Sensitivity analysis of steel buildings subjected to column loss
In this study, the sensitivity of design parameters of steel buildings subjected to progressive collapse is studied. To this end, design parameters such as yield strengths of beams, columns, and braces, live load, elastic modulus, and damping ratio were considered as random variables. The Monte Carl...
Saved in:
Published in | Engineering structures Vol. 33; no. 2; pp. 421 - 432 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.02.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the sensitivity of design parameters of steel buildings subjected to progressive collapse is studied. To this end, design parameters such as yield strengths of beams, columns, and braces, live load, elastic modulus, and damping ratio were considered as random variables. The Monte Carlo simulation, the Tornado Diagram analysis, and the First-Order Second Moment method were applied to deal with the uncertainties involved in the design parameters. The analysis results showed that among the design variables beam yield strength was ultimately the most important design parameter in the moment-resisting frame buildings while the column yield strength was the most important design parameter in the dual system building. Sensitivity of the vertical displacement to uncertain member strength showed that progressive collapse mechanisms of the moment-resisting frame buildings and the dual system building completely differed due to different patterns of the vertical load redistribution. |
---|---|
AbstractList | In this study, the sensitivity of design parameters of steel buildings subjected to progressive collapse is studied. To this end, design parameters such as yield strengths of beams, columns, and braces, live load, elastic modulus, and damping ratio were considered as random variables. The Monte Carlo simulation, the Tornado Diagram analysis, and the First-Order Second Moment method were applied to deal with the uncertainties involved in the design parameters. The analysis results showed that among the design variables beam yield strength was ultimately the most important design parameter in the moment-resisting frame buildings while the column yield strength was the most important design parameter in the dual system building. Sensitivity of the vertical displacement to uncertain member strength showed that progressive collapse mechanisms of the moment-resisting frame buildings and the dual system building completely differed due to different patterns of the vertical load redistribution. |
Author | Park, Jun-Hee Lee, Tae-Hyung Kim, Jinkoo |
Author_xml | – sequence: 1 givenname: Jinkoo surname: Kim fullname: Kim, Jinkoo organization: Department of Architectural Engineering, Sungkyunkwan University, Suwon, Republic of Korea – sequence: 2 givenname: Jun-Hee surname: Park fullname: Park, Jun-Hee organization: Korea Atomic Energy Research Institute, Daejeon, Republic of Korea – sequence: 3 givenname: Tae-Hyung surname: Lee fullname: Lee, Tae-Hyung email: thlee@konkuk.ac.kr organization: Department of Civil Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, 143-701 Seoul, Republic of Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23751936$$DView record in Pascal Francis |
BookMark | eNqFkE9PHDEMxSMEEsufz8Bcqp5m62SSzMytCLVQCakH4BxlEwdllc3QOIO0376zXcS1J0v2e8_274Kd5ikjYzcc1hy4_rZdY36lWmZX1wL-ddcg1Alb8aHv2r4T3SlbAZe8BTHqc3ZBtAUAMQywYt-fMFOs8T3WfWOzTXuK1EyhoYqYms0ck49LfkPzZouuom_q1LgpzbvcpInoip0FmwivP-ole_n54_nuoX38ff_r7vaxdVJ2tUURLCrtOgyAMvhRWi-D5b0Sg_BSau116MHDBgUHp0bdj3IUowQ-SNS8u2Rfj7lvZfozI1Wzi-QwJZtxmskMSvXAlRoWZX9UurLcVzCYtxJ3tuwNB3NAZrbmE5k5IDsMFmSL88vHDkvOplBsdpE-7aLrFR87vehujzpcHn6PWAy5iNmhj2VhZPwU_7vrLzXTiE0 |
CODEN | ENSTDF |
CitedBy_id | crossref_primary_10_1177_1369433217718986 crossref_primary_10_1007_s40999_017_0253_0 crossref_primary_10_1016_j_engstruct_2012_04_012 crossref_primary_10_1016_j_engstruct_2020_111508 crossref_primary_10_1115_1_4038581 crossref_primary_10_1177_1369433215624515 crossref_primary_10_1080_17445302_2022_2109353 crossref_primary_10_1016_j_engstruct_2012_12_011 crossref_primary_10_1088_1742_6596_451_1_012043 crossref_primary_10_1590_1679_78251286 crossref_primary_10_1016_j_soildyn_2021_106643 crossref_primary_10_1111_mice_12436 crossref_primary_10_3390_app10248832 crossref_primary_10_1016_j_engfailanal_2017_10_003 crossref_primary_10_1016_j_engstruct_2011_11_007 crossref_primary_10_1016_j_scient_2012_12_008 crossref_primary_10_1016_j_engstruct_2015_11_019 crossref_primary_10_1016_j_istruc_2024_106402 crossref_primary_10_1061__ASCE_ST_1943_541X_0001715 crossref_primary_10_1016_j_oceaneng_2016_05_050 crossref_primary_10_4028_www_scientific_net_AMR_446_449_102 crossref_primary_10_1016_j_engstruct_2018_06_022 crossref_primary_10_1007_s41024_021_00117_2 crossref_primary_10_1016_j_engfailanal_2019_02_004 crossref_primary_10_1016_j_engstruct_2015_10_004 crossref_primary_10_1016_j_jobe_2021_102228 crossref_primary_10_1061__ASCE_CF_1943_5509_0000930 crossref_primary_10_1007_s13296_015_0056_6 crossref_primary_10_1007_s13296_017_6014_8 crossref_primary_10_1007_s40996_024_01479_6 crossref_primary_10_3390_buildings12101704 crossref_primary_10_1016_j_istruc_2023_105600 crossref_primary_10_1680_macr_13_00153 crossref_primary_10_1007_s13296_018_0136_5 crossref_primary_10_1007_s41024_022_00165_2 crossref_primary_10_1088_1757_899X_262_1_012040 crossref_primary_10_1016_j_rcns_2023_12_001 crossref_primary_10_1177_1369433219898072 crossref_primary_10_56748_ejse_23448 crossref_primary_10_1080_13632469_2019_1616335 crossref_primary_10_4028_www_scientific_net_AMR_639_640_3 crossref_primary_10_1016_j_istruc_2021_03_065 crossref_primary_10_1016_j_jcsr_2020_106459 crossref_primary_10_1007_s42107_018_0045_0 crossref_primary_10_1016_j_engstruct_2017_03_071 crossref_primary_10_3390_su141911974 crossref_primary_10_1016_j_engfailanal_2020_104789 crossref_primary_10_1080_13287982_2020_1747148 crossref_primary_10_1007_s00343_021_1040_y crossref_primary_10_1016_j_engstruct_2021_113796 crossref_primary_10_1016_j_jcsr_2017_09_014 crossref_primary_10_12989_scs_2016_20_2_357 crossref_primary_10_1002_suco_201900165 crossref_primary_10_1061__ASCE_ST_1943_541X_0002190 crossref_primary_10_1007_s13296_014_1202_2 crossref_primary_10_1016_j_solener_2019_04_001 crossref_primary_10_1155_2022_2647754 crossref_primary_10_1016_j_engstruct_2023_116137 crossref_primary_10_1002_suco_201800039 crossref_primary_10_1016_j_oceaneng_2014_04_008 crossref_primary_10_1061__ASCE_ST_1943_541X_0000897 crossref_primary_10_12989_eas_2015_9_3_639 crossref_primary_10_1016_j_jobe_2023_106556 crossref_primary_10_1111_ina_13073 |
Cites_doi | 10.1061/40753(171)216 10.1002/eqe.506 10.1193/1.1516201 10.1016/j.jcsr.2008.03.020 10.1016/j.jcsr.2008.02.007 10.1016/j.engstruct.2010.02.003 10.1016/j.engstruct.2009.12.048 10.1016/j.compstruc.2004.05.013 10.1061/(ASCE)0733-9445(2005)131:8(1157) 10.1061/(ASCE)0887-3828(2009)23:5(327) |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.engstruct.2010.10.025 |
DatabaseName | Pascal-Francis CrossRef Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Engineering Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-7323 |
EndPage | 432 |
ExternalDocumentID | 10_1016_j_engstruct_2010_10_025 23751936 S0141029610004190 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SET SEW SPC SPCBC SSE SST SSZ T5K TN5 UAO VH1 WUQ XPP ZMT ZY4 ~02 ~G- AAPBV ABPIF ABPTK IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 7SR 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c443t-e2fae56c3ef0e4fd94ad4fa175282d4466d6f70d0be210c59679492940184e613 |
IEDL.DBID | AIKHN |
ISSN | 0141-0296 |
IngestDate | Fri Oct 25 08:18:42 EDT 2024 Thu Sep 26 15:57:11 EDT 2024 Sun Oct 22 16:07:15 EDT 2023 Fri Feb 23 02:27:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Moment-resisting frames Progressive collapse First-order second moment Sensitivity analysis Tornado diagram Monte Carlo simulation Metallic structure Collapse Monte Carlo method Second order Stress strain relation Steel Case study Building dynamics Numerical simulation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c443t-e2fae56c3ef0e4fd94ad4fa175282d4466d6f70d0be210c59679492940184e613 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 855701558 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_855701558 crossref_primary_10_1016_j_engstruct_2010_10_025 pascalfrancis_primary_23751936 elsevier_sciencedirect_doi_10_1016_j_engstruct_2010_10_025 |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Griffiths, Pugsley, Saynders (br000005) 1968 Harris, Corotis, Bova (br000130) 1981; 107 Eurocode 1. Actions on structures. Brussels: European Committee for Standardization; 2002. AIK. Korean building code-structural. Architectural Institute of Korea; 2005 [in Korean]. Krawinkler H, Gupta A, Medina R, Uco N. Loading histories for seismic performance testing of SMRF components and assemblies. SAC/BD-00/10. 2000. Kwasniewski (br000090) 2010; 32 Khandelwal, El-Tawil, Sadek (br000060) 2009; 65 GSA. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington (DC, USA): The US General Services Administration; 2003. Kim, Kim (br000070) 2009; 65 Porter, Beck, Shaikhutdinov (br000100) 2002; 18 Lee, Mosalam (br000105) 2005; 34 Hayes, Woodson, Pekelnicky, Poland, Corley, Sozen (br000055) 2005; 131 Mazzoni S, McKenna F, Fenves G. OpenSees command language manual. In: Pacific earthquake engineering research. PEER. center. 2005. ASCE 7-05. Minimum design loads for buildings and other structures. New York (USA): American Society of Civil Engineers; 2005. Unified Facilities Criteria. UFC–DoD. Design of buildings to resist progressive collapse. Department of Defense. 2005. ACI 318. Building code requirements for structural concrete (318-02) and commentary (ACI 318R-02). Farmington Hills (MI, USA): American Concrete Institute; 2002. Kim, Kim, Park, Jung (br000125) 2000; 16 Crawford JE. Retrofit methods to mitigate progressive collapse. The multihazard mitigation council of the national institute of building science. Report on the July 2002 national workshop and recommendations for future effort. 2002. Lee T-H, Mosalam KM. Probabilistic seismic evaluation of reinforced concrete structural components and systems. PEER technical report 2006/04. Berkeley (CA, USA): University of California; 2006. Powell G. Progressive collapse: case study using nonlinear analysis. In: Proceedings of the 2005 structures congress and the 2005 forensic engineering symposium. 2005. Kim, Kim, Park (br000085) 2009; 23 ICC. International building code. Falls Church (Virginia, USA): International Code Council; 2006. Suzuki I, Wada A, Ohi K, Sakumoto Y, Fusimi M, Kamura H. Study on high-rise steel building structure that excels in redundancy, part II evaluation of redundancy considering heat induced by fire and loss of vertical load resistant members. In: Proc. CIB-CTBUH international conference on tail building. 2003. p. 251–9. Park, Kim (br000080) 2010; 32 NBC. National building code of Canada 1995. Ottawa (Canada): National Research Council of Canada; 1995. Lee, Mosalam (br000095) 2004; 82 Harris (10.1016/j.engstruct.2010.10.025_br000130) 1981; 107 Hayes (10.1016/j.engstruct.2010.10.025_br000055) 2005; 131 Kim (10.1016/j.engstruct.2010.10.025_br000125) 2000; 16 10.1016/j.engstruct.2010.10.025_br000115 10.1016/j.engstruct.2010.10.025_br000015 10.1016/j.engstruct.2010.10.025_br000035 10.1016/j.engstruct.2010.10.025_br000010 Khandelwal (10.1016/j.engstruct.2010.10.025_br000060) 2009; 65 10.1016/j.engstruct.2010.10.025_br000110 10.1016/j.engstruct.2010.10.025_br000030 10.1016/j.engstruct.2010.10.025_br000075 10.1016/j.engstruct.2010.10.025_br000050 Kim (10.1016/j.engstruct.2010.10.025_br000070) 2009; 65 Lee (10.1016/j.engstruct.2010.10.025_br000105) 2005; 34 Lee (10.1016/j.engstruct.2010.10.025_br000095) 2004; 82 Porter (10.1016/j.engstruct.2010.10.025_br000100) 2002; 18 Park (10.1016/j.engstruct.2010.10.025_br000080) 2010; 32 Kim (10.1016/j.engstruct.2010.10.025_br000085) 2009; 23 Kwasniewski (10.1016/j.engstruct.2010.10.025_br000090) 2010; 32 10.1016/j.engstruct.2010.10.025_br000025 Griffiths (10.1016/j.engstruct.2010.10.025_br000005) 1968 10.1016/j.engstruct.2010.10.025_br000045 10.1016/j.engstruct.2010.10.025_br000065 10.1016/j.engstruct.2010.10.025_br000120 10.1016/j.engstruct.2010.10.025_br000020 10.1016/j.engstruct.2010.10.025_br000040 |
References_xml | – volume: 18 start-page: 719 year: 2002 end-page: 743 ident: br000100 article-title: Sensitivity of building loss estimates to major uncertain variables publication-title: Earthq Spectra contributor: fullname: Shaikhutdinov – volume: 16 year: 2000 ident: br000125 article-title: A statistical study on the mechanical properties and chemical components of rolled steels for welded structure, SM490 publication-title: J Archit Inst Korea Struct Constr contributor: fullname: Jung – volume: 107 year: 1981 ident: br000130 article-title: Area-dependent processes for structural live loads publication-title: J Struct Div, ASCE contributor: fullname: Bova – volume: 34 start-page: 1719 year: 2005 end-page: 1736 ident: br000105 article-title: Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method publication-title: Earthq Eng Struct Dyn contributor: fullname: Mosalam – volume: 131 start-page: 1157 year: 2005 end-page: 1177 ident: br000055 article-title: Can strengthening for earthquake improve blast and progressive collapse resistance? publication-title: ASCE J Struct Eng contributor: fullname: Sozen – volume: 65 start-page: 699 year: 2009 end-page: 708 ident: br000060 article-title: Progressive collapse analysis of seismically designed steel braced frames publication-title: J Constr Steel Res contributor: fullname: Sadek – volume: 23 start-page: 327 year: 2009 end-page: 335 ident: br000085 article-title: Investigation of progressive collapse-resisting capability of steel moment frames using pushdown analysis publication-title: J Perform Constr Facil, ASCE contributor: fullname: Park – year: 1968 ident: br000005 article-title: Collapse of flats at ronan point contributor: fullname: Saynders – volume: 65 start-page: 169 year: 2009 end-page: 179 ident: br000070 article-title: Assessment of progressive collapse-resisting capacity of steel moment frames publication-title: J Constr Steel Res contributor: fullname: Kim – volume: 82 start-page: 2285 year: 2004 end-page: 2299 ident: br000095 article-title: Probabilistic fiber element modeling of reinforced concrete structures publication-title: Comput Struct contributor: fullname: Mosalam – volume: 32 start-page: 1223 year: 2010 end-page: 1235 ident: br000090 article-title: Nonlinear dynamic simulations of progressive collapse for a multistory building publication-title: Eng Struct contributor: fullname: Kwasniewski – volume: 32 start-page: 1547 year: 2010 end-page: 1555 ident: br000080 article-title: Fragility analysis of steel moment frames with various seismic connections subjected to sudden loss of a column publication-title: Eng Struct contributor: fullname: Kim – ident: 10.1016/j.engstruct.2010.10.025_br000065 doi: 10.1061/40753(171)216 – volume: 34 start-page: 1719 year: 2005 ident: 10.1016/j.engstruct.2010.10.025_br000105 article-title: Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.506 contributor: fullname: Lee – ident: 10.1016/j.engstruct.2010.10.025_br000020 – ident: 10.1016/j.engstruct.2010.10.025_br000045 – volume: 18 start-page: 719 issue: 4 year: 2002 ident: 10.1016/j.engstruct.2010.10.025_br000100 article-title: Sensitivity of building loss estimates to major uncertain variables publication-title: Earthq Spectra doi: 10.1193/1.1516201 contributor: fullname: Porter – volume: 107 issue: ST5 year: 1981 ident: 10.1016/j.engstruct.2010.10.025_br000130 article-title: Area-dependent processes for structural live loads publication-title: J Struct Div, ASCE contributor: fullname: Harris – ident: 10.1016/j.engstruct.2010.10.025_br000115 – ident: 10.1016/j.engstruct.2010.10.025_br000010 – ident: 10.1016/j.engstruct.2010.10.025_br000035 – ident: 10.1016/j.engstruct.2010.10.025_br000050 – volume: 65 start-page: 169 year: 2009 ident: 10.1016/j.engstruct.2010.10.025_br000070 article-title: Assessment of progressive collapse-resisting capacity of steel moment frames publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2008.03.020 contributor: fullname: Kim – ident: 10.1016/j.engstruct.2010.10.025_br000075 – volume: 16 issue: 11 year: 2000 ident: 10.1016/j.engstruct.2010.10.025_br000125 article-title: A statistical study on the mechanical properties and chemical components of rolled steels for welded structure, SM490 publication-title: J Archit Inst Korea Struct Constr contributor: fullname: Kim – volume: 65 start-page: 699 year: 2009 ident: 10.1016/j.engstruct.2010.10.025_br000060 article-title: Progressive collapse analysis of seismically designed steel braced frames publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2008.02.007 contributor: fullname: Khandelwal – ident: 10.1016/j.engstruct.2010.10.025_br000015 – ident: 10.1016/j.engstruct.2010.10.025_br000040 – volume: 32 start-page: 1547 issue: 6 year: 2010 ident: 10.1016/j.engstruct.2010.10.025_br000080 article-title: Fragility analysis of steel moment frames with various seismic connections subjected to sudden loss of a column publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.02.003 contributor: fullname: Park – ident: 10.1016/j.engstruct.2010.10.025_br000120 – volume: 32 start-page: 1223 year: 2010 ident: 10.1016/j.engstruct.2010.10.025_br000090 article-title: Nonlinear dynamic simulations of progressive collapse for a multistory building publication-title: Eng Struct doi: 10.1016/j.engstruct.2009.12.048 contributor: fullname: Kwasniewski – ident: 10.1016/j.engstruct.2010.10.025_br000025 – volume: 82 start-page: 2285 year: 2004 ident: 10.1016/j.engstruct.2010.10.025_br000095 article-title: Probabilistic fiber element modeling of reinforced concrete structures publication-title: Comput Struct doi: 10.1016/j.compstruc.2004.05.013 contributor: fullname: Lee – year: 1968 ident: 10.1016/j.engstruct.2010.10.025_br000005 contributor: fullname: Griffiths – ident: 10.1016/j.engstruct.2010.10.025_br000030 – volume: 131 start-page: 1157 issue: 8 year: 2005 ident: 10.1016/j.engstruct.2010.10.025_br000055 article-title: Can strengthening for earthquake improve blast and progressive collapse resistance? publication-title: ASCE J Struct Eng doi: 10.1061/(ASCE)0733-9445(2005)131:8(1157) contributor: fullname: Hayes – ident: 10.1016/j.engstruct.2010.10.025_br000110 – volume: 23 start-page: 327 issue: 5 year: 2009 ident: 10.1016/j.engstruct.2010.10.025_br000085 article-title: Investigation of progressive collapse-resisting capability of steel moment frames using pushdown analysis publication-title: J Perform Constr Facil, ASCE doi: 10.1061/(ASCE)0887-3828(2009)23:5(327) contributor: fullname: Kim |
SSID | ssj0002880 |
Score | 2.2960954 |
Snippet | In this study, the sensitivity of design parameters of steel buildings subjected to progressive collapse is studied. To this end, design parameters such as... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 421 |
SubjectTerms | Applied sciences Building failures (cracks, physical changes, etc.) Building structure Buildings Buildings. Public works Collapse Columns (structural) Computer simulation Construction (buildings and works) Design parameters Durability. Pathology. Repairing. Maintenance Exact sciences and technology First-order second moment Frames Metal structure Moment-resisting frames Monte Carlo methods Monte Carlo simulation Progressive collapse Sensitivity analysis Stresses. Safety Structural analysis. Stresses Structural steels Tornado diagram Yield strength |
Title | Sensitivity analysis of steel buildings subjected to column loss |
URI | https://dx.doi.org/10.1016/j.engstruct.2010.10.025 https://search.proquest.com/docview/855701558 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF76uCgiPrE-yh68xqbJ5uXJUixVsZda6C1s9iGVkhTSXv3tzmQ3xaLgwWuyS4aZ3W9mdr_MEHILTjvivkCqTiIdJnTfASeonFAwETElJJN4oP86Cccz9jwP5g0yrP-FQVqlxX6D6RVa2yc9q83earHoTSuKopeEeELNwK81SRvckQdLuz14ehlPtoDsxVUDNRzv4IQdmpfK302lVkPzQqYXts3-3UkdrHgJqtOm58UP-K580uiIHNpgkg6MvMekofITsv-txOApeZgiQ920iKDcViChhaZgXbWkme2KXdJyk-GRjJJ0XVCBmJXTJQh3Rmajx7fh2LFdExzBmL92lKe5CkLhK-0qpmXCuGSaQ5gA2ZXE61sZ6siVbqYg3RNBEsKWhCAJEq2YKfDu56SVF7m6IBSQknmAAZGG3NWPs9gVLleQAgU8y5gMO8St1ZSuTHGMtGaNfaRbzaaoWXwBmu2Q-1qd6Y6dU4Dwvyd3dwyw_ajnRxiJgkC0tkgK2wTvPniuik2ZxlhqDGKn-PI_AlyRPXOmjHSWa9KCAeoGgpJ11iXNu89-1y69L4XY4g0 |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4gHtQY4zPiA_fgtVLbpQ9PGiNBBS5Awm2z3YfBkJakcPW3O9NtUaKJB6_tNp3MbL957NcZQq7BaYfCl0jViZXDpLl1wAlqJ5BMhkxLxRQW9PuDoDtmL5P2pEYeq39hkFZZYr_F9AKtyyutUput-XTaGhYURS8OsELNwK9tkE2G7cZhU998fPE8vKgYn4arHVy-RvLS6Zvt02pJXsjzwqHZv7uo3bnIQXHGTrz4Ad6FR-rsk70ylKQPVtoDUtPpIdn51mDwiNwPkZ9uB0RQUfYfoZmhYFs9o0k5Ezun-TLBgoxWdJFRiYiV0hkId0zGnafRY9cpZyY4kjF_4WjPCN0OpK-Nq5lRMROKGQFBAuRWCg9vVWBCV7mJhmRPtuMAPkgIkSDNipgG335C6mmW6lNCASeZBwgQGshc_SiJXOkKDQlQWyQJU0GDuJWa-Ny2xuAVZ-ydrzTLUbN4AzTbIHeVOvmalTkA-N8PN9cMsHqp54cYh4JAtLIIh48ETz5EqrNlziNsNAaRU3T2HwGuyFZ31O_x3vPg9Zxs2-oyElsuSB0W60sITxZJs9h-n5Kf4uY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+analysis+of+steel+buildings+subjected+to+column+loss&rft.jtitle=Engineering+structures&rft.au=Kim%2C+Jinkoo&rft.au=Park%2C+Jun-Hee&rft.au=Lee%2C+Tae-Hyung&rft.date=2011-02-01&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=33&rft.issue=2&rft.spage=421&rft.epage=432&rft_id=info:doi/10.1016%2Fj.engstruct.2010.10.025&rft.externalDocID=S0141029610004190 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |