Limited efficacy of COX-2 inhibitors on nerve growth factor and metalloproteinases expressions in human synovial fibroblasts

Nerve growth factor (NGF) is associated with arthritic pain and metalloproteinases are implicated in collagen and aggrecan degradation. Although selective COX-2 inhibitors are recommended for the treatment of arthritic diseases, their effects on NGF and metalloproteinases remain unclear. This study...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic science : official journal of the Japanese Orthopaedic Association Vol. 21; no. 3; pp. 381 - 388
Main Authors Yorifuji, Makiko, Sawaji, Yasunobu, Endo, Kenji, Kosaka, Taiichi, Yamamoto, Kengo
Format Journal Article
LanguageEnglish
Published Japan Elsevier B.V 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nerve growth factor (NGF) is associated with arthritic pain and metalloproteinases are implicated in collagen and aggrecan degradation. Although selective COX-2 inhibitors are recommended for the treatment of arthritic diseases, their effects on NGF and metalloproteinases remain unclear. This study investigated the regulations of NGF and metalloproteinases by selective COX-2 inhibitors in isolated human synovial cells. The isolated human synovial cells were stimulated with IL-1β in the presence of selective COX-2 inhibitors (NS-398 or celecoxib) with or without exogenous PGE2 or its receptor (EP1-4) agonists. The expressions of NGF, MMP-1, -3, -13, ADAMTS-4, and -5 were quantified by real-time PCR and their proteins were determined by Western blotting. The amount of PGE2 released was measured by enzyme-linked immunosorbent assay (ELISA). The IL-1β inductions of NGF and MMP-1 and MMP-13 were augmented by the COX-2 inhibitors, whereas the inductions of ADAMTS-4 and ADAMTS-5 were inhibited. These actions were reversed by supplementing PGE2 or the EP4 agonist exogenously. Our comprehensive analysis revealed that COX-2 inhibitors may be beneficial for suppressing aggrecan degradation and for reducing inflammatory pain by inhibiting PGE2 release, although they may have limited efficacy in suppressing collagen degradation and nerve growth. This study suggests the feedback roles of PGE2 in the negative regulation of NGF and MMP-1 and MMP-13 and the positive regulation of ADAMTS-4 and ADAMTS-5.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0949-2658
1436-2023
DOI:10.1016/j.jos.2016.01.004