The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus

Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome–coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectr...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 295; no. 15; pp. 4773 - 4779
Main Authors Gordon, Calvin J., Tchesnokov, Egor P., Feng, Joy Y., Porter, Danielle P., Götte, Matthias
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.04.2020
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome–coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome–CoV and Middle East respiratory syndrome (MERS–CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS–CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS–CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3′–5′ exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.
AbstractList Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position , the inhibitor caused RNA synthesis arrest at position + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.
Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome–coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome–CoV and Middle East respiratory syndrome (MERS–CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS–CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS–CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3′–5′ exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.
Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome–coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome–CoV and Middle East respiratory syndrome (MERS–CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS–CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS–CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i , the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3′–5′ exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.
Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing the outbreak of severe acute respiratory syndrome-coronavirus 2 (CoV-2). Remdesivir (RDV) is an investigational compound with a broad spectrum of antiviral activities against RNA viruses, including severe acute respiratory syndrome-CoV and Middle East respiratory syndrome (MERS-CoV). RDV is a nucleotide analog inhibitor of RNA-dependent RNA polymerases (RdRps). Here, we co-expressed the MERS-CoV nonstructural proteins nsp5, nsp7, nsp8, and nsp12 (RdRp) in insect cells as a part a polyprotein to study the mechanism of inhibition of MERS-CoV RdRp by RDV. We initially demonstrated that nsp8 and nsp12 form an active complex. The triphosphate form of the inhibitor (RDV-TP) competes with its natural counterpart ATP. Of note, the selectivity value for RDV-TP obtained here with a steady-state approach suggests that it is more efficiently incorporated than ATP and two other nucleotide analogs. Once incorporated at position i, the inhibitor caused RNA synthesis arrest at position i + 3. Hence, the likely mechanism of action is delayed RNA chain termination. The additional three nucleotides may protect the inhibitor from excision by the viral 3'-5' exonuclease activity. Together, these results help to explain the high potency of RDV against RNA viruses in cell-based assays.
Author Gordon, Calvin J.
Götte, Matthias
Tchesnokov, Egor P.
Feng, Joy Y.
Porter, Danielle P.
Author_xml – sequence: 1
  givenname: Calvin J.
  surname: Gordon
  fullname: Gordon, Calvin J.
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
– sequence: 2
  givenname: Egor P.
  surname: Tchesnokov
  fullname: Tchesnokov, Egor P.
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
– sequence: 3
  givenname: Joy Y.
  surname: Feng
  fullname: Feng, Joy Y.
  organization: Gilead Sciences, Inc., Foster City, California 94404
– sequence: 4
  givenname: Danielle P.
  surname: Porter
  fullname: Porter, Danielle P.
  organization: Gilead Sciences, Inc., Foster City, California 94404
– sequence: 5
  givenname: Matthias
  surname: Götte
  fullname: Götte, Matthias
  email: gotte@ualberta.ca
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32094225$$D View this record in MEDLINE/PubMed
BookMark eNp9UUuLFDEQDrLizq7ePUmOXnrMq18ehGFYH7AqyAreQjqpOFm6kzbJDPTVX27G2RUVNJeQqu-Rqu8CnfngAaGnlKwpacWL20GvN1vKyJpQTurmAVpR0vGK1_TLGVoRwmjVs7o7Rxcp3ZJyRE8foXPOSC8Yq1fo-80OsPLZHVxUI9ZhmsPeGxxhMpCOVTyHDD6PC3Z-5waXE_70YVMZmMGb0ji-CmZcJogqAbYxTPi9M2YEfKVSLlJpLuI5xAWnxZvSh2IUg1dFfp8eo4dWjQme3N2X6PPrq5vt2-r645t32811pYXguTK2ZUSAgI4REC1jA_QNqXVPbGNBCE1VO3S25m0_AB-MKkNy2_RgrWYdZfwSvTrpzvthAqPL38vIco5uUnGRQTn5Z8e7nfwaDrKlNWvrpgg8vxOI4dseUpaTSxrGUXkI-yQZbwThrO-6An32u9cvk_vFF0BzAugYUopgpXZZZReO1m6UlMhjwrIkLH8mLE8JFyL5i3iv_R_KyxMFynYPDqJM2oHXYFwEnaUJ7t_kH8KpwIo
CitedBy_id crossref_primary_10_1073_pnas_2304139120
crossref_primary_10_1126_science_abn1900
crossref_primary_10_1177_2050640620920157
crossref_primary_10_1016_j_lfs_2020_118663
crossref_primary_10_1007_s12011_020_02194_9
crossref_primary_10_1016_j_jviromet_2020_113995
crossref_primary_10_2217_fmb_2021_0064
crossref_primary_10_1007_s42399_020_00360_7
crossref_primary_10_1016_j_csbj_2021_06_005
crossref_primary_10_1080_14767058_2020_1774875
crossref_primary_10_1016_j_envres_2020_110119
crossref_primary_10_1055_s_0040_1716634
crossref_primary_10_1016_j_bpj_2021_07_026
crossref_primary_10_1016_j_sjbs_2022_103481
crossref_primary_10_3389_fimmu_2020_01606
crossref_primary_10_1002_bmc_5380
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1007_s12602_021_09833_0
crossref_primary_10_1126_science_abc1560
crossref_primary_10_1128_AAC_01155_21
crossref_primary_10_2147_DDDT_S278892
crossref_primary_10_1080_1120009X_2020_1868237
crossref_primary_10_1007_s11756_021_00792_z
crossref_primary_10_1021_acsomega_4c05469
crossref_primary_10_3390_vaccines9040349
crossref_primary_10_1007_s00508_020_01734_6
crossref_primary_10_1039_D1RA06589K
crossref_primary_10_1016_j_cbi_2021_109449
crossref_primary_10_3390_pathogens9050320
crossref_primary_10_1021_acs_jproteome_0c00392
crossref_primary_10_1016_j_compbiomed_2020_104156
crossref_primary_10_1080_13543776_2021_1880568
crossref_primary_10_3390_v12091023
crossref_primary_10_1007_s13337_020_00650_7
crossref_primary_10_1016_j_bcp_2021_114424
crossref_primary_10_1007_s11101_020_09720_6
crossref_primary_10_3389_fmolb_2022_999291
crossref_primary_10_3389_fphar_2020_585888
crossref_primary_10_3390_molecules25235535
crossref_primary_10_1016_j_cegh_2020_07_011
crossref_primary_10_1016_j_medntd_2021_100057
crossref_primary_10_1016_j_isci_2020_101849
crossref_primary_10_3390_molecules27061773
crossref_primary_10_3390_molecules27061894
crossref_primary_10_1080_10406638_2022_2127803
crossref_primary_10_3390_molecules27217370
crossref_primary_10_2174_1573398X16999201203162129
crossref_primary_10_1021_acsabm_3c00339
crossref_primary_10_1038_s41598_024_70003_7
crossref_primary_10_1177_2472555220963667
crossref_primary_10_3389_fphar_2020_572870
crossref_primary_10_31083_j_rcm2202041
crossref_primary_10_1016_j_isci_2021_103120
crossref_primary_10_1128_mBio_03492_20
crossref_primary_10_1016_j_drudis_2020_08_002
crossref_primary_10_3389_fphar_2020_582025
crossref_primary_10_1016_j_biocel_2021_106114
crossref_primary_10_3389_fphar_2020_561334
crossref_primary_10_2174_0115734129323940240809053530
crossref_primary_10_1007_s44179_022_00019_9
crossref_primary_10_3390_ijms251910820
crossref_primary_10_1007_s12038_020_00067_w
crossref_primary_10_1074_jbc_RA120_015394
crossref_primary_10_1016_j_mayocp_2020_04_027
crossref_primary_10_2174_1568026623666221130142517
crossref_primary_10_1016_j_biopha_2021_112162
crossref_primary_10_1016_j_carbpol_2021_118011
crossref_primary_10_1128_mSystems_00453_20
crossref_primary_10_1002_wrna_70000
crossref_primary_10_3389_fphar_2020_00791
crossref_primary_10_1128_AAC_01508_20
crossref_primary_10_3389_fmed_2021_604087
crossref_primary_10_1136_postgradmedj_2020_138577
crossref_primary_10_1074_jbc_H120_013397
crossref_primary_10_3390_biomedicines10020437
crossref_primary_10_1016_j_jmgm_2020_107730
crossref_primary_10_1080_17460441_2023_2192921
crossref_primary_10_1016_j_algal_2021_102331
crossref_primary_10_29121_granthaalayah_v9_i3_2021_3769
crossref_primary_10_1021_acssynbio_2c00359
crossref_primary_10_1002_cpt_2176
crossref_primary_10_1097_PR9_0000000000000885
crossref_primary_10_1021_acsinfecdis_0c00236
crossref_primary_10_3390_molecules26123526
crossref_primary_10_3389_fimmu_2020_569760
crossref_primary_10_1002_jmv_25966
crossref_primary_10_1002_phar_2403
crossref_primary_10_1111_cbdd_13812
crossref_primary_10_15690_vsp_v19i2_2105
crossref_primary_10_1080_07391102_2021_1871956
crossref_primary_10_1128_mSystems_00233_21
crossref_primary_10_1111_apt_16894
crossref_primary_10_3390_life11080734
crossref_primary_10_1007_s12291_020_00919_0
crossref_primary_10_3389_fmolb_2020_618318
crossref_primary_10_1016_j_ijbiomac_2020_05_184
crossref_primary_10_2174_1874467214666210811120635
crossref_primary_10_1128_JVI_00190_21
crossref_primary_10_1080_14728214_2020_1810663
crossref_primary_10_3390_biologics1020007
crossref_primary_10_3390_v13091722
crossref_primary_10_1016_j_celrep_2020_107940
crossref_primary_10_1016_j_ejphar_2020_173326
crossref_primary_10_1016_j_ejphar_2020_173568
crossref_primary_10_1016_j_imu_2020_100484
crossref_primary_10_3389_fgene_2020_581668
crossref_primary_10_1016_j_imu_2020_100486
crossref_primary_10_2174_2211738508999200817163335
crossref_primary_10_2174_1568026620666200710105507
crossref_primary_10_3390_scipharm91010015
crossref_primary_10_1016_j_csbj_2023_09_001
crossref_primary_10_1128_AAC_00483_20
crossref_primary_10_1016_j_ejmech_2020_112527
crossref_primary_10_1016_j_jbc_2024_107514
crossref_primary_10_1111_ajt_15982
crossref_primary_10_1016_j_eng_2020_06_011
crossref_primary_10_1186_s12931_021_01885_8
crossref_primary_10_1002_1873_3468_13806
crossref_primary_10_1016_j_cplett_2022_139638
crossref_primary_10_1016_j_procbio_2020_12_014
crossref_primary_10_1080_10406638_2021_1887299
crossref_primary_10_4103_tcmj_tcmj_100_20
crossref_primary_10_7759_cureus_36247
crossref_primary_10_1002_vjch_202100187
crossref_primary_10_3389_fmicb_2020_01756
crossref_primary_10_1007_s12104_020_09992_1
crossref_primary_10_1016_j_ijpharm_2020_120028
crossref_primary_10_1038_s41467_020_18463_z
crossref_primary_10_1016_j_chembiol_2020_05_002
crossref_primary_10_3390_jcm10235473
crossref_primary_10_2147_DDDT_S320320
crossref_primary_10_1016_j_jiph_2021_02_006
crossref_primary_10_3390_v14050961
crossref_primary_10_2174_1385272827666230111161632
crossref_primary_10_1016_j_bmc_2020_115745
crossref_primary_10_1016_j_arabjc_2021_103631
crossref_primary_10_3389_fcell_2020_580202
crossref_primary_10_1515_cclm_2020_0612
crossref_primary_10_1136_bmj_m1610
crossref_primary_10_1186_s40794_020_00107_1
crossref_primary_10_1002_jmv_26055
crossref_primary_10_3390_v12101092
crossref_primary_10_1007_s10557_020_07073_y
crossref_primary_10_1093_cid_ciaa1041
crossref_primary_10_1016_j_jviromet_2021_114283
crossref_primary_10_3390_v14050974
crossref_primary_10_1017_S0950268822001078
crossref_primary_10_1016_j_mehy_2021_110754
crossref_primary_10_1016_j_jtcms_2020_05_006
crossref_primary_10_1007_s40495_020_00229_2
crossref_primary_10_1016_j_phymed_2023_155038
crossref_primary_10_1007_s11356_020_12200_1
crossref_primary_10_3390_pharmaceutics15030941
crossref_primary_10_1016_j_sjbs_2020_11_078
crossref_primary_10_3390_biomedicines9080996
crossref_primary_10_2174_1389557521666210412161157
crossref_primary_10_1007_s00285_022_01849_6
crossref_primary_10_3390_ph13080188
crossref_primary_10_3390_ph14060503
crossref_primary_10_1254_fpj_21058
crossref_primary_10_1007_s40495_020_00218_5
crossref_primary_10_31083_j_fbl2704123
crossref_primary_10_12688_f1000research_73999_3
crossref_primary_10_12688_f1000research_73999_2
crossref_primary_10_29254_2077_4214_2021_3_161_14_26
crossref_primary_10_37871_jbres1175
crossref_primary_10_1016_j_scp_2022_100744
crossref_primary_10_1111_cts_12840
crossref_primary_10_1016_j_phymed_2020_153440
crossref_primary_10_1016_j_antiviral_2021_105120
crossref_primary_10_14233_ajchem_2022_23858
crossref_primary_10_1074_jbc_AC120_015720
crossref_primary_10_1134_S0036024423030299
crossref_primary_10_1016_j_antiviral_2024_106034
crossref_primary_10_12688_f1000research_73999_1
crossref_primary_10_1016_j_idm_2024_05_004
crossref_primary_10_1016_j_drudis_2020_10_018
crossref_primary_10_1038_s41467_020_20542_0
crossref_primary_10_1055_s_0040_1721190
crossref_primary_10_1038_s41392_022_00907_1
crossref_primary_10_1039_D0MO00057D
crossref_primary_10_3390_ph13070155
crossref_primary_10_1038_s41409_020_0919_0
crossref_primary_10_1016_j_antiviral_2023_105716
crossref_primary_10_1016_j_fmre_2021_01_013
crossref_primary_10_5005_jp_journals_10054_0160
crossref_primary_10_13105_wjma_v9_i1_74
crossref_primary_10_3389_fpubh_2020_00281
crossref_primary_10_3389_fphar_2021_630834
crossref_primary_10_2174_2211352519666210217100423
crossref_primary_10_1371_journal_pone_0257965
crossref_primary_10_1007_s41061_020_00318_2
crossref_primary_10_1016_j_biopha_2021_111232
crossref_primary_10_2174_1389557522666220511125102
crossref_primary_10_1016_j_ijpx_2021_100073
crossref_primary_10_3390_v14050928
crossref_primary_10_1007_s12272_021_01331_9
crossref_primary_10_30699_jambs_30_139_75
crossref_primary_10_1074_jbc_REV120_013746
crossref_primary_10_1007_s42250_020_00203_x
crossref_primary_10_1007_s11356_021_16096_3
crossref_primary_10_3390_medicina56080386
crossref_primary_10_1098_rsos_210082
crossref_primary_10_1038_s41598_023_42704_y
crossref_primary_10_1021_acsptsci_0c00131
crossref_primary_10_1038_s41598_020_73641_9
crossref_primary_10_1080_21505594_2021_1871823
crossref_primary_10_1093_ofid_ofaa105
crossref_primary_10_5114_bta_2022_113915
crossref_primary_10_1177_2472555220958385
crossref_primary_10_7554_eLife_70968
crossref_primary_10_3389_fphar_2020_01258
crossref_primary_10_1016_j_compbiomed_2022_105575
crossref_primary_10_3389_fmed_2021_651658
crossref_primary_10_4155_fmc_2020_0380
crossref_primary_10_1016_j_ejps_2020_105522
crossref_primary_10_1038_s41586_022_05664_3
crossref_primary_10_1016_j_intimp_2021_108232
crossref_primary_10_1089_vim_2020_0102
crossref_primary_10_1016_j_dcmed_2020_12_003
crossref_primary_10_1177_0897190021997001
crossref_primary_10_1016_j_toxlet_2021_07_015
crossref_primary_10_1177_20499361251314763
crossref_primary_10_1038_s41580_021_00432_z
crossref_primary_10_2174_0115680266296095240529114058
crossref_primary_10_3389_fphar_2020_590598
crossref_primary_10_1007_s11356_021_16809_8
crossref_primary_10_1111_cts_12815
crossref_primary_10_1002_jcp_30032
crossref_primary_10_32947_ajps_v23i3_1040
crossref_primary_10_1016_j_apsb_2020_06_002
crossref_primary_10_1080_07391102_2020_1794971
crossref_primary_10_1152_ajplung_00355_2020
crossref_primary_10_37503_jbb_2021_9_9
crossref_primary_10_1002_jat_4336
crossref_primary_10_1007_s42535_022_00404_4
crossref_primary_10_1080_13543784_2021_1847270
crossref_primary_10_1134_S1019331622040256
crossref_primary_10_1016_j_molstruc_2020_128823
crossref_primary_10_1186_s44149_021_00017_5
crossref_primary_10_1038_s41392_021_00568_6
crossref_primary_10_1016_j_jcrc_2020_04_004
crossref_primary_10_1021_acs_jcim_2c01002
crossref_primary_10_1039_D0CS01065K
crossref_primary_10_1093_nar_gkab370
crossref_primary_10_7759_cureus_10378
crossref_primary_10_1016_j_gendis_2020_06_007
crossref_primary_10_1016_j_biopha_2021_112517
crossref_primary_10_1186_s12951_020_00685_4
crossref_primary_10_2174_1389557521666201222145842
crossref_primary_10_1515_dmdi_2020_0173
crossref_primary_10_1016_j_biopha_2020_111035
crossref_primary_10_1080_10406638_2023_2245103
crossref_primary_10_3390_ijerph17218155
crossref_primary_10_1128_aac_00969_24
crossref_primary_10_1186_s12575_020_00141_5
crossref_primary_10_1002_rmv_2133
crossref_primary_10_1016_j_coviro_2021_03_010
crossref_primary_10_30895_2312_7821_2021_9_4_191_199
crossref_primary_10_1007_s11030_020_10167_2
crossref_primary_10_2217_fvl_2020_0124
crossref_primary_10_3389_fonc_2021_664794
crossref_primary_10_1016_j_virol_2020_07_015
crossref_primary_10_21518_2079_701X_2022_16_15_152_160
crossref_primary_10_1080_10406638_2021_1956552
crossref_primary_10_3390_v12050486
crossref_primary_10_3390_molecules27134212
crossref_primary_10_1007_s00203_021_02183_z
crossref_primary_10_1016_j_clim_2020_108448
crossref_primary_10_3389_fmicb_2024_1450060
crossref_primary_10_1016_j_jbc_2022_102169
crossref_primary_10_1134_S0026893321040105
crossref_primary_10_15789_1563_0625_CTF_2095
crossref_primary_10_5799_jmid_790198
crossref_primary_10_1073_pnas_2012294117
crossref_primary_10_15406_jhvrv_2022_09_00250
crossref_primary_10_3389_fddsv_2023_1176768
crossref_primary_10_1002_prp2_705
crossref_primary_10_1128_CMR_00162_20
crossref_primary_10_3389_fmicb_2023_1291761
crossref_primary_10_1007_s11655_021_3512_5
crossref_primary_10_1016_j_cellin_2022_100046
crossref_primary_10_1177_2472555220942123
crossref_primary_10_3390_pharmaceutics12111002
crossref_primary_10_3389_fmolb_2021_645216
crossref_primary_10_2217_pme_2021_0077
crossref_primary_10_1007_s11897_024_00677_7
crossref_primary_10_35366_94636
crossref_primary_10_1161_CIRCULATIONAHA_120_046941
crossref_primary_10_2174_1871526522666220218115617
crossref_primary_10_2174_2589977513666210611155426
crossref_primary_10_3390_molecules28062616
crossref_primary_10_1080_07391102_2020_1767691
crossref_primary_10_1093_cid_ciab698
crossref_primary_10_1080_07391102_2020_1767210
crossref_primary_10_3390_cells9051267
crossref_primary_10_4254_wjh_v13_i12_1850
crossref_primary_10_1016_j_crwh_2020_e00221
crossref_primary_10_1074_jbc_RA120_013679
crossref_primary_10_2478_acph_2022_0014
crossref_primary_10_1007_s40279_020_01288_7
crossref_primary_10_1128_mbio_01060_23
crossref_primary_10_5005_jp_journals_10081_1295
crossref_primary_10_1177_13596535221082773
crossref_primary_10_1002_phar_2398
crossref_primary_10_2217_fvl_2020_0392
crossref_primary_10_1186_s41231_021_00097_y
crossref_primary_10_1080_07391102_2021_1940281
crossref_primary_10_1099_jgv_0_001453
crossref_primary_10_2174_2666796701999201209144207
crossref_primary_10_2174_1568026620666200922112300
crossref_primary_10_5005_jp_journals_10071_23491
crossref_primary_10_1007_s41061_023_00432_x
crossref_primary_10_1007_s00204_022_03306_1
crossref_primary_10_1002_bmc_5965
crossref_primary_10_1002_adbi_202300511
crossref_primary_10_1016_j_antiviral_2021_105081
crossref_primary_10_1021_acsptsci_2c00045
crossref_primary_10_17116_profmed20222508198
crossref_primary_10_3389_fphar_2020_01091
crossref_primary_10_1021_acs_jmedchem_2c01229
crossref_primary_10_2217_fvl_2021_0160
crossref_primary_10_1155_2023_3892370
crossref_primary_10_1515_dmpt_2020_0173
crossref_primary_10_1038_s41594_021_00651_0
crossref_primary_10_1007_s40267_020_00791_1
crossref_primary_10_5694_mja2_50673
crossref_primary_10_2174_1574888X16666201221151853
crossref_primary_10_1007_s00705_020_04768_3
crossref_primary_10_3390_ijerph17082690
crossref_primary_10_1042_BCJ20200514
crossref_primary_10_1128_aac_00856_24
crossref_primary_10_1016_j_critrevonc_2020_102982
crossref_primary_10_1016_j_ijantimicag_2020_106208
crossref_primary_10_2174_1381612828666220729093340
crossref_primary_10_1016_j_coviro_2021_04_014
crossref_primary_10_3390_transplantology2020022
crossref_primary_10_1002_rmv_2174
crossref_primary_10_1007_s40265_020_01378_w
crossref_primary_10_1093_nar_gkab1279
crossref_primary_10_1002_jmv_26254
crossref_primary_10_1016_j_gendis_2020_07_001
crossref_primary_10_1002_pro_3909
crossref_primary_10_30895_2221_996X_2024_569
crossref_primary_10_1016_j_apsb_2021_06_016
crossref_primary_10_1021_acs_jmedchem_0c01140
crossref_primary_10_22207_JPAM_14_SPL1_29
crossref_primary_10_1016_j_jddst_2024_106196
crossref_primary_10_3390_ijms222312638
crossref_primary_10_4103_ajim_ajim_3_21
crossref_primary_10_1002_med_21776
crossref_primary_10_1021_acs_jcim_0c01320
crossref_primary_10_1126_scitranslmed_abo0718
crossref_primary_10_1016_j_jconrel_2025_01_044
crossref_primary_10_1021_acs_biochem_0c00591
crossref_primary_10_1371_journal_pone_0278963
crossref_primary_10_1021_acsinfecdis_3c00311
crossref_primary_10_2147_RRTM_S274673
crossref_primary_10_3389_fchem_2023_1163486
crossref_primary_10_3389_fphar_2021_660710
crossref_primary_10_3390_su13020599
crossref_primary_10_1177_20420986211042517
crossref_primary_10_1208_s12248_020_00532_2
crossref_primary_10_1111_resp_14106
crossref_primary_10_1002_jctb_6641
crossref_primary_10_1055_s_0040_1707386
crossref_primary_10_1080_07391102_2021_1930162
crossref_primary_10_1002_hlca_202200157
crossref_primary_10_1128_aac_00956_23
crossref_primary_10_1016_j_isci_2025_112140
crossref_primary_10_22207_JPAM_14_SPL1_36
crossref_primary_10_1007_s11033_021_06903_y
crossref_primary_10_1074_jbc_REV120_013930
crossref_primary_10_1021_acsmedchemlett_0c00316
crossref_primary_10_3389_fmed_2020_572485
crossref_primary_10_1016_j_arcmed_2020_09_010
crossref_primary_10_1039_D0NJ02656E
crossref_primary_10_2217_fvl_2021_0048
crossref_primary_10_3390_scipharm88020029
crossref_primary_10_3390_jcm10010156
crossref_primary_10_1007_s13205_021_02657_3
crossref_primary_10_1038_s41598_022_13585_4
crossref_primary_10_1080_08830185_2020_1871477
crossref_primary_10_1002_mds3_10140
crossref_primary_10_1002_phar_2429
crossref_primary_10_1016_j_heliyon_2020_e04743
crossref_primary_10_1111_bjh_16597
crossref_primary_10_15252_emmm_202013105
crossref_primary_10_3390_biomedicines11102619
crossref_primary_10_1016_j_antiviral_2020_104787
crossref_primary_10_1055_a_2332_3253
crossref_primary_10_1080_08998280_2021_1885289
crossref_primary_10_1007_s40262_021_00984_5
crossref_primary_10_1016_j_prrv_2020_05_001
crossref_primary_10_1097_FJC_0000000000000836
crossref_primary_10_1016_j_jbc_2022_101923
crossref_primary_10_1093_jac_dkaa321
crossref_primary_10_1016_j_jiph_2023_02_009
crossref_primary_10_1016_j_jbc_2021_101529
crossref_primary_10_12688_f1000research_23829_2
crossref_primary_10_12688_f1000research_23829_1
crossref_primary_10_1016_j_bcp_2021_114800
crossref_primary_10_1073_pnas_2007346117
crossref_primary_10_1007_s10557_020_07024_7
crossref_primary_10_3390_ijms232012649
crossref_primary_10_1002_psp4_12736
crossref_primary_10_1038_s41598_023_33572_7
crossref_primary_10_2174_2210315512666220613101120
crossref_primary_10_1016_j_prp_2020_153222
crossref_primary_10_1016_j_biopha_2022_114037
crossref_primary_10_2174_2666796701999200617155629
crossref_primary_10_1080_07391102_2021_1890223
crossref_primary_10_1155_2020_7527953
crossref_primary_10_2147_DDDT_S261154
crossref_primary_10_1016_j_ajogmf_2020_100159
crossref_primary_10_1177_09720634221109295
crossref_primary_10_3390_nano10091645
crossref_primary_10_3390_ijms222011143
crossref_primary_10_1016_j_heliyon_2023_e13285
crossref_primary_10_3390_bios12110950
crossref_primary_10_1109_TMI_2022_3178523
crossref_primary_10_1111_hepr_13510
crossref_primary_10_3390_ijerph18041626
crossref_primary_10_1007_s44231_022_00021_4
crossref_primary_10_1556_2066_2020_00009
crossref_primary_10_1016_j_ajps_2021_09_002
crossref_primary_10_1016_j_jbc_2021_100770
crossref_primary_10_2174_011573398X248003231106092908
crossref_primary_10_1016_j_bcp_2022_115279
crossref_primary_10_3389_fimmu_2020_616595
crossref_primary_10_1002_prp2_674
crossref_primary_10_1093_nar_gkae153
crossref_primary_10_3390_biomedicines8050109
crossref_primary_10_3390_su12093603
crossref_primary_10_1021_acs_jcim_0c00821
crossref_primary_10_1186_s43556_020_00017_w
crossref_primary_10_1016_j_jmii_2020_09_002
crossref_primary_10_1186_s12929_022_00852_9
crossref_primary_10_1016_j_bj_2021_11_010
crossref_primary_10_1016_j_antiviral_2020_104899
crossref_primary_10_3390_biophysica4020009
crossref_primary_10_1016_j_jmgm_2021_107851
crossref_primary_10_15789_2220_7619_CEC_1473
crossref_primary_10_1039_D1CP04159B
crossref_primary_10_3390_ijms21082839
crossref_primary_10_1021_acscentsci_0c00489
crossref_primary_10_1016_j_scitotenv_2020_138914
crossref_primary_10_1016_j_rmcr_2020_101319
crossref_primary_10_1111_fcp_12889
crossref_primary_10_2174_1568026620999200517043137
crossref_primary_10_15252_emmm_202013426
crossref_primary_10_3390_jcm9113777
crossref_primary_10_1016_j_arabjc_2021_103385
crossref_primary_10_1002_cem_3548
crossref_primary_10_1183_13993003_01727_2020
crossref_primary_10_3390_jcm9093045
crossref_primary_10_1016_j_jiph_2020_11_009
crossref_primary_10_1126_sciadv_abf1004
crossref_primary_10_1002_jmv_27730
crossref_primary_10_1016_j_onehlt_2020_100128
crossref_primary_10_1007_s43440_020_00155_6
crossref_primary_10_1038_s41586_020_2368_8
crossref_primary_10_1111_tbed_13734
crossref_primary_10_3390_jcm9082399
crossref_primary_10_1016_j_virusres_2024_199356
crossref_primary_10_1021_acs_jpclett_2c00087
crossref_primary_10_1007_s40121_020_00318_1
crossref_primary_10_4103_jdmimsu_jdmimsu_45_22
crossref_primary_10_29328_journal_ijcv_1001013
crossref_primary_10_1016_j_ejphar_2020_173620
crossref_primary_10_12998_wjcc_v8_i18_3920
crossref_primary_10_1016_j_biopha_2020_110668
crossref_primary_10_1016_j_molstruc_2021_131756
crossref_primary_10_1093_bib_bbab045
crossref_primary_10_3390_jcm9051473
crossref_primary_10_3390_molecules27092918
crossref_primary_10_1080_07391102_2021_1872419
crossref_primary_10_1016_j_ab_2021_114118
crossref_primary_10_1016_j_jacbts_2020_04_002
crossref_primary_10_1186_s13613_020_00661_z
crossref_primary_10_1002_cmdc_202300661
crossref_primary_10_1016_j_drup_2020_100721
crossref_primary_10_1007_s10930_020_09933_w
crossref_primary_10_1016_j_ijbiomac_2021_01_076
crossref_primary_10_3389_fmicb_2020_02098
crossref_primary_10_18678_dtfd_890089
crossref_primary_10_2147_IJN_S315705
crossref_primary_10_5937_PsihDan2001089M
crossref_primary_10_5005_jp_journals_10055_0107
crossref_primary_10_1186_s13020_021_00461_y
crossref_primary_10_2478_pjph_2020_0014
crossref_primary_10_4155_fdd_2020_0010
crossref_primary_10_1186_s12879_020_05507_4
crossref_primary_10_2174_0929867327666200903115138
crossref_primary_10_3390_ijms23169453
crossref_primary_10_33483_jfpau_1073079
crossref_primary_10_1016_j_jfma_2021_04_026
crossref_primary_10_1128_jvi_00671_22
crossref_primary_10_5812_pedinfect_104266
crossref_primary_10_1007_s00018_020_03580_1
crossref_primary_10_4103_bbrj_bbrj_14_21
crossref_primary_10_1016_j_antiviral_2020_104857
crossref_primary_10_3389_fphar_2020_585331
crossref_primary_10_1039_D0CP05948J
crossref_primary_10_1021_acs_biochem_1c00292
crossref_primary_10_1080_07391102_2020_1834457
crossref_primary_10_3346_jkms_2021_36_e298
crossref_primary_10_1039_D0RA04743K
crossref_primary_10_12688_wellcomeopenres_15936_1
crossref_primary_10_1016_j_checat_2022_03_019
crossref_primary_10_1080_10255842_2020_1863380
crossref_primary_10_15212_bioi_2024_0055
crossref_primary_10_3390_immuno1010004
crossref_primary_10_1002_ejoc_202000831
crossref_primary_10_1080_2314808X_2020_1843119
crossref_primary_10_1371_journal_pone_0240524
crossref_primary_10_1016_j_bioorg_2020_104269
crossref_primary_10_1016_j_jddst_2023_104567
Cites_doi 10.1073/pnas.1718806115
10.1038/s41467-019-13940-6
10.1371/journal.ppat.1002980
10.1073/pnas.1323705111
10.1038/s41467-019-10280-3
10.1126/scitranslmed.aal3653
10.3390/v11040326
10.1038/srep43395
10.1128/mBio.00221-18
10.1002/0471140864.ps0520s51
10.1002/j.1460-2075.1989.tb08565.x
10.1038/nbt1036
10.1371/journal.ppat.1006889
10.1074/jbc.M806797200
10.1186/s13063-019-3846-x
10.1128/AAC.03011-14
10.1016/j.celrep.2017.10.005
10.1038/s41598-018-22328-3
10.1021/acs.jmedchem.6b01594
10.1038/sj.emboj.7601368
10.1038/nature17180
10.1371/journal.ppat.1004995
10.1128/JVI.73.3.2333-2342.1999
10.1056/NEJMoa1910993
10.1016/j.antiviral.2019.104541
ContentType Journal Article
Copyright 2020 © 2020 Gordon et al.
2020 Gordon et al.
2020 Gordon et al. 2020 Gordon et al.
Copyright_xml – notice: 2020 © 2020 Gordon et al.
– notice: 2020 Gordon et al.
– notice: 2020 Gordon et al. 2020 Gordon et al.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.AC120.013056
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate EDITORS' PICK: Coronavirus polymerase inhibition with remdesivir
EISSN 1083-351X
EndPage 4779
ExternalDocumentID PMC7152756
32094225
10_1074_jbc_AC120_013056
S0021925817485747
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: 159507
– fundername: ;
  grantid: 159507
– fundername: Alberta Ministry of Economic Development, Trade, and Tourism by the Major Innovation Fund Program
  grantid: AMR-One Health Consortium
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ACSFO
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
E.L
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7X8
5PM
ID FETCH-LOGICAL-c443t-df7204e4e820e4722be9605c90f6fe44c1a7b8f5379be3bda3203f69effc28123
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 14:37:28 EDT 2025
Fri Jul 11 09:12:33 EDT 2025
Wed Feb 19 02:29:50 EST 2025
Tue Jul 01 04:11:52 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Fri Feb 23 02:45:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Ebola virus (EBOV)
positive-sense RNA virus
Middle East respiratory syndrome coronavirus (MERS–CoV)
drug development
coronavirus
RNA chain termination
remdesivir
viral replicase
RNA-dependent RNA polymerase (RdRp)
SARS–CoV-2
viral polymerase
enzyme inhibitor
nucleoside/nucleotide analog
antiviral drug
plus-stranded RNA virus
Language English
License This is an open access article under the CC BY license.
2020 Gordon et al.
Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.
This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-df7204e4e820e4722be9605c90f6fe44c1a7b8f5379be3bda3203f69effc28123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Craig E. Cameron
These authors contributed equally to this work.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7152756
PMID 32094225
PQID 2364032988
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7152756
proquest_miscellaneous_2364032988
pubmed_primary_32094225
crossref_citationtrail_10_1074_jbc_AC120_013056
crossref_primary_10_1074_jbc_AC120_013056
elsevier_sciencedirect_doi_10_1074_jbc_AC120_013056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-10
PublicationDateYYYYMMDD 2020-04-10
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2020
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Siegel, Hui, Doerffler, Clarke, Chun, Zhang, Neville, Carra, Lew, Ross, Wang, Wolfe, Jordan, Soloveva, Knox (bib2) 2017; 60
Noton, Deflubé, Tremaglio, Fearns (bib12) 2012; 8
Kirchdoerfer, Ward (bib13) 2019; 10
Subissi, Posthuma, Collet, Zevenhoven-Dobbe, Gorbalenya, Decroly, Snijder, Canard, Imbert (bib15) 2014; 111
Bieniossek, Richmond, Berger (bib26) 2008
Berger, Fitzgerald, Richmond (bib25) 2004; 22
Warren, Jordan, Lo, Ray, Mackman, Soloveva, Siegel, Perron, Bannister, Hui, Larson, Strickley, Wells, Stuthman, Van Tongeren (bib4) 2016; 531
Deval, Hong, Wang, Taylor, Smith, Fung, Stevens, Liu, Jin, Dyatkina, Prhavc, Stoycheva, Serebryany, Liu, Smith (bib11) 2015; 11
Arabi, Asiri, Assiri, Aziz Jokhdar, Alothman, Balkhy, AlJohani, Al Harbi, Kojan, Al Jeraisy, Deeb, Memish, Ghazal, Al Faraj, Al-Hameed (bib22) 2020; 21
Tchesnokov, Raeisimakiani, Ngure, Marchant, Götte (bib10) 2018; 8
Agostini, Andres, Sims, Graham, Sheahan, Lu, Smith, Case, Feng, Jordan, Ray, Cihlar, Siegel, Mackman, Clarke (bib5) 2018; 9
de Wilde, Jochmans, Posthuma, Zevenhoven-Dobbe, van Nieuwkoop, Bestebroer, van den Hoogen, Neyts, Snijder (bib21) 2014; 58
Poch, Sauvaget, Delarue, Tordo (bib16) 1989; 8
Sheahan, Sims, Graham, Menachery, Gralinski, Case, Leist, Pyrc, Feng, Trantcheva, Bannister, Park, Babusis, Clarke, Mackman (bib19) 2017; 9
Sheahan, Sims, Leist, Schäfer, Won, Brown, Montgomery, Hogg, Babusis, Clarke, Spahn, Bauer, Sellers, Porter, Feng (bib1) 2020; 11
Mühlberger, Weik, Volchkov, Klenk, Becker (bib9) 1999; 73
Mulangu, Dodd, Davey, Tshiani Mbaya, Proschan, Mukadi, Lusakibanza Manzo, Nzolo, Tshomba Oloma, Ibanda, Ali, Coulibaly, Levine, Grais, Diaz (bib18) 2019; 381
Tchesnokov, Obikhod, Schinazi, Götte (bib23) 2008; 283
Imbert, Guillemot, Bourhis, Bussetta, Coutard, Egloff, Ferron, Gorbalenya, Canard (bib17) 2006; 25
Ferron, Subissi, Silveira De Morais, Le, Sevajol, Gluais, Decroly, Vonrhein, Bricogne, Canard, Imbert (bib14) 2018; 115
Jordan, Liu, Raynaud, Lo, Spiropoulou, Symons, Beigelman, Deval (bib7) 2018; 14
Lo, Jordan, Arvey, Sudhamsu, Shrivastava-Ranjan, Hotard, Flint, McMullan, Siegel, Clarke, Mackman, Hui, Perron, Ray, Cihlar (bib3) 2017; 7
Dulin, Arnold, van Laar, Oh, Lee, Perkins, Harki, Depken, Cameron, Dekker (bib24) 2017; 21
Brown, Won, Graham, Dinnon, Sims, Feng, Cihlar, Denison, Baric, Sheahan (bib6) 2019; 169
de Wit, Feldmann, Cronin, Jordan, Okumura, Thomas, Scott, Cihlar, Feldmann (bib20) 2020
Tchesnokov, Feng, Porter, Götte (bib8) 2019; 11
Lo (10.1074/jbc.AC120.013056_bib3) 2017; 7
Tchesnokov (10.1074/jbc.AC120.013056_bib8) 2019; 11
Imbert (10.1074/jbc.AC120.013056_bib17) 2006; 25
Deval (10.1074/jbc.AC120.013056_bib11) 2015; 11
Poch (10.1074/jbc.AC120.013056_bib16) 1989; 8
de Wilde (10.1074/jbc.AC120.013056_bib21) 2014; 58
Mulangu (10.1074/jbc.AC120.013056_bib18) 2019; 381
Brown (10.1074/jbc.AC120.013056_bib6) 2019; 169
Sheahan (10.1074/jbc.AC120.013056_bib1) 2020; 11
Ferron (10.1074/jbc.AC120.013056_bib14) 2018; 115
Noton (10.1074/jbc.AC120.013056_bib12) 2012; 8
Arabi (10.1074/jbc.AC120.013056_bib22) 2020; 21
Agostini (10.1074/jbc.AC120.013056_bib5) 2018; 9
Bieniossek (10.1074/jbc.AC120.013056_bib26) 2008
Sheahan (10.1074/jbc.AC120.013056_bib19) 2017; 9
Jordan (10.1074/jbc.AC120.013056_bib7) 2018; 14
Warren (10.1074/jbc.AC120.013056_bib4) 2016; 531
Subissi (10.1074/jbc.AC120.013056_bib15) 2014; 111
Tchesnokov (10.1074/jbc.AC120.013056_bib23) 2008; 283
Berger (10.1074/jbc.AC120.013056_bib25) 2004; 22
de Wit (10.1074/jbc.AC120.013056_bib20) 2020
Mühlberger (10.1074/jbc.AC120.013056_bib9) 1999; 73
Tchesnokov (10.1074/jbc.AC120.013056_bib10) 2018; 8
Dulin (10.1074/jbc.AC120.013056_bib24) 2017; 21
Siegel (10.1074/jbc.AC120.013056_bib2) 2017; 60
Kirchdoerfer (10.1074/jbc.AC120.013056_bib13) 2019; 10
References_xml – volume: 169
  start-page: 104541
  year: 2019
  ident: bib6
  article-title: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase
  publication-title: Antiviral Res
– volume: 11
  year: 2015
  ident: bib11
  article-title: Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2′-fluoro-4′-chloromethyl-cytidine triphosphate
  publication-title: PLoS Pathog
– volume: 9
  start-page: e00221
  year: 2018
  end-page: 18
  ident: bib5
  article-title: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease
  publication-title: mBio
– volume: 283
  start-page: 34218
  year: 2008
  end-page: 34228
  ident: bib23
  article-title: Delayed chain termination protects the anti-hepatitis B virus drug entecavir from excision by HIV-1 reverse transcriptase
  publication-title: J. Biol. Chem
– volume: 21
  start-page: 1063
  year: 2017
  end-page: 1076
  ident: bib24
  article-title: Signatures of nucleotide analog incorporation by an RNA-dependent RNA polymerase revealed using high-throughput magnetic tweezers
  publication-title: Cell Reports
– volume: 22
  start-page: 1583
  year: 2004
  end-page: 1587
  ident: bib25
  article-title: Baculovirus expression system for heterologous multiprotein complexes
  publication-title: Nat. Biotechnol
– volume: 111
  start-page: E3900
  year: 2014
  end-page: E3909
  ident: bib15
  article-title: One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 14
  start-page: e1006889
  year: 2018
  ident: bib7
  article-title: Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase
  publication-title: PLoS Pathog
– volume: 11
  start-page: 222
  year: 2020
  ident: bib1
  article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon β against MERS–CoV
  publication-title: Nat. Commun
– volume: 58
  start-page: 4875
  year: 2014
  end-page: 4884
  ident: bib21
  article-title: Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture
  publication-title: Antimicrob. Agents Chemother
– volume: 60
  start-page: 1648
  year: 2017
  end-page: 1661
  ident: bib2
  article-title: Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses
  publication-title: J. Med. Chem
– volume: 25
  start-page: 4933
  year: 2006
  end-page: 4942
  ident: bib17
  article-title: A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus
  publication-title: EMBO J
– volume: 115
  start-page: E162
  year: 2018
  end-page: E171
  ident: bib14
  article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 531
  start-page: 381
  year: 2016
  end-page: 385
  ident: bib4
  article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys
  publication-title: Nature
– volume: 9
  start-page: eaal3653
  year: 2017
  ident: bib19
  article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses
  publication-title: Sci. Transl. Med
– volume: 21
  start-page: 8
  year: 2020
  ident: bib22
  article-title: Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial
  publication-title: Trials
– volume: 73
  start-page: 2333
  year: 1999
  end-page: 2342
  ident: bib9
  article-title: Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems
  publication-title: J. Virol
– volume: 8
  start-page: 3867
  year: 1989
  end-page: 3874
  ident: bib16
  article-title: Identification of four conserved motifs among the RNA-dependent polymerase encoding elements
  publication-title: EMBO J
– volume: 8
  start-page: e1002980
  year: 2012
  ident: bib12
  article-title: The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter
  publication-title: PLoS Pathog
– volume: 10
  start-page: 2342
  year: 2019
  ident: bib13
  article-title: Structure of the SARS–CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors
  publication-title: Nat. Commun
– year: 2008
  ident: bib26
  article-title: MultiBac: multigene baculovirus-based eukaryotic protein complex production
  publication-title: Curr. Protoc. Protein Sci
– volume: 11
  start-page: E326
  year: 2019
  ident: bib8
  article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir
  publication-title: Viruses
– volume: 7
  start-page: 43395
  year: 2017
  ident: bib3
  article-title: GS-5734 and its parent nucleoside analog inhibit filo-, pneumo-, and paramyxoviruses
  publication-title: Sci. Rep
– start-page: 201922083
  year: 2020
  ident: bib20
  article-title: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS–CoV infection
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 8
  start-page: 3970
  year: 2018
  ident: bib10
  article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus
  publication-title: Sci. Rep
– volume: 381
  start-page: 2293
  year: 2019
  end-page: 2303
  ident: bib18
  article-title: A randomized, controlled trial of Ebola virus disease therapeutics
  publication-title: New Engl. J. Med
– volume: 115
  start-page: E162
  year: 2018
  ident: 10.1074/jbc.AC120.013056_bib14
  article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1718806115
– volume: 11
  start-page: 222
  year: 2020
  ident: 10.1074/jbc.AC120.013056_bib1
  article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon β against MERS–CoV
  publication-title: Nat. Commun
  doi: 10.1038/s41467-019-13940-6
– volume: 8
  start-page: e1002980
  year: 2012
  ident: 10.1074/jbc.AC120.013056_bib12
  article-title: The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002980
– volume: 111
  start-page: E3900
  year: 2014
  ident: 10.1074/jbc.AC120.013056_bib15
  article-title: One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1323705111
– volume: 10
  start-page: 2342
  year: 2019
  ident: 10.1074/jbc.AC120.013056_bib13
  article-title: Structure of the SARS–CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors
  publication-title: Nat. Commun
  doi: 10.1038/s41467-019-10280-3
– volume: 9
  start-page: eaal3653
  year: 2017
  ident: 10.1074/jbc.AC120.013056_bib19
  article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses
  publication-title: Sci. Transl. Med
  doi: 10.1126/scitranslmed.aal3653
– volume: 11
  start-page: E326
  year: 2019
  ident: 10.1074/jbc.AC120.013056_bib8
  article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir
  publication-title: Viruses
  doi: 10.3390/v11040326
– volume: 7
  start-page: 43395
  year: 2017
  ident: 10.1074/jbc.AC120.013056_bib3
  article-title: GS-5734 and its parent nucleoside analog inhibit filo-, pneumo-, and paramyxoviruses
  publication-title: Sci. Rep
  doi: 10.1038/srep43395
– volume: 9
  start-page: e00221
  year: 2018
  ident: 10.1074/jbc.AC120.013056_bib5
  article-title: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease
  publication-title: mBio
  doi: 10.1128/mBio.00221-18
– year: 2008
  ident: 10.1074/jbc.AC120.013056_bib26
  article-title: MultiBac: multigene baculovirus-based eukaryotic protein complex production
  publication-title: Curr. Protoc. Protein Sci
  doi: 10.1002/0471140864.ps0520s51
– volume: 8
  start-page: 3867
  year: 1989
  ident: 10.1074/jbc.AC120.013056_bib16
  article-title: Identification of four conserved motifs among the RNA-dependent polymerase encoding elements
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1989.tb08565.x
– volume: 22
  start-page: 1583
  year: 2004
  ident: 10.1074/jbc.AC120.013056_bib25
  article-title: Baculovirus expression system for heterologous multiprotein complexes
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt1036
– volume: 14
  start-page: e1006889
  year: 2018
  ident: 10.1074/jbc.AC120.013056_bib7
  article-title: Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1006889
– volume: 283
  start-page: 34218
  year: 2008
  ident: 10.1074/jbc.AC120.013056_bib23
  article-title: Delayed chain termination protects the anti-hepatitis B virus drug entecavir from excision by HIV-1 reverse transcriptase
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M806797200
– volume: 21
  start-page: 8
  year: 2020
  ident: 10.1074/jbc.AC120.013056_bib22
  article-title: Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial
  publication-title: Trials
  doi: 10.1186/s13063-019-3846-x
– volume: 58
  start-page: 4875
  year: 2014
  ident: 10.1074/jbc.AC120.013056_bib21
  article-title: Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture
  publication-title: Antimicrob. Agents Chemother
  doi: 10.1128/AAC.03011-14
– volume: 21
  start-page: 1063
  year: 2017
  ident: 10.1074/jbc.AC120.013056_bib24
  article-title: Signatures of nucleotide analog incorporation by an RNA-dependent RNA polymerase revealed using high-throughput magnetic tweezers
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2017.10.005
– volume: 8
  start-page: 3970
  year: 2018
  ident: 10.1074/jbc.AC120.013056_bib10
  article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus
  publication-title: Sci. Rep
  doi: 10.1038/s41598-018-22328-3
– volume: 60
  start-page: 1648
  year: 2017
  ident: 10.1074/jbc.AC120.013056_bib2
  article-title: Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses
  publication-title: J. Med. Chem
  doi: 10.1021/acs.jmedchem.6b01594
– volume: 25
  start-page: 4933
  year: 2006
  ident: 10.1074/jbc.AC120.013056_bib17
  article-title: A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601368
– volume: 531
  start-page: 381
  year: 2016
  ident: 10.1074/jbc.AC120.013056_bib4
  article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys
  publication-title: Nature
  doi: 10.1038/nature17180
– volume: 11
  year: 2015
  ident: 10.1074/jbc.AC120.013056_bib11
  article-title: Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2′-fluoro-4′-chloromethyl-cytidine triphosphate
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1004995
– volume: 73
  start-page: 2333
  year: 1999
  ident: 10.1074/jbc.AC120.013056_bib9
  article-title: Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems
  publication-title: J. Virol
  doi: 10.1128/JVI.73.3.2333-2342.1999
– start-page: 201922083
  year: 2020
  ident: 10.1074/jbc.AC120.013056_bib20
  article-title: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS–CoV infection
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 381
  start-page: 2293
  year: 2019
  ident: 10.1074/jbc.AC120.013056_bib18
  article-title: A randomized, controlled trial of Ebola virus disease therapeutics
  publication-title: New Engl. J. Med
  doi: 10.1056/NEJMoa1910993
– volume: 169
  start-page: 104541
  year: 2019
  ident: 10.1074/jbc.AC120.013056_bib6
  article-title: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2019.104541
SSID ssj0000491
Score 2.7083304
Snippet Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing...
Antiviral drugs for managing infections with human coronaviruses are not yet approved, posing a serious challenge to current global efforts aimed at containing...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4773
SubjectTerms Adenosine Monophosphate - analogs & derivatives
Adenosine Monophosphate - chemistry
Adenosine Monophosphate - pharmacology
Alanine - analogs & derivatives
Alanine - chemistry
Alanine - pharmacology
Animals
Antiviral Agents - chemistry
Antiviral Agents - pharmacology
antiviral drug
coronavirus
Coronavirus - enzymology
drug development
Ebola virus (EBOV)
Ebolavirus - enzymology
Editors' Picks
enzyme inhibitor
Gene Expression
Middle East respiratory syndrome coronavirus (MERS–CoV)
Middle East Respiratory Syndrome Coronavirus - enzymology
Nucleic Acid Synthesis Inhibitors - chemistry
Nucleic Acid Synthesis Inhibitors - pharmacology
nucleoside/nucleotide analog
plus-stranded RNA virus
positive-sense RNA virus
remdesivir
RNA
RNA chain termination
RNA-dependent RNA polymerase (RdRp)
RNA-Dependent RNA Polymerase - antagonists & inhibitors
RNA-Dependent RNA Polymerase - genetics
SARS–CoV-2
Sf9 Cells
Viral Nonstructural Proteins - genetics
viral polymerase
viral replicase
Virus Replication - drug effects
Title The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus
URI https://dx.doi.org/10.1074/jbc.AC120.013056
https://www.ncbi.nlm.nih.gov/pubmed/32094225
https://www.proquest.com/docview/2364032988
https://pubmed.ncbi.nlm.nih.gov/PMC7152756
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2gWAvCDY-ypeMhJBQlS4fTtI8lmpoGuo00CaVpyhObFZok6pNJ5VH_nLuYjvJyphgL1HjxLGb-8idfXc_Qt7aAXeTLMkszrhtgfaTViTB53GSzOacJeCNYTby6CQ4OmfHY3-8tX23FbW0Knkv_XltXsltqAptQFfMkv0PytYPhQb4DfSFI1AYjv9MY3gzEwzUnVbR4QiS1F2IWSaW2NqdF2ATl1NM7ruYcNwk-HIysAzybYlniNOwxqWppVDJJqNqzaJ7mCxLeFSzE2-KG8BAC7Df4fF60eB7M5uWfavKO6kCJAZVro72AZdXb_cn08tJ3j3u1UsIiOCVFz-Ky0pNfysW3dP6Irx9HUC87n6tWzEaVnGeSpiHyesuejnDxdhSSwe2NhkEqNpaQasfJkU9URV_YqCDNWJnW2tWMSeuqgffE0qrg52JKQvjttp3Fbin4W-_pcVZqOBVtEUAp9G1Xxswv_Brw9PeYOi4dg93gVWZ9BbzzWcV93kuONKuSvLeqPB9OhqGiC7sB9vkjgvuDurrT5-bqvfgxSnkR_3X9HY7DH-wOfguuWdG-pul9acntRkQ3LKwzh6SB5p16EDx-SOyJfI9sj_Igftma_qOVsHKFR32yP2hodQ--QWMR2sxoEYMaCMG1IgBNWJAr4gBntFGDCiKAVViQFEMaEsMqBED2hKDx-T84-HZ8MjS0CJWyphXWplEcCbBBBjAAuulcgGuvJ9GtgykYCx1kpD3pe-FERcezxJ4qZ4MIiFl6oJN7D0hO3mRi2eERlmU2I4EyznxmQwld6UjvMADu9rJuM865MCQIU513X2Ef5nGVfxHyGKgYVzRMFY07JD3dY-5qjlzw72eoWysbWZlC8fApDf0emOYIAZi4R5hkotitYwRT8L23Kjf75CniinqORjG6pDwCrvUN2Cp-qtX8slFVbJe8_fzW_d8QXYbbfGS7JSLlXgF7kDJX1ey8hsnzRK8
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+antiviral+compound+remdesivir+potently+inhibits+RNA-dependent+RNA+polymerase+from+Middle+East+respiratory+syndrome+coronavirus&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Gordon%2C+Calvin+J.&rft.au=Tchesnokov%2C+Egor+P.&rft.au=Feng%2C+Joy+Y.&rft.au=Porter%2C+Danielle+P.&rft.date=2020-04-10&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=295&rft.issue=15&rft.spage=4773&rft.epage=4779&rft_id=info:doi/10.1074%2Fjbc.AC120.013056&rft_id=info%3Apmid%2F32094225&rft.externalDocID=PMC7152756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon