Microbiome stability and structure is governed by host phylogeny over diet and geography in woodrats (Neotoma spp.)

The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between host...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 47; pp. 1 - 9
Main Authors Weinsteina, Sara B., Martínez-Mota, Rodolfo, Stapleton, Tess E., Klure, Dylan M., Greenhalgh, Robert, Orr, Teri J., Dale, Colin, Kohl, Kevin D., Dearing, M. Denise
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.11.2021
SeriesFrom the Cover
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus Neotoma, we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions. Using bacterial and plant metabarcoding, we first characterized dietary and microbiome compositions for animals from 25 populations, representing seven species from 19 sites across the southwestern United States. We then brought wild animals into captivity, reducing the influence of environmental variation. In nature, geography, diet, and phylogeny collectively explained ∼50% of observed microbiome variation. Diet and microbiome diversity were correlated, with different toxin-enriched diets selecting for distinct microbial symbionts. Although diet and geography influenced natural microbiome structure, the effects of host phylogeny were stronger for both wild and captive animals. In captivity, gut microbiomes were altered; however, responses were species specific, indicating again that host genetic background is the most significant predictor of microbiome composition and stability. In captivity, diet effects declined and the effects of host genetic similarity increased. By bridging a critical divide between studies in wild and captive animals, this work underscores the extent to which genetics shape microbiome structure and stability in closely related hosts.
AbstractList The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus Neotoma, we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions. Using bacterial and plant metabarcoding, we first characterized dietary and microbiome compositions for animals from 25 populations, representing seven species from 19 sites across the southwestern United States. We then brought wild animals into captivity, reducing the influence of environmental variation. In nature, geography, diet, and phylogeny collectively explained ∼50% of observed microbiome variation. Diet and microbiome diversity were correlated, with different toxin-enriched diets selecting for distinct microbial symbionts. Although diet and geography influenced natural microbiome structure, the effects of host phylogeny were stronger for both wild and captive animals. In captivity, gut microbiomes were altered; however, responses were species specific, indicating again that host genetic background is the most significant predictor of microbiome composition and stability. In captivity, diet effects declined and the effects of host genetic similarity increased. By bridging a critical divide between studies in wild and captive animals, this work underscores the extent to which genetics shape microbiome structure and stability in closely related hosts.
Understanding the factors that sculpt gut microbial communities in mammals is of great interest. Here, we studied a diverse clade of herbivorous rodents (woodrats, Neotoma ) with variable but well-characterized diets and habitats to quantify the relative contributions of host genetics, geography, and diet, alongside neutral processes, in structuring the gut microbiome under natural and controlled conditions. While diet and geography made significant contributions to microbiome structure, host phylogeny explained the greatest proportion of observed variation. Provision of a common diet in captivity altered natural microbial communities, with communities from different species varying in their resistance to this perturbation. Captivity increased the amount of variation explained by host phylogeny, further emphasizing the extent to which host genetics structure mammalian microbiomes. The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus Neotoma , we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions. Using bacterial and plant metabarcoding, we first characterized dietary and microbiome compositions for animals from 25 populations, representing seven species from 19 sites across the southwestern United States. We then brought wild animals into captivity, reducing the influence of environmental variation. In nature, geography, diet, and phylogeny collectively explained ∼50% of observed microbiome variation. Diet and microbiome diversity were correlated, with different toxin-enriched diets selecting for distinct microbial symbionts. Although diet and geography influenced natural microbiome structure, the effects of host phylogeny were stronger for both wild and captive animals. In captivity, gut microbiomes were altered; however, responses were species specific, indicating again that host genetic background is the most significant predictor of microbiome composition and stability. In captivity, diet effects declined and the effects of host genetic similarity increased. By bridging a critical divide between studies in wild and captive animals, this work underscores the extent to which genetics shape microbiome structure and stability in closely related hosts.
The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus , we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions. Using bacterial and plant metabarcoding, we first characterized dietary and microbiome compositions for animals from 25 populations, representing seven species from 19 sites across the southwestern United States. We then brought wild animals into captivity, reducing the influence of environmental variation. In nature, geography, diet, and phylogeny collectively explained ∼50% of observed microbiome variation. Diet and microbiome diversity were correlated, with different toxin-enriched diets selecting for distinct microbial symbionts. Although diet and geography influenced natural microbiome structure, the effects of host phylogeny were stronger for both wild and captive animals. In captivity, gut microbiomes were altered; however, responses were species specific, indicating again that host genetic background is the most significant predictor of microbiome composition and stability. In captivity, diet effects declined and the effects of host genetic similarity increased. By bridging a critical divide between studies in wild and captive animals, this work underscores the extent to which genetics shape microbiome structure and stability in closely related hosts.
Author Dearing, M. Denise
Greenhalgh, Robert
Dale, Colin
Stapleton, Tess E.
Kohl, Kevin D.
Orr, Teri J.
Weinsteina, Sara B.
Martínez-Mota, Rodolfo
Klure, Dylan M.
Author_xml – sequence: 1
  givenname: Sara B.
  surname: Weinsteina
  fullname: Weinsteina, Sara B.
– sequence: 2
  givenname: Rodolfo
  surname: Martínez-Mota
  fullname: Martínez-Mota, Rodolfo
– sequence: 3
  givenname: Tess E.
  surname: Stapleton
  fullname: Stapleton, Tess E.
– sequence: 4
  givenname: Dylan M.
  surname: Klure
  fullname: Klure, Dylan M.
– sequence: 5
  givenname: Robert
  surname: Greenhalgh
  fullname: Greenhalgh, Robert
– sequence: 6
  givenname: Teri J.
  surname: Orr
  fullname: Orr, Teri J.
– sequence: 7
  givenname: Colin
  surname: Dale
  fullname: Dale, Colin
– sequence: 8
  givenname: Kevin D.
  surname: Kohl
  fullname: Kohl, Kevin D.
– sequence: 9
  givenname: M. Denise
  surname: Dearing
  fullname: Dearing, M. Denise
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34799446$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1v1DAQxS3Uim4LZ04gS1zKIVs7cez4goQqvqQWLnC27GR216vEDrZDlf--Trcs0JM1er8Zz7x3jk6cd4DQK0rWlIjqanQ6rktKGtEISptnaEWJpAVnkpygFSGlKBpWsjN0HuOeECLrhjxHZxUTUjLGVyje2jZ4Y_0AOCZtbG_TjLXrchWmNk0BsI14639DcNBhM-OdjwmPu7n3W3AzXhTcWUgPXVvw26Cziq3Dd953QaeIL7-BT37QOI7j-t0LdLrRfYSXj-8F-vnp44_rL8XN989frz_cFC1jVSpAAtWbuhHG1IwaYTrGOeF1KbWsoK5NpTspDG-lIZRKgE6Xpc5NjdC05aS6QO8Pc8fJDNC14FLQvRqDHXSYlddW_a84u1P5UtVwKljN84DLxwHB_5ogJjXY2ELfawd-iqrk2eGGsVJm9O0TdO-n4PJ5C1UKImS1bHR1oLLnMQbYHJehRC2BqiVQ9TfQ3PHm3xuO_J8EM_D6AOxj8uGo5x8ly7ZU9zMhqhY
CitedBy_id crossref_primary_10_3390_ijms242115836
crossref_primary_10_1093_ismeco_ycad015
crossref_primary_10_3389_fmicb_2021_800190
crossref_primary_10_1186_s12866_023_02824_x
crossref_primary_10_1093_femsec_fiac005
crossref_primary_10_1002_ece3_11218
crossref_primary_10_1093_ismeco_ycad013
crossref_primary_10_1098_rspb_2022_1088
crossref_primary_10_1038_s41598_023_44393_z
crossref_primary_10_3389_fmicb_2024_1337402
crossref_primary_10_1016_j_ecoenv_2023_115902
crossref_primary_10_3389_fmicb_2022_983660
crossref_primary_10_3390_antibiotics12050859
crossref_primary_10_1073_pnas_2204146119
crossref_primary_10_3390_microorganisms12040671
crossref_primary_10_1098_rspb_2023_2223
crossref_primary_10_1111_1365_2435_14093
crossref_primary_10_1186_s40168_023_01669_w
crossref_primary_10_1002_imt2_57
crossref_primary_10_1002_ajp_23555
crossref_primary_10_1371_journal_pone_0286070
crossref_primary_10_1080_19490976_2023_2178797
crossref_primary_10_1093_femsec_fiad127
crossref_primary_10_3389_fevo_2022_863242
crossref_primary_10_1111_1755_0998_13650
crossref_primary_10_1007_s11104_024_06825_1
crossref_primary_10_1016_j_envpol_2022_120222
crossref_primary_10_1111_ele_14135
crossref_primary_10_1016_j_jaridenv_2023_104999
crossref_primary_10_1007_s13199_022_00853_0
crossref_primary_10_1093_evolut_qpad012
crossref_primary_10_1146_annurev_micro_111121_085333
crossref_primary_10_1093_molbev_msac263
crossref_primary_10_1111_gcbb_13148
crossref_primary_10_3389_fmicb_2023_1258775
crossref_primary_10_1007_s00248_022_02049_x
crossref_primary_10_1007_s00227_024_04442_1
crossref_primary_10_1093_icb_icac045
crossref_primary_10_1007_s13199_022_00863_y
crossref_primary_10_3389_fpls_2022_836133
crossref_primary_10_3389_fmicb_2024_1374209
crossref_primary_10_1073_pnas_2218900120
crossref_primary_10_1111_1365_2745_14010
crossref_primary_10_1111_mec_17198
crossref_primary_10_1093_femsec_fiac078
crossref_primary_10_1128_spectrum_01694_23
crossref_primary_10_1371_journal_pone_0290292
crossref_primary_10_1093_femsec_fiad069
crossref_primary_10_3390_biotech12040061
crossref_primary_10_1073_pnas_2120125118
crossref_primary_10_1002_mbo3_1318
crossref_primary_10_1002_ece3_11084
crossref_primary_10_1371_journal_pone_0279288
crossref_primary_10_1093_femsec_fiad156
crossref_primary_10_1093_jhered_esab078
Cites_doi 10.1128/mSystems.00097-18
10.1073/pnas.1007028107
10.1146/annurev-ecolsys-110617-062453
10.3389/fmicb.2016.01165
10.1111/j.1365-294X.2012.05502.x
10.1073/pnas.1905666116
10.1098/rspb.2019.0431
10.1098/rspb.2018.2448
10.1038/nature11550
10.1111/1462-2920.12376
10.1093/conphys/cou009
10.1093/jmammal/gyz105
10.1371/journal.pbio.1000546
10.1038/s41396-018-0175-0
10.1093/femsec/fiz182
10.1111/mec.13730
10.1111/mec.15139
10.1073/pnas.1707186114
10.1111/j.1574-6968.1992.tb05556.x
10.1111/mec.12611
10.1038/s41396-019-0497-6
10.1038/nature16504
10.1111/j.1462-2920.2005.00956.x
10.1073/pnas.1700122114
10.1038/s41396-018-0251-5
10.1016/j.it.2017.06.003
10.1038/ismej.2015.142
10.1128/MMBR.00002-17
10.1016/j.jmb.2014.06.022
10.1146/annurev-genet-110711-155532
10.1093/icb/icx090
10.1111/mec.12206
10.1093/icb/icp051
10.3389/fmicb.2015.00447
10.1007/s00248-016-0800-2
10.1128/AEM.02303-14
10.1099/ijs.0.65404-0
10.1146/annurev.ecolsys.31.1.343
10.1073/pnas.1312524110
10.1186/1745-6150-4-35
10.1038/nature08937
10.1371/journal.pone.0142409
10.1371/journal.pbio.2000225
10.1128/mBio.01294-18
10.1038/srep14567
10.1101/gr.154773.113
10.1098/rspb.2019.2900
10.1111/1462-2920.13022
10.1111/1758-2229.12118
10.1038/ismej.2015.53
10.1128/AEM.00216-16
10.1016/j.chom.2014.11.010
10.1371/journal.pbio.3000298
10.1016/j.ympev.2006.08.011
10.1126/science.1198719
10.1111/mec.12501
10.1098/rstb.2019.0251
10.3390/ijms17081205
10.1186/s13059-014-0531-y
10.1111/ele.12329
10.21105/joss.00772
10.1016/j.mib.2018.07.003
ContentType Journal Article
Copyright Copyright National Academy of Sciences Nov 23, 2021
2021
Copyright_xml – notice: Copyright National Academy of Sciences Nov 23, 2021
– notice: 2021
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2108787118
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Geography
EISSN 1091-6490
EndPage 9
ExternalDocumentID 10_1073_pnas_2108787118
34799446
27094011
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Southwestern United States
GeographicLocations_xml – name: Southwestern United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007464
– fundername: NIGMS NIH HHS
  grantid: T32 GM141848
– fundername: NIAID NIH HHS
  grantid: T32 AI055434
– fundername: National Science Foundation (NSF)
  grantid: IOS 1656497
– fundername: HHS | National Institutes of Health (NIH)
  grantid: 5T32GM007464-38
– fundername: National Science Foundation (NSF)
  grantid: DEB 1342615
– fundername: HHS | National Institutes of Health (NIH)
  grantid: T32AI055434
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c443t-e9e1af587bb541b7bd46606529a93e55b3ad97b6c9b0119eeda22a9e187a1c603
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:22:01 EDT 2024
Wed Dec 04 02:45:05 EST 2024
Sat Dec 14 16:12:33 EST 2024
Fri Dec 06 02:30:53 EST 2024
Sat Nov 02 12:28:22 EDT 2024
Tue Dec 10 23:16:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords 16S rRNA
neutral model
DNA metabarcoding
Neotoma
phylosymbiosis
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-e9e1af587bb541b7bd46606529a93e55b3ad97b6c9b0119eeda22a9e187a1c603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: S.B.W., C.D., K.D.K., and M.D.D. designed research; S.B.W., R.M.-M., T.E.S., D.M.K., and T.J.O. performed research; R.G. contributed new reagents/analytic tools; S.B.W., D.M.K., and R.G. analyzed data; and S.B.W., C.D., K.D.K., and M.D.D. wrote the paper.
Edited by Margaret McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved October 19, 2021 (received for review May 11, 2021)
ORCID 0000-0001-7881-4934
0000-0002-8363-1777
0000-0003-1126-2949
0000-0003-2816-3154
0000-0001-8676-3006
OpenAccessLink https://www.pnas.org/doi/pdf/10.1073/pnas.2108787118
PMID 34799446
PQID 2602707930
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8617456
proquest_miscellaneous_2600284429
proquest_journals_2602707930
crossref_primary_10_1073_pnas_2108787118
pubmed_primary_34799446
jstor_primary_27094011
PublicationCentury 2000
PublicationDate 2021-11-23
PublicationDateYYYYMMDD 2021-11-23
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_55_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
Reid F. A. (e_1_3_4_32_2) 2006
Patton J. L. (e_1_3_4_57_2) 2007
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_14_2
  doi: 10.1128/mSystems.00097-18
– ident: e_1_3_4_10_2
  doi: 10.1073/pnas.1007028107
– ident: e_1_3_4_1_2
  doi: 10.1146/annurev-ecolsys-110617-062453
– ident: e_1_3_4_33_2
  doi: 10.3389/fmicb.2016.01165
– ident: e_1_3_4_55_2
  doi: 10.1111/j.1365-294X.2012.05502.x
– ident: e_1_3_4_24_2
  doi: 10.1073/pnas.1905666116
– ident: e_1_3_4_56_2
  doi: 10.1098/rspb.2019.0431
– ident: e_1_3_4_51_2
  doi: 10.1098/rspb.2018.2448
– volume-title: A Field Guide to Mammals of North America (Peterson Field Guides
  year: 2006
  ident: e_1_3_4_32_2
  contributor:
    fullname: Reid F. A.
– ident: e_1_3_4_3_2
  doi: 10.1038/nature11550
– ident: e_1_3_4_42_2
  doi: 10.1111/1462-2920.12376
– ident: e_1_3_4_37_2
  doi: 10.1093/conphys/cou009
– ident: e_1_3_4_39_2
  doi: 10.1093/jmammal/gyz105
– ident: e_1_3_4_12_2
  doi: 10.1371/journal.pbio.1000546
– ident: e_1_3_4_21_2
  doi: 10.1038/s41396-018-0175-0
– ident: e_1_3_4_59_2
  doi: 10.1093/femsec/fiz182
– ident: e_1_3_4_6_2
  doi: 10.1111/mec.13730
– ident: e_1_3_4_11_2
  doi: 10.1111/mec.15139
– ident: e_1_3_4_48_2
  doi: 10.1073/pnas.1707186114
– ident: e_1_3_4_60_2
  doi: 10.1111/j.1574-6968.1992.tb05556.x
– ident: e_1_3_4_38_2
  doi: 10.1111/mec.12611
– ident: e_1_3_4_18_2
  doi: 10.1038/s41396-019-0497-6
– ident: e_1_3_4_53_2
  doi: 10.1038/nature16504
– ident: e_1_3_4_29_2
  doi: 10.1111/j.1462-2920.2005.00956.x
– ident: e_1_3_4_26_2
  doi: 10.1073/pnas.1700122114
– ident: e_1_3_4_16_2
  doi: 10.1038/s41396-018-0251-5
– ident: e_1_3_4_41_2
  doi: 10.1016/j.it.2017.06.003
– ident: e_1_3_4_30_2
  doi: 10.1038/ismej.2015.142
– ident: e_1_3_4_7_2
  doi: 10.1128/MMBR.00002-17
– ident: e_1_3_4_44_2
  doi: 10.1016/j.jmb.2014.06.022
– ident: e_1_3_4_58_2
  doi: 10.1146/annurev-genet-110711-155532
– ident: e_1_3_4_50_2
  doi: 10.1093/icb/icx090
– ident: e_1_3_4_27_2
  doi: 10.1111/mec.12206
– ident: e_1_3_4_63_2
  doi: 10.1093/icb/icp051
– ident: e_1_3_4_13_2
  doi: 10.3389/fmicb.2015.00447
– ident: e_1_3_4_35_2
  doi: 10.1007/s00248-016-0800-2
– ident: e_1_3_4_28_2
  doi: 10.1128/AEM.02303-14
– ident: e_1_3_4_52_2
  doi: 10.1099/ijs.0.65404-0
– ident: e_1_3_4_54_2
  doi: 10.1146/annurev.ecolsys.31.1.343
– ident: e_1_3_4_61_2
  doi: 10.1073/pnas.1312524110
– ident: e_1_3_4_40_2
  doi: 10.1186/1745-6150-4-35
– ident: e_1_3_4_49_2
  doi: 10.1038/nature08937
– ident: e_1_3_4_20_2
  doi: 10.1371/journal.pone.0142409
– ident: e_1_3_4_8_2
  doi: 10.1371/journal.pbio.2000225
– ident: e_1_3_4_47_2
  doi: 10.1128/mBio.01294-18
– ident: e_1_3_4_23_2
  doi: 10.1038/srep14567
– ident: e_1_3_4_25_2
  doi: 10.1101/gr.154773.113
– ident: e_1_3_4_5_2
  doi: 10.1098/rspb.2019.2900
– ident: e_1_3_4_45_2
  doi: 10.1111/1462-2920.13022
– ident: e_1_3_4_36_2
  doi: 10.1111/1758-2229.12118
– ident: e_1_3_4_19_2
  doi: 10.1038/ismej.2015.53
– ident: e_1_3_4_43_2
  doi: 10.1128/AEM.00216-16
– ident: e_1_3_4_17_2
  doi: 10.1016/j.chom.2014.11.010
– ident: e_1_3_4_31_2
  doi: 10.1371/journal.pbio.3000298
– ident: e_1_3_4_62_2
  doi: 10.1016/j.ympev.2006.08.011
– ident: e_1_3_4_15_2
  doi: 10.1126/science.1198719
– ident: e_1_3_4_22_2
  doi: 10.1111/mec.12501
– ident: e_1_3_4_9_2
  doi: 10.1098/rstb.2019.0251
– ident: e_1_3_4_46_2
  doi: 10.3390/ijms17081205
– volume-title: The Evolutionary History and a Systematic Revision of Woodrats of the Neotoma lepida Group
  year: 2007
  ident: e_1_3_4_57_2
  contributor:
    fullname: Patton J. L.
– ident: e_1_3_4_4_2
  doi: 10.1186/s13059-014-0531-y
– ident: e_1_3_4_34_2
  doi: 10.1111/ele.12329
– ident: e_1_3_4_64_2
  doi: 10.21105/joss.00772
– ident: e_1_3_4_2_2
  doi: 10.1016/j.mib.2018.07.003
SSID ssj0009580
Score 2.6318927
Snippet The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence...
Understanding the factors that sculpt gut microbial communities in mammals is of great interest. Here, we studied a diverse clade of herbivorous rodents...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Animals
Animals, Wild - microbiology
Bacteria - classification
Bacteria - genetics
Biological Sciences
Captivity
Composition
Diet
Genetics
Geography
Intestinal microflora
Microbiomes
Microbiota
Microorganisms
Neotoma
Phylogeny
RNA, Ribosomal, 16S
Sigmodontinae - microbiology
Southwestern United States
Species Specificity
Structural stability
Symbionts
Symbiosis
Toxins
Wild animals
Title Microbiome stability and structure is governed by host phylogeny over diet and geography in woodrats (Neotoma spp.)
URI https://www.jstor.org/stable/27094011
https://www.ncbi.nlm.nih.gov/pubmed/34799446
https://www.proquest.com/docview/2602707930
https://search.proquest.com/docview/2600284429
https://pubmed.ncbi.nlm.nih.gov/PMC8617456
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BB8SlKlBoCkVG6gEO2V2_4uSIEAghLeIAErfIThyI1PVGzXLYf9-x8wCqnjh7xon8jT0z8sxngF-aK60srWJPAxmLkpk4k8q_5o7ilqdVEeia5nfJzaO4fZJPGyCHXphQtF-YeuJ-Lyaufgm1lc2imA51YtP7-WWKbhcd_3QTNtH9Din6yLSbdn0nDI9fwcTA56P4tHG6nWCOk6KVYmC9A9u-jzITPvp955W6wsT_hZz_Vk6-c0XXX-FLH0OSi-5fd2HDuj3Y7XdpS856KunzfWjndUe0tLAEw8BQCLsm2pWk4419_WNJ3ZLn8OCuLYlZE9_1QXDt8Uy0bk38CClruwpaz7ZnuCa1I75aB-0HP3hnl6vlQpO2aSbn3-Dx-urh8ibun1mICyH4KraZpbqSqTJGCmqUKUWCaY1kmc64ldJwXWbKJEVmPEEcOlXNmEalVGlaJDN-AFtu6ex3IJU0rJrJIqM8FQg-Rh8-3zRV4mdPaARnwzLnTcemkYdbcMVzD07-Bk4EBwGGUY4pT_VHcY7jAZe832-olyDcnutvFsHpOIw7xV9_aGeXr0EGgymBDjiCww7GcfLBDiJQHwAeBTwL98cRNM7Axt0b449Pax7BDvOFMpTGjB_DFuJvf2KkszIn3s_Ik2DffwE0ff56
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEviAKFQAtG4tAesrt-xckRVa0W6K44tFJvkZ04JRLrjcj2sP-esfOgrTj17Bkn8ow9M_I3nwG-aK60srSKPQ1kLEpm4kwq_5o7ilueVkWga1osk_mV-H4tr3dADr0wAbRfmHrifq8mrv4VsJXNqpgOOLHpz8VpimEXA__0CTyVXGV0KNJHrt206zxheAALJgZGH8WnjdPtBKucFP0UU-s9eOY7KTPh8987camDJv4v6XyInbwTjM5fwos-iyRfu7_dhx3rXsF-v09bctyTSZ-8hnZRd1RLK0swEQxQ2C3RriQdc-ztH0vqltyEJ3dtScyW-L4PgquPp6J1W-JHSFnbTdC6sT3HNakd8Xgd9CD84NKuN-uVJm3TTE7ewNX52eXpPO4fWogLIfgmtpmlupKpMkYKapQpRYKFjWSZzriV0nBdZsokRWY8RRyGVc2YRqVUaVokM34Au27t7DsglTSsmskiozwVaH7MP3zFaarEz57QCI6HZc6bjk8jD_fgiufeOPk_40RwEMwwyjHlyf4oznE42CXvdxzqJWhuz_Y3i-DzOIx7xV-AaGfXt0EG0ymBITiCt50Zx8kHP4hA3TPwKOB5uO-PoHsGPu7eHd8_WvMTPJ9fLi7yi2_LHx9gj3nYDKUx44ewi75gjzDv2ZiPwcv_Ar0GAPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61VEJcKmhLCdDWlXqAQzYbP-LkWNGu6GNXHIrELbITByKx3qhZDvvvGTuPLlVPPXvsRJnPnhnl8zcAnxSTSpq4Cp0MZMhLqsNMSNfNHc0NS6vCyzXNF8nlNf9-I262Wn150n6h64m9X05sfee5lc2yiAaeWHQ1v0gx7GLgj5qyip7DC8EQZEOhPurtpt3tE4qHMKd8UPWRLGqsaidY6aSIVUyv92DX3abMuMuBt2JTR0_8V-L5N39yKyDN9uFln0mSz90bH8AzY1_BQb9XW3LWC0qfv4Z2XndyS0tDMBn0dNgNUbYknXrsw29D6pbc-ra7piR6Q9zdD4IewJPR2A1xI6SszdrPujW9zjWpLXGcHUQRPnBhVuvVUpG2aSbnb-B69vXXxWXYN1sIC87ZOjSZiVUlUqm14LGWuuQJFjeCZipjRgjNVJlJnRSZdjJxGFoVpQonpVLFRTJlh7BjV9YcAamEptVUFFnMUo4QwBzEVZ26StzqSRzA2fCZ86bT1Mj9v3DJcuec_I9zAjj0bhjtqHSCfzGucTr4Je93Hc5L0N1O8W8awMdxGPeL-wmirFk9eBtMqTiG4QDedm4cFx9wEIB84uDRwGlxPx1BiHpN7h6Sx_898wPsXn2Z5T-_LX6cwB51zJk4Dik7hR2EgnmHqc9av_cgfwRwrwIL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiome+stability+and+structure+is+governed+by+host+phylogeny+over+diet+and+geography+in+woodrats+%28Neotoma+spp.%29&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Weinstein%2C+Sara+B.&rft.au=Mart%C3%ADnez-Mota%2C+Rodolfo&rft.au=Stapleton%2C+Tess+E.&rft.au=Klure%2C+Dylan+M.&rft.series=From+the+Cover&rft.date=2021-11-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=118&rft.issue=47&rft_id=info:doi/10.1073%2Fpnas.2108787118&rft_id=info%3Apmid%2F34799446&rft.externalDBID=PMC8617456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon