonderfecht, Hecht, Li, Lindberg, Chen, Jung, Zhang, Ko, Kim, Véniant (bib30) 2009; 58 Xu, Stanislaus, Chinookoswong, Lau, Hager, Patel, Ge, Weiszmann, Lu, Graham, Busby, Hecht, Li, Li, Lindberg, Véniant (bib31) 2009; 297 Badman, Pissios, Kennedy, Koukos, Flier, Maratos-Flier (bib25) 2007; 5 Bedogni, Miglioli, Masutti, Tiribelli, Marchesini, Bellentani (bib16) 2005; 42 De Sousa-Coelho, Marrero, Haro (bib41) 2012; 443 Li, Fang, Gao, Fan, Zhou, Wang, Zhang, Pan, Bao, Xiang, Xu, Jia (bib37) 2010; 53 Shao, Shan, Liu, Deng, Yan, Wu, Mao, Qiu, Zhou, Jiang, Jia, Li, Li, Rui, Yang (bib44) 2014; 5 Kim (10.1074/jbc.M114.565960_bib43) 2013; 19 Holland (10.1074/jbc.M114.565960_bib58) 2013; 17 Malhi (10.1074/jbc.M114.565960_bib15) 2011; 54 Mao (10.1074/jbc.M114.565960_bib47) 2011; 108 Yoshida (10.1074/jbc.M114.565960_bib8) 2001; 107 Li (10.1074/jbc.M114.565960_bib37) 2010; 53 Schaap (10.1074/jbc.M114.565960_bib42) 2013; 95 Harding (10.1074/jbc.M114.565960_bib11) 2009; 106 Potthoff (10.1074/jbc.M114.565960_bib24) 2012; 26 Christodoulides (10.1074/jbc.M114.565960_bib28) 2009; 94 Zhang (10.1074/jbc.M114.565960_bib50) 2006; 281 Sidrauski (10.1074/jbc.M114.565960_bib5) 1997; 90 Zhang (10.1074/jbc.M114.565960_bib34) 2008; 57 Kleiner (10.1074/jbc.M114.565960_bib46) 2005; 41 Rutkowski (10.1074/jbc.M114.565960_bib22) 2008; 15 Puri (10.1074/jbc.M114.565960_bib20) 2008; 134 Lee (10.1074/jbc.M114.565960_bib54) 2008; 320 Coskun (10.1074/jbc.M114.565960_bib32) 2008; 149 Bedogni (10.1074/jbc.M114.565960_bib16) 2005; 42 Chitturi (10.1074/jbc.M114.565960_bib45) 2007; 22 Kurosu (10.1074/jbc.M114.565960_bib49) 2007; 282 Li (10.1074/jbc.M114.565960_bib35) 2009; 94 Ogawa (10.1074/jbc.M114.565960_bib51) 2007; 104 Shao (10.1074/jbc.M114.565960_bib44) 2014; 5 Hotamisligil (10.1074/jbc.M114.565960_bib14) 2010; 140 Li (10.1074/jbc.M114.565960_bib38) 2013; 58 Walter (10.1074/jbc.M114.565960_bib2) 2011; 334 Gälman (10.1074/jbc.M114.565960_bib27) 2008; 8 Tsaytler (10.1074/jbc.M114.565960_bib10) 2011; 332 Harding (10.1074/jbc.M114.565960_bib9) 2000; 6 Inagaki (10.1074/jbc.M114.565960_bib26) 2007; 5 Gregor (10.1074/jbc.M114.565960_bib19) 2009; 58 Eizirik (10.1074/jbc.M114.565960_bib13) 2008; 29 Hetz (10.1074/jbc.M114.565960_bib12) 2012; 13 Xu (10.1074/jbc.M114.565960_bib31) 2009; 297 Dutchak (10.1074/jbc.M114.565960_bib56) 2012; 148 De Sousa-Coelho (10.1074/jbc.M114.565960_bib41) 2012; 443 Xu (10.1074/jbc.M114.565960_bib30) 2009; 58 Yan (10.1074/jbc.M114.565960_bib39) 2011; 6 Cox (10.1074/jbc.M114.565960_bib4) 1993; 73 Yamamoto (10.1074/jbc.M114.565960_bib53) 2010; 21 Das (10.1074/jbc.M114.565960_bib18) 2008; 295 Ron (10.1074/jbc.M114.565960_bib1) 2007; 8 Kharitonenkov (10.1074/jbc.M114.565960_bib29) 2005; 115 Fisher (10.1074/jbc.M114.565960_bib33) 2010; 59 Fu (10.1074/jbc.M114.565960_bib3) 2012; 15 Wang (10.1074/jbc.M114.565960_bib48) 2009; 49 Welihinda (10.1074/jbc.M114.565960_bib7) 1996; 271 Zhang (10.1074/jbc.M114.565960_bib23) 2011; 30 Shamu (10.1074/jbc.M114.565960_bib6) 1996; 15 Chavez (10.1074/jbc.M114.565960_bib36) 2009; 32 Badman (10.1074/jbc.M114.565960_bib25) 2007; 5 Li (10.1074/jbc.M114.565960_bib55) 2013; 452 Yamamoto (10.1074/jbc.M114.565960_bib52) 2004; 136 Giannini (10.1074/jbc.M114.565960_bib40) 2013; 98 Lin (10.1074/jbc.M114.565960_bib57) 2013; 17 Rector (10.1074/jbc.M114.565960_bib17) 2008; 14 Sharma (10.1074/jbc.M114.565960_bib21) 2008; 93 |
References_xml | – volume: 59 start-page: 2781 year: 2010 end-page: 2789 ident: bib33 article-title: Obesity is a fibroblast growth factor 21 (FGF21)-resistant state publication-title: Diabetes – volume: 334 start-page: 1081 year: 2011 end-page: 1086 ident: bib2 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science – volume: 148 start-page: 556 year: 2012 end-page: 567 ident: bib56 article-title: Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones publication-title: Cell – volume: 73 start-page: 1197 year: 1993 end-page: 1206 ident: bib4 article-title: Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase publication-title: Cell – volume: 54 start-page: 795 year: 2011 end-page: 809 ident: bib15 article-title: Endoplasmic reticulum stress in liver disease publication-title: J. Hepatol – volume: 134 start-page: 568 year: 2008 end-page: 576 ident: bib20 article-title: Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease publication-title: Gastroenterology – volume: 94 start-page: 2151 year: 2009 end-page: 2156 ident: bib35 article-title: Serum fibroblast growth factor 21 is associated with adverse lipid profiles and γ-glutamyltransferase but not insulin sensitivity in Chinese subjects publication-title: J. Clin. Endocrinol. Metab – volume: 6 start-page: 1099 year: 2000 end-page: 1108 ident: bib9 article-title: Regulated translation initiation controls stress-induced gene expression in mammalian cells publication-title: Mol. Cell – volume: 5 start-page: 3528 year: 2014 ident: bib44 article-title: Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARα axis signalling publication-title: Nat. Commun – volume: 8 start-page: 169 year: 2008 end-page: 174 ident: bib27 article-title: The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man publication-title: Cell Metab – volume: 26 start-page: 312 year: 2012 end-page: 324 ident: bib24 article-title: Endocrine fibroblast growth factors 15/19 and 21: from feast to famine publication-title: Genes Dev – volume: 332 start-page: 91 year: 2011 end-page: 94 ident: bib10 article-title: Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis publication-title: Science – volume: 15 start-page: 623 year: 2012 end-page: 634 ident: bib3 article-title: The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling publication-title: Cell Metab – volume: 104 start-page: 7432 year: 2007 end-page: 7437 ident: bib51 article-title: βKlotho is required for metabolic activity of fibroblast growth factor 21 publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 443 start-page: 165 year: 2012 end-page: 171 ident: bib41 article-title: Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation publication-title: Biochem. J – volume: 29 start-page: 42 year: 2008 end-page: 61 ident: bib13 article-title: The role for endoplasmic reticulum stress in diabetes mellitus publication-title: Endocr. Rev – volume: 15 start-page: 3028 year: 1996 end-page: 3039 ident: bib6 article-title: Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus publication-title: EMBO J – volume: 108 start-page: 15852 year: 2011 end-page: 15857 ident: bib47 article-title: PKA phosphorylation couples hepatic inositol-requiring enzyme 1α to glucagon signaling in glucose metabolism publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 58 start-page: 693 year: 2009 end-page: 700 ident: bib19 article-title: Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss publication-title: Diabetes – volume: 6 start-page: e24895 year: 2011 ident: bib39 article-title: Circulating fibroblast growth factor 21 levels are closely associated with hepatic fat content: a cross-sectional study publication-title: PLoS One – volume: 281 start-page: 15694 year: 2006 end-page: 15700 ident: bib50 article-title: Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family publication-title: J. Biol. Chem – volume: 271 start-page: 18181 year: 1996 end-page: 18187 ident: bib7 article-title: The unfolded protein response pathway in publication-title: J. Biol. Chem – volume: 320 start-page: 1492 year: 2008 end-page: 1496 ident: bib54 article-title: Regulation of hepatic lipogenesis by the transcription factor XBP1 publication-title: Science – volume: 98 start-page: 2993 year: 2013 end-page: 3000 ident: bib40 article-title: Circulating levels of FGF-21 in obese youth: associations with liver fat content and markers of liver damage publication-title: J. Clin. Endocrinol. Metab – volume: 106 start-page: 1832 year: 2009 end-page: 1837 ident: bib11 article-title: Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2α (eIF2α) dephosphorylation in mammalian development publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 5 start-page: 415 year: 2007 end-page: 425 ident: bib26 article-title: Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21 publication-title: Cell Metab – volume: 17 start-page: 779 year: 2013 end-page: 789 ident: bib57 article-title: Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice publication-title: Cell Metab – volume: 42 start-page: 44 year: 2005 end-page: 52 ident: bib16 article-title: Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study publication-title: Hepatology – volume: 30 start-page: 1357 year: 2011 end-page: 1375 ident: bib23 article-title: The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis publication-title: EMBO J – volume: 32 start-page: 1542 year: 2009 end-page: 1546 ident: bib36 article-title: Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance publication-title: Diabetes Care – volume: 452 start-page: 139 year: 2013 end-page: 145 ident: bib55 article-title: FGF-2 prevents cancer cells from ER stress-mediated apoptosis via enhancing proteasome-mediated Nck degradation publication-title: Biochem. J – volume: 17 start-page: 790 year: 2013 end-page: 797 ident: bib58 article-title: An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice publication-title: Cell Metab – volume: 57 start-page: 1246 year: 2008 end-page: 1253 ident: bib34 article-title: Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans publication-title: Diabetes – volume: 136 start-page: 343 year: 2004 end-page: 350 ident: bib52 article-title: Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II publication-title: J. Biochem – volume: 19 start-page: 83 year: 2013 end-page: 92 ident: bib43 article-title: Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine publication-title: Nat. Med – volume: 295 start-page: E393 year: 2008 end-page: E400 ident: bib18 article-title: Effect of pioglitazone treatment on endoplasmic reticulum stress response in human adipose and in palmitate-induced stress in human liver and adipose cell lines publication-title: Am. J. Physiol. Endocrinol. Metab – volume: 94 start-page: 3594 year: 2009 end-page: 3601 ident: bib28 article-title: Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man publication-title: J. Clin. Endocrinol. Metab – volume: 21 start-page: 2975 year: 2010 end-page: 2986 ident: bib53 article-title: Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress publication-title: Mol. Biol. Cell – volume: 93 start-page: 4532 year: 2008 end-page: 4541 ident: bib21 article-title: Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects publication-title: J. Clin. Endocrinol. Metab – volume: 90 start-page: 1031 year: 1997 end-page: 1039 ident: bib5 article-title: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response publication-title: Cell – volume: 107 start-page: 881 year: 2001 end-page: 891 ident: bib8 article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor publication-title: Cell – volume: 58 start-page: 250 year: 2009 end-page: 259 ident: bib30 article-title: Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice publication-title: Diabetes – volume: 115 start-page: 1627 year: 2005 end-page: 1635 ident: bib29 article-title: FGF-21 as a novel metabolic regulator publication-title: J. Clin. Invest – volume: 95 start-page: 692 year: 2013 end-page: 699 ident: bib42 article-title: Fibroblast growth factor 21 is induced by endoplasmic reticulum stress publication-title: Biochimie – volume: 282 start-page: 26687 year: 2007 end-page: 26695 ident: bib49 article-title: Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21 publication-title: J. Biol. Chem – volume: 5 start-page: 426 year: 2007 end-page: 437 ident: bib25 article-title: Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states publication-title: Cell Metab – volume: 14 start-page: 185 year: 2008 end-page: 192 ident: bib17 article-title: Non-alcoholic fatty liver disease and the metabolic syndrome: an update publication-title: World J. Gastroenterol – volume: 22 start-page: 778 year: 2007 end-page: 787 ident: bib45 article-title: Non-alcoholic fatty liver disease in the Asia-Pacific region: definitions and overview of proposed guidelines publication-title: J. Gastroenterol. Hepatol – volume: 41 start-page: 1313 year: 2005 end-page: 1321 ident: bib46 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology – volume: 49 start-page: 1166 year: 2009 end-page: 1175 ident: bib48 article-title: Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice publication-title: Hepatology – volume: 15 start-page: 829 year: 2008 end-page: 840 ident: bib22 article-title: UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators publication-title: Dev. Cell – volume: 58 start-page: 557 year: 2013 end-page: 563 ident: bib38 article-title: High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China publication-title: J. Hepatol – volume: 149 start-page: 6018 year: 2008 end-page: 6027 ident: bib32 article-title: Fibroblast growth factor 21 corrects obesity in mice publication-title: Endocrinology – volume: 297 start-page: E1105 year: 2009 end-page: E1114 ident: bib31 article-title: Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models–association with liver and adipose tissue effects publication-title: Am. J. Physiol. Endocrinol. Metab – volume: 13 start-page: 89 year: 2012 end-page: 102 ident: bib12 article-title: The unfolded protein response: controlling cell fate decisions under ER stress and beyond publication-title: Nat. Rev. Mol. Cell Biol – volume: 140 start-page: 900 year: 2010 end-page: 917 ident: bib14 article-title: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease publication-title: Cell – volume: 8 start-page: 519 year: 2007 end-page: 529 ident: bib1 article-title: Signal integration in the endoplasmic reticulum unfolded protein response publication-title: Nat. Rev. Mol. Cell Biol – volume: 53 start-page: 934 year: 2010 end-page: 940 ident: bib37 article-title: Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride publication-title: J. Hepatol – volume: 19 start-page: 83 year: 2013 ident: 10.1074/jbc.M114.565960_bib43 article-title: Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine publication-title: Nat. Med doi: 10.1038/nm.3014 – volume: 297 start-page: E1105 year: 2009 ident: 10.1074/jbc.M114.565960_bib31 article-title: Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models–association with liver and adipose tissue effects publication-title: Am. J. Physiol. Endocrinol. Metab doi: 10.1152/ajpendo.00348.2009 – volume: 271 start-page: 18181 year: 1996 ident: 10.1074/jbc.M114.565960_bib7 article-title: The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation publication-title: J. Biol. Chem doi: 10.1074/jbc.271.30.18181 – volume: 5 start-page: 415 year: 2007 ident: 10.1074/jbc.M114.565960_bib26 article-title: Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21 publication-title: Cell Metab doi: 10.1016/j.cmet.2007.05.003 – volume: 452 start-page: 139 year: 2013 ident: 10.1074/jbc.M114.565960_bib55 article-title: FGF-2 prevents cancer cells from ER stress-mediated apoptosis via enhancing proteasome-mediated Nck degradation publication-title: Biochem. J doi: 10.1042/BJ20121671 – volume: 41 start-page: 1313 year: 2005 ident: 10.1074/jbc.M114.565960_bib46 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.20701 – volume: 17 start-page: 779 year: 2013 ident: 10.1074/jbc.M114.565960_bib57 article-title: Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice publication-title: Cell Metab doi: 10.1016/j.cmet.2013.04.005 – volume: 94 start-page: 3594 year: 2009 ident: 10.1074/jbc.M114.565960_bib28 article-title: Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man publication-title: J. Clin. Endocrinol. Metab doi: 10.1210/jc.2009-0111 – volume: 58 start-page: 557 year: 2013 ident: 10.1074/jbc.M114.565960_bib38 article-title: High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China publication-title: J. Hepatol doi: 10.1016/j.jhep.2012.10.029 – volume: 17 start-page: 790 year: 2013 ident: 10.1074/jbc.M114.565960_bib58 article-title: An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice publication-title: Cell Metab doi: 10.1016/j.cmet.2013.03.019 – volume: 53 start-page: 934 year: 2010 ident: 10.1074/jbc.M114.565960_bib37 article-title: Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride publication-title: J. Hepatol doi: 10.1016/j.jhep.2010.05.018 – volume: 49 start-page: 1166 year: 2009 ident: 10.1074/jbc.M114.565960_bib48 article-title: Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice publication-title: Hepatology doi: 10.1002/hep.22774 – volume: 32 start-page: 1542 year: 2009 ident: 10.1074/jbc.M114.565960_bib36 article-title: Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance publication-title: Diabetes Care doi: 10.2337/dc09-0684 – volume: 106 start-page: 1832 year: 2009 ident: 10.1074/jbc.M114.565960_bib11 article-title: Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2α (eIF2α) dephosphorylation in mammalian development publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0809632106 – volume: 22 start-page: 778 year: 2007 ident: 10.1074/jbc.M114.565960_bib45 article-title: Non-alcoholic fatty liver disease in the Asia-Pacific region: definitions and overview of proposed guidelines publication-title: J. Gastroenterol. Hepatol doi: 10.1111/j.1440-1746.2007.05001.x – volume: 94 start-page: 2151 year: 2009 ident: 10.1074/jbc.M114.565960_bib35 article-title: Serum fibroblast growth factor 21 is associated with adverse lipid profiles and γ-glutamyltransferase but not insulin sensitivity in Chinese subjects publication-title: J. Clin. Endocrinol. Metab doi: 10.1210/jc.2008-2331 – volume: 15 start-page: 3028 year: 1996 ident: 10.1074/jbc.M114.565960_bib6 article-title: Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb00666.x – volume: 6 start-page: e24895 year: 2011 ident: 10.1074/jbc.M114.565960_bib39 article-title: Circulating fibroblast growth factor 21 levels are closely associated with hepatic fat content: a cross-sectional study publication-title: PLoS One doi: 10.1371/journal.pone.0024895 – volume: 13 start-page: 89 year: 2012 ident: 10.1074/jbc.M114.565960_bib12 article-title: The unfolded protein response: controlling cell fate decisions under ER stress and beyond publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm3270 – volume: 58 start-page: 250 year: 2009 ident: 10.1074/jbc.M114.565960_bib30 article-title: Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice publication-title: Diabetes doi: 10.2337/db08-0392 – volume: 107 start-page: 881 year: 2001 ident: 10.1074/jbc.M114.565960_bib8 article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor publication-title: Cell doi: 10.1016/S0092-8674(01)00611-0 – volume: 149 start-page: 6018 year: 2008 ident: 10.1074/jbc.M114.565960_bib32 article-title: Fibroblast growth factor 21 corrects obesity in mice publication-title: Endocrinology doi: 10.1210/en.2008-0816 – volume: 134 start-page: 568 year: 2008 ident: 10.1074/jbc.M114.565960_bib20 article-title: Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.10.039 – volume: 30 start-page: 1357 year: 2011 ident: 10.1074/jbc.M114.565960_bib23 article-title: The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis publication-title: EMBO J doi: 10.1038/emboj.2011.52 – volume: 98 start-page: 2993 year: 2013 ident: 10.1074/jbc.M114.565960_bib40 article-title: Circulating levels of FGF-21 in obese youth: associations with liver fat content and markers of liver damage publication-title: J. Clin. Endocrinol. Metab doi: 10.1210/jc.2013-1250 – volume: 282 start-page: 26687 year: 2007 ident: 10.1074/jbc.M114.565960_bib49 article-title: Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21 publication-title: J. Biol. Chem doi: 10.1074/jbc.M704165200 – volume: 14 start-page: 185 year: 2008 ident: 10.1074/jbc.M114.565960_bib17 article-title: Non-alcoholic fatty liver disease and the metabolic syndrome: an update publication-title: World J. Gastroenterol doi: 10.3748/wjg.14.185 – volume: 73 start-page: 1197 year: 1993 ident: 10.1074/jbc.M114.565960_bib4 article-title: Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase publication-title: Cell doi: 10.1016/0092-8674(93)90648-A – volume: 6 start-page: 1099 year: 2000 ident: 10.1074/jbc.M114.565960_bib9 article-title: Regulated translation initiation controls stress-induced gene expression in mammalian cells publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)00108-8 – volume: 29 start-page: 42 year: 2008 ident: 10.1074/jbc.M114.565960_bib13 article-title: The role for endoplasmic reticulum stress in diabetes mellitus publication-title: Endocr. Rev doi: 10.1210/er.2007-0015 – volume: 5 start-page: 3528 year: 2014 ident: 10.1074/jbc.M114.565960_bib44 article-title: Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARα axis signalling publication-title: Nat. Commun doi: 10.1038/ncomms4528 – volume: 104 start-page: 7432 year: 2007 ident: 10.1074/jbc.M114.565960_bib51 article-title: βKlotho is required for metabolic activity of fibroblast growth factor 21 publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0701600104 – volume: 93 start-page: 4532 year: 2008 ident: 10.1074/jbc.M114.565960_bib21 article-title: Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects publication-title: J. Clin. Endocrinol. Metab doi: 10.1210/jc.2008-1001 – volume: 21 start-page: 2975 year: 2010 ident: 10.1074/jbc.M114.565960_bib53 article-title: Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e09-02-0133 – volume: 95 start-page: 692 year: 2013 ident: 10.1074/jbc.M114.565960_bib42 article-title: Fibroblast growth factor 21 is induced by endoplasmic reticulum stress publication-title: Biochimie doi: 10.1016/j.biochi.2012.10.019 – volume: 90 start-page: 1031 year: 1997 ident: 10.1074/jbc.M114.565960_bib5 article-title: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response publication-title: Cell doi: 10.1016/S0092-8674(00)80369-4 – volume: 140 start-page: 900 year: 2010 ident: 10.1074/jbc.M114.565960_bib14 article-title: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease publication-title: Cell doi: 10.1016/j.cell.2010.02.034 – volume: 136 start-page: 343 year: 2004 ident: 10.1074/jbc.M114.565960_bib52 article-title: Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II publication-title: J. Biochem doi: 10.1093/jb/mvh122 – volume: 26 start-page: 312 year: 2012 ident: 10.1074/jbc.M114.565960_bib24 article-title: Endocrine fibroblast growth factors 15/19 and 21: from feast to famine publication-title: Genes Dev doi: 10.1101/gad.184788.111 – volume: 443 start-page: 165 year: 2012 ident: 10.1074/jbc.M114.565960_bib41 article-title: Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation publication-title: Biochem. J doi: 10.1042/BJ20111748 – volume: 8 start-page: 169 year: 2008 ident: 10.1074/jbc.M114.565960_bib27 article-title: The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man publication-title: Cell Metab doi: 10.1016/j.cmet.2008.06.014 – volume: 58 start-page: 693 year: 2009 ident: 10.1074/jbc.M114.565960_bib19 article-title: Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss publication-title: Diabetes doi: 10.2337/db08-1220 – volume: 57 start-page: 1246 year: 2008 ident: 10.1074/jbc.M114.565960_bib34 article-title: Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans publication-title: Diabetes doi: 10.2337/db07-1476 – volume: 320 start-page: 1492 year: 2008 ident: 10.1074/jbc.M114.565960_bib54 article-title: Regulation of hepatic lipogenesis by the transcription factor XBP1 publication-title: Science doi: 10.1126/science.1158042 – volume: 115 start-page: 1627 year: 2005 ident: 10.1074/jbc.M114.565960_bib29 article-title: FGF-21 as a novel metabolic regulator publication-title: J. Clin. Invest doi: 10.1172/JCI23606 – volume: 8 start-page: 519 year: 2007 ident: 10.1074/jbc.M114.565960_bib1 article-title: Signal integration in the endoplasmic reticulum unfolded protein response publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm2199 – volume: 334 start-page: 1081 year: 2011 ident: 10.1074/jbc.M114.565960_bib2 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science doi: 10.1126/science.1209038 – volume: 15 start-page: 623 year: 2012 ident: 10.1074/jbc.M114.565960_bib3 article-title: The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling publication-title: Cell Metab doi: 10.1016/j.cmet.2012.03.007 – volume: 42 start-page: 44 year: 2005 ident: 10.1074/jbc.M114.565960_bib16 article-title: Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study publication-title: Hepatology doi: 10.1002/hep.20734 – volume: 108 start-page: 15852 year: 2011 ident: 10.1074/jbc.M114.565960_bib47 article-title: PKA phosphorylation couples hepatic inositol-requiring enzyme 1α to glucagon signaling in glucose metabolism publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1107394108 – volume: 15 start-page: 829 year: 2008 ident: 10.1074/jbc.M114.565960_bib22 article-title: UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.10.015 – volume: 281 start-page: 15694 year: 2006 ident: 10.1074/jbc.M114.565960_bib50 article-title: Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family publication-title: J. Biol. Chem doi: 10.1074/jbc.M601252200 – volume: 59 start-page: 2781 year: 2010 ident: 10.1074/jbc.M114.565960_bib33 article-title: Obesity is a fibroblast growth factor 21 (FGF21)-resistant state publication-title: Diabetes doi: 10.2337/db10-0193 – volume: 332 start-page: 91 year: 2011 ident: 10.1074/jbc.M114.565960_bib10 article-title: Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis publication-title: Science doi: 10.1126/science.1201396 – volume: 295 start-page: E393 year: 2008 ident: 10.1074/jbc.M114.565960_bib18 article-title: Effect of pioglitazone treatment on endoplasmic reticulum stress response in human adipose and in palmitate-induced stress in human liver and adipose cell lines publication-title: Am. J. Physiol. Endocrinol. Metab doi: 10.1152/ajpendo.90355.2008 – volume: 5 start-page: 426 year: 2007 ident: 10.1074/jbc.M114.565960_bib25 article-title: Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states publication-title: Cell Metab doi: 10.1016/j.cmet.2007.05.002 – volume: 148 start-page: 556 year: 2012 ident: 10.1074/jbc.M114.565960_bib56 article-title: Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones publication-title: Cell doi: 10.1016/j.cell.2011.11.062 – volume: 54 start-page: 795 year: 2011 ident: 10.1074/jbc.M114.565960_bib15 article-title: Endoplasmic reticulum stress in liver disease publication-title: J. Hepatol doi: 10.1016/j.jhep.2010.11.005 |
SSID | ssj0000491 |
Score | 2.5312233 |
Snippet | Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR) and represents a critical mechanism that underlies metabolic... Background: Although both are involved in metabolic homeostasis, the interconnection between ER stress and FGF21 remains incompletely understood. Results:... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29751 |
SubjectTerms | Animals Base Sequence Diet DNA-Binding Proteins - metabolism Endoplasmic Reticulum Stress - genetics Endoribonucleases - metabolism Enzyme Activation - drug effects Extracellular Signal-Regulated MAP Kinases - antagonists & inhibitors Extracellular Signal-Regulated MAP Kinases - metabolism Fatty Liver - genetics Fatty Liver - pathology Fibroblast Growth Factors - genetics Fibroblast Growth Factors - metabolism Hep G2 Cells Hepatocytes - drug effects Hepatocytes - metabolism Hepatocytes - pathology Humans Male Mice, Inbred C57BL Mice, Obese Molecular Biophysics Molecular Sequence Data Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology Organ Specificity - drug effects Organ Specificity - genetics Promoter Regions, Genetic - genetics Protein-Serine-Threonine Kinases - metabolism Recombinant Proteins - pharmacology Regulatory Factor X Transcription Factors Signal Transduction - drug effects Signal Transduction - genetics Transcription Factors - metabolism Transcription, Genetic - drug effects Transcriptional Activation - drug effects Transcriptional Activation - genetics Unfolded Protein Response - drug effects Unfolded Protein Response - genetics X-Box Binding Protein 1 |
Title | Fibroblast Growth Factor 21 Is Regulated by the IRE1α-XBP1 Branch of the Unfolded Protein Response and Counteracts Endoplasmic Reticulum Stress-induced Hepatic Steatosis |
URI | https://dx.doi.org/10.1074/jbc.M114.565960 https://www.ncbi.nlm.nih.gov/pubmed/25170079 https://www.proquest.com/docview/1616474006 https://pubmed.ncbi.nlm.nih.gov/PMC4207989 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXcpORGEKq0iWOm8SPW9WqA4EYWqXyFNmJo1bakoqkQuMn8cYfQeIfcXxJmnZUGrykTWK7Ts8X-xz7nO8g9DrhLB34lDkB4dyhUmYOoyx1oiwiPBICQKTZPj8Gkyl9NxvMOp3fLa-lVSX6yfe_xpX8j1ThGshVRcn-g2SbRuECfAf5whEkDMcbyXgMtm4hQP-t1BrSt2reG-v0OT3i9U5VAIjOM291TOUl-XnkHQ5HhyeeMzv55IFgQebz2k1gCj26SKUOHlA5MNXSvvKfNRsMKnhdRSsr549RnhZL-NlL7YVfmSVEvcFdlg4Y-SvlVDCRS80GqzyGq6JclG09eB2RpnVhQwVlyErqDHSNb8-iXtKer5H8hVtnAWlnXs0nacqdLRxopCkK1fRysPLfdez_Z5c5PKrmBxNd3YQdeA4jhue9HrqJST9kMUr99kjMQstkK-tzk5Ti2pwBSpSaM0TS_wDGYR80XGZSHGyyc2_Nmo0vo97FD2kMDcSqgdg0cAvdJmC5qKH3_dmawB4MMpPE0T5NzTYV0qOtHuxSlK4bQtv-vC0F6fw-umeliY8NTB-gjsz30cFxDsK_vMJvsPY11ps4--jOsJbyAfqxRjE2KMYGxZh4-LTEDYqxuMKAU6xQ_OunRjA2CMZFpu_UCMYWwbhGMAYE4xaCcQvBuEEw3kQwtgjGDYIfoul4dD6cODaDiJNQ6leO5K6AUcdNo5RGgqU88ygloBZyJhPm-yFYH0SIQShS5nI495hkPIFByvXDTDD_EdrLi1w-QZgINxCcQlsBtBUlAj6SKAP7R1ndLumifi2uOLH0-irLy0W8AyBd9LapsDTMMruLklr-sVWMjcIbA4Z3V3pVIyUGiap9QJ7LYlXGYOQFNITJO-iixwY5TQ8UgyGYDayLwg1MNQUUHf3mnXwx17T0lEC9iD29-XM9Q3fXr_pztFd9XckXoONX4qV-a_4AGH8ANg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibroblast+Growth+Factor+21+Is+Regulated+by+the+IRE1%CE%B1-XBP1+Branch+of+the+Unfolded+Protein+Response+and+Counteracts+Endoplasmic+Reticulum+Stress-induced+Hepatic+Steatosis&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Jiang%2C+Shan&rft.au=Yan%2C+Cheng&rft.au=Fang%2C+Qi-chen&rft.au=Shao%2C+Meng-le&rft.date=2014-10-24&rft.issn=0021-9258&rft.volume=289&rft.issue=43&rft.spage=29751&rft.epage=29765&rft_id=info:doi/10.1074%2Fjbc.M114.565960&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M114_565960 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |